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The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)
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The age of computation

“The maths[!] that computers use to
decide stu↵ [is] infiltrating every aspect
of our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .
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Performance matters ...

I computation speed (time is money!)

I energy consumption (battery life, ...)

I quality of results (cost, profit, weight, ...)

... increasingly:

I globalised markets

I just-in-time production & services

I tighter resource constraints
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Example: Resource allocation

I resources > demands  many solutions, easy to find

economically wasteful
 reduction of resources / increase of demand

I resources < demands  no solution, easy to demonstrate

lost market opportunity, strain within organisation
 increase of resources / reduction of demand

I resources ⇡ demands
 di�cult to find solution / show infeasibilityresources ⇡
demands
 di�cult to find solution / show infeasibility
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This tutorial:

new approach to software development, leveraging . . .

I human creativity

I optimisation & machine learning

I large amounts of computation / data
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Key idea:

I program  (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)

) Programming by Optimization (PbO)
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application context 1

solver

application context 2 application context 3

solversolver
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application context 1 application context 2 application context 3

solver[·]
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application context 1

solver[p1]

application context 2 application context 3

solver[p3]solver

solver[·]

solversolversolversolver[p2]
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Outline

1. Programming by Optimization: Motivation & Introduction

2. Algorithm Configuration

Co↵ee Break

3. Portfolio-based Algorithm Selection

4. Software Development Support & Further Directions
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Programming by Optimization:

Motivation & Introduction



Example: SAT-based software verification

Hutter, Babić, Hoos, Hu (2007)

I Goal: Solve SAT-encoded software verification problems
Goal: as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babić)

= highly parameterised heuristic algorithm
= (26 parameters, ⇡ 8.3⇥ 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, Hoos, Stützle (2007)
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Spear: Performance on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ⇡ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)
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Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.
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Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, Hoos, Hu (2007)

4.5–500 ⇥ 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, Hoos, Saetti (2011)

3–118 ⇥ 1

Mixed integer programming (CPLEX), 76
Hutter, Hoos, Leyton-Brown (2010)

2–52 ⇥ 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, Hoos (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, Hoos, Leyton-Brown (2012–13)
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PbO enables . . .

I performance optimisation for di↵erent use contexts
(some details later)

I adaptation to changing use contexts
(see, e.g., life-long learning – Thrun 1996)

I self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

I automated generation of instance-based solver selectors
(e.g., SATzilla – Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra – Xu et al. 2010; ISAC – Kadioglu et al. 2010)

I automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Schneider et al. 2012)
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Cost & concerns

But what about ...

I Computational complexity?

I Cost of development?

I Limitations of scope?
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Computationally too expensive?

Spear revisited:

I total configuration time on software verification benchmarks:
⇡ 30 CPU days

I wall-clock time on 10 CPU cluster:
⇡ 3 days

I cost on Amazon Elastic Compute Cloud (EC2):
61.20 USD (= 42.58 EUR)

I 61.20 USD pays for ...

I 1:45 hours of average software engineer
I 8:26 hours at minimum wage
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Too expensive in terms of development?

Design and coding:

I tradeo↵ between performance/flexibility and overhead

I overhead depends on level of PbO

I traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

I design alternatives for individual mechanisms and components
can be tested separately

 e↵ort linear (rather than exponential) in the number of
design choices
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Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

I computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

I optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

I compiler optimisation
(Pan & Eigenmann 2006, Cavazos et al. 2007)

I database server configuration
(Diao et al. 2003)
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Overview 
• Programming by Optimization (PbO):  

Motivation and Introduction 
 

• Algorithm Configuration 
– Methods (components of algorithm configuration) 
– Systems (that instantiate these components) 
– Demo & Practical Issues 
– Case Studies 

 
• Portfolio-Based Algorithm Selection 

 
• Software Development Support & Further Directions 
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The Algorithm Configuration Problem 
Definition 

– Given: 
• Runnable algorithm A with configuration space   
• Distribution D over problem instances 3 
• Performance metric   

– Find: 
 

 

Motivation 
 

     Customize versatile algorithms 
for different application domains 
– Fully automated improvements 
– Optimize speed, accuracy,  

memory, energy consumption, … 
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Very large space 
of configurations 



Algorithm Parameters 
 

Parameter types   
–  Continuous, integer, ordinal 

–  Categorical: finite domain, unordered, e.g. {a,b,c} 
 

Parameter space has structure 
–  E.g. parameter C of heuristic A is only active if A is used 

–  In this case, we say C is a conditional parameter with parent A 
 

Parameters give rise to a structured space of algorithms 
–  Many configurations (e.g. 1047)  

–  Configurations often yield qualitatively different behaviour 

o  Algorithm configuration (as opposed to “parameter tuning”) 
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The Algorithm Configuration Process 
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Recall the Spear Example 
SAT solver for formal verification 
– 26 user-specifiable parameters 

– 7 categorical, 3 Boolean, 12 continuous, 4 integer 
 

 

Objective: minimize runtime on  
                    software verification instance set 
 

Issues:  
– Many possible settings (8.34 u 1017 after discretization) 

– Evaluating performance of a configuration is expensive 
• Instances vary in hardness 

– Some take milliseconds, other days (for the default) 

• Improvement on a few instances might not mean much 
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Configurators have Two Key Components 
 
 

• Component 1: which configuration to evaluate next? 
– Out of a large combinatorial search space 

 
• Component 2: how to evaluate that configuration? 

– Avoiding the expense of evaluating on all instances 
– Generalizing to new problem instances 
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Automated Algorithm Configuration: Outline 

 
 
• Methods    (components of algorithm configuration) 

 

• Systems      (that instantiate these components) 
 

 
• Demo & Practical Issues 

 

• Case Studies 
 

 

26 



Component 1: Which Configuration to Evaluate? 
 

• For this component, we can consider a simpler problem:  
 

Blackbox function optimization 
 

 

– Only mode of interaction: query f(T) at arbitrary T�4  
 
 

 
– Abstracts away the complexity of multiple instances 
– 4 is still a structured space 

• Mixed continuous/discrete 
• Conditional parameters 
• Still more general than “standard” continuous BBO [e.g., Hansen et al.] 
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min f(T) 
 

T f(T) 

T�4 



The Simplest Search Strategy: Random Search 

• Select configurations uniformly at random 
– Completely uninformed 
– Global search, won’t get stuck in a local region 
– At least it’s better than grid search: 
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The Other Extreme: Gradient Descent 
 
 
 Start with some configuration 
 repeat 
  Modify a single parameter 
  if performance on a benchmark set degrades then 
    undo modification 
 until no more improvement possible  

      (or “good enough") 

(aka hill climbing) 
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Stochastic Local Search 
 

• Balance intensification and diversification 
– Intensification: gradient descent 
– Diversification: restarts, random steps, perturbations, … 

 
 

• Prominent general methods 
– Taboo search [Glover, 1986] 

– Simulated annealing [Kirkpatrick, Gelatt, C. D.; Vecchi, 1983] 

– Iterated local search [Lourenço, Martin & Stützle, 2003] 
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Population-based Methods 
 

• Population of configurations 
– Global + local search via population 

– Maintain population fitness & diversity 
 

• Examples 
– Genetic algorithms [e.g., Barricelli, ’57, Goldberg, ’89] 

– Evolutionary strategies [e.g., Beyer & Schwefel, ’02] 

– Ant colony optimization [e.g., Dorigo & Stützle, ’04] 

– Particle swarm optimization [e.g., Kennedy & Eberhart, ’95] 
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Sequential Model-Based Optimization 
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New data  
point 



Sequential Model-Based Optimization 
 

• Popular approach in statistics  
to minimize expensive blackbox functions [e.g., Mockus, '78] 

 

• Recent progress in the machine learning literature: 
global convergence rates for continuous optimization 
[Srinivas et al, ICML 2010]  
[Bull, JMLR 2011]  
[Bubeck et al., JMLR 2011] 
[de Freitas, Smola, Zoghi, ICML 2012] 
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Exploiting Low Effective Dimensionality 

• Often, not all parameters are equally important 
• Can search in an embedded lower-dimensional space 

 
 
 
 
 
 

• For details, see: 
– Bayesian Optimization in High Dimensions via Random 

Embeddings, Tuesday, 13:30, 201CD         [Wang et al, IJCAI 2013] 
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Summary 1: Which Configuration to Evaluate? 

 
• Need to balance diversification and intensification 
• The extremes 

– Random search 
– Hillclimbing 

• Stochastic local search (SLS) 
• Population-based methods 
• Sequential Model-Based Optimization 
• Exploiting low effective dimensionality 
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Component 2: How to Evaluate a Configuration?  

Back to general algorithm configuration 
– Given: 

• Runnable algorithm A with configuration space   
• Distribution D over problem instances 3 
• Performance metric   

– Find: 
 

 

 

Recall the Spear example 
– Instances vary in hardness 

• Some take milliseconds, other days (for the default) 
• Thus, improvement on a few instances might not mean much 

 
36 



Simplest Solution: Use Fixed N Instances 
 

• Effectively treat the problem as a blackbox function 
optimization problem 

 

• Issue: how large to choose N? 
– Too small: overtuning 
– Too large: every function evaluation is slow 

 

• General principle 
– Don’t waste time on bad configurations 
– Evaluate good configurations more thoroughly 
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Racing Algorithms 
 

• Compare two or more algorithms against each other 
– Perform one run for each configuration at a time 

– Discard configurations when dominated 
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Image source: Maron & Moore, Hoeffding Races, NIPS 1994 

[Maron & Moore, NIPS 1994] 

      [Birattari, Stützle, Paquete & Varrentrapp,  GECCO 2002] 



Saving Time: Aggressive Racing 
 

• Race new configurations against the best known 
– Discard poor new configurations quickly 
– No requirement for statistical domination 

 

• Search component should allow to return to 
configurations discarded because they were “unlucky” 
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Saving More Time: Adaptive Capping 

 
Can terminate runs for poor configurations T’ early: 

– Is T’ better than T? 
 
 
 

• Example:  
 
 

• Can terminate evaluation of T’ once  
guaranteed to be worse than T 
 

 

RT(T)=20 RT(T’)>20 

20 

RT(T’) = ? 

(only when minimizing algorithm runtime) 
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Summary 2: How to Evaluate a Configuration?  

 
• Simplest: fixed set of N instances 
• General principle 

– Don’t waste time on bad configurations 
– Evaluate good configurations more thoroughly 

• Instantiations of principle 
– Racing 
– Aggressive racing 
– Adaptive capping 
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Automated Algorithm Configuration: Outline 

 
 
• Methods    (components of algorithm configuration) 

 

• Systems      (that instantiate these components) 
 

 
• Demo & Practical Issues 

 

• Case Studies 
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Overview: Algorithm Configuration Systems 
• Continuous parameters, single instances (blackbox opt) 
– Covariance adaptation evolutionary strategy (CMA-ES)  

[Hansen et al, since ’06] 

– Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al, ’06] 

– Random Embedding Bayesian optimization (REMBO)  
[Wang et al, ’13] 

 
• General algorithm configuration methods 
– ParamILS [Hutter et al, ’07 and ’09] 

– Gender-based Genetic Algorithm (GGA) [Ansotegui et al, ’09] 

– Iterated F-Race [Birattari et al, ’02 and ‘10] 

– Sequential Model-based Algorithm Configuration (SMAC)  
[Hutter et al, since ’11] 

– Distributed SMAC [Hutter et al, since ’12] 
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The ParamILS Framework 
 

    Iterated Local Search in parameter configuration space: 
 
 
 
 
 
 
 
 
 
 
 
 

 
                  o  Performs biased random walk over local optima 
 

[Hutter, Hoos, Leyton-Brown & Stützle, AAAI 2007 & JAIR 2009] 
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The BasicILS(N) algorithm 
• Instantiates the ParamILS framework 
• Uses a fixed number of N runs for each evaluation 
– Sample N instance from given set (with repetitions) 
– Same instances (and seeds) for evaluating all configurations 
– Essentially treats the problem as blackbox optimization 

 

• How to choose N? 
– Too high: evaluating a configuration is expensive 

    o  Optimization process is slow 
– Too low: noisy approximations of true cost 

    o  Poor generalization to test instances / seeds 

45 



Generalization to Test set, Large N (N=100) 
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SAPS on a single QWH instance  
(same instance for training & test; only difference: seeds) 



Generalization to Test Set, Small N (N=1) 
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SAPS on a single QWH instance  
(same instance for training & test; only difference: seeds) 



BasicILS: Tradeoff Between Speed & Generalization 

48 
Test performance of SAPS on a single QWH instance  



The FocusedILS Algorithm 
Aggressive racing: more runs for good configurations 
– Start with N(T) = 0 for all configurations 

– Increment N(T) whenever the search visits T 

– “Bonus” runs for configurations that win many comparisons 

 

Theorem 

   As the number of FocusedILS iterations o f,  

   it converges to the true optimal conguration  

– Key ideas in proof: 

    1. The underlying ILS eventually reaches any configuration 

    2. For N(T) o f, the error in cost approximations vanishes 
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FocusedILS: Tradeoff Between Speed & Generalization 

50 
Test performance of SAPS on a single QWH instance  



Speeding up ParamILS 
 
Standard adaptive capping 

– Is T’ better than T? 
 
 
 

• Example:  
 
 

• Can terminate evaluation of T’ once guaranteed to be worse than T 

 
Theorem 

Early termination of poor configurations does not change 
ParamILS's trajectory 

 

– Often yields substantial speedups 

RT(T)=20 RT(T’)>20 

20 
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Gender-based Genetic Algorithm (GGA) 
 

• Genetic algorithm 
– Genome = parameter configuration 
– Combine genomes of 2 parents to form an offspring 

 

• Two genders in the population 
– Selection pressure only on one gender 
– Preserves diversity of the population 

52 

[Ansotegui, Sellmann & Tierney, CP 2009] 



Gender-based Genetic Algorithm (GGA) 
 

• Use N instances to evaluate configurations 
– Increase N in each generation 
– Linear increase from Nstart to Nend  
• User specifies #generations ahead of time 

 

• Can exploit parallel resources 
– Evaluate population members in parallel 
– Adaptive capping: can stop when the first k succeed 
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F-Race and Iterated F-Race 
 

• F-Race 
– Standard racing framework 
– F-test to establish that some  

configuration is dominated 
– Followed by pairwise t tests  

if F-test succeeds 

 
• Iterated F-Race 
– Maintain a probability distribution  

over which configurations are good 
– Sample k configurations from that distribution & race them 
– Update distributions with the results of the race 
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[Birattari et al, GECCO 2002 and book chapter 2010] 



F-Race and Iterated F-Race 
 

• Can use parallel resources 
– Simply do the k runs of each iteration in parallel 
– But does not support adaptive capping 

 

• Expected performance 
– Strong when the key challenge are reliable comparisons 

between configurations 
– Less good when the search component is the challenge 
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SMAC 
 

SMAC: Sequential Model-Based Algorithm Configuration  
– Sequential Model-Based Optimization  

& aggressive racing 
 
 
 
 
 repeat 

   - construct a model to predict performance 
   - use that model to select promising configurations 
   - compare each selected configuration against the best known 

   until time budget exhausted 
 56 
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SMAC: Aggressive Racing 

 
• More runs for good configurations 

 

• Increase #runs for incumbent over time 
 

• Theorem for discrete configuration spaces: 
         As SMAC's overall time budget o f,  
         it converges to the optimal configuration 
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SMAC: Performance Models Across Instances  

Given: 

– Configuration space   

– For each problem instance i: xi, a vector of feature values 

– Observed algorithm runtime data: (T
1
, x

1
, y

1
), …, (T

n 
, x

n 
, y

n
)

 
 

Find: a mapping m: [T, x] հ y predicting A’s performance 

 

 

– Rich literature  

on such performance  

prediction problems 

[see, e.g, Hutter, Xu, Hoos, Leyton-Brown, AIJ 2013, for an overview] 

– Here: use a model m based on random forests 
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Regression Trees: Fitting to Data 
 

– In each internal node: only store split criterion used 
– In each leaf: store mean of runtimes 

 

param3 � {red} param3 � {blue, green} 

feature2 > 3.5 feature2 ����� 

3.7 1.65 … 
59 



feature2 > 3.5 

Regression Trees: Predictions for New Inputs 

param3 � {red} param3 � {blue, green} 

feature2 ����� 

3.7 1.65 … 

  E.g. xn+1  = (true, 4.7, red) 
– Walk down tree, return mean runtime stored in leaf  � 1.65  
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Random Forests: Sets of Regression Trees 
 
 

 
 

Training 
–  Subsample the data T times (with repetitions) 
–  For each subsample, fit a randomized regression tree 
–  Complexity for N data points: O(T N log2 N) 

 
Prediction 

–  Predict with each of the T trees 
–  Return empirical mean and variance across these T predictions 
–  Complexity for N data points: O(T log N) 
 

… 
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SMAC: Benefits of Random Forests 
 

Robustness 
– No need to optimize hyperparameters 
– Already good predictions with few training data points 

 
Automated selection of important input dimensions 

– Continuous, integer, and categorical inputs 
– Up to 138 features,  76 parameters 
– Can identify important feature and parameter subsets 

• Sometimes 1 feature and 2 parameters are enough 
                                              [Hutter, Hoos, Leyton-Brown, LION 2013] 
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SMAC: Models Across Multiple Instances 
 

• Fit a random forest model  
 

• Aggregate over instances by marginalization 
 

 

 
– Intuition: predict for each instance and take the average 
– More efficient implementation in random forests 
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SMAC: Putting it all Together 
 

 
 
 
 
 Initialize with a single run for the default 
 repeat 

   - learn a RF model from data so far:  
   - Aggregate over instances:  
   - use model f to select promising configurations 
   - compare each selected configuration against the best known 

   until time budget exhausted 
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SMAC: Adaptive Capping 
 

Terminate runs for poor configurations T early: 
 

 
– Lower bound on runtime  
o right-censored data point 

 

 

f(T)>20 f(T*)=20 

20 
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Distributed SMAC 
 
 

• Distribute target algorithm runs across workers 
– Maintain queue of promising configurations 

– Compare these to T* on distributed worker cores 

 

• Wallclock speedups 
– Almost perfect speedups with up to 16 parallel workers 

– Up to 50-fold speedups with 64 workers 
• Reductions in wall clock time:        5h  o  6 min - 15min 

                                                       2 days o 40min - 2h 
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[Hutter, Hoos & Leyton-Brown, LION 2012] 

[Ramage, Hutter, Hoos & Leyton-Brown, in preparation] 



Summary: Algorithm Configuration Systems 

 
• ParamILS 
• Gender-based Genetic Algorithm (GGA) 
• Iterated F-Race 
• Sequential Model-based Algorithm Configuration (SMAC) 
• Distributed SMAC 

 
• Which one is best? 
– First configurator competition to come in 2014 

(coorganized by leading groups on algorithm configuration, 
co-chairs: Frank Hutter & Yuri Malitsky) 
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Automated Algorithm Configuration: Outline 

 
 
• Methods    (components of algorithm configuration) 

 

• Systems      (that instantiate these components) 
 

 
• Demo & Practical Issues 

 

• Case Studies 
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The Algorithm Configuration Process 

preproc {none, simple, expensive} [simple] 
alpha [1,5] [2] 
beta [0.1,1] [0.5] 

Parameter space declaration file 
./wrapper –inst X –timeout 30 
-preproc none -alpha 3 -beta 0.7 
o e.g. “successful after 3.4 seconds” 

Wrapper for command line call 

What the user has to provide 

69 



Example: Running SMAC 

70 

wget http://www.cs.ubc.ca/labs/beta/Projects/SMAC/smac-v2.04.01-master-447.tar.gz 
 
tar xzvf smac-v2.04.01-master-447.tar.gz 
 
cd smac-v2.04.01-master-447 
 
./smac –seed 0  --scenarioFile  
example_spear/scenario-Spear-QCP-sat-small-train-small-test-mixed.txt 

Scenario file holds: 
- Location of parameter file, wrapper &  instances  
- Objective function (here: minimize avg. runtime) 
- Configuration budget (here: 30s) 
- Maximal captime per target run (here: 5s) 



Output of a SMAC run 

71 

[…] 
 
[INFO ] *****Runtime Statistics***** 
 Iteration: 12 
 Incumbent ID: 11 (0x27CA0) 
 Number of Runs for Incumbent: 26 
 Number of Instances for Incumbent: 5 
 Number of Configurations Run: 25 
 Performance of the Incumbent: 0.05399999999999999 
 Total Number of runs performed: 101 
 Configuration time budget used: 30.020000000000034 s 
[INFO ] ********************************************** 
 
[INFO ] Total Objective of Final Incumbent 13 (0x30977) on training set: 
0.05399999999999999; on test set: 0.055 
 
[INFO ] Sample Call for Final Incumbent 13 (0x30977)  
cd /global/home/hutter/ac/smac-v2.04.01-master-447/example_spear; ruby spear_wrapper.rb example_data/QCP-
instances/qcplin2006.10422.cnf 0 5.0 2147483647 2897346 -sp-clause-activity-inc '1.3162094350513607' -sp-
clause-decay '1.739666995554204' -sp-clause-del-heur '1' -sp-first-restart '846' -sp-learned-clause-sort-heur '10' -sp-
learned-clauses-inc '1.395279056466624' -sp-learned-size-factor '0.6071142792450034' -sp-orig-clause-sort-heur '7' 
-sp-phase-dec-heur '5' -sp-rand-phase-dec-freq '0.005' -sp-rand-phase-scaling '0.8863796134762909' -sp-rand-var-
dec-freq '0.01' -sp-rand-var-dec-scaling '0.6433957166060014' -sp-resolution '0' -sp-restart-inc 
'1.7639087832223321' -sp-update-dec-queue '1' -sp-use-pure-literal-rule '0' -sp-var-activity-inc 
'0.7825881046949665' -sp-var-dec-heur '3' -sp-variable-decay '1.0374907487192533'  



Decision #1: Configuration Budget & Max. Captime 

• Configuration budget 
– Dictated by your resources & needs 

• E.g., start the configurator before leaving work on Friday 

– The longer the better (but diminishing returns) 
• Rough rule of thumb: at least enough time for 1000 target runs 

 

• Maximal captime per target run 
– Dictated by your needs (typical instance hardness, etc) 
– Too high: slow progress 
– Too low: possible overtuning to easy instances 
– For SAT etc, often use 300 CPU seconds 
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Decision #2: Choosing the Training Instances 
 

• Representative instances, moderately hard 
– Too hard: won’t solve many instances, no traction 
– Too easy: will results generalize to harder instances? 
– Rule of thumb: mix of hardness ranges 

• Roughly 75% instances solvable by default in maximal captime 
 

• Enough instances 
– The more training instances the better 
– Very homogeneous instance sets: 50 instances might suffice 
– Prefer t 300 instances, better t 1000 instances 
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Decision #2: Choosing the Training Instances 
 

• Split instance set into training and test sets 
– Configure on the training instances o configuration T*  
– Run T* on the test instances  

• Unbiased estimate of performance 
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Pitfall: configuring on your test instances 
 

                                        That’s from the dark ages 

Fine practice: do multiple configuration runs  
and pick the T* with best training performance 

 
                               Not (!!) the best on the test set 



Decision #2: Choosing the Training Instances 

• Works much better on homogeneous benchmarks 
– Instances that have something in common 

• E.g., come from the same problem domain 
• E.g., use the same encoding 

– One configuration likely to perform well on all instances 
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Pitfall: configuration on too heterogeneous sets 
 

There often is no single great overall configuration 
(but see algorithm selection etc, second half of the tutorial) 



Decision #3: How Many Parameters to Expose? 
 

• Suggestion: all parameters you don’t know to be useless 
– More parameters o larger gains possible 
– More parameters o harder problem 
– Max. #parameters tackled so far: 768  

[Thornton, Hutter, Hoos & Leyton-Brown, KDD‘13] 
• With more time you can search a larger space 

 

76 

Pitfall: including parameters that change the problem 
 

E.g., optimality threshold in MIP solving 
E.g., how much memory to allow the target algorithm 



Decision #4: How to Wrap the Target Algorithm  
• Do not trust any target algorithm 
– Will it terminate in the time you specify? 
– Will it correctly report its time? 
– Will it never use more memory than specified? 
– Will it be correct with all parameter settings? 
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Pitfall: blindly minimizing target algorithm runtime 
 

Typically, you will minimize the time to crash 

Good practice: wrap target runs with tool controlling 
time and memory (e.g., runsolver [Roussel et al, ’11]) 

Good practice: verify correctness of target runs 
 

Detect crashes & penalize them 



Automated Algorithm Configuration: Outline 

 
 
• Methods    (components of algorithm configuration) 

 

• Systems      (that instantiate these components) 
 

 
• Demo & Practical Issues 

 

• Case Studies 
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Back to the Spear Example 
Spear [Babic, 2007] 

– 26 parameters 

– 8.34 u 1017 configurations 

Ran ParamILS, 2 to 3 days u 10 machines 

– On a training set from each of 2 distributions 

Compared to default  (1 week of manual tuning) 

– On a disjoint test set from each distribution 

4.5-fold speedup 500-fold speedup � won QF_BV 

category in 2007 SMT competition 

below diagonal:  

speedup 

Log-log scale! 

[Hutter, Babic, Hu & Hoos, FMCAD 2007]  
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Other Examples of PbO for SAT 
 

• SATenstein [KhudaBukhsh, Xu, Hoos & Leyton-Brown, IJCAI 2009] 

– Combined ingredients from existing solvers 

– 54 parameters, over 1012  configurations 

– Speedup factors: 1.6x to 218x 

 

• Captain Jack [Tompkins & Hoos, SAT 2011]  

– Explored a completely new design space 

– 58 parameters, over 1050  configurations 

– After configuration: best known solver for 3sat10k and IL50k 
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Configurable SAT Solver Competition (CSSC) 2013 

 
• Annual SAT competition 

– Scores SAT solvers by their performance across instances 
– Medals for best average performance with solver defaults 

• Misleading results: implicitly highlights solvers with good defaults 

 

• CSSC 2013 
– Better reflect an application setting: homogeneous instances 
o can automatically optimize parameters 

– Medals for best performance after configuration 
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[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]  



CSSC 2013 Result #1 
 

• Performance often improved a lot: 
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Clasp on graph isomorphism 
Timeouts: 42 o 6 

Riss3gExt on BMC08 
Timeouts: 32 o 20 

gNovelty+Gca on 5SAT 500 
Timeouts: 163 o 4 

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]  



CSSC 2013 Result #2 
 

• Automated configuration changed algorithm rankings 
– Example: random SAT+UNSAT category 

 

83 

Solver CSSC ranking Default ranking 

Clasp 1 6 

Lingeling 2 4 

Riss3g 3 5 

Solver43 4 2 

Simpsat 5 1 

Sat4j 6 3 

For1-nodrup 7 7 

gNovelty+GCwa 8 8 

gNovelty+Gca 9 9 

gNovelty+PCL 10 10 

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]  



Configuration of a Commercial MIP solver 
 

Mixed Integer Programming (MIP) 
 

 
 

 

Commercial MIP solver: IBM ILOG CPLEX 
– Leading solver for the last 15 years 
– Licensed by  over 1 000 universities and 1 300 corporations 
– 76 parameters, 1047 configurations 

 

Minimizing runtime to optimal solution 
– Speedup factor: 2u to 50u 
– Later work: speedups up to 10,000u 

 

Minimizing optimality gap reached  
– Gap reduction factor: 1.3u to 8.6u 

 
 

 

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]  
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Comparison to CPLEX Tuning Tool 

CPLEX tuning tool 
– Introduced in version 11 (late 2007, after ParamILS) 
– Evaluates predefined good configurations, returns best one 
– Required runtime varies (from < 1h to weeks) 

ParamILS: anytime algorithm 
– At each time step, keeps track of its incumbent 

2-fold speedup  
(our worst result) 

50-fold speedup 
 (our best result) 

lower is better 

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]  
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Machine Learning Application: Auto-WEKA 

 
 

WEKA: most widely used off-the-shelf machine learning 
package (>18,000 citations on Google Scholar) 

 
 

Different methods work best on different data sets 
– 30 base classifiers (with up to 8 parameters each) 
– 14 meta-methods 
– 3 ensemble methods 
– 3 feature search methods & 8 feature evaluators 

 

– Want a true off-the-shelf solution: 
 

[Thornton, Hutter, Hoos & Leyton-Brown, KDD 2013] 

Learn 
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Machine Learning Application: Auto-WEKA 
 

• Combined model selection & hyperparameter 
optimization 
– All hyperparameters are conditional on their model being used 
– WEKA’s configuration space: 786 parameters 
– Optimize cross-validation (CV) performance 

 

• Results 
– SMAC yielded best CV performance on 19/21 data sets 
– Best test performance for most sets;  especially in 8 largest 

 
• Auto-WEKA is online: 

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/ 
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[Thornton, Hutter, Hoos & Leyton-Brown, KDD 2013] 

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/


Applications of Algorithm Configuration 

Scheduling  and  
Resource Allocation 

Exam 
Timetabling  
since 2010 

Mixed integer  
programming 

Helped win Competitions 
SAT: since 2009 
IPC: since 2011 
Time-tabling: 2007 
SMT: 2007 
 

Other Academic Applications 
Protein Folding 
Game Theory: Kidney Exchange 
Computer GO 
Linear algebra subroutines 
Evolutionary Algorithms 
Machine Learning: Classification Spam filters 
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Co↵ee Break



Overview 
• Programming by Optimization (PbO):  

Motivation and Introduction 
 

• Algorithm Configuration 
 

• Portfolio-Based Algorithm Selection 
– SATzilla: a framework for algorithm selection 
– Comparing simple and complex algorithm selection methods 
– Evaluating component solver contributions 
– Hydra: automatic portfolio construction 

 
• Software Development Tools and Further Directions 
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SATZILLA:  
A FRAMEWORK FOR  

ALGORITHM SELECTION 

[Nudelman, Leyton-Brown, Andrew,  Gomes, McFadden, Selman, Shoham; 2003]; 
[Nudelman, Leyton-Brown, Devkar, Shoham, Hoos; 2004]; 

[Xu, Hutter, Hoos, Leyton-Brown; 2007, 2008, 2012] 

 
all self-citations can be followed at http://cs.ubc.ca/~kevinlb 
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SAT Solvers 
What if I want to solve an NP-complete problem? 
• theory: unless P=NP, some instances will be intractably hard 
• practice: can do surprisingly well, but much care required 
 
SAT is a useful testbed, on which researchers have worked to 
develop high-performance solvers for decades. 
• There are many high performance SAT solvers 

– indeed, for years a biannual international competition has received 
>20 submissions in each of 9 categories 
 

• However, no solver is dominant 
– different solvers work well on different problems 

• hence the different categories 
– even within a category, the best solver varies by instance 
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Portfolio-Based Algorithm Selection 
• We advocate building an algorithm  

portfolio to leverage the power of 
all available algorithms 
– indeed, an idea that has been  

floating around since Rice [1976] 
– lately, achieving top performance 

 

• In  particular,  I’ll  describe  SATzilla: 
– an algorithm portfolio constructed  

from all available state-of-the-art  
complete and incomplete SAT solvers 

– very successful in competitions 
• we’ve  done  much  evaluation,  but  I’ll  focus  on competition data 
• methods  work  beyond  SAT,  but  I’ll  focus  on  that  domain 

– in recent years, many other portfolios in the same vein 
• SATzilla embodies many of the core ideas that make them all successful 
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Recently, many portfolios with strong practical performance 
*Algorithm Selection    †Sequential Execution    ‡Parallel Execution 

 

• Satisfiability: 
– SATzilla*† [various coauthors, cited earlier; 2003—ongoing] 
– 3S*† [Sellmann, 2011] 
– ppfolio‡ [Roussel, 2011] 
– claspfolio* [Gebser, Kaminski, Kaufmann, Schaub, Schneider, Ziller, 2011] 
– aspeed†‡ [Kaminski, Hoos, Schaub, Schneider, 2012] 

• Constraint Satisfaction: 
– CPHydra*† [O’Mahony, Hebrard,  Holland,  Nugent,  O’Sullivan,  2008] 

• Planning: 
– FD Stone Soup† [Helmert, Röger, Karpas, 2011] 

• Mixed Integer Programming: 
– ISAC* [Kadioglu, Malitsky, Sellmann, Tierney, 2010] 
– MIPzilla*† [Xu, Hutter, Hoos, Leyton-Brown, 2011] 

• ..and this is just the tip of the iceberg:  
– http://dl.acm.org/citation.cfm?id=1456656 [Smith-Miles, 2008] 
– http://4c.ucc.ie/~larsko/assurvey [Kotthoff, 2012] 
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SATzilla: Results from SAT Competitions 
• 2003: first portfolio entered in a SAT competition 

– requirement to submit only source code: a monstrous mess! 
– 2 silver, 1 bronze (out of 9 tracks, as below) 

• 2004: 2 bronze 
• 2007: 3 gold, 1 silver, 1 bronze 
• 2009: 3 gold, 2 silver 
• 2011: Entered the Evaluation Track (more later) 

• 2012: SAT Challenge (strong performance; many portfolios entered) 

• 2013: Portfolios now a victim of their own success?  
– “The emphasis of SAT Competition 2013 is on evaluation of 

core  solvers:”  single-core portfolios of >2 solvers not eligible 
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2012 SAT Challenge: Application 

96 
* Interacting multi-engine solvers: like portfolios, but richer interaction between solvers 



2012 SAT Challenge: Hard Combinatorial 
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SAT Challenge 2012: Random 
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2012 SAT Challenge: Sequential Portfolio 

• 3S deserves mention,  though  isn’t  compared  here 
[Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann, 2011]  
– Disqualified on a technicality 

• chose a buggy solver that returned an incorrect result 
• an occupational hazard for portfolios! 

– Overall performance nearly as strong as SATzilla 
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• Given: 
– training set of instances 
– performance metric 
– candidate solvers 
– portfolio builder  

(incl. instance features) 
 

• Training: 
– collect performance data 
– learn a model for selecting 

among solvers 
 

• At Runtime: 
– evaluate model 
– run selected solver 

Metric  

Portfolio Builder  

Training Set 

 

Novel 
Instance Portfolio-Based 

Algorithm Selector 

Candidate Solvers  

Selected 
Solver 

SATzilla (stylized version) 
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SATzilla Methodology  (offline) 
1. Identify a target instance distribution 

2. Select a set of candidate solvers   

3. Identify a set of instance features 

4. On a training set, compute features and solver runtimes 

5. Identify  a  set  of  “presolvers”  and  a  schedule  for  running  them.  
Discard data that they can solve within a given cutoff time 

6. Identify  a  “backup solver”:  the  best  on  remaining  data 

7.  Learn models for selecting among solvers from step (2) 

8.  Choose a subset of the solvers to include in the portfolio:  
those for which the portfolio obtained in step (7) has best 
performance on instances from a distinct validation set 

} SATzilla’s input 
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SATzilla Methodology  (online) 
9.  Sequentially run each presolver until its cutoff time 

– if the instance is solved, terminate 

10.  Compute features 
– if  there’s  an  error,  run  the  backup  solver 
– potentially, predict which features will be cheap and  

compute only them 

11.  Evaluate models to determine which solver to run 
– potentially, evaluate different models depending on which 

features were computed 

12.  Run the selected algorithm 
– if it crashes, etc., run the next-best algorithm 
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SAT Instance Features (2003—2013) 
Over 100 features. Some illustrative examples from SAT: 
• Problem Size (clauses,  variables,  clauses/variables,  …) 

• Syntactic properties (e.g., positive/negative clause ratio) 

• Statistics of various constraint graphs 
– factor graph 
– clause–clause graph 
– variable–variable graph 

• Knuth’s  search space size estimate 
• Cumulative number of unit propagations at different 

depths (SATz heuristic) 

• Local search probing  
• Linear programming relaxation 
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Presolvers and Subset Selection 
• Presolvers 

– Consider discrete set of exponentially increasing time amounts 
– For every choice of two presolvers + captimes for each, run the 

entire SATzilla pipeline and evaluate overall performance 
– Keep the choice that yields best performance 

 
• Subset selection 

– Consider every subset of the given solver set 
• omitting a weak solver prevents models from accidentally choosing it 
• conditioned on choice of presolvers 
• computationally cheap: models decompose across solvers 

– Keep the subset that achieves the best performance 
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How is SATzilla an example of PbO? 
• SATzilla builds a new meta-algorithm out of a given set 

of existing solvers 
• Two senses in which this involves automatically choosing 

among candidate algorithm designs via optimization: 
1. fitting the machine learning models, which govern the  

meta-algorithm’s  behavior 
• machine learning is optimization 

2. determining properties of the meta-algorithm: 
• pre-solver schedule 
• solver subset selection 
• backup solver 
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Try it yourself! 

• SATzilla is freely available online 
 

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/ 

 
• You can try it for your problem 

– we have features for SAT, MIP and TSP 
– you need to provide features for other domains 

• in many cases, the general idea between our existing features  
• can also make features by reducing your problem to e.g. SAT and 

computing the SAT features 
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COMPARING SIMPLE AND COMPLEX 
ALGORITHM SELECTION METHODS 

[Xu, Hutter, Hoos, Leyton-Brown, ongoing work] 
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Methods 
How should SATzilla choose among candidate solvers? 
• Runtime prediction 
• Pairwise classification 
• Cost-sensitive classification 
 

Is this better than some simple alternatives? 
• Best single solver 
• Time slicing 
• Sequential scheduling 

 

Recall: the best we can hope for is the virtual best solver 
• choose the best solver on a per-instance basis 
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Methods: Runtime Prediction 
• How it works 

– Build  an  “empirical hardness model”  predicting  the   
amount of time each solver will take to run on each instance 

– oddly enough, this is possible to do 
• A regression problem: 

– linear regression 
– quadratic ridge regression 
– random forests of regression trees 

• Evaluate the model for each solver, and choose the 
solver predicted to be fastest 
– advantage: implicitly penalizes big mispredictions more than 

small mispredictions (RMSE) 
– disadvantage: solves a harder problem than necessary 

• The method used by SATzilla 2003—2009 
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Methods: Pairwise Classification 
• How it works: 

– Build a classifier to determine which algorithm to prefer 
between each pair of algorithms in the portfolio 

– Loss function: 0-1 error 

• A classification problem: 
– support vector machines 
– decision forests 

• Classifiers vote for different algorithms; the algorithm 
with the most votes is selected 
– Advantage: selection is a classification problem 
– Disadvantage: big and small errors treated the same 

• We tried this method back in 2003-4, opted against it 
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Methods: Cost Sensitive Classification 
• How it works: 

– Build a classifier to determine which algorithm to prefer 
between each pair of algorithms in the portfolio 

– Loss function: cost of misclassification 

• Both decision forests and support vector machines  
have cost-sensitive variants 

• Classifiers vote for different algorithms; the algorithm 
with the most votes is selected 
– Advantage: selection is a classification problem 
– Advantage: big and small errors treated differently 

• The method used by SATzilla since 2011 

111 



Methods: Time Slicing (ppfolio) 
• Don’t  build  a  model 

– thus, no features are needed 

• Run all algorithms in parallel 
– with one processor, time slicing 
– 𝑘 solvers: runtime is 𝑘 times minimum runtime across solvers 

on every given instance 

• Solver selection: keep the set of 𝑘 solvers that 
maximizes a performance metric on a training set 
– we approximated this optimization greedily 
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Methods: Simple Sequential Portfolios 
• Pick a sequence of solvers and time budgets 
• What we did: 

– For every permutation of 4 solvers from the 7 candidate 
solvers that constitute the best VBS in terms of PAR10, 
consider all assignments of solvers to time budgets having 
total length ≤ T and calculate out their performance 

– budgets: 0, 10଴୲, 10୲, 10ଶ୲, … , 10ଷ଴୲ , t = logଵ଴   
ୡୟ୮୲୧୫ୣ

ଷ଴
 

– Add a 5th solver to the end of the sequence: 
• Pick the solver that achieves the best performance on the remaining 

unsolved instances within the remaining time 
• Set the time budget to be the remaining time 
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SAT: SATzilla Variants 
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SAT: SATzilla vs Baselines 
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MIP: MIPzilla Variants 
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MIP: MIPzilla vs Baselines 
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EVALUATING  
COMPONENT SOLVER  

CONTRIBUTIONS 

[Xu, Hutter, Hoos, Leyton-Brown, 2012] 
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Evaluation Track for SAT Competition 2011 
• Goal: use portfolios to study the solvers submitted  

to the 2011 SAT Competition 
– We considered all instances from 2011 SAT Competition: 

300 Application; 300 Crafted; 300 Random 
• Candidate solvers from 2011 SAT Competition: 

– for building SATzilla: 
• all sequential, non-portfolio solvers from Phase 2: 
• 18 Application; 15 Crafted; 9 Random 

– for determining VBS and SBS: 
• all solvers from Phase 2 of competition: 
• 31 Application; 25 Crafted; 17 Random 

 

• How should we assess the value of a solver? 
– One option: look at its overall performance 
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Performance of Individual Solvers (Application) 
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Assessing Solver Quality 
• How should we assess the value of a solver? 

– One option: look at its overall performance 
• However, portfolio-based methods consistently outperform 

individual solvers, and so arguably represent the current 
state of the art 
 
 
 
 

• The success of a portfolio-based solver ultimately depends 
on the strength of its component solvers 

• How should we assess component  solvers’  contributions  
to a portfolio? 
1. their degree of correlation 
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Correlation of Solver Performance (Application) 
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Correlation of Solver Performance (Random) 
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Assessing Solver Contributions 
• The success of a portfolio-based solver ultimately 

depends on the strength of its component solvers 
• How  should  we  assess  component  solvers’  contributions  

to a portfolio? 
1. their degree of correlation 
2. the frequency with which they are selected by the portfolio 
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Selection Frequency in SATzilla2011 (Application) 
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Assessing Solver Contributions 
• The success of a portfolio-based solver ultimately 

depends on the strength of its component solvers 
• How  should  we  assess  component  solvers’  contributions  

to a portfolio? 
1. their degree of correlation 
2. the frequency with which they are selected by the portfolio 
3. the fraction of instances they’re  responsible  for  solving 
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Instances Solved by SATzilla2011 Components (Application) 
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Assessing Solver Contributions 
• The success of a portfolio-based solver ultimately 

depends on the strength of its component solvers  
• How should  we  assess  component  solvers’  contributions  

to a portfolio? 
1. their level of correlation 
2. the frequency with which they are selected by the portfolio 
3. the fraction of instances they’re  responsible  for  solving 
4. their marginal contribution to portfolio performance 
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Marginal Contribution of Components (Application) 
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Instances Solved vs Marginal Contribution (Application) 
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Instances Solved vs Marginal Contribution (Crafted) 
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Instances Solved vs Marginal Contribution (Random) 
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HYDRA: AUTOMATIC  
PORTFOLIO CONSTRUCTION 

 
 

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003];  
[Leyton-Brown, Nudelman, Shoham, 2009] 

[KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009] 
[Xu, Hoos, Leyton-Brown, 2010] 

[Xu, Hutter, Hoos, Leyton-Brown, 2011] 
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Motivation 
• What about situations where we don’t  start  out  with  a  

set of strong solvers to choose among? 
 

• Solution: take a PbO approach to identifying a set of 
solvers that will work together well as a portfolio, 
rather than just a single solver! 
– combines algorithm configuration with algorithm selection 
– design space now includes lots of new choices: 

• number of solvers to include in the portfolio 
• the design of each solver 

– PbO: make these choices via automated optimization 
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SATenstein 
• Frankenstein’s goal: 

– Create  “perfect”  human  being  from  
scavenged body parts 

• SATenstein’s goal: 
– Create high-performance SAT solvers using 

components scavenged from existing solvers 

• A highly parameterized, generalized SLS 
solver built using UBCSAT [Tompkins & Hoos, 2004] 

– 3 categories of SLS algorithms 
• WalkSAT 
• G2WSAT 
• dynamic local search algorithms 

– can instantiate 25 known algorithms  
– 41 parameters, > 1011 possible instantiations 
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• Designer creates highly-
parameterized algorithm 
from existing components 

 

• Given: 
– training set of instances 
– performance metric 
– parameterized algorithm 
– algorithm configurator 

 

• Configure algorithm: 
– run configurator on 

training instances 
– output is a configuration 

that optimizes metric 
Parameterized 

Algorithm 

Existing 
Algorithm Components 

Domain 
Expert 

How does SATenstein work? 
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Algorithm 
Configurator 

Metric  

New 
Configuration 

Instance 
set 

• Designer creates highly-
parameterized algorithm 
from existing components 

 

• Given: 
– training set of instances 
– performance metric 
– parameterized algorithm 
– algorithm configurator 

 

• Configure algorithm: 
– run configurator on 

training instances 
– output is a configuration 

that optimizes metric 
Parameterized 

Algorithm 

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra How does SATenstein work? 
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SATenstein 

SATzilla 
 portfolio-based algorithm selection 

SATenstein 
 algorithm design via automatic configuration 
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 Exploit per-instance variation between 
solvers using learned runtime models 
– practical: e.g., won competition medals  
– fully automated: requires only cluster 

time rather than human design effort 
 

 Key drawback: 
– requires a set of strong, relatively 

uncorrelated candidate solvers 
– can’t  be  applied in domains for which 

such solvers do not exist 
 

Advantages and Disadvantages 

SATzilla 
 portfolio-based algorithm selection 
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• Instead of manually exploring  

a design space, build a  
highly parameterized algorithm and then 
configure it automatically 
– as  we’ve  suggested  earlier  in  the  tutorial 

• Can find powerful, novel designs 
• But: only produces single algorithms 

designed to perform well on the  
entire training set 

Advantages and Disadvantages 
SATenstein 

 [KhudaBukhsh, Xu, Hoos, Leyton-Brown, 2009] 
algorithm design via automatic configuration 
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Hydra 

Hydra 
automatic portfolio synthesis 

Starting from a single parameterized algorithm, automatically find a set of 
uncorrelated configurations that can be used to build a strong portfolio. 
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• Idea: augment an additional portfolio P by targeting 
instances on which P performs poorly 
– original  idea:  “boosting  as  a  metaphor  for  algorithm  design” 

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003];  
[Leyton-Brown, Nudelman, Shoham, 2009] 

– problem: the original algorithm could easily stagnate 
• indeed, same problem if you misunderstood Hydra as presented in the previous tutorial 

 

• Avoid stagnation via a dynamic performance metric: 
– return performance of s when s outperforms P 
– return performance of P otherwise 

• Intuitively: s is scored for its marginal contribution to P 
 

• This metric is given to an off-the-shelf configurator, which 
optimizes it to find a new configuration s* 
 

• Thus, we retain the same  core  idea  as  “boosting”: 
– build a new algorithm that explicitly aims to improve upon an 

existing portfolio 
 

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Hydra: Methodology 
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Related Idea: ISAC 
ISAC: Instance Specific Algorithm Configuration  
[Kadioglu, Malitsky, Sellmann, Tierney, 2010; Malitky, Sellman, 2012] 

• How it works: 
– Compute features for training instances 
– Cluster training instances (using, e.g., k-means) 

– Configure a solver for each cluster of instances 
– At runtime, find the cluster whose center is closest to the 

features of the test instance, and run that solver 

• Advantage: training decomposes very nicely 
• Disadvantage: instance similarity may not correlate 

closely with runtime 
– thus  solvers  aren’t  explicitly forced to be uncorrelated 
– problem gets worse with uninformative features 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 1 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 2 
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Algorithm 
Configurator 

Metric  Training Set 

Portfolio-Based 
Algorithm Selector 

Candidate Solver Set  

Candidate 
Solver 

Parameterized 
Algorithm 

Portfolio 
Builder  

Hydra Procedure: Iteration 3 
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Output: 
 
 
 
 
 
 
 
 

Portfolio-Based 
Algorithm Selector 

 

Novel 
Instance 

Selected 
Solver 

Hydra Procedure: After Termination 
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Another Interpretation 
• Hydra can also be understood as a procedure for 

building parallel algorithm portfolios 
– obtain the min runtime across a set of solvers by running all of 

them in parallel rather than selecting only one of them 
• disadvantage: wasted computation on all but one core 
• advantage: automatic method for parallelization 
• advantage: no need for features 

– exactly the same procedure as before 
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• Even though Hydra is most useful in other domains,  
I’ll  describe  an  evaluation on SAT. 

 

• High bar for comparison 
– strong state-of-the-art solvers 
– portfolio-based solvers already successful 
 to be able to argue that Hydra does well, 

we want to compare to a strong portfolio 
   

• Pragmatic benefits 
– a wide variety of interesting datasets 
– existing instance features 
– SATenstein is a suitable configuration target 

 

Experimental Evaluation 
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• Individual state-of-the-art solvers 
– 11 manually-crafted SLS solvers 

• all 7 SLS winners of any SAT competition 2002 – 2007 
• 4 other prominent solvers 

– 6 SATenstein solvers tuned for particular distributions 
 

• Also considered SATzilla portfolios of challengers 
 

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Experimental Setup: Challengers 
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Solver RAND HAND BM INDU 

Best Challenger (of 17) 1128.63 2960.39 224.53 11.89 

Portfolio of 11 Challengers 897.37 2670.22 54.04 135.84 

Portfolio of 17 Challengers 813.72 2597.71 3.06* 7.74* 

Hydra (7 iterations) 631.35 2495.06 3.06 7.77 

* Statistically insignificant performance difference (sign rank test).  
Hydra’s  performance  was  significantly  better  in  all  other  pairings. 

  

Performance Summary 
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Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Performance Progress, RAND 

152 



Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Selection Percentages After 7 Iterations, RAND 
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Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra Improvement After 7 Iterations, RAND 
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We’ve  had  success  applying  Hydra  to  MIP,  too 
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Conclusions 
• SATzilla: a framework for algorithm selection 

– a robust and practically successful method for performing portfolio-
based algorithm selection 

– works beyond SAT; free downloadable tools 
• Comparing simple & complex algorithm selection methods 

– SATzilla with cost-sensitive classification is consistently best 
– but, often diminishing returns from more complex methods 

• most important thing is using portfolios rather than single solvers 

• Evaluating component solver contributions 
– examine  solvers’  marginal  contributions  to  portfolio 
– sometimes  surprising:  “weak”  solvers  can  be  important 

• Hydra: automatic portfolio construction 
– again, leverage the idea of marginal contribution to build strong 

portfolios, combining selection with configuration 
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Software Development Support

and Further Directions



Software development in the PbO paradigm

PbO-<L>
source(s)
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Software development in the PbO paradigm

PbO-<L>
source(s)

parametric
<L>

 source(s)

design
space

description

   PbO-<L>
   weaver

Hoos, Hutter, Leyton-Brown: Programming by Optimization 157



Software development in the PbO paradigm

use context
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Software development in the PbO paradigm
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Design space specification

Option 1: use language-specific mechanisms

I command-line parameters

I conditional execution

I conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for . . .

I exposing parameters

I specifying alternative blocks of code
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Advantages of generic language extension:

I reduced overhead for programmer

I clean separation of design choices from other code

I dedicated PbO support in software development environments

Key idea:

I augmented sources: PbO-Java = Java + PbO constructs, . . .

I tool to compile down into target language: weaver
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use context

PbO-<L>
source(s)

parametric
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Exposing parameters

...

numerator -= (int) (numerator / (adjfactor+1) * 1.4);

... ...

##PARAM(float multiplier=1.4)

numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

...

I parameter declarations can appear at arbitrary places
(before or after first use of parameter)

I access to parameters is read-only (values can only be
set/changed via command-line or config file)
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard

<block S>

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced

<block E>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

...

##BEGIN CHOICE preProcessing

<block 2>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1a>

##BEGIN CHOICE extraPreProcessing

<block 2>

##END CHOICE extraPreProcessing

<block 1b>

##END CHOICE preProcessing
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The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, . . . )

I parametric mode:

I expose parameters

I make choices accessible via (conditional, categorical)
parameters

I (partial) instantiation mode:

I hardwire (some) parameters into code
(expose others)

I hardwire (some) choices into code
(make others accessible via parameters)
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The road ahead

I Support for PbO-based software development

I Weavers for PbO-C, PbO-C++, PbO-Java

I PbO-aware development platforms

I Improved / integrated PbO design optimiser

I Debugging and performance analysis tools

I Best practices

I Many further applications

I Scientific insights
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Which choices matter?

Observation: Some design choices matter more than others

depending on . . .

I algorithm under consideration

I given use context

Knowledge which choices / parameters matter may . . .

I guide algorithm development

I facilitate configuration
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3 recent approaches:

I Forward selection based on empirical performance models
Hutter, Hoos, Leyton-Brown (2013)

I Functional ANOVA based on empirical performance models
Hutter, Hoos, Leyton-Brown (under review)

I Ablation analysis
Fawcett, Hoos (2013)
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Functional ANOVA based on empirical performance models

Hutter, Hoos, Leyton-Brown (under review)

Key idea:

I build regression model of algorithm performance as a function
of all input parameters (= design choices)

 empirical performance models (EPMs)

I analyse variance in model output (= predicted performance)
due to each parameter, parameter interactions

I importance of parameter: fraction of performance variation
over configuration space explained by it (main e↵ect)

I analogous for sets of parameters (interaction e↵ects)

Hoos, Hutter, Leyton-Brown: Programming by Optimization 168



Decomposition of variance in a nutshell

For parameters p1, . . . , pn and a function (performance model) y :

y(p1, . . . , pn) = µ

+ f1(p1) + f2(p2) + · · ·+ fn(pn)

+ f1,2(p1, p2) + f1,3(p1, p3) + · · ·+ fn�1,n(pn�1, pn)

+ f1,2,3(p1, p2, p3) + · · ·
+ · · ·
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Note:

I Straightforward computation of main and interaction e↵ects
is intractable.
(integration over combinatorial spaces of configurations)

I For random forest models, marginal performance predictions
and variance decomposition (up to constant-sized interactions)
can be computed exactly and e�ciently.
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Empirical study:

I 8 high-performance solvers for SAT, ASP, MIP, TSP
(4–85 parameters)

I 12 well-known sets of benchmark data
(random + real-world structure)

I random forest models for performance prediction,
trained on 10 000 randomly sampled configurations per solver
+ data from 25+ runs of SMAC configuration procedure
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Fraction of variance explained by main e↵ects:

CPLEX on RCW (comp sust) 70.3%
CPLEX on CORLAT (comp sust) 35.0%

Clasp on software verificatition 78.9%
Clasp on DB query optimisation 62.5%

CryptoMiniSAT on bounded model checking 35.5%
CryptoMiniSAT on software verification 31.9%
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Fraction of variance explained by main + 2-interaction e↵ects:

CPLEX on RCW (comp sust) 70.3% + 12.7%
CPLEX on CORLAT (comp sust) 35.0% + 8.3%

Clasp on software verificatition 78.9% + 14.3%
Clasp on DB query optimisation 62.5% + 11.7%

CryptoMiniSAT on bounded model checking 35.5% + 20.8%
CryptoMiniSAT on software verification 31.9% + 28.5%
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Note:
may pick up variation caused by poorly performing configurations

Simple solution:

cap at default performance or quantile from distribution of
randomly sampled configurations; build model from capped data.
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Ablation analysis

Fawcett, Hoos (2013)

Key idea:

I given two configurations, A and B , change one parameter at a
time to get from A to B

 ablation path

I in each step, change parameter to achieve maximal gain (or
minimal loss) in performance

I for computational e�ciency, use racing (F-race)
for evaluating parameters considered in each step
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Empirical study:

I high-performance solvers for SAT, MIP, AI Planning
(26–76 parameters),
well-known sets of benchmark data (real-world structure)

I optimised configurations obtained from ParamILS
(minimisation of penalised average running time;
(10 runs per scenario, 48 CPU hours each)
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Ablation between default and optimised configurations:
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LPG on Depots planning domain
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Which parameters are important?

LPG on depots:

I cri intermediate levels (43% of overall gain!)

I triomemory

I donot try suspected actions

I walkplan

I weight mutex in relaxed plan

Note: Importance of parameters varies between planning domains
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Leveraging parallelism

I design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

I deriving parallel programs from sequential sources
 concurrent execution of optimised designs
 (parallel portfolios)
(Hoos, Leyton-Brown, Schaub, Schneider 2012)

I parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)
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Take-home Message



Programming by Optimisation ...

I leverages computational power to construct
better software

I enables creative thinking about design alternatives

I produces better performing, more flexible software

I facilitates scientific insights into

I e�cacy of algorithms and their components

I empirical complexity of computational problems

... changes how we build and use high-performance software
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More Information:

www.cs.ubc.ca/labs/beta/Projects/PbO Tutorial

www.prog-by-opt.net

If PbO works for you:

Make our day – let us know!

Share the joy – tell everyone else!
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