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Logic Agents and Propositional 
Logic



Knowledge-Based Agents

 KB = knowledge base
 A set of sentences or facts
 e.g., a set of statements in a logic language

 Inference
 Deriving new sentences from old
 e.g., using a set of logical statements to infer new ones

 A simple model for reasoning
 Agent is told or perceives new evidence

 E.g., A is true

 Agent then infers new facts to add to the KB
 E.g., KB = { A -> (B OR C) }, then given A and not C we can infer that B is true
 B is now added to the KB even though it was not explicitly asserted, i.e., the 

agent inferred B



Wumpus World

 Environment

 Cave of 4×4

 Agent enters in [1,1]

 16 rooms

 Wumpus: A deadly beast who kills anyone 
entering his room. 

 Pits: Bottomless pits that will trap you 
forever. 

 Gold



Wumpus World

 Agents Sensors:
 Stench next to Wumpus

 Breeze next to pit

 Glitter in square with gold

 Bump when agent moves into a wall

 Scream from wumpus when killed

 Agents actions
 Agent can move forward, turn left or 

turn right

 Shoot, one shot



Wumpus World

 Performance measure

 +1000 for picking up gold

 -1000 got falling into pit

 -1 for each move

 -10 for using arrow



Reasoning in the Wumpus World

 Agent has initial ignorance about the configuration
 Agent knows his/her initial location
 Agent knows the rules of the environment

 Goal is to explore environment, make inferences 
(reasoning) to try to find  the gold.

 Random instantiations of this problem used to test agent 
reasoning and decision algorithms

(applications?  “intelligent agents” in computer games)



Exploring the Wumpus World

[1,1] The KB initially contains the rules of the environment.  

The first percept is [none, none,none,none,none], 

move to safe cell e.g. 2,1



Exploring the Wumpus World

[2,1] = breeze 

indicates that there is a pit in [2,2] or [3,1], 

return to [1,1] to try next safe cell



Exploring the Wumpus World

[1,2] Stench in cell which means that wumpus is in [1,3] or [2,2]
YET … not in [1,1]
YET … not in [2,2] or stench would have been detected in [2,1]

(this is relatively sophisticated reasoning!)



Exploring the Wumpus World

[1,2] Stench in cell which means that wumpus is in [1,3] or [2,2]
YET … not in [1,1]
YET … not in [2,2] or stench would have been detected in [2,1]

(this is relatively sophisticated reasoning!)

THUS … wumpus is in [1,3]
THUS [2,2] is safe because of lack of breeze in [1,2]
THUS pit in [1,3]  (again a clever inference)
move to next safe cell [2,2]



Exploring the Wumpus World

[2,2] move to [2,3]

[2,3] detect glitter , smell, breeze
THUS pick up gold
THUS pit in [3,3] or [2,4]



What our example has shown us

 Can represent general knowledge about an environment by a 
set of rules and facts

 Can gather evidence and then infer new facts by combining 
evidence with the rules

 The conclusions are guaranteed to be correct if
 The evidence is correct
 The rules are correct
 The inference procedure is correct

-> logical reasoning

 The inference may be quite complex
 E.g., evidence at different times, combined with different rules, etc



What is a Logic?

 A formal language
 KB = set of sentences

 Syntax 
 what sentences are legal (well-formed)
 E.g., arithmetic

 X+2 >= y is a wf sentence, +x2y is not a wf sentence

 Semantics  
 loose meaning: the interpretation of each sentence
 More precisely: 

 Defines the truth of each sentence wrt to each possible world
 e.g,    

 X+2 = y is true in a world where x=7 and y =9
 X+2 = y is false in a world where x=7 and y =1

 Note: standard logic – each sentence is T of F wrt eachworld
 Fuzzy logic – allows for degrees of truth.



Models and possible worlds

 Logicians typically think in terms of models, which are formally 
structured worlds with respect to which truth can be evaluated.

 m is a model of a sentence  if  is true in m

 M() is the set of all models of 

 Possible worlds ~ models
 Possible worlds: potentially real environments
 Models: mathematical abstractions that establish the truth or falsity of every 

sentence

 Example:
 x + y = 4, where x = #men, y = #women
 Possible models = all possible assignments of integers to x and y



Entailment

 One sentence follows logically from another

 |= b

 entails sentence  b if and only if b is true in all 
worlds where  is true.

e.g., x+y=4  |= 4=x+y

 Entailment is a relationship between sentences that 
is based on semantics.



Entailment in the wumpus world

 Consider possible models for KB assuming only pits and a reduced Wumpus 
world

 Situation after detecting nothing in [1,1], moving right, detecting breeze in 
[2,1]



Wumpus models

All possible models in this reduced Wumpus world.



Wumpus models

 KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world.



Inferring conclusions

 Consider 2 possible conclusions given a KB
 α1 = "[1,2] is safe"
 α2 = "[2,2] is safe“

 One possible inference procedure
 Start with KB
 Model-checking

 Check if KB ╞  by checking if in all possible models where KB is 
true that  is also true   

 Comments:
 Model-checking enumerates all possible worlds

 Only works on finite domains, will suffer from exponential growth 
of possible models



Wumpus models

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking



Wumpus models

α2 = "[2,2] is safe", KB ╞ α2

There are some models entailed by KB where 2 is 
false



Logical inference

 The notion of entailment can be used for logic inference.
 Model checking (see wumpus example): enumerate all possible 

models and check whether  is true.

 If an algorithm only derives entailed sentences it is called 
sound or truth preserving.
 Otherwise it just makes things up.

i is sound if whenever KB |-i  it is also true that KB|= 
 E.g., model-checking is sound

 Completeness : the algorithm can derive any sentence 
that is entailed.
i is complete if whenever KB |=  it is also true that KB|-i 



Schematic perspective

If KB is true in the real world, then any sentence  derived

from KB by a sound inference procedure is also true in the 

real world.



Propositional logic: Syntax

 Propositional logic is the simplest logic – illustrates basic ideas

 Atomic sentences = single proposition symbols
 E.g., P, Q, R
 Special cases: True = always true, False = always false

 Complex sentences:  

 If S is a sentence, S is a sentence (negation)

 If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

 If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

 If S1 and S2 are sentences, S1  S2 is a sentence (implication)

 If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)



Propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol
E.g. P1,2 P2,2 P3,1

false true false
With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:
S is true iff S is false  

S1  S2 is true iff S1 is true and S2 is true

S1  S2 is true iff S1is true or S2 is true

S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1  S2 is true iff S1S2 is true andS2S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

P1,2  (P2,2 P3,1) = true  (true  false) =  true  true = true



Truth tables for connectives



Truth tables for connectives

Implication is always true
when the premise is false

Why? P=>Q means “if P is true then I am claiming that Q is true,
otherwise no claim” 

Only way for this to be false is if P is true and Q is false



Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].
start:  P1,1

 B1,1

B2,1

 "Pits cause breezes in adjacent squares"
B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

 KB can be expressed as the conjunction of all of these sentences

 Note that these sentences are rather long-winded!
 E.g., breese “rule” must be stated explicitly for each square

 First-order logic will allow us to define more general relations (later)



Truth tables for the Wumpus KB



Inference by enumeration

 We want to see if  is entailed by KB 

 Enumeration of all models is sound and complete.

 But…for n symbols, time complexity is O(2n)...

 We need a more efficient way to do inference
 But worst-case complexity will remain exponential for 

propositional logic



Logical equivalence

 To manipulate logical sentences we need some rewrite rules.

 Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α╞ β and 
β╞ α



 Modus Ponens

 And-Elimination

 Bi-conditional Elimination



Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A A, A  A, (A  (A  B))  B
(tautologies)

Validity is connected to inference via the Deduction 
Theorem:
KB ╞ α if and only if (KB  α) is valid

A sentence is satisfiable if it is true in some model
e.g., A B, C
(determining satisfiability of sentences is NP-complete)

A sentence is unsatisfiable if it is false in all models
e.g., AA

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB α) is unsatisfiable
(there is no model for which KB=true and  is false) 
(aka proof by contradiction: assume  to be false and this leads to 

contraditions in KB)



Proof methods

 Proof methods divide into (roughly) two kinds:

Application of inference rules:
Legitimate (sound) generation of new sentences from old.

 Resolution

 Forward & Backward chaining 

Model checking
Searching through truth assignments.

 Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)

 Heuristic search in model space: Walksat.



Normal Form

We first rewrite                  into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable







 

We want to prove:

KB  

A “conjunction of disjunctions”

(A  B)  (B  C  D)

ClauseClause

literals

• Any KB can be converted into CNF
• k-CNF: exactly k literals per clause



Example: Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2.   Eliminate , replacing α  β with α β.
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3.   Move  inwards using de Morgan's rules and double-negation:
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4.   Apply distributive law ( over ) and flatten:
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)



Resolution Inference Rule for CNF
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“If A or B or C is true, but not A, then B or C 
must be true.”

( )

( )
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A D E

B C D E

 

  

          

   

“If A is false then B or C must be true, 
or if A is true then D or E must be true,   

hence since A is either true or false, B or C 
or D or E must be true.” 
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( )

( )
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B B B



 

       

  

Simplification



• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find                 which is unsatisfiable,
i.e. we can entail the query.

2.  We find no contradiction: there is a model that satisfies the 
Sentence (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable







 

P P 

KB  



Resolution example

 KB = (B1,1  (P1,2 P2,1))  B1,1 

 α = P1,2 KB  

False in
all worlds

True



Horn Clauses

• Resolution in general can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time

A clause with at most 1 positive literal.
e.g. 

• Every Horn clause can be rewritten as an implication with
a conjunction of positive literals in the premises and a single
positive literal as a conclusion.

e.g.

• 1 positive literal: definite clause

• 0 positive literals: Fact or integrity constraint:
e.g.  

A B C 

B C A 

( ) ( )A B A B False     



Forward-chaining pseudocode



Forward chaining: graph representation

 Idea: fire any rule whose premises are satisfied in the 
KB,

 add its conclusion to the KB, until query is found

• Forward chaining is sound and complete for Horn KB

AND gate

OR gate



Forward chaining example

“AND” gate

“OR” Gate



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining

 FC is data-driven, automatic, unconscious 
processing,
 e.g., object recognition, routine decisions

 May do lots of work that is irrelevant to the goal 



Backward chaining

Idea: work backwards from the query q
 check if q is known already, or

 prove by BC all premises of some rule concluding q

 Hence BC maintains a stack of sub-goals that need to be proved to get to q.



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example

we need P to prove
L and L to prove P.



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining

 BC is goal-driven, appropriate for problem-solving,
 e.g., Where are my keys? How do I get into a PhD program?

 Complexity of BC can be much less than linear in size of KB

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal
1. has already been proved true, or

2. has already failed

Like FC, is linear and is also sound and complete (for Horn KB)



Model Checking

Two families of efficient algorithms:

 Complete backtracking search algorithms:  DPLL  
algorithm

 Incomplete local search algorithms
 WalkSAT algorithm



Satisfiability problems

 Consider a CNF sentence, e.g.,

(D  B  C)  (B  A  C)  (C  B  E) 
(E  D  B)  (B  E  C)

Satisfiability: Is there a model consistent with this sentence?

[A  B]  [¬B  ¬C]  [A  C]  [¬D]  [¬D  ¬A] 



The WalkSAT algorithm

 Incomplete, local search algorithm
 Begin with a random assignment of values to symbols

 Each iteration: pick an unsatisfied clause
 Flip the symbol that maximizes number of satisfied clauses, OR

 Flip a symbol in the clause randomly

 Trades-off greediness and randomness

 Many variations of this idea

 If it returns failure (after some number of tries) we cannot 
tell whether the sentence is unsatisfiable or whether we 
have not searched long enough
 If max-flips = infinity, and sentence is unsatisfiable, algorithm never 

terminates!

 Typically most useful when we expect a solution to exist



Pseudocode for WalkSAT



Hard satisfiability problems

 Consider random 3-CNF sentences. e.g.,

(D  B  C)  (B  A  C)  (C  B  E) 
(E  D  B)  (B  E  C)

m = number of clauses (5) 

n = number of symbols (5)

 Underconstrained problems:

 Relatively few clauses constraining the variables

 Tend to be easy

 16 of 32 possible assignments above are solutions

 (so 2 random guesses will work on average)



Hard satisfiability problems

 What makes a problem hard?

 Increase the number of clauses while keeping the number of 
symbols fixed

 Problem is more constrained, fewer solutions

 Investigate experimentally….



P(satisfiable) for random 3-CNF sentences, n 
= 50



Run-time for DPLL and WalkSAT

 Median runtime for 100 satisfiable random 3-CNF sentences, n = 50



Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

P1,1 (no pit in square [1,1])

W1,1 (no Wumpus in square [1,1])

Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y) (Breeze next to Pit)

Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y) (stench next to Wumpus)

W1,1  W1,2  …  W4,4 (at least 1 Wumpus)

W1,1  W1,2 (at most 1 Wumpus)

W1,1  W8,9

…

 64 distinct proposition symbols, 155 sentences



Limited expressiveness of propositional logic

 KB contains "physics" sentences for every single square

 For every time t and every location [x,y],

Lx,y  FacingRightt  Forwardt  Lx+1,y

 Rapid proliferation of clauses. 

First order logic is designed to deal with this through the

introduction of variables.



Summary

 Logical agents apply inference to a knowledge base to derive new 
information and make decisions

 Basic concepts of logic:
 syntax: formal structure of sentences
 semantics: truth of sentences wrt models
 entailment: necessary truth of one sentence given another
 inference: deriving sentences from other sentences
 soundness: derivations produce only entailed sentences
 completeness: derivations can produce all entailed sentences

 Resolution is complete for propositional logic

 Forward, backward chaining are linear-time, complete for Horn clauses

 Propositional logic lacks expressive power


