Solving Combinatorial Problems using Stochastic Local Search (Spring 2007)
ICT International Doctorate School, Università degli Studi di Trento
Course outline (subject to adjustments)
Part 1: Foundations and Basics
Module 1: Introduction
- Combinatorial Problems (SAT, TSP, etc.)
- Computational Complexity (P vs. NP, etc.)
- Search Paradigms (systematic vs. local search, etc.)
- Stochastic Local Search (definition, general issues, etc.)
Module 2: "Simple" SLS Algorithms
- Iterative Improvement and Variants
- Simulated Annealing
- Tabu Search
- Dynamic Local Search, Guided Local Search
Module 3: Hybrid SLS Algorithms
- Iterated Local Search
- Variable Neighbourhood Search
- Adaptive Iterated Construction Search
Module 4: Population-based SLS Algorithms
- Ant Colony Optimisation
- Evolutionary Computation (Genetic Algorithms, etc.)
Module 5: Empirical Analysis of Stochastic Search Algorithms
- Las Vegas Algorithms (LVAs)
- Run-time Distributions (RTDs)
- RTD-based Analysis of LVA Behaviour
Part 2: Applications and Advanced Topics
Module 6: SLS algorithms for SAT
Module 7: Search Space Analysis
Module 8: Automated Parameter Optimisation
- (brief introduction and selected research result)
Module 9: SLS for Continuous Optimisation Problems
last update 2007/06/29, hh