Solving Combinatorial Problems using Stochastic Local Search (Spring 2007)
ICT International Doctorate School, Università degli Studi di Trento
Course outline (subject to adjustments)
Part 1: Foundations and Basics
Module 1: Introduction
-  Combinatorial Problems (SAT, TSP, etc.)
 -  Computational Complexity (P vs. NP, etc.)
 -  Search Paradigms (systematic vs. local search, etc.)
 -  Stochastic Local Search (definition, general issues, etc.)
 
Module 2: "Simple" SLS Algorithms
-  Iterative Improvement and Variants
 -  Simulated Annealing
 -  Tabu Search
 -  Dynamic Local Search, Guided Local Search
 
    
Module 3: Hybrid SLS Algorithms
-  Iterated Local Search
 -  Variable Neighbourhood Search
 -  Adaptive Iterated Construction Search
 
Module 4: Population-based SLS Algorithms
-  Ant Colony Optimisation
 -  Evolutionary Computation (Genetic Algorithms, etc.)
 
    
    
Module 5: Empirical Analysis of Stochastic Search Algorithms
-  Las Vegas Algorithms (LVAs)
 -  Run-time Distributions (RTDs)
 -  RTD-based Analysis of LVA Behaviour
 
    
Part 2: Applications and Advanced Topics
    
Module 6: SLS algorithms for SAT
Module 7: Search Space Analysis
Module 8: Automated Parameter Optimisation
- (brief introduction and selected research result)
 
Module 9: SLS for Continuous Optimisation Problems
last update 2007/06/29, hh