
Programming by Optimisation:

A Practical Paradigm

for Computer-Aided Algorithm Design

Holger H. Hoos⇤, Frank Hutter+, Kevin Leyton-Brown⇤

⇤ Department of Computer Science
University of British Columbia
Canada

+ Department of Computer Science
University of Freiburg
Germany

IJCAI 2013

Beijing, China, 2013/08/04

The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 2

Hoos, Hutter, Leyton-Brown: Programming by Optimization 3

The age of computation

“The maths[!] that computers use to
decide stu↵ [is] infiltrating every aspect
of our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .

Hoos, Hutter, Leyton-Brown: Programming by Optimization 3

Performance matters ...

I computation speed (time is money!)

I energy consumption (battery life, ...)

I quality of results (cost, profit, weight, ...)

... increasingly:

I globalised markets

I just-in-time production & services

I tighter resource constraints

Hoos, Hutter, Leyton-Brown: Programming by Optimization 4

Example: Resource allocation

I resources > demands many solutions, easy to find

economically wasteful
 reduction of resources / increase of demand

I resources < demands no solution, easy to demonstrate

lost market opportunity, strain within organisation
 increase of resources / reduction of demand

I resources ⇡ demands
 di�cult to find solution / show infeasibilityresources ⇡
demands
 di�cult to find solution / show infeasibility

Hoos, Hutter, Leyton-Brown: Programming by Optimization 5

This tutorial:

new approach to software development, leveraging . . .

I human creativity

I optimisation & machine learning

I large amounts of computation / data

Hoos, Hutter, Leyton-Brown: Programming by Optimization 6

Key idea:

I program (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)

) Programming by Optimization (PbO)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 7

application context 1

solver

application context 2 application context 3

solversolver

Hoos, Hutter, Leyton-Brown: Programming by Optimization 8

application context 1 application context 2 application context 3

solver[·]

Hoos, Hutter, Leyton-Brown: Programming by Optimization 8

application context 1

solver[p1]

application context 2 application context 3

solver[p3]solver

solver[·]

solversolversolversolver[p2]

Hoos, Hutter, Leyton-Brown: Programming by Optimization 8

Outline

1. Programming by Optimization: Motivation & Introduction

2. Algorithm Configuration

Co↵ee Break

3. Portfolio-based Algorithm Selection

4. Software Development Support & Further Directions

Hoos, Hutter, Leyton-Brown: Programming by Optimization 9

Programming by Optimization:

Motivation & Introduction

Example: SAT-based software verification

Hutter, Babić, Hoos, Hu (2007)

I Goal: Solve SAT-encoded software verification problems
Goal: as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babić)

= highly parameterised heuristic algorithm
= (26 parameters, ⇡ 8.3⇥ 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, Hoos, Stützle (2007)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 10

Spear: Performance on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ⇡ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 11

Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.

Hoos, Hutter, Leyton-Brown: Programming by Optimization 12

Lo Hi

Hoos, Hutter, Leyton-Brown: Programming by Optimization 13

Lo Hi

Hoos, Hutter, Leyton-Brown: Programming by Optimization 13

Lo Hi

Hoos, Hutter, Leyton-Brown: Programming by Optimization 13

Lo Hi

Hoos, Hutter, Leyton-Brown: Programming by Optimization 13

Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, Hoos, Hu (2007)

4.5–500 ⇥ 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, Hoos, Saetti (2011)

3–118 ⇥ 1

Mixed integer programming (CPLEX), 76
Hutter, Hoos, Leyton-Brown (2010)

2–52 ⇥ 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, Hoos (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, Hoos, Leyton-Brown (2012–13)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 14

PbO enables . . .

I performance optimisation for di↵erent use contexts
(some details later)

I adaptation to changing use contexts
(see, e.g., life-long learning – Thrun 1996)

I self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

I automated generation of instance-based solver selectors
(e.g., SATzilla – Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra – Xu et al. 2010; ISAC – Kadioglu et al. 2010)

I automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Schneider et al. 2012)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 15

Cost & concerns

But what about ...

I Computational complexity?

I Cost of development?

I Limitations of scope?

Hoos, Hutter, Leyton-Brown: Programming by Optimization 16

Computationally too expensive?

Spear revisited:

I total configuration time on software verification benchmarks:
⇡ 30 CPU days

I wall-clock time on 10 CPU cluster:
⇡ 3 days

I cost on Amazon Elastic Compute Cloud (EC2):
61.20 USD (= 42.58 EUR)

I 61.20 USD pays for ...

I 1:45 hours of average software engineer
I 8:26 hours at minimum wage

Hoos, Hutter, Leyton-Brown: Programming by Optimization 17

Too expensive in terms of development?

Design and coding:

I tradeo↵ between performance/flexibility and overhead

I overhead depends on level of PbO

I traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

I design alternatives for individual mechanisms and components
can be tested separately

 e↵ort linear (rather than exponential) in the number of
design choices

Hoos, Hutter, Leyton-Brown: Programming by Optimization 18

Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

I computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

I optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

I compiler optimisation
(Pan & Eigenmann 2006, Cavazos et al. 2007)

I database server configuration
(Diao et al. 2003)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 19

Overview
• Programming by Optimization (PbO):

Motivation and Introduction

• Algorithm Configuration
– Methods (components of algorithm configuration)
– Systems (that instantiate these components)
– Demo & Practical Issues
– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

20

The Algorithm Configuration Problem
Definition

– Given:
• Runnable algorithm A with configuration space
• Distribution D over problem instances 3
• Performance metric

– Find:

Motivation

 Customize versatile algorithms
for different application domains
– Fully automated improvements
– Optimize speed, accuracy,

memory, energy consumption, …

21

Very large space
of configurations

Algorithm Parameters

Parameter types
– Continuous, integer, ordinal

– Categorical: finite domain, unordered, e.g. {a,b,c}

Parameter space has structure
– E.g. parameter C of heuristic A is only active if A is used

– In this case, we say C is a conditional parameter with parent A

Parameters give rise to a structured space of algorithms
– Many configurations (e.g. 1047)

– Configurations often yield qualitatively different behaviour

o Algorithm configuration (as opposed to “parameter tuning”)

22

The Algorithm Configuration Process

23

Recall the Spear Example
SAT solver for formal verification
– 26 user-specifiable parameters

– 7 categorical, 3 Boolean, 12 continuous, 4 integer

Objective: minimize runtime on
 software verification instance set

Issues:
– Many possible settings (8.34 u 1017 after discretization)

– Evaluating performance of a configuration is expensive
• Instances vary in hardness

– Some take milliseconds, other days (for the default)

• Improvement on a few instances might not mean much

24

Configurators have Two Key Components

• Component 1: which configuration to evaluate next?
– Out of a large combinatorial search space

• Component 2: how to evaluate that configuration?

– Avoiding the expense of evaluating on all instances
– Generalizing to new problem instances

25

Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)

• Systems (that instantiate these components)

• Demo & Practical Issues

• Case Studies

26

Component 1: Which Configuration to Evaluate?

• For this component, we can consider a simpler problem:

Blackbox function optimization

– Only mode of interaction: query f(T) at arbitrary T�4

– Abstracts away the complexity of multiple instances
– 4 is still a structured space

• Mixed continuous/discrete
• Conditional parameters
• Still more general than “standard” continuous BBO [e.g., Hansen et al.]

 27

min f(T)

T f(T)

T�4

The Simplest Search Strategy: Random Search

• Select configurations uniformly at random
– Completely uninformed
– Global search, won’t get stuck in a local region
– At least it’s better than grid search:

28

Image source: Bergstra et al, Random Search for Hyperparameter Optimization, JMLR 2012

The Other Extreme: Gradient Descent

 Start with some configuration
 repeat
 Modify a single parameter
 if performance on a benchmark set degrades then
 undo modification
 until no more improvement possible

 (or “good enough")

(aka hill climbing)

29

Stochastic Local Search

• Balance intensification and diversification
– Intensification: gradient descent
– Diversification: restarts, random steps, perturbations, …

• Prominent general methods
– Taboo search [Glover, 1986]

– Simulated annealing [Kirkpatrick, Gelatt, C. D.; Vecchi, 1983]

– Iterated local search [Lourenço, Martin & Stützle, 2003]

30

[e.g., Hoos and Stützle, 2005]

Population-based Methods

• Population of configurations
– Global + local search via population

– Maintain population fitness & diversity

• Examples
– Genetic algorithms [e.g., Barricelli, ’57, Goldberg, ’89]

– Evolutionary strategies [e.g., Beyer & Schwefel, ’02]

– Ant colony optimization [e.g., Dorigo & Stützle, ’04]

– Particle swarm optimization [e.g., Kennedy & Eberhart, ’95]

31

Sequential Model-Based Optimization

32

New data
point

Sequential Model-Based Optimization

• Popular approach in statistics
to minimize expensive blackbox functions [e.g., Mockus, '78]

• Recent progress in the machine learning literature:
global convergence rates for continuous optimization
[Srinivas et al, ICML 2010]
[Bull, JMLR 2011]
[Bubeck et al., JMLR 2011]
[de Freitas, Smola, Zoghi, ICML 2012]

33

Exploiting Low Effective Dimensionality

• Often, not all parameters are equally important
• Can search in an embedded lower-dimensional space

• For details, see:
– Bayesian Optimization in High Dimensions via Random

Embeddings, Tuesday, 13:30, 201CD [Wang et al, IJCAI 2013]

34

Summary 1: Which Configuration to Evaluate?

• Need to balance diversification and intensification
• The extremes

– Random search
– Hillclimbing

• Stochastic local search (SLS)
• Population-based methods
• Sequential Model-Based Optimization
• Exploiting low effective dimensionality

35

Component 2: How to Evaluate a Configuration?

Back to general algorithm configuration
– Given:

• Runnable algorithm A with configuration space
• Distribution D over problem instances 3
• Performance metric

– Find:

Recall the Spear example
– Instances vary in hardness

• Some take milliseconds, other days (for the default)
• Thus, improvement on a few instances might not mean much

36

Simplest Solution: Use Fixed N Instances

• Effectively treat the problem as a blackbox function
optimization problem

• Issue: how large to choose N?
– Too small: overtuning
– Too large: every function evaluation is slow

• General principle
– Don’t waste time on bad configurations
– Evaluate good configurations more thoroughly

37

Racing Algorithms

• Compare two or more algorithms against each other
– Perform one run for each configuration at a time

– Discard configurations when dominated

38

Image source: Maron & Moore, Hoeffding Races, NIPS 1994

[Maron & Moore, NIPS 1994]

 [Birattari, Stützle, Paquete & Varrentrapp, GECCO 2002]

Saving Time: Aggressive Racing

• Race new configurations against the best known
– Discard poor new configurations quickly
– No requirement for statistical domination

• Search component should allow to return to
configurations discarded because they were “unlucky”

39

[Hutter, Hoos & Stützle, AAAI 2007]

Saving More Time: Adaptive Capping

Can terminate runs for poor configurations T’ early:

– Is T’ better than T?

• Example:

• Can terminate evaluation of T’ once
guaranteed to be worse than T

RT(T)=20 RT(T’)>20

20

RT(T’) = ?

(only when minimizing algorithm runtime)

40

[Hutter, Hoos, Leyton-Brown & Stützle, JAIR 2009]

Summary 2: How to Evaluate a Configuration?

• Simplest: fixed set of N instances
• General principle

– Don’t waste time on bad configurations
– Evaluate good configurations more thoroughly

• Instantiations of principle
– Racing
– Aggressive racing
– Adaptive capping

41

Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)

• Systems (that instantiate these components)

• Demo & Practical Issues

• Case Studies

42

Overview: Algorithm Configuration Systems
• Continuous parameters, single instances (blackbox opt)
– Covariance adaptation evolutionary strategy (CMA-ES)

[Hansen et al, since ’06]

– Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al, ’06]

– Random Embedding Bayesian optimization (REMBO)
[Wang et al, ’13]

• General algorithm configuration methods
– ParamILS [Hutter et al, ’07 and ’09]

– Gender-based Genetic Algorithm (GGA) [Ansotegui et al, ’09]

– Iterated F-Race [Birattari et al, ’02 and ‘10]

– Sequential Model-based Algorithm Configuration (SMAC)
[Hutter et al, since ’11]

– Distributed SMAC [Hutter et al, since ’12]

43

The ParamILS Framework

 Iterated Local Search in parameter configuration space:

 o Performs biased random walk over local optima

[Hutter, Hoos, Leyton-Brown & Stützle, AAAI 2007 & JAIR 2009]

44

The BasicILS(N) algorithm
• Instantiates the ParamILS framework
• Uses a fixed number of N runs for each evaluation
– Sample N instance from given set (with repetitions)
– Same instances (and seeds) for evaluating all configurations
– Essentially treats the problem as blackbox optimization

• How to choose N?
– Too high: evaluating a configuration is expensive

 o Optimization process is slow
– Too low: noisy approximations of true cost

 o Poor generalization to test instances / seeds

45

Generalization to Test set, Large N (N=100)

46

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)

Generalization to Test Set, Small N (N=1)

47

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)

BasicILS: Tradeoff Between Speed & Generalization

48
Test performance of SAPS on a single QWH instance

The FocusedILS Algorithm
Aggressive racing: more runs for good configurations
– Start with N(T) = 0 for all configurations

– Increment N(T) whenever the search visits T

– “Bonus” runs for configurations that win many comparisons

Theorem

 As the number of FocusedILS iterations o f,

 it converges to the true optimal conguration

– Key ideas in proof:

 1. The underlying ILS eventually reaches any configuration

 2. For N(T) o f, the error in cost approximations vanishes

49

FocusedILS: Tradeoff Between Speed & Generalization

50
Test performance of SAPS on a single QWH instance

Speeding up ParamILS

Standard adaptive capping

– Is T’ better than T?

• Example:

• Can terminate evaluation of T’ once guaranteed to be worse than T

Theorem

Early termination of poor configurations does not change
ParamILS's trajectory

– Often yields substantial speedups

RT(T)=20 RT(T’)>20

20

51

[Hutter , Hoos, Leyton-Brown, and Stützle, JAIR 2009]

Gender-based Genetic Algorithm (GGA)

• Genetic algorithm
– Genome = parameter configuration
– Combine genomes of 2 parents to form an offspring

• Two genders in the population
– Selection pressure only on one gender
– Preserves diversity of the population

52

[Ansotegui, Sellmann & Tierney, CP 2009]

Gender-based Genetic Algorithm (GGA)

• Use N instances to evaluate configurations
– Increase N in each generation
– Linear increase from Nstart to Nend
• User specifies #generations ahead of time

• Can exploit parallel resources
– Evaluate population members in parallel
– Adaptive capping: can stop when the first k succeed

53

[Ansotegui, Sellmann & Tierney, CP 2009]

F-Race and Iterated F-Race

• F-Race
– Standard racing framework
– F-test to establish that some

configuration is dominated
– Followed by pairwise t tests

if F-test succeeds

• Iterated F-Race
– Maintain a probability distribution

over which configurations are good
– Sample k configurations from that distribution & race them
– Update distributions with the results of the race

54

[Birattari et al, GECCO 2002 and book chapter 2010]

F-Race and Iterated F-Race

• Can use parallel resources
– Simply do the k runs of each iteration in parallel
– But does not support adaptive capping

• Expected performance
– Strong when the key challenge are reliable comparisons

between configurations
– Less good when the search component is the challenge

55

[Birattari et al, GECCO 2002 and book chapter 2010]

SMAC

SMAC: Sequential Model-Based Algorithm Configuration
– Sequential Model-Based Optimization

& aggressive racing

 repeat

 - construct a model to predict performance
 - use that model to select promising configurations
 - compare each selected configuration against the best known

 until time budget exhausted
 56

[Hutter, Hoos & Leyton-Brown, LION 2011]

SMAC: Aggressive Racing

• More runs for good configurations

• Increase #runs for incumbent over time

• Theorem for discrete configuration spaces:
 As SMAC's overall time budget o f,
 it converges to the optimal configuration

57

SMAC: Performance Models Across Instances

Given:

– Configuration space

– For each problem instance i: xi, a vector of feature values

– Observed algorithm runtime data: (T
1
, x

1
, y

1
), …, (T

n
, x

n
, y

n
)

Find: a mapping m: [T, x] հ y predicting A’s performance

– Rich literature

on such performance

prediction problems

[see, e.g, Hutter, Xu, Hoos, Leyton-Brown, AIJ 2013, for an overview]

– Here: use a model m based on random forests
 58

у�m (T, x)

Regression Trees: Fitting to Data

– In each internal node: only store split criterion used
– In each leaf: store mean of runtimes

param3 � {red} param3 � {blue, green}

feature2 > 3.5 feature2 �����

3.7 1.65 …
59

feature2 > 3.5

Regression Trees: Predictions for New Inputs

param3 � {red} param3 � {blue, green}

feature2 �����

3.7 1.65 …

 E.g. xn+1 = (true, 4.7, red)
– Walk down tree, return mean runtime stored in leaf � 1.65

60

Random Forests: Sets of Regression Trees

Training
– Subsample the data T times (with repetitions)
– For each subsample, fit a randomized regression tree
– Complexity for N data points: O(T N log2 N)

Prediction

– Predict with each of the T trees
– Return empirical mean and variance across these T predictions
– Complexity for N data points: O(T log N)

…

61

SMAC: Benefits of Random Forests

Robustness
– No need to optimize hyperparameters
– Already good predictions with few training data points

Automated selection of important input dimensions

– Continuous, integer, and categorical inputs
– Up to 138 features, 76 parameters
– Can identify important feature and parameter subsets

• Sometimes 1 feature and 2 parameters are enough
 [Hutter, Hoos, Leyton-Brown, LION 2013]

62

SMAC: Models Across Multiple Instances

• Fit a random forest model

• Aggregate over instances by marginalization

– Intuition: predict for each instance and take the average
– More efficient implementation in random forests

63

SMAC: Putting it all Together

 Initialize with a single run for the default
 repeat

 - learn a RF model from data so far:
 - Aggregate over instances:
 - use model f to select promising configurations
 - compare each selected configuration against the best known

 until time budget exhausted

64

SMAC: Adaptive Capping

Terminate runs for poor configurations T early:

– Lower bound on runtime
o right-censored data point

f(T)>20 f(T*)=20

20

65

[Hutter, Hoos & Leyton-Brown, NIPS 2011]

Distributed SMAC

• Distribute target algorithm runs across workers
– Maintain queue of promising configurations

– Compare these to T* on distributed worker cores

• Wallclock speedups
– Almost perfect speedups with up to 16 parallel workers

– Up to 50-fold speedups with 64 workers
• Reductions in wall clock time: 5h o 6 min - 15min

 2 days o 40min - 2h

66

[Hutter, Hoos & Leyton-Brown, LION 2012]

[Ramage, Hutter, Hoos & Leyton-Brown, in preparation]

Summary: Algorithm Configuration Systems

• ParamILS
• Gender-based Genetic Algorithm (GGA)
• Iterated F-Race
• Sequential Model-based Algorithm Configuration (SMAC)
• Distributed SMAC

• Which one is best?
– First configurator competition to come in 2014

(coorganized by leading groups on algorithm configuration,
co-chairs: Frank Hutter & Yuri Malitsky)

67

Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)

• Systems (that instantiate these components)

• Demo & Practical Issues

• Case Studies

68

The Algorithm Configuration Process

preproc {none, simple, expensive} [simple]
alpha [1,5] [2]
beta [0.1,1] [0.5]

Parameter space declaration file
./wrapper –inst X –timeout 30
-preproc none -alpha 3 -beta 0.7
o e.g. “successful after 3.4 seconds”

Wrapper for command line call

What the user has to provide

69

Example: Running SMAC

70

wget http://www.cs.ubc.ca/labs/beta/Projects/SMAC/smac-v2.04.01-master-447.tar.gz

tar xzvf smac-v2.04.01-master-447.tar.gz

cd smac-v2.04.01-master-447

./smac –seed 0 --scenarioFile
example_spear/scenario-Spear-QCP-sat-small-train-small-test-mixed.txt

Scenario file holds:
- Location of parameter file, wrapper & instances
- Objective function (here: minimize avg. runtime)
- Configuration budget (here: 30s)
- Maximal captime per target run (here: 5s)

Output of a SMAC run

71

[…]

[INFO] *****Runtime Statistics*****
 Iteration: 12
 Incumbent ID: 11 (0x27CA0)
 Number of Runs for Incumbent: 26
 Number of Instances for Incumbent: 5
 Number of Configurations Run: 25
 Performance of the Incumbent: 0.05399999999999999
 Total Number of runs performed: 101
 Configuration time budget used: 30.020000000000034 s
[INFO] **

[INFO] Total Objective of Final Incumbent 13 (0x30977) on training set:
0.05399999999999999; on test set: 0.055

[INFO] Sample Call for Final Incumbent 13 (0x30977)
cd /global/home/hutter/ac/smac-v2.04.01-master-447/example_spear; ruby spear_wrapper.rb example_data/QCP-
instances/qcplin2006.10422.cnf 0 5.0 2147483647 2897346 -sp-clause-activity-inc '1.3162094350513607' -sp-
clause-decay '1.739666995554204' -sp-clause-del-heur '1' -sp-first-restart '846' -sp-learned-clause-sort-heur '10' -sp-
learned-clauses-inc '1.395279056466624' -sp-learned-size-factor '0.6071142792450034' -sp-orig-clause-sort-heur '7'
-sp-phase-dec-heur '5' -sp-rand-phase-dec-freq '0.005' -sp-rand-phase-scaling '0.8863796134762909' -sp-rand-var-
dec-freq '0.01' -sp-rand-var-dec-scaling '0.6433957166060014' -sp-resolution '0' -sp-restart-inc
'1.7639087832223321' -sp-update-dec-queue '1' -sp-use-pure-literal-rule '0' -sp-var-activity-inc
'0.7825881046949665' -sp-var-dec-heur '3' -sp-variable-decay '1.0374907487192533'

Decision #1: Configuration Budget & Max. Captime

• Configuration budget
– Dictated by your resources & needs

• E.g., start the configurator before leaving work on Friday

– The longer the better (but diminishing returns)
• Rough rule of thumb: at least enough time for 1000 target runs

• Maximal captime per target run
– Dictated by your needs (typical instance hardness, etc)
– Too high: slow progress
– Too low: possible overtuning to easy instances
– For SAT etc, often use 300 CPU seconds

72

Decision #2: Choosing the Training Instances

• Representative instances, moderately hard
– Too hard: won’t solve many instances, no traction
– Too easy: will results generalize to harder instances?
– Rule of thumb: mix of hardness ranges

• Roughly 75% instances solvable by default in maximal captime

• Enough instances
– The more training instances the better
– Very homogeneous instance sets: 50 instances might suffice
– Prefer t 300 instances, better t 1000 instances

73

Decision #2: Choosing the Training Instances

• Split instance set into training and test sets
– Configure on the training instances o configuration T*
– Run T* on the test instances

• Unbiased estimate of performance

74

Pitfall: configuring on your test instances

 That’s from the dark ages

Fine practice: do multiple configuration runs
and pick the T* with best training performance

 Not (!!) the best on the test set

Decision #2: Choosing the Training Instances

• Works much better on homogeneous benchmarks
– Instances that have something in common

• E.g., come from the same problem domain
• E.g., use the same encoding

– One configuration likely to perform well on all instances

75

Pitfall: configuration on too heterogeneous sets

There often is no single great overall configuration
(but see algorithm selection etc, second half of the tutorial)

Decision #3: How Many Parameters to Expose?

• Suggestion: all parameters you don’t know to be useless
– More parameters o larger gains possible
– More parameters o harder problem
– Max. #parameters tackled so far: 768

[Thornton, Hutter, Hoos & Leyton-Brown, KDD‘13]
• With more time you can search a larger space

76

Pitfall: including parameters that change the problem

E.g., optimality threshold in MIP solving
E.g., how much memory to allow the target algorithm

Decision #4: How to Wrap the Target Algorithm
• Do not trust any target algorithm
– Will it terminate in the time you specify?
– Will it correctly report its time?
– Will it never use more memory than specified?
– Will it be correct with all parameter settings?

77

Pitfall: blindly minimizing target algorithm runtime

Typically, you will minimize the time to crash

Good practice: wrap target runs with tool controlling
time and memory (e.g., runsolver [Roussel et al, ’11])

Good practice: verify correctness of target runs

Detect crashes & penalize them

Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)

• Systems (that instantiate these components)

• Demo & Practical Issues

• Case Studies

78

Back to the Spear Example
Spear [Babic, 2007]

– 26 parameters

– 8.34 u 1017 configurations

Ran ParamILS, 2 to 3 days u 10 machines

– On a training set from each of 2 distributions

Compared to default (1 week of manual tuning)

– On a disjoint test set from each distribution

4.5-fold speedup 500-fold speedup � won QF_BV

category in 2007 SMT competition

below diagonal:

speedup

Log-log scale!

[Hutter, Babic, Hu & Hoos, FMCAD 2007]

79

Other Examples of PbO for SAT

• SATenstein [KhudaBukhsh, Xu, Hoos & Leyton-Brown, IJCAI 2009]

– Combined ingredients from existing solvers

– 54 parameters, over 1012 configurations

– Speedup factors: 1.6x to 218x

• Captain Jack [Tompkins & Hoos, SAT 2011]

– Explored a completely new design space

– 58 parameters, over 1050 configurations

– After configuration: best known solver for 3sat10k and IL50k

80

Configurable SAT Solver Competition (CSSC) 2013

• Annual SAT competition

– Scores SAT solvers by their performance across instances
– Medals for best average performance with solver defaults

• Misleading results: implicitly highlights solvers with good defaults

• CSSC 2013
– Better reflect an application setting: homogeneous instances
o can automatically optimize parameters

– Medals for best performance after configuration

81

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]

CSSC 2013 Result #1

• Performance often improved a lot:

82

Clasp on graph isomorphism
Timeouts: 42 o 6

Riss3gExt on BMC08
Timeouts: 32 o 20

gNovelty+Gca on 5SAT 500
Timeouts: 163 o 4

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]

CSSC 2013 Result #2

• Automated configuration changed algorithm rankings
– Example: random SAT+UNSAT category

83

Solver CSSC ranking Default ranking

Clasp 1 6

Lingeling 2 4

Riss3g 3 5

Solver43 4 2

Simpsat 5 1

Sat4j 6 3

For1-nodrup 7 7

gNovelty+GCwa 8 8

gNovelty+Gca 9 9

gNovelty+PCL 10 10

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]

Configuration of a Commercial MIP solver

Mixed Integer Programming (MIP)

Commercial MIP solver: IBM ILOG CPLEX
– Leading solver for the last 15 years
– Licensed by over 1 000 universities and 1 300 corporations
– 76 parameters, 1047 configurations

Minimizing runtime to optimal solution
– Speedup factor: 2u to 50u
– Later work: speedups up to 10,000u

Minimizing optimality gap reached
– Gap reduction factor: 1.3u to 8.6u

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]

84

Comparison to CPLEX Tuning Tool

CPLEX tuning tool
– Introduced in version 11 (late 2007, after ParamILS)
– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

ParamILS: anytime algorithm
– At each time step, keeps track of its incumbent

2-fold speedup
(our worst result)

50-fold speedup
 (our best result)

lower is better

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]

85

Machine Learning Application: Auto-WEKA

WEKA: most widely used off-the-shelf machine learning
package (>18,000 citations on Google Scholar)

Different methods work best on different data sets
– 30 base classifiers (with up to 8 parameters each)
– 14 meta-methods
– 3 ensemble methods
– 3 feature search methods & 8 feature evaluators

– Want a true off-the-shelf solution:

[Thornton, Hutter, Hoos & Leyton-Brown, KDD 2013]

Learn

86

Machine Learning Application: Auto-WEKA

• Combined model selection & hyperparameter
optimization
– All hyperparameters are conditional on their model being used
– WEKA’s configuration space: 786 parameters
– Optimize cross-validation (CV) performance

• Results
– SMAC yielded best CV performance on 19/21 data sets
– Best test performance for most sets; especially in 8 largest

• Auto-WEKA is online:

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

 87

[Thornton, Hutter, Hoos & Leyton-Brown, KDD 2013]

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

Applications of Algorithm Configuration

Scheduling and
Resource Allocation

Exam
Timetabling
since 2010

Mixed integer
programming

Helped win Competitions
SAT: since 2009
IPC: since 2011
Time-tabling: 2007
SMT: 2007

Other Academic Applications
Protein Folding
Game Theory: Kidney Exchange
Computer GO
Linear algebra subroutines
Evolutionary Algorithms
Machine Learning: Classification Spam filters

88

Co↵ee Break

Overview
• Programming by Optimization (PbO):

Motivation and Introduction

• Algorithm Configuration

• Portfolio-Based Algorithm Selection
– SATzilla: a framework for algorithm selection
– Comparing simple and complex algorithm selection methods
– Evaluating component solver contributions
– Hydra: automatic portfolio construction

• Software Development Tools and Further Directions

90

SATZILLA:
A FRAMEWORK FOR

ALGORITHM SELECTION

[Nudelman, Leyton-Brown, Andrew, Gomes, McFadden, Selman, Shoham; 2003];
[Nudelman, Leyton-Brown, Devkar, Shoham, Hoos; 2004];

[Xu, Hutter, Hoos, Leyton-Brown; 2007, 2008, 2012]

all self-citations can be followed at http://cs.ubc.ca/~kevinlb

91

SAT Solvers
What if I want to solve an NP-complete problem?
• theory: unless P=NP, some instances will be intractably hard
• practice: can do surprisingly well, but much care required

SAT is a useful testbed, on which researchers have worked to
develop high-performance solvers for decades.
• There are many high performance SAT solvers

– indeed, for years a biannual international competition has received
>20 submissions in each of 9 categories

• However, no solver is dominant
– different solvers work well on different problems

• hence the different categories
– even within a category, the best solver varies by instance

92

Portfolio-Based Algorithm Selection
• We advocate building an algorithm

portfolio to leverage the power of
all available algorithms
– indeed, an idea that has been

floating around since Rice [1976]
– lately, achieving top performance

• In particular, I’ll describe SATzilla:
– an algorithm portfolio constructed

from all available state-of-the-art
complete and incomplete SAT solvers

– very successful in competitions
• we’ve done much evaluation, but I’ll focus on competition data
• methods work beyond SAT, but I’ll focus on that domain

– in recent years, many other portfolios in the same vein
• SATzilla embodies many of the core ideas that make them all successful

93

Recently, many portfolios with strong practical performance
*Algorithm Selection †Sequential Execution ‡Parallel Execution

• Satisfiability:
– SATzilla*† [various coauthors, cited earlier; 2003—ongoing]
– 3S*† [Sellmann, 2011]
– ppfolio‡ [Roussel, 2011]
– claspfolio* [Gebser, Kaminski, Kaufmann, Schaub, Schneider, Ziller, 2011]
– aspeed†‡ [Kaminski, Hoos, Schaub, Schneider, 2012]

• Constraint Satisfaction:
– CPHydra*† [O’Mahony, Hebrard, Holland, Nugent, O’Sullivan, 2008]

• Planning:
– FD Stone Soup† [Helmert, Röger, Karpas, 2011]

• Mixed Integer Programming:
– ISAC* [Kadioglu, Malitsky, Sellmann, Tierney, 2010]
– MIPzilla*† [Xu, Hutter, Hoos, Leyton-Brown, 2011]

• ..and this is just the tip of the iceberg:
– http://dl.acm.org/citation.cfm?id=1456656 [Smith-Miles, 2008]
– http://4c.ucc.ie/~larsko/assurvey [Kotthoff, 2012]

94

SATzilla: Results from SAT Competitions
• 2003: first portfolio entered in a SAT competition

– requirement to submit only source code: a monstrous mess!
– 2 silver, 1 bronze (out of 9 tracks, as below)

• 2004: 2 bronze
• 2007: 3 gold, 1 silver, 1 bronze
• 2009: 3 gold, 2 silver
• 2011: Entered the Evaluation Track (more later)

• 2012: SAT Challenge (strong performance; many portfolios entered)

• 2013: Portfolios now a victim of their own success?
– “The emphasis of SAT Competition 2013 is on evaluation of

core solvers:” single-core portfolios of >2 solvers not eligible

95

2012 SAT Challenge: Application

96
* Interacting multi-engine solvers: like portfolios, but richer interaction between solvers

2012 SAT Challenge: Hard Combinatorial

97

SAT Challenge 2012: Random

98

2012 SAT Challenge: Sequential Portfolio

• 3S deserves mention, though isn’t compared here
[Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann, 2011]
– Disqualified on a technicality

• chose a buggy solver that returned an incorrect result
• an occupational hazard for portfolios!

– Overall performance nearly as strong as SATzilla
99

• Given:
– training set of instances
– performance metric
– candidate solvers
– portfolio builder

(incl. instance features)

• Training:
– collect performance data
– learn a model for selecting

among solvers

• At Runtime:
– evaluate model
– run selected solver

Metric

Portfolio Builder

Training Set

Novel
Instance Portfolio-Based

Algorithm Selector

Candidate Solvers

Selected
Solver

SATzilla (stylized version)

100

SATzilla Methodology (offline)
1. Identify a target instance distribution

2. Select a set of candidate solvers

3. Identify a set of instance features

4. On a training set, compute features and solver runtimes

5. Identify a set of “presolvers” and a schedule for running them.
Discard data that they can solve within a given cutoff time

6. Identify a “backup solver”: the best on remaining data

7. Learn models for selecting among solvers from step (2)

8. Choose a subset of the solvers to include in the portfolio:
those for which the portfolio obtained in step (7) has best
performance on instances from a distinct validation set

} SATzilla’s input

101

SATzilla Methodology (online)
9. Sequentially run each presolver until its cutoff time

– if the instance is solved, terminate

10. Compute features
– if there’s an error, run the backup solver
– potentially, predict which features will be cheap and

compute only them

11. Evaluate models to determine which solver to run
– potentially, evaluate different models depending on which

features were computed

12. Run the selected algorithm
– if it crashes, etc., run the next-best algorithm

102

SAT Instance Features (2003—2013)
Over 100 features. Some illustrative examples from SAT:
• Problem Size (clauses, variables, clauses/variables, …)

• Syntactic properties (e.g., positive/negative clause ratio)

• Statistics of various constraint graphs
– factor graph
– clause–clause graph
– variable–variable graph

• Knuth’s search space size estimate
• Cumulative number of unit propagations at different

depths (SATz heuristic)

• Local search probing
• Linear programming relaxation

103

Presolvers and Subset Selection
• Presolvers

– Consider discrete set of exponentially increasing time amounts
– For every choice of two presolvers + captimes for each, run the

entire SATzilla pipeline and evaluate overall performance
– Keep the choice that yields best performance

• Subset selection

– Consider every subset of the given solver set
• omitting a weak solver prevents models from accidentally choosing it
• conditioned on choice of presolvers
• computationally cheap: models decompose across solvers

– Keep the subset that achieves the best performance

104

How is SATzilla an example of PbO?
• SATzilla builds a new meta-algorithm out of a given set

of existing solvers
• Two senses in which this involves automatically choosing

among candidate algorithm designs via optimization:
1. fitting the machine learning models, which govern the

meta-algorithm’s behavior
• machine learning is optimization

2. determining properties of the meta-algorithm:
• pre-solver schedule
• solver subset selection
• backup solver

105

Try it yourself!

• SATzilla is freely available online

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

• You can try it for your problem

– we have features for SAT, MIP and TSP
– you need to provide features for other domains

• in many cases, the general idea between our existing features
• can also make features by reducing your problem to e.g. SAT and

computing the SAT features

106

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

COMPARING SIMPLE AND COMPLEX
ALGORITHM SELECTION METHODS

[Xu, Hutter, Hoos, Leyton-Brown, ongoing work]

107

Methods
How should SATzilla choose among candidate solvers?
• Runtime prediction
• Pairwise classification
• Cost-sensitive classification

Is this better than some simple alternatives?
• Best single solver
• Time slicing
• Sequential scheduling

Recall: the best we can hope for is the virtual best solver
• choose the best solver on a per-instance basis

108

Methods: Runtime Prediction
• How it works

– Build an “empirical hardness model” predicting the
amount of time each solver will take to run on each instance

– oddly enough, this is possible to do
• A regression problem:

– linear regression
– quadratic ridge regression
– random forests of regression trees

• Evaluate the model for each solver, and choose the
solver predicted to be fastest
– advantage: implicitly penalizes big mispredictions more than

small mispredictions (RMSE)
– disadvantage: solves a harder problem than necessary

• The method used by SATzilla 2003—2009
109

Methods: Pairwise Classification
• How it works:

– Build a classifier to determine which algorithm to prefer
between each pair of algorithms in the portfolio

– Loss function: 0-1 error

• A classification problem:
– support vector machines
– decision forests

• Classifiers vote for different algorithms; the algorithm
with the most votes is selected
– Advantage: selection is a classification problem
– Disadvantage: big and small errors treated the same

• We tried this method back in 2003-4, opted against it

110

Methods: Cost Sensitive Classification
• How it works:

– Build a classifier to determine which algorithm to prefer
between each pair of algorithms in the portfolio

– Loss function: cost of misclassification

• Both decision forests and support vector machines
have cost-sensitive variants

• Classifiers vote for different algorithms; the algorithm
with the most votes is selected
– Advantage: selection is a classification problem
– Advantage: big and small errors treated differently

• The method used by SATzilla since 2011

111

Methods: Time Slicing (ppfolio)
• Don’t build a model

– thus, no features are needed

• Run all algorithms in parallel
– with one processor, time slicing
– 𝑘 solvers: runtime is 𝑘 times minimum runtime across solvers

on every given instance

• Solver selection: keep the set of 𝑘 solvers that
maximizes a performance metric on a training set
– we approximated this optimization greedily

112

Methods: Simple Sequential Portfolios
• Pick a sequence of solvers and time budgets
• What we did:

– For every permutation of 4 solvers from the 7 candidate
solvers that constitute the best VBS in terms of PAR10,
consider all assignments of solvers to time budgets having
total length ≤ T and calculate out their performance

– budgets: 0, 10଴୲, 10୲, 10ଶ୲, … , 10ଷ଴୲ , t = logଵ଴
ୡୟ୮୲୧୫ୣ

ଷ଴

– Add a 5th solver to the end of the sequence:
• Pick the solver that achieves the best performance on the remaining

unsolved instances within the remaining time
• Set the time budget to be the remaining time

113

SAT: SATzilla Variants

114

SAT: SATzilla vs Baselines

115

MIP: MIPzilla Variants

116

MIP: MIPzilla vs Baselines

117

EVALUATING
COMPONENT SOLVER

CONTRIBUTIONS

[Xu, Hutter, Hoos, Leyton-Brown, 2012]

118

Evaluation Track for SAT Competition 2011
• Goal: use portfolios to study the solvers submitted

to the 2011 SAT Competition
– We considered all instances from 2011 SAT Competition:

300 Application; 300 Crafted; 300 Random
• Candidate solvers from 2011 SAT Competition:

– for building SATzilla:
• all sequential, non-portfolio solvers from Phase 2:
• 18 Application; 15 Crafted; 9 Random

– for determining VBS and SBS:
• all solvers from Phase 2 of competition:
• 31 Application; 25 Crafted; 17 Random

• How should we assess the value of a solver?
– One option: look at its overall performance

119

Performance of Individual Solvers (Application)

120

Assessing Solver Quality
• How should we assess the value of a solver?

– One option: look at its overall performance
• However, portfolio-based methods consistently outperform

individual solvers, and so arguably represent the current
state of the art

• The success of a portfolio-based solver ultimately depends
on the strength of its component solvers

• How should we assess component solvers’ contributions
to a portfolio?
1. their degree of correlation

 121

Correlation of Solver Performance (Application)

122

Correlation of Solver Performance (Random)

123

Assessing Solver Contributions
• The success of a portfolio-based solver ultimately

depends on the strength of its component solvers
• How should we assess component solvers’ contributions

to a portfolio?
1. their degree of correlation
2. the frequency with which they are selected by the portfolio

124

Selection Frequency in SATzilla2011 (Application)

125

Assessing Solver Contributions
• The success of a portfolio-based solver ultimately

depends on the strength of its component solvers
• How should we assess component solvers’ contributions

to a portfolio?
1. their degree of correlation
2. the frequency with which they are selected by the portfolio
3. the fraction of instances they’re responsible for solving

126

Instances Solved by SATzilla2011 Components (Application)

127

Assessing Solver Contributions
• The success of a portfolio-based solver ultimately

depends on the strength of its component solvers
• How should we assess component solvers’ contributions

to a portfolio?
1. their level of correlation
2. the frequency with which they are selected by the portfolio
3. the fraction of instances they’re responsible for solving
4. their marginal contribution to portfolio performance

128

Marginal Contribution of Components (Application)

129

Instances Solved vs Marginal Contribution (Application)

130

(%
)

Instances Solved vs Marginal Contribution (Crafted)

131

(%
)

Instances Solved vs Marginal Contribution (Random)

132

(%
)

HYDRA: AUTOMATIC
PORTFOLIO CONSTRUCTION

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003];
[Leyton-Brown, Nudelman, Shoham, 2009]

[KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]
[Xu, Hoos, Leyton-Brown, 2010]

[Xu, Hutter, Hoos, Leyton-Brown, 2011]

133

Motivation
• What about situations where we don’t start out with a

set of strong solvers to choose among?

• Solution: take a PbO approach to identifying a set of
solvers that will work together well as a portfolio,
rather than just a single solver!
– combines algorithm configuration with algorithm selection
– design space now includes lots of new choices:

• number of solvers to include in the portfolio
• the design of each solver

– PbO: make these choices via automated optimization

134

SATenstein
• Frankenstein’s goal:

– Create “perfect” human being from
scavenged body parts

• SATenstein’s goal:
– Create high-performance SAT solvers using

components scavenged from existing solvers

• A highly parameterized, generalized SLS
solver built using UBCSAT [Tompkins & Hoos, 2004]

– 3 categories of SLS algorithms
• WalkSAT
• G2WSAT
• dynamic local search algorithms

– can instantiate 25 known algorithms
– 41 parameters, > 1011 possible instantiations
 135

• Designer creates highly-
parameterized algorithm
from existing components

• Given:
– training set of instances
– performance metric
– parameterized algorithm
– algorithm configurator

• Configure algorithm:
– run configurator on

training instances
– output is a configuration

that optimizes metric
Parameterized

Algorithm

Existing
Algorithm Components

Domain
Expert

How does SATenstein work?

136

Algorithm
Configurator

Metric

New
Configuration

Instance
set

• Designer creates highly-
parameterized algorithm
from existing components

• Given:
– training set of instances
– performance metric
– parameterized algorithm
– algorithm configurator

• Configure algorithm:
– run configurator on

training instances
– output is a configuration

that optimizes metric
Parameterized

Algorithm

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra How does SATenstein work?

137

SATenstein

SATzilla
 portfolio-based algorithm selection

SATenstein
 algorithm design via automatic configuration

138

 Exploit per-instance variation between
solvers using learned runtime models
– practical: e.g., won competition medals
– fully automated: requires only cluster

time rather than human design effort

 Key drawback:
– requires a set of strong, relatively

uncorrelated candidate solvers
– can’t be applied in domains for which

such solvers do not exist

Advantages and Disadvantages

SATzilla
 portfolio-based algorithm selection

139

• Instead of manually exploring

a design space, build a
highly parameterized algorithm and then
configure it automatically
– as we’ve suggested earlier in the tutorial

• Can find powerful, novel designs
• But: only produces single algorithms

designed to perform well on the
entire training set

Advantages and Disadvantages
SATenstein

 [KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009]
algorithm design via automatic configuration

140

Hydra

Hydra
automatic portfolio synthesis

Starting from a single parameterized algorithm, automatically find a set of
uncorrelated configurations that can be used to build a strong portfolio.

141

• Idea: augment an additional portfolio P by targeting
instances on which P performs poorly
– original idea: “boosting as a metaphor for algorithm design”

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003];
[Leyton-Brown, Nudelman, Shoham, 2009]

– problem: the original algorithm could easily stagnate
• indeed, same problem if you misunderstood Hydra as presented in the previous tutorial

• Avoid stagnation via a dynamic performance metric:
– return performance of s when s outperforms P
– return performance of P otherwise

• Intuitively: s is scored for its marginal contribution to P

• This metric is given to an off-the-shelf configurator, which
optimizes it to find a new configuration s*

• Thus, we retain the same core idea as “boosting”:
– build a new algorithm that explicitly aims to improve upon an

existing portfolio

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Hydra: Methodology

142

Related Idea: ISAC
ISAC: Instance Specific Algorithm Configuration
[Kadioglu, Malitsky, Sellmann, Tierney, 2010; Malitky, Sellman, 2012]

• How it works:
– Compute features for training instances
– Cluster training instances (using, e.g., k-means)

– Configure a solver for each cluster of instances
– At runtime, find the cluster whose center is closest to the

features of the test instance, and run that solver

• Advantage: training decomposes very nicely
• Disadvantage: instance similarity may not correlate

closely with runtime
– thus solvers aren’t explicitly forced to be uncorrelated
– problem gets worse with uninformative features

143

Algorithm
Configurator

Metric Training Set

Portfolio-Based
Algorithm Selector

Candidate Solver Set

Candidate
Solver

Parameterized
Algorithm

Portfolio
Builder

Hydra Procedure: Iteration 1

144

Algorithm
Configurator

Metric Training Set

Portfolio-Based
Algorithm Selector

Candidate Solver Set

Candidate
Solver

Parameterized
Algorithm

Portfolio
Builder

Hydra Procedure: Iteration 2

145

Algorithm
Configurator

Metric Training Set

Portfolio-Based
Algorithm Selector

Candidate Solver Set

Candidate
Solver

Parameterized
Algorithm

Portfolio
Builder

Hydra Procedure: Iteration 3

146

Output:

Portfolio-Based
Algorithm Selector

Novel
Instance

Selected
Solver

Hydra Procedure: After Termination

147

Another Interpretation
• Hydra can also be understood as a procedure for

building parallel algorithm portfolios
– obtain the min runtime across a set of solvers by running all of

them in parallel rather than selecting only one of them
• disadvantage: wasted computation on all but one core
• advantage: automatic method for parallelization
• advantage: no need for features

– exactly the same procedure as before

148

• Even though Hydra is most useful in other domains,
I’ll describe an evaluation on SAT.

• High bar for comparison
– strong state-of-the-art solvers
– portfolio-based solvers already successful
 to be able to argue that Hydra does well,

we want to compare to a strong portfolio

• Pragmatic benefits
– a wide variety of interesting datasets
– existing instance features
– SATenstein is a suitable configuration target

Experimental Evaluation

149

• Individual state-of-the-art solvers
– 11 manually-crafted SLS solvers

• all 7 SLS winners of any SAT competition 2002 – 2007
• 4 other prominent solvers

– 6 SATenstein solvers tuned for particular distributions

• Also considered SATzilla portfolios of challengers

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Experimental Setup: Challengers

150

Solver RAND HAND BM INDU

Best Challenger (of 17) 1128.63 2960.39 224.53 11.89

Portfolio of 11 Challengers 897.37 2670.22 54.04 135.84

Portfolio of 17 Challengers 813.72 2597.71 3.06* 7.74*

Hydra (7 iterations) 631.35 2495.06 3.06 7.77

* Statistically insignificant performance difference (sign rank test).
Hydra’s performance was significantly better in all other pairings.

Performance Summary

151

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Performance Progress, RAND

152

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Selection Percentages After 7 Iterations, RAND

153

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Improvement After 7 Iterations, RAND

154

We’ve had success applying Hydra to MIP, too

155

0

50

100

150

200

250

300

350

400

450

CL U REG CL U REG U RCW MIX

PA
R1

0
Ru

nt
im

e
(s

ec
on

ds
)

CPLEX Default

CPLEX Tuned
by ParamILS

MIP-Hydra
over CPLEX
Configurations

Conclusions
• SATzilla: a framework for algorithm selection

– a robust and practically successful method for performing portfolio-
based algorithm selection

– works beyond SAT; free downloadable tools
• Comparing simple & complex algorithm selection methods

– SATzilla with cost-sensitive classification is consistently best
– but, often diminishing returns from more complex methods

• most important thing is using portfolios rather than single solvers

• Evaluating component solver contributions
– examine solvers’ marginal contributions to portfolio
– sometimes surprising: “weak” solvers can be important

• Hydra: automatic portfolio construction
– again, leverage the idea of marginal contribution to build strong

portfolios, combining selection with configuration

 156

Software Development Support

and Further Directions

Software development in the PbO paradigm

PbO-<L>
source(s)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 157

Software development in the PbO paradigm

PbO-<L>
source(s)

parametric
<L>

 source(s)

design
space

description

 PbO-<L>
 weaver

Hoos, Hutter, Leyton-Brown: Programming by Optimization 157

Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
inputs

Hoos, Hutter, Leyton-Brown: Programming by Optimization 157

Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
inputs

Hoos, Hutter, Leyton-Brown: Programming by Optimization 157

Design space specification

Option 1: use language-specific mechanisms

I command-line parameters

I conditional execution

I conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for . . .

I exposing parameters

I specifying alternative blocks of code

Hoos, Hutter, Leyton-Brown: Programming by Optimization 158

Advantages of generic language extension:

I reduced overhead for programmer

I clean separation of design choices from other code

I dedicated PbO support in software development environments

Key idea:

I augmented sources: PbO-Java = Java + PbO constructs, . . .

I tool to compile down into target language: weaver

Hoos, Hutter, Leyton-Brown: Programming by Optimization 159

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
input

Hoos, Hutter, Leyton-Brown: Programming by Optimization 160

Exposing parameters

...

numerator -= (int) (numerator / (adjfactor+1) * 1.4);

... ...

##PARAM(float multiplier=1.4)

numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

...

I parameter declarations can appear at arbitrary places
(before or after first use of parameter)

I access to parameters is read-only (values can only be
set/changed via command-line or config file)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 161

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

Hoos, Hutter, Leyton-Brown: Programming by Optimization 162

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard

<block S>

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced

<block E>

##END CHOICE preProcessing

Hoos, Hutter, Leyton-Brown: Programming by Optimization 162

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

...

##BEGIN CHOICE preProcessing

<block 2>

##END CHOICE preProcessing

Hoos, Hutter, Leyton-Brown: Programming by Optimization 162

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1a>

##BEGIN CHOICE extraPreProcessing

<block 2>

##END CHOICE extraPreProcessing

<block 1b>

##END CHOICE preProcessing

Hoos, Hutter, Leyton-Brown: Programming by Optimization 162

!"#$%&'(#)(

*+,-./0
"&!1%#2"3

45156#(17%
./0

$"&!1%#2"3

7'"(5'(75(#8
./0

$"&!1%#2"3

8#49&:#8
#)#%!(5+9#

8#"7;'
"45%#

8#"%174(7&'

$$$*+,-./0
$$$<#5=#1

*+,$
8#"7;'
&4(767"#1

+#'%>651?
7'4!(

Hoos, Hutter, Leyton-Brown: Programming by Optimization 163

The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, . . .)

I parametric mode:

I expose parameters

I make choices accessible via (conditional, categorical)
parameters

I (partial) instantiation mode:

I hardwire (some) parameters into code
(expose others)

I hardwire (some) choices into code
(make others accessible via parameters)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 164

The road ahead

I Support for PbO-based software development

I Weavers for PbO-C, PbO-C++, PbO-Java

I PbO-aware development platforms

I Improved / integrated PbO design optimiser

I Debugging and performance analysis tools

I Best practices

I Many further applications

I Scientific insights

Hoos, Hutter, Leyton-Brown: Programming by Optimization 165

Which choices matter?

Observation: Some design choices matter more than others

depending on . . .

I algorithm under consideration

I given use context

Knowledge which choices / parameters matter may . . .

I guide algorithm development

I facilitate configuration

Hoos, Hutter, Leyton-Brown: Programming by Optimization 166

3 recent approaches:

I Forward selection based on empirical performance models
Hutter, Hoos, Leyton-Brown (2013)

I Functional ANOVA based on empirical performance models
Hutter, Hoos, Leyton-Brown (under review)

I Ablation analysis
Fawcett, Hoos (2013)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 167

Functional ANOVA based on empirical performance models

Hutter, Hoos, Leyton-Brown (under review)

Key idea:

I build regression model of algorithm performance as a function
of all input parameters (= design choices)

 empirical performance models (EPMs)

I analyse variance in model output (= predicted performance)
due to each parameter, parameter interactions

I importance of parameter: fraction of performance variation
over configuration space explained by it (main e↵ect)

I analogous for sets of parameters (interaction e↵ects)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 168

Decomposition of variance in a nutshell

For parameters p1, . . . , pn and a function (performance model) y :

y(p1, . . . , pn) = µ

+ f1(p1) + f2(p2) + · · ·+ fn(pn)

+ f1,2(p1, p2) + f1,3(p1, p3) + · · ·+ fn�1,n(pn�1, pn)

+ f1,2,3(p1, p2, p3) + · · ·
+ · · ·

Hoos, Hutter, Leyton-Brown: Programming by Optimization 169

Note:

I Straightforward computation of main and interaction e↵ects
is intractable.
(integration over combinatorial spaces of configurations)

I For random forest models, marginal performance predictions
and variance decomposition (up to constant-sized interactions)
can be computed exactly and e�ciently.

Hoos, Hutter, Leyton-Brown: Programming by Optimization 170

Empirical study:

I 8 high-performance solvers for SAT, ASP, MIP, TSP
(4–85 parameters)

I 12 well-known sets of benchmark data
(random + real-world structure)

I random forest models for performance prediction,
trained on 10 000 randomly sampled configurations per solver
+ data from 25+ runs of SMAC configuration procedure

Hoos, Hutter, Leyton-Brown: Programming by Optimization 171

Fraction of variance explained by main e↵ects:

CPLEX on RCW (comp sust) 70.3%
CPLEX on CORLAT (comp sust) 35.0%

Clasp on software verificatition 78.9%
Clasp on DB query optimisation 62.5%

CryptoMiniSAT on bounded model checking 35.5%
CryptoMiniSAT on software verification 31.9%

Hoos, Hutter, Leyton-Brown: Programming by Optimization 172

Fraction of variance explained by main + 2-interaction e↵ects:

CPLEX on RCW (comp sust) 70.3% + 12.7%
CPLEX on CORLAT (comp sust) 35.0% + 8.3%

Clasp on software verificatition 78.9% + 14.3%
Clasp on DB query optimisation 62.5% + 11.7%

CryptoMiniSAT on bounded model checking 35.5% + 20.8%
CryptoMiniSAT on software verification 31.9% + 28.5%

Hoos, Hutter, Leyton-Brown: Programming by Optimization 173

Note:
may pick up variation caused by poorly performing configurations

Simple solution:

cap at default performance or quantile from distribution of
randomly sampled configurations; build model from capped data.

Hoos, Hutter, Leyton-Brown: Programming by Optimization 174

Ablation analysis

Fawcett, Hoos (2013)

Key idea:

I given two configurations, A and B , change one parameter at a
time to get from A to B

 ablation path

I in each step, change parameter to achieve maximal gain (or
minimal loss) in performance

I for computational e�ciency, use racing (F-race)
for evaluating parameters considered in each step

Hoos, Hutter, Leyton-Brown: Programming by Optimization 175

Empirical study:

I high-performance solvers for SAT, MIP, AI Planning
(26–76 parameters),
well-known sets of benchmark data (real-world structure)

I optimised configurations obtained from ParamILS
(minimisation of penalised average running time;
(10 runs per scenario, 48 CPU hours each)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 176

Ablation between default and optimised configurations:

����

��

���

����

�� �� ��� ��� ��� ���

3
HU
IR
UP
DQ
FH
��3

$
5
��
��V
�

�3DUDPHWHUV�PRGLILHG�IURP�GHIDXOW

'HIDXOW�WR�FRQILJXUHG
&RQILJXUHG�WR�GHIDXOW

LPG on Depots planning domain

Hoos, Hutter, Leyton-Brown: Programming by Optimization 177

Which parameters are important?

LPG on depots:

I cri intermediate levels (43% of overall gain!)

I triomemory

I donot try suspected actions

I walkplan

I weight mutex in relaxed plan

Note: Importance of parameters varies between planning domains

Hoos, Hutter, Leyton-Brown: Programming by Optimization 178

Leveraging parallelism

I design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

I deriving parallel programs from sequential sources
 concurrent execution of optimised designs
 (parallel portfolios)
(Hoos, Leyton-Brown, Schaub, Schneider 2012)

I parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 179

Take-home Message

Programming by Optimisation ...

I leverages computational power to construct
better software

I enables creative thinking about design alternatives

I produces better performing, more flexible software

I facilitates scientific insights into

I e�cacy of algorithms and their components

I empirical complexity of computational problems

... changes how we build and use high-performance software

Hoos, Hutter, Leyton-Brown: Programming by Optimization 180

More Information:

www.cs.ubc.ca/labs/beta/Projects/PbO Tutorial

www.prog-by-opt.net

If PbO works for you:

Make our day – let us know!

Share the joy – tell everyone else!

Hoos, Hutter, Leyton-Brown: Programming by Optimization 181

