Logic Agents and Propositional Logic

C H A P T E R 7 H A S S A N K H O S R A V I S P R I N G 2 0 1 1

Knowledge-Based Agents

\bullet KB = knowledge base

- A set of sentences or facts
- e.g., a set of statements in a logic language

Inference

- Deriving new sentences from old
- e.g., using a set of logical statements to infer new ones

A simple model for reasoning

- Agent is told or perceives new evidence
	- \times E.g., A is true
- Agent then infers new facts to add to the KB
	- $E.g., KB = { A \rightarrow (B \, OR \, C) }, then given A and not C we can infer that B is true$
	- \triangleright B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B

Wumpus World

Environment

- Cave of 4×4
- Agent enters in [1,1]
- 16 rooms
	- \times Wumpus: A deadly beast who kills anyone entering his room.
	- \times Pits: Bottomless pits that will trap you forever.
	- \angle Gold

Wumpus World

Agents Sensors:

- Stench next to Wumpus
- Breeze next to pit
- Glitter in square with gold
- Bump when agent moves into a wall
- o Scream from wumpus when killed

• Agents actions

- Agent can move forward, turn left or turn right
- Shoot, one shot

Wumpus World

• Performance measure

- +1000 for picking up gold -1000 got falling into pit -1 for each move
- -10 for using arrow

Reasoning in the Wumpus World

- Agent has initial ignorance about the configuration Agent knows his/her initial location
	- Agent knows the rules of the environment
- Goal is to explore environment, make inferences (reasoning) to try to find the gold.

• Random instantiations of this problem used to test agent reasoning and decision algorithms

(applications? "intelligent agents" in computer games)

[1,1] The KB initially contains the rules of the environment.

The first percept is [*none, none,none,none,none*],

move to safe cell e.g. 2,1

 $[2,1]$ = breeze

indicates that there is a pit in [2,2] or [3,1],

return to [1,1] to try next safe cell

[1,2] Stench in cell which means that wumpus is in [1,3] or [2,2] YET ... not in $[1,1]$ YET ... not in [2,2] or stench would have been detected in [2,1] (this is relatively sophisticated reasoning!)

[1,2] Stench in cell which means that wumpus is in [1,3] or [2,2] YET ... not in [1,1] YET ... not in [2,2] or stench would have been detected in [2,1]

(this is relatively sophisticated reasoning!)

THUS … wumpus is in [1,3] THUS [2,2] is safe because of lack of breeze in [1,2] THUS pit in [1,3] (again a clever inference) move to next safe cell [2,2]

[2,2] move to [2,3]

[2,3] detect glitter , smell, breeze THUS pick up gold THUS pit in $\left[3,3\right]$ or $\left[2,4\right]$

What our example has shown us

- Can represent general knowledge about an environment by a set of rules and facts
- Can gather evidence and then infer new facts by combining evidence with the rules
- The conclusions are guaranteed to be correct if
	- The evidence is correct
	- The rules are correct
	- The inference procedure is correct
		- -> logical reasoning

• The inference may be quite complex

E.g., evidence at different times, combined with different rules, etc

What is a Logic?

- A formal language
	- \circ KB = set of sentences
- Syntax
	- what sentences are legal (well-formed)
	- E.g., arithmetic
		- \times X+2 >= y is a wf sentence, +x2y is not a wf sentence

Semantics

- loose meaning: the interpretation of each sentence
- More precisely:
	- \triangleright Defines the truth of each sentence wrt to each possible world

\circ e.g,

- \times X+2 = y is true in a world where x=7 and y =9
- \times X+2 = y is false in a world where x=7 and y =1
- Note: standard logic each sentence is T of F wrt eachworld
	- \times Fuzzy logic allows for degrees of truth.

Models and possible worlds

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.
- *m* is a model of a sentence α if α is true in *m*
- $M(\alpha)$ is the set of all models of α
- Possible worlds \sim models
	- Possible worlds: potentially real environments
	- Models: mathematical abstractions that establish the truth or falsity of every sentence

Example:

- $x + y = 4$, where $x = \text{\#men}$, $y = \text{\# women}$
- Possible models = all possible assignments of integers to x and y

Entailment

• One sentence follows logically from another $|\alpha| = \beta$

 α entails sentence β *if and only if* β is true in all worlds where α is true.

e.g.,
$$
x+y=4
$$
 |= $4=x+y$

 Entailment is a relationship between sentences that is based on semantics.

Entailment in the wumpus world

- Consider possible models for *KB* assuming only pits and a reduced Wumpus world
- Situation after detecting nothing in [1,1], moving right, detecting breeze in [2,1]

• $KB = all possible wumpus-worlds consistent$ with the observations and the "physics" of the Wumpus world.

Inferring conclusions

• Consider 2 possible conclusions given a KB

- $\alpha_1 =$ "[1,2] is safe"
- α_2 = "[2,2] is safe"

One possible inference procedure

- Start with KB
- Model-checking
	- \angle Check if KB $\models \alpha$ by checking if in all possible models where KB is true that α is also true

• Comments:

- Model-checking enumerates all possible worlds
	- Only works on finite domains, will suffer from exponential growth of possible models

 $\alpha_2 = "[2, 2]$ is safe", $\cancel{KB} \models \alpha_2$

There are some models entailed by KB where α_2 is false

Logical inference

- The notion of entailment can be used for logic inference. Model checking (see wumpus example): enumerate all possible models and check whether α is true.
- If an algorithm only derives entailed sentences it is called *sound* or *truth preserving*.
	- Otherwise it just makes things up. *i* is sound if whenever KB $\vert \cdot_i \alpha$ it is also true that KB $\vert = \alpha$ *E.g., model-checking is sound*
- Completeness: the algorithm can derive any sentence that is entailed.

i is complete if whenever KB $|=\alpha$ it is also true that KB $|\cdot$ *i* α

If KB is true in the real world, then any sentence α derived *from KB by a sound inference procedure is also true in the real world.*

Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- Atomic sentences = single proposition symbols
	- E.g., P, Q, R
	- \circ Special cases: True = always true, False = always false

Complex sentences:

- \circ If S is a sentence, $-S$ is a sentence (negation)
- \circ If S₁ and S₂ are sentences, S₁ \wedge S₂ is a sentence (conjunction)
- \circ If S₁ and S₂ are sentences, S₁ \vee S₂ is a sentence (disjunction)
- \circ If S₁ and S₂ are sentences, S₁ \Rightarrow S₂ is a sentence (implication)
- \circ If S₁ and S₂ are sentences, S₁ \Leftrightarrow S₂ is a sentence (biconditional)

Propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol

E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$
false true false false With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model *m*:

 $-S$ is true iff S is false

 $S_1 \wedge S_2$ is true iff S_1 is true and S_2 S₂ is true $S_1 \vee S_2$ is true iff S_1 is true or S_2 S_2 is true $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true i.e., is false iff S_1 is true and S_2 is false

 $\mathrm{S}_\mathrm{i} \Leftrightarrow \mathrm{S}_\mathrm{2} \quad \text{is true iff } \ \mathrm{S}_\mathrm{i} \!\Rightarrow\!\! \mathrm{S}_\mathrm{2} \text{ is true and} \mathrm{S}_\mathrm{2} \!\Rightarrow\!\! \mathrm{S}_\mathrm{1} \text{ is true}$

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \wedge (P_{2,2} \vee P_{3,1}) = true \wedge (true \vee false) = true \wedge true = true$

Truth tables for connectives

Truth tables for connectives

Implication is always true when the premise is false

Why? P=>Q means "if P is true then I am claiming that Q is true, otherwise no claim" Only way for this to be false is if P is true and Q is false

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j]. start: $\neg P_{1,1}$ $- B_{1,1}$

 "Pits cause breezes in adjacent squares" $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

 $B_{2,1}$

- KB can be expressed as the conjunction of all of these sentences
- Note that these sentences are rather long-winded!
	- E.g., breese "rule" must be stated explicitly for each square
	- First-order logic will allow us to define more general relations (later)

Truth tables for the Wumpus KB

Inference by enumeration

 \bullet We want to see if α is entailed by KB

- Enumeration of all models is sound and complete.
- \bullet But...for *n* symbols, time complexity is $O(2^n)$...
- We need a more efficient way to do inference
	- But worst-case complexity will remain exponential for propositional logic

Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: $\alpha = \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

$$
(\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land
$$

\n
$$
(\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor
$$

\n
$$
((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land
$$

\n
$$
((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor
$$

\n
$$
\neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination}
$$

\n
$$
(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition}
$$

\n
$$
(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination}
$$

\n
$$
(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination}
$$

\n
$$
\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan}
$$

\n
$$
\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan}
$$

\n
$$
(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor
$$

\n
$$
(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
$$

Modus Ponens

$$
\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}
$$

And-Elimination

$$
\frac{\alpha \wedge \beta}{\alpha}
$$

Bi-conditional Elimination

$$
\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \qquad \text{and} \qquad \frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}
$$

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$ $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$ (tautologies)

Validity is connected to inference via the Deduction *KB* $\models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model e.g., $A \vee B$, (determining satisfiability of sentences is NP-complete)

A sentence is unsatisfiable if it is false in all models e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: *KB* $\models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable (there is no model for which KB=true and α is false) (aka proof by contradiction: assume α to be false and this leads to contraditions in KB)

Proof methods

• Proof methods divide into (roughly) two kinds:

Application of inference rules:

Legitimate (sound) generation of new sentences from old.

- Resolution
- Forward & Backward chaining

Model checking

Searching through truth assignments.

- $\overline{}$ Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)
- \times Heuristic search in model space: Walksat.

- Any KB can be converted into CNF
- k-CNF: exactly k literals per clause

Example: Conversion to CNF

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing α \Rightarrow β with \neg α β. $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg (P_{1,2} \vee P_{2,1}) \vee B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{11} \vee P_{12} \vee P_{21}) \wedge ((\neg P_{12} \wedge \neg P_{21}) \vee B_{11})$
- 4. Apply distributive law (\wedge over \vee) and flatten: $(\neg B_{11} \vee P_{12} \vee P_{21}) \wedge (\neg P_{12} \vee B_{11}) \wedge (\neg P_{21} \vee B_{11})$
Resolution Inference Rule for CNF

 $(A \vee B \vee C)$ $(\neg A)$ ------------

 \therefore (B \vee C)

 $(A \vee B \vee C)$ $(\neg A \lor D \lor E)$ "If A or B or C is true, but not A, then B or C must be true."

"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

 \therefore (B \vee C \vee D \vee E)

 $(\mathcal{A} \vee \mathcal{B})$ $(\neg A \vee B)$ Simplification

: $(B \vee B) \equiv B$

- The resolution algorithm tries to prove: $KB \models \alpha$ equivalent to $\mathcal{KB} \wedge \neg \alpha$ unsatisfiable
- Generate all new sentences from KB and the query.
- One of two things can happen:
- 1. We find $P \wedge \neg P$ which is unsatisfiable, i.e. we can entail the query.
- 2. We find no contradiction: there is a model that satisfies the Sentence (non-trivial) and hence we cannot entail the query.

 $KB \wedge \neg \alpha$

Horn Clauses

- Resolution in general can be exponential in space and time.
- If we can reduce all clauses to "Horn clauses" resolution is linear in space and time

A clause with at most 1 positive literal.

e.g. $A \vee \neg B \vee \neg C$

• Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion. g. $A \lor \neg B \lor \neg C$
Every Horn clause can be rewritten
a conjunction of positive literals in
positive literal as a conclusion.
g. $B \land C \Rightarrow A$
1 positive literal: definite clause
o positive literals: Fact or integrity
e.g. $(\neg A$

e.g. $B \wedge C \Rightarrow A$

- 1 positive literal: definite clause
- 0 positive literals: Fact or integrity constraint:

Forward-chaining pseudocodefunction PL-FC-ENTAILS? (KB, q) returns true or false local variables: count, a table, indexed by clause, initially the number of premises $inferred$, a table, indexed by symbol, each entry initially $false$ a^0 , a list of symbols, initially the symbols known to be true while agenda is not empty do $p \leftarrow \text{Pop}(agenda)$ unless inferred $[p]$ do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement $count[c]$ if $count[c] = 0$ then do if HEAD[c] = q then return true $PUSH(HEAD[c], agenda)$

return false

Forward chaining: graph representation

- Idea: fire any rule whose premises are satisfied in the *KB*,
	- add its conclusion to the *KB*, until query is found

• Forward chaining is sound and complete for Horn KB

Forward chaining

 FC is data-driven, automatic, unconscious processing,

e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

Backward chaining

Idea: work backwards from the query *q*

- \ast check if *q* is known already, or
- prove by BC all premises of some rule concluding *q*
- \blacktriangleright Hence BC maintains a stack of sub-goals that need to be proved to get to q.

Backward chaining

 BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in size of KB

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal

- 1. has already been proved true, or
- 2. has already failed

Like FC, is linear and is also sound and complete (for Horn KB)

Model Checking

Two families of efficient algorithms:

- Complete backtracking search algorithms: DPLL algorithm
- Incomplete local search algorithms o WalkSAT algorithm

Satisfiability problems

• Consider *a* CNF sentence, e.g., $(-D \vee \neg B \vee C) \wedge (B \vee \neg A \vee \neg C) \wedge (\neg C \vee \neg B \vee E) \wedge$ $(E \vee \neg D \vee B) \wedge (B \vee E \vee \neg C)$

Satisfiability: Is there a model consistent with this sentence?

 $[A \vee B] \wedge [\neg B \vee \neg C] \wedge [A \vee C] \wedge [\neg D] \wedge [\neg D \vee \neg A]$

The WalkSAT algorithm

• Incomplete, local search algorithm

- Begin with a random assignment of values to symbols
- Each iteration: pick an unsatisfied clause
	- $\overline{}$ Flip the symbol that maximizes number of satisfied clauses, OR
	- \times Flip a symbol in the clause randomly
- Trades-off greediness and randomness
- Many variations of this idea
- If it returns failure (after some number of tries) we cannot tell whether the sentence is unsatisfiable or whether we have not searched long enough
	- \circ If max-flips = infinity, and sentence is unsatisfiable, algorithm never terminates!
- Typically most useful when we expect a solution to exist

Pseudocode for WalkSATfunction WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic p , the probability of choosing to do a "random walk" move $max\text{-}flips$, number of flips allowed before giving up $model \leftarrow$ a random assignment of $true/false$ to the symbols in *clauses* for $i = 1$ to max-flips do if model satisfies clauses then return model $clause \leftarrow$ a randomly selected clause from *clauses* that is false in *model* with probability p flip the value in $model$ of a randomly selected symbol from *clause* else flip whichever symbol in *clause* maximizes the number of satisfied clauses return failure

Hard satisfiability problems

 Consider *random* 3-CNF sentences. e.g., $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land$ $(E \vee \neg D \vee B) \wedge (B \vee E \vee \neg C)$

 $m =$ number of clauses (5) $n =$ number of symbols (5)

Underconstrained problems:

- \times Relatively few clauses constraining the variables
- \times Tend to be easy

 \times 16 of 32 possible assignments above are solutions

(so 2 random guesses will work on average)

Hard satisfiability problems

• What makes a problem hard?

- Increase the number of clauses while keeping the number of symbols fixed
- Problem is more constrained, fewer solutions

o Investigate experimentally....

• Median runtime for 100 satisfiable random 3 -CNF sentences, $n = 50$

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

 $\neg P_{1,1}$ (no pit in square [1,1]) $\sqrt{W_{1,1}}$ (no Wumpus in square [1,1]) $\text{B}_{\text{x},\text{y}} \Longleftrightarrow (\text{P}_{\text{x},\text{y+1}} \vee \text{P}_{\text{x},\text{y-1}} \vee \text{P}_{\text{x+1},\text{y}} \vee \text{P}_{\text{x-1},\text{y}})$ (Breeze next to Pit) $S_{X,Y} \Longleftrightarrow (W_{X,Y+1} \vee W_{X,Y-1} \vee W_{X+1,Y} \vee W_{X-1,Y})$ (stench next to Wumpus) $W_{1,1} \vee W_{1,2} \vee ... \vee W_{4,4}$ (at least 1 Wumpus) $-W_{1,1} \vee \neg W_{1,2}$ (at most 1 Wumpus) $-W_{1,1} \vee-W_{8,9}$ …

 \Rightarrow 64 distinct proposition symbols, 155 sentences

Limited expressiveness of propositional logic

- KB contains "physics" sentences for every single square
- For every time *t* and every location [*x,y*], $L_{x,y} \wedge$ *FacingRight^t* \wedge *Forward^t* \Rightarrow $L_{x+1,y}$

Rapid proliferation of clauses.

First order logic is designed to deal with this through the introduction of variables.
Summary

 Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Resolution is complete for propositional logic
- Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power