

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

We solve the recurrence relation by summing over all recursion levels:

(1) ⇔ T (n) ≤ q · T (
n

2
) + c · n (assume n > 2)

≤

log2(n)
∑

i=1

(
q

2
)i−1n · c (as we are summing over all log2(n) recursion levels)

= c · n

log2(n)
∑

i=1

(
q

2
)i−1

= c · n

log2(n)−1
∑

i=1

(
q

2
)i

= c · n(
1− (q

2
)log2(n)

1− (q
2
)

) (use geometric sum:
m
∑

i=0

ri =

{

1−rm+1

1−r
r 6= 1

m+ 1 r = 1
)

= c · n(
(q
2
)log2(n) − 1

(q
2
)− 1

)

≤ c · n(
(q
2
)log2(n)

(q
2
)− 1

) (use alogb = elogb·loga = bloga)

= cn(
nlog2∗(

q

2
)

(q
2
)− 1

) (use log2(
q

2
) = log2(q)− log2(2)(where log2(2) = 1))

=
c · n · nlog2(q)−1

q

2
− 1

(view
c

q

2
− 1

as constant)

=
cnlog2(q)

q

2
− 1

(note :
q

2
> 1 because q > 2)

= O(nlog2(q))

To summarize:

Any function T (n) satisfying the recurrence relation (1) for q > 2 is bounded by O(nlog2(q)).

Note:

As q > 2 and thus log2(q) > 1, the running time is more than linear, but polynomial in n.

55

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Solving (2) by explicitly summing over all recursion levels we obtain:

T (n) ≤ 2 · T (
n

2
) + cn2

≤

log2(n)
∑

i=1

(
cn2

2i−1
)

= cn2

log2(n)
∑

i=1

(
1

2
)i−1

= cn2

log2(n)−1
∑

i=0

(
1

2
)i (use geometric sum)

= cn2(
1− (1

2
)log2(n)

1− (1
2
)

) (use alogb = bloga and log2(1/2) = −1)

= cn22(1− n−1)

= 2cn2 − 2cn ≤ 2cn2 = O(n2)

To summarize:

Any function T (n) satisfying the recurrence relation (2) is bounded by O(n2).

5.2 Translating algorithms into recurrence relations and deriving
upper bounds

5.2.1 Example 1: Counting Inversions

Situation Given two rankings, A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) of numbers ai
and bi, where

{a1, a2, . . . , an} = {b1, b2, . . . , bn} = Nn = {1, 2, . . . , n}

Assumption In all of the following, assume that B = (1, 2, 3, . . . , n), i.e. that B denotes
the reference ranking.

Example:

A = (2, 4, 1, 3, 5)

B = (1, 2, 3, 4, 5) , i.e. n = 5 in this case.

Goal: Come up with a quantitative way of measuring how similar the two rankings are. If
the two rankings are identical, the measure should be 0. The measure should increase
as the difference of two rankings increases.

58

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• The inversions are (2, 1), (4, 1), and (4, 3).

• number of inversions is 0 (as desired) if the rankings are the same and increases
(as desired) as the rankings become more dissimilar.

Group Work: What is the largest number of inversions for two given lists A and B of
length n?

Answer If we are dealing with two rankings of length n, we have n corresponding lines
linking an ai to a bj if ai = bj.

These n lines can have at most
(

n

2

)

=
n · (n− 1)

2
pairwise categories

as any of the lines can be crossed with any of the other (n− 1) lines and as we count
each such crossing only once (not twice), namely only the case (ai, aj) with ai > aj
and i < j, i.e. the corresponding inversion.

(Group Work) We get
(

n

2

)

inversions if A and B are in opposite orders, i.e. A is in
descending order, whereas B is in ascending order.

Goal: Devise an efficient algorithm to count the number of inversions in a ranking A of
length n.

Idea 1 Check all pairs (ai, aj) if ai > aj and i < j

Group Work How efficient would this be?

Answer Need to check all
(

n

2

)

pairs, i.e. require O(n2) time.

Motivation Is there a more efficient algorithm? (think about this)

We already know that the maximum number of inversions is
(

n

2

)

, i.e. O(n2). So, if
there is a more efficient algorithm which requires less than O(n2) time, it cannot look
at the max number if inversions individually.

Idea 2 Use a recursive algorithm

Assume in the following that n = 2k for some k ∈ N.

(1.) partition A = (ai, . . . , an) into two lists of length n
2
each. A1 = (a1, . . . , an

2
) and

A2 = (an

2
+1, . . . , an)

(2.) Count the number of inversions within each half separately

(3.) Count the number of inversions where one number belongs to one half, and the
other number belongs to the other half.

(this corresponds to the step where we combine two solutions into one, i.e. we need
to determine how efficiently we can do this)

60

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

– let ai and bj be the elements currently pointed to

– append min{ai, bj} to new, combined list C

– if (ai > bj){
count + = remaining number of elements in A
}

– advance the current pointer in the list from which min{ai, bj} was selected

}

Group Work Convince yourself, e.g. by reminding you of the merge sort algorithm dis-
cussed in section 2.6.1, that the above algorithm also requires O(n) time.

We can now specify a recursive algorithm that simultaneously sorts a list A and count
the number of inversions w.r.t. the default ranking B.

Definition Sort-and-Count (A) where n denotes the length of A

• if (n = 1){

return 0 as number of inversions and A itself as list

}

• else {

– divide A into two halts A1 and A2 of equal size
A1 contains the first ⌈n

2
⌉ elements

A2 contains the remaining ⌊n
2
⌋ elements

– (rA1
, A1) = sort-and-count(A1)

– (rA2
, A2) = sort-and-count(A2)

– (r, L) = merge-and-count(A1, A2)

– return r + rA1
+ rA2

as number of inversions and list L

}

Conclusion As merge-and-count takes O(n) time (see previous ?) in last recurrence rela-
tion, the above sort-and-count procedure fits the generic algorithm Nr. 1 (see 5.1) and
the corresponding recurrence relation

T (n) ≤ 2 · T (
n

2
) + c · n

We thus know from our previous proof in 5.1, that the algorithm requires O(nlog(n))
time for a list of n elements.

5.2.2 Example 2: Finding the closest pair of points

Goal Given n points in the plane, identify the pair of points that is closest together.

Group Work How much time would the straightforward algorithm take?

63

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer Consider all
(

n

2

)

pairs of points and keep track of pair with smallest distance. This
requires O(n2) time.

Goal Come up with a clever algorithm that requires less time.

History M.I. Sharnos and D. Hoey (early 1970) found an algorithm that solve the problem
in O(n log(n)) time.

Idea 1: Let us first consider the one-dimensional case, i.e. given n points along a line (R),
find the closest pair of points.

Group Work Come up with an efficient algorithm that solve the problem.

Answer • First, sort all n points. we know that this requires O(n log(n)) time.

• Second, walk through the sorted list, calculate the distance between adjacent
points and keep track of the minimum distance we encounter. We can do this in
O(n) time.

• ⇒ overall: require O(n log(n)) time to solve the one-dimensional problem

Idea 2: Try to retain some of the ideas behind the algorithm for the one-dimensional case
to tackle the two-dimensional case.

• every one of the n points can be denoted as p =
(

x

y

)

∈ R
2

• the distance between two points p1 and p2 is their euclidean distance which is
defined as

d(p1, p2) :=
√

(x1 − x2)2 + (y1 − y2)2

• assume in the following: there is no pair of points that have the same x- or y-
coordinate.

• key idea 1: use a divide and conquer approach

(1.) (level k)

• divide the set of n points into two halves, those on the left side of a dividing line
in the plane and those on the right side of that line (|).

64

