
Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2. Asymptotic Notation

Motivation: For a given algorithm, we want to quantify how the algorithm’s running time
grows as the input of size n grows.

Normally, we are interested in knowing the worst-case running time as function of
n, but sometimes we may also be interested in knowing the average (expected) run-
ning time or the best-case running time.

Not unimportantly, we want to come up with a notion of running time which is inde-
pendent of features such as processor speed etc.

Definition: In the following, a step in the algorithm will refer to assigning a value to a
variable. An example of a step is looking up one entry in an array.

Goal: Given an algorithm in pseudo-code such as the Gale-Shapley algorithm, specify the
running time (in steps) as function of the input size n.

As our pseudo-code provides a high-level description of the algorithm, a particular
step in the pseudo-code may correspond to 25 low-level machine instructions when a
particular implementation of the algorithm is compiled on a computer with a particular
architecture.

• g(n) = 1.62n2 +3.5n+8 is the number of steps required on pseudo-code level for
an input of size n

• g̃(n) = 40.5n2+87.5n+200 may be the number of steps required by the algorithm
on a particular piece of hardware for an input of size n

The goal is to measure the running time of an algorithm in a way that is independent
of the particular hardware and a good reflection of the features of the algorithm on
pseudo-code level, i.e. we want to capture the running time in a way that is

• insensitive to constant factors and

• lower order terms

For the above example g(n) we would want to state that the running time grows like
n2, up to constant factors.

2.1 Asymptotic upper bounds O

Motivation: Given an algorithm in pseudp-code which requires at most T (n) steps to
complete for an input of size n ∈ N, T : N → R+, find a function f : N → R+ which,
if multiplied by a constant, positive factor c ∈ R, c > 0, provides an upper bound to

6

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

T (n) for sufficiently large n, i.e. for all n ∈ N, n ≥ n0 ∈ N .
In other words, find a function f : N → R+ such that

T (n) ≤ c · f(n), ∀n ∈ N, n ≥ n0, c ∈ R+

Note: c is a constant, i.e. does not depend on n.

Reminder def.

N := set of natural numbers = {1,2,3,...}

N0 := N ∪ {0}

R := set of real numbers

R+ := set of all non-negative real numbers = {x ∈ ℜ, x ≥ 0}

∀ is short hand for ”all”

∃ is short hand for ”exists”

Example: T (n) = 7n2 + 5

Would f(n) = n3 work, i.e. T (n) = O(n3)?

Check: T (n) = 7n2 + 5 ≤ 7n2 + 5n2 = 12n2 for ∀n ∈ N, n ≥ 1
≤ 12n3

⇒ T (n) ≤ c · f(n) for ∀n ∈ N, n ≥ n0 = 1 and c = 12 ∈ R+

Definition: Let T (n), T : N → R+, be the function that describes the worst-case running
time of a given algorithm in terms of steps to be completed per sitesize of input n. We
say that T (n) is O(f(n)) (read ”T (n) is of order f(n)”) if T is asymptotically upper
bounded by f(n), f : N → R+, i.e. if there is a constant c ∈ R+ and n0 ∈ N such that
T (n) ≤ c · f(n) for ∀n ∈ N, n ≥ n0. If T (n) is O(f(n)), we also write T (n) = I(f(n)).

7

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Note: O(·) only expresses an upper bound, budt does not necessarily provide a precise de-
scription of the worst-case running time, i.e. a tight upper bound.

example: T (n) = 7n2 + 5 is O(n3), but also O(n4).

2.2 Asymptotic lower bounds Ω (greek ”Omega”)

Motivation: Given a function T (n), T : N → R+, which describes the worst-case running
time of a given algorithm, find a function f(n), f : N → R+, which provides a lower
bound to T .

Definition Let T (n), T : N → R+, be a function that describes the worst-case running time
of a given algorithm in terms of steps to be completed per size of input n.
We say that T (n) is Ω(f(n)) i.e. we say that (T (n) is asymptotically lower bounded
by f(n), f : N → R+, i.e. if there is a constant c ∈ R+ and n0 ∈ N such that
T (n) ≥ c · f(n) for ∀n ∈ N , n ≥ n0. If T (n) is Ω(f(n)) we also write T (n) = Ω(f(n))

Example: T (n) = 7n2 + 5

Group work: Find a function f(n) so T (n) = Ω(f(n)).

Would f(n) = n2 work, i.e. T (n) = Ω(f(n))?
Check: T (n) = 7n2 + 5 ≥ 7n2 for ∀n ∈ N
⇒ T (n) ≥ c · f(n), ∀n ∈ N, n ≥ n0 = 0, c = 7 ∈ R+.

Notes:

• similar to O(f(n)), Ω(f(n)) only express a lower bound to f(n), which is not
necessarily a tight bound.

8

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Example: T (n) = Ω(n2), but also T (n) = Ω(n).

• Ω is most useful is used in conjunction with O, e.g. in order to give a tight bound
on the running time of an algorithm.

• Ω is also useful for providing a lower bound on the worst-case running-time of
all algorithms that address a specific problem as we can then, for example, show
that the problem is difficult.

2.3 Asymptotically tight bounds Θ (greek ”Theta”)

Motivation: Often, for a given algorithm, we do not only want to know an upper and a
lower bound to the worst-case running time of the algorithm, but we would like a tight
bound which gives us a precise description of the algorithm’s worst-case running time.

Definition: We say that f(n) is an asymptotically tight bound for T (n) or that T (n) is
Θ(f(n)) if T (n) = O(f(n)) = Θ(f(n)), where T, f : N → R+.

Group work: Given T : N → R+, T (n) = 7n2 + 5, find a tight bound.

Answer: T (n) = Θ(n2) because

(a) T (n) = O(n2):

Proof: T (n) = 7n2 + 5 ≤ 7n2 + 5n2, ∀n ∈ N, n > 1
= 12n2

i.e. T (n) ≤ c · f(n), where f(n) = n2 and c = 12 > 0 and all n ∈ N, n ≥ n0 = 1.

(b) T (n) = Ω(n2):

9

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: T (n) = 7n2 + 5 ≥ n2, ∀n ∈ N

i.e. T (n) ≥ c · f(n), where f(n) = n2 and c = 1 > 0 for all n ∈ N .

2

Note: Asymptotically tight bounds on worst-case running times are very useful as they
characterize the worst-case performance of an algorithm in a precise way up to constant
factors.

2.4 Properties of asymptotic growth rates

Motivation: one strategy for deriving an asymptotically tight bound is to compute the
limit of n to infinity for the function f(n) which describes the worst-case running time
of a given algorithm.

Theorem: Let f, g : N → R+ be two functions for which

lim
n→∞

f(n)

g(n)
= c ∈ R+

Then f(n) = Θ(g(n)).

Interpretation: If the ration of two functions f and g converges to a positive constant for
infinitely large values of n, then f has an asymptotically tight bound g.

Group work: How do you go about proving this theorem?

Proof: Use f(n) = Θ(g(n)) ⇔ (f(n) = O(g(n)) and f(n) = Ω(g(n)).

limn→∞

f(n)
g(n)

= c > 0 ⇒ ∃n0 ∈ N so that 1
2
· c ≤ f(n)

g(n)
≤ 2c.

This implies (a) f(n) ≤ 2cg(n), ∀n ∈ N, n ≥ n0, i.e. f(n) = O(g(n)),

and (b) c
2
g(n) ≤ f(n), ∀n ∈ N, n ≥ n0, i.e. f(n) = Ω(g(n)).

Note:

(a) f(n) ≤ 2cg(n) ⇔ 1
2c
f(n) ≤ g(n), ∀n ∈ N, n ≥ n0, i.e. g(n) = Ω(f(n))

(b) c
2
g(n) ≤ f(n),⇔ g(n) ≤ 2

c
f(n), ∀n ∈ N, n ≥ n0, i.e. g(n) = O(f(n))

⇒ f(n) = Θ(g(n)) and g(n) = Θ(f(n)).

Conclusion: f not only has as asymptotically tight bound g, but g also has f as asymp-
totically tight bound.

Assumption: For the rest of this section, assume that f, g and h are functions N → R+.

10

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Lemma: Transitivity of O,Ω and Θ If a function f is asymptotically upper-bounded by
a function g and g is asymptotically upper-bounded by a function h, then f is asymp-
totically upper-bounded by h.
Likewise for lower bounds and tight bounds.
In other words:

(a) f = O(g) and g = O(h) ⇒ f = O(h)

(b) f = Ω(g) and g = Ω(h) ⇒ f = Ω(h)

(c) f = Θ(g) and g = Θ(h) ⇒ f = Θ(h)

Proof:

(a) Group work

f = O(g) i.e. f(n) ≤(∗) cg · g(n), cg ∈ R+, ∀n ≥ ng and

g = O(h) i.e. g(n) ≤(∆) ch · h(n), ch ∈ R+, ∀n ≥ nh.

We can combine this as follows

f(n) ≤(∗) cg · g(n) ≤
(∆) cg · ch · h(n), ∀n ≥ max{ng, nh}

Which implies f = O(h). 2

(b) similar proof to (a)

(c) From f = O(g) and g = Θ(h) follows with the definition of Θ and (a) that
f = O(h). It also follows with (b) that f = Ω(h). Again using the definition of
Θ, we can summarize both as g = Θ(g). 2

Lemma: (Additivity of O) f = O(h) and g = O(h) ⇒ f + g = O(h)

Proof: (Group work) We have f = O(h), i.e. f(n) ≤ cf · h(n), ∀n ≥ nf , cf ∈ R+

and likewise we have g(n) ≤ cgh(n), ∀n ≥ ng, cg ∈ R+.

We can combine this into

f(n) + g(n) ≤ (cf + cg)h(n), ∀n ≥ max{nf , ng}, c̃ = (cf + cg) ∈ R+

2

Lemma: (Additivity of O) Given k ∈ N and k functions fi : N → R+, i ∈ {1, 2, ..., k}
with fi = O(n), then

k∑

i=1

fi = O(n).

Reminder: Σ denotes the summation sign. Example:
∑k

i=1 fi = f1 + f2 + ...+ fk.

11

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: Extension of proof for previous lemma. Omitted here.

Lemma: Given g = O(f), then f + g = O(f).

Group work: Prove the lemma.

Proof: g = O(f) implies that g(n) ≤ c · g(n), ∀n ≥ n0, c ∈ R+.

This means that f(n)+g(n) ≤ f(n)+ c ·f(n) = (1+ c)f(n), ∀n ≥ n0, c̃ = (c+1) ∈ R+.

This implies f + g = O(f).

We also have f + g = Ω(f), because for ∀n ∈ N , we have f(n) + g(n) ≥ f(n).

As f + g = O(f), and f + g = Ω(f), we thus obtain f + g = Θ(f).

2.5 Asymptotic bounds for some common functions

Reminder:

• A polynomial function F is a function F : R → R, where: F (x) :=
n∑

i=0

ai ∗ x
i, where all

ai ∈ R and an does not equal to 0 and n ∈ degree of the polynomial.

Examples:

• F(x) = 3x2 + 5x3, F (x) = x/2

Lemma:

• Let F be a polynomial of degree d, then F = O(nd)

Proof of lemma:

• F (n) =
d∑

i=0

ai ∗ n
i, for each term ai ∗ n

i can be viewed as a separate function Fi. Then

ai ∗n
i ≤ |ai| ∗n

i, ∀n ∈ N, c = |ai| ∈ R+, i.e. Fi = O(n1). For every function Fi we can
also find a ni ∈ N such that Fi = ai ∗n

i ≤ |ai| ∗n
i ≤ |ad| ∗n

d, ∀n ≥ ni; ci = |ad| ∈ R+,
i.e. Fi ∈ O(nd). Based on the additivity of O, we can thus conclude that F = O(nd).

12

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Conclusion:

• The asymptotic growth rate of polynomial is determined by their highest-order term.

Lemma:

• Let F be a polynomial of degree d with ad > 0, then F*Ω(nd) = Θ(nd).

Proof:

• omitted here (idea: apply first theorem in 2.4 to g=ad ∗ n
d and f as above.)

Lemma:

• For every b, r ∈ R, b > 1 and r > 0, we have logb(n) = O(nr)

Reminder:

• logb(n) = x ∈ R i.e. x is the solution to n = bx.

• logb(n) = (logk(n))/(logk(b)), for k>1, i.e. we can switch from the base b to another
base k simply by a multiplying by a constant factor that dose not depend on n

• loge(n) ≤ n for all n ∈ N, n ≥ 1.

Proof:

• omitted.

Conclusion:

• The logarithm (for any base b > 1) grows much slower than any power function nr

with r > 0, r ∈ R.

Reminder:

• An exponential or exponential function is a function of the form F(x) = rx, x ∈ R,
r ∈ R, r > 1.

13

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Lemma:

• nd = O(rn) for every n ∈ N, r, d ∈ R, r > 1 and d > 0.

Proof:

• omitted.

Conclusion:

• The exponential function rn, r > 1, grows faster than any polynomial function.

Warning:

• Two logarithm functions logb(n) and logk(n) differs only by a constant factor, but for
different bases b > k >1, the two corresponding exponential functions bn and kn don’t!
We thus have bn 6= Θ(kn).

Conclusion:

• When dealing with an exponential function, we have to explicitly specify its level. It
is inaccurate to say ”the running time of this algorithm grows exponentially.”

2.6 A survey of common running times

2.6.1 Algorithm that require O(n) i.e. linear time

Example: Merging two already sorted lists into one sorted list.

given: two sorted lists A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)

goal: derive sorted list C = (c1, c2, . . . , c2n) so that the entries are arranged in the
same (say ascending) order

Group Work: idea for an efficient algorithm

Algorithm: 1: for each list A and B, have a pointer which points to the next element in
the list.

loop starts: while we haven’t reached the end of any list

let ai and bj be the next element pointed to

14

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Algorithm :

for each input point (xi, yi) {

for each input point (xj, yj) with i 6= j {

compute di,j

if di,j us smaller than current minimum distance d, update d

}

}

The worst-case running time of this algorithm is O(n2) as we have two nested loops which
each require O(n) time.

remark : the task can also be computed more efficiently in O(n log(n)) time

2.6.3 Algorithms that require O(n3) i.e. cubic time

Example: Given a subset of Nn = {1, 2, 3, . . . , n}, i ∈ N, find out if there is a pair of
subsets Si and Sj, i 6= j, that is disjoint, i.e Si ∩ Sj = ∅

Algorithm :

for each set Si {

for each other set Sj with i 6= j {

for each element f ∈ Si {

determine if f ∈ Sj [assume we can do this in constant time]

}

if no element of Si finds in Sj then they are disjoint

}

}

The worst case running time of this algorithm is O(n3) as we have three nested loops which
require O(n) time each.

16

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2.6.5 Algorithm that require beyond polynomial time

Example: Similar to 2.6.4, we are given a graph of n nodes. The task now, however, is to
identify an independent k-node set of maximize k ∈ N, k≤n.

Algorithm :

for each subset S of nodes {

decide if S constitutes an independent set

if S is independent and larger than any independent set found so far {

record the size of S as the current maximum

}

}

On the contrast to the previous algorithm, this algorithm requires considering all subsets
of S. This number is:

n∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
1k ∗ 1n−k = 2n

reminder : (a+ b)n =
∑n

k=0

(
n

k

)
ak*bn−k, a, b ∈ R, n ∈ N

The for-loop is thus of order O(2n). Inside the for-loop, we need to check if the current
subset S is independent. As each subset has at most n elements, this requires at
most O(n2) time.

The overall worst-case running time of this algorithm is therefore O(2n ∗ n2)

Group work: Can you think of ways of making the above algorithm more efficient? Remem-
ber the definition of independent set. For example, if you have found an independent
k-node sets, then all of its subsets are independent as well.

2.6.6 Algorithm that require less than linear time. e.g. O(log(n))

Example : Suppose we are given an array of n ∈ N already sorted numbers. The task is to
find out if a number p ∈ R is stored in the array or not.

Group work: Can you think about an efficient algorithm for doing this?

Algorithm : If p is smaller than the first array entry or larger than the last entry, it cannot
be part of the array. Else, look at the middle entry q of the array. If p = q, we are
done. If p < q, probe the remaining array to the left of q. If p > q, probe the remaining
array to the right of q.

At every step in the algorithm, we are halving the remaining interval to be investigated.
After k steps, we are left with an interval of size (1/2)k ∗ n

18

