
Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

6 Randomized algorithms

Key Idea Modify divide-and-conquer algorithms (see previous section) to reduce their worst-
case running time by making the divide-step random.

Implication As we are no longer using a deterministic way to divide a given problem size
into sub-problems, we now have to consider the expectation values of random variables
in order to analyze the expected time spent on recursive calls.

6.1 Example 1: Finding the median

Goal Given a set S of n ∈ N numbers, S = {a1, a2, · · · , an}, determine their median.

Assumption In the following, assume for simplicity sake that all n numbers in S are dis-
tinct.

Definition The median of a set of n ∈ N numbers S = {a1, a2, · · · , an} is equal to the kth
largest element in S, where

k =

(n+ 1)

2
if |S| = n is odd

n

2
else (i.e. if n is even)

Group Work Given the algorithms that we already encountered, come up with an efficient
algorithm to find the median of a given set S. Also specify a corresponding asymptotic
upper bound for the worst-case running time, i,e, use O-notation.

Answer Sort the n numbers in S, requiring O(n log(n)) time, and then pick the kth elements
as defined above to identify the median of S.

Goal Try to design an algorithm that requires less than O(n log(n)) time.

Idea 1

Find a slightly more general algorithm, called Select(S, k), that takes as input a set S of n
numbers and a number k ∈ {1, · · · , n} and returns as output the kth largest value in
S.

Note:

• using this algorithms, we can determine the median of s using either

Select

(

S,
(n+ 1)

2

)

(if |S| = n is odd), or

Select
(

S,
n

2

)

(if |S| = n is even)

70

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Group Work • What does Select(S, 1) correspond to?

• What does Select(S, n) correspond to?

• Why do we make a call to Select(S+, k − (l + 1)) in the above algorithm rather
than to, say, Select(S+, k) or Select (S+, k − 1)?

Answers • Select(S, 1) = min{S}

• Select(S, n) = max{S}

• S− contains l elements aj with aj < ai

S+ contains n− (l + 1) elements aj with ai > aj

Asking for the kth largest element in S is thus the same as asking for the k− (l+
1)th largest S+, if we know that |S−| = l < k − 1, i.e. if we know that it is not
contained in S−, nor equal to ai

Observations • The above algorithm Select(S,k) terminates as it makes recursive calls
on increasingly stricter smaller sets

• If we choose the splitter element wisely, sets S− and S+ have roughly the same
size and we halve the problem size in each iteration.

Group Work Which recurrence relation do we obtain if we always choose the median value
as splitter?

Answer In that case, we are halving the problem size at every recursion, i.e. we have

T (n) ≤ T
(n

2

)

+ c · n

As this fits the description of generic algorithm Nr. 1 from section 5 before (for q = 1),
we know that the select algorithm would require (see case 3 in section 5)

O(n) time

Conclusion If we can come up with a clever way of setting the splitter element to the
median value, the overall algorithm runs in linear time. As we want to use the Select
algorithm to identify the median of a given set S, this is logic-wise circular. Hence, we
should rephrase the goal as follows:

Goal Choose splitter element in the Select algorithm using a random algorithm in such a way
that we can (on average) expect the splitter element to divide S into two approximately
equally large sets S− and S+

Idea 2

In the above Select algorithm, choose splitter element ai uniformly at random from S

72

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• Let X be a random variable that is equal to the number of recursions in the
algorithm, i.e.

X = X0 +X1 +X2 + · · ·

Where Xi denotes the expected number of steps that the algorithm spends in
phase i

Observations 1. at any phase j, the probability of choosing a central element by making
a uniformly random choice is 1

2

⇒ the expected number of iterations before the randomly chosen element in phase
j is a central element is 2 (which is independent of the value of j)

2. When the algorithm is in phase j the problem size is at most

n ·

(

3

4

)j

⇒ require at most c · n ·
(

3

4

)j
steps in phase j for some constant c ∈ R+

1. and 2. ⇒ the expected number of steps of the algorithm in phase j is

E[Xj] ≤ 2 · c · n

(

3

4

)j

The expected total number of steps of the algorithm is (sum over phases):

⇒ E[X] =
m
∑

j=0

E[Xj] ≤
m
∑

j=0

2 · c · n

(

3

4

)j

≤
∞
∑

j=0

2 · c · n

(

3

4

)j

= 2 · c · n
∞
∑

j=0

(

3

4

)j

≤ 2 · c · n · 4 = 8 · c · n using geometric series

Conclusion The expected running time of Select(S, k) for |S| = n and k ∈ {1, · · · , n} is
O(n).

6.2 Example: Sorting Numbers

Goal • Given a set S of n ∈ N distinct numbers, sort them

• Devise a divide-and-conquer algorithm to address the above goal

Idea Use the same idea as in the example before (see 6.1), i.e. divide a given input set
S according to a splitter element into two sets, those with elements smaller than the
splitter element and those that are larger.

74

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

The difference w.r.t. the example in 6.1 is that rather than discarding one of the two sets,
we keep both and sort them recursively before merging them, with the splitter element
in between, into one sorted list.

As in the previous example (6.1), we will choose splitter elements in a uniformly random
way such that each chosen splitter element is expected to be central.

Definition Quicksort(S)

• if (|S| ≤ 3) { sort S and return sorted list }

• else {

• while no central splitter element has been found {

– choose a splitter at random

– for each element aj ∈ S{
if (aj < ai) { move aj to S− }
else if (aj > ai) { move aj to S+ }
}

– if
(

|S−| ≥ |S|
4

and |S+| ≥ |S|
4

)

{

ai is a central splitter
}

}

• recursively call Quicksort(S−)

• recursively call Quicksort(S+)

• return (the sorted set S−, ai, the sorted set S+) as sorted return list

}

Note The above algorithm only proceeds to the next recursion once it has checked that the
recursively chosen splitter is indeed central.

Group Work How much time do we expect the while-loop to take, i.e. how long does it
take to propose a splitter ai and check whether it is central?

Answer O(|S|)

Conclusion Because we expect to pick a central splitter after two iterations of the while
loop, the above algorithm requires O(|S|) time, excluding the time spent on recursive

calls.

Definition We will say that a subproblem of the above algorithm is of type j if the size of
the set under consideration is

• ≤ n
(

3

4

)j
and

75

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• > n
(

3

4

)j+1

Observation 1 The expected time spent on a subproblem of type j, excluding recursive

calls, is O
(

n ·
(

3

4

)j
)

Observation 2 Splitting one subproblem of type j via a central splitter creates two disjoint

subproblems of type j + 1

Group Work What is the total number of different subproblems of type j that we may
encounter? Call this quantity x.

Answer 1. We have a problem of size n to start with

2. We now that a problem of type j has a minimum size of n
(

3

4

)j+1

3. We know that the total problem size remains n for different values of j

⇒ n = x · n

(

3

4

)j+1

x =

(

4

3

)j+1

⇒ Conclusion: We have at most
(

4

3

)j+1
subproblems of type j

Group Work What is the expected amount of time required to sort out all sub problems
of type j?

Answer We have at most
(

4

3

)j+1
subproblems of type j which are disjoint and each have

a size of at most n ·
(

3

4

)j
. As the expected running time of the algorithm (excluding

recursive calls) is linear, we require O(n ·
(

3

4

)j
) for each subproblem of type j.

Overall, we therefore require O
(

(

4

3

)j+1
· n ·

(

3

4

)j
)

= O
(

4

3
· n

)

= O(n) time to sort out

all sub-problems of type j

Group Work What is the maximum number of different types that we have to consider
before subproblems have a minimum size?

Answer Tackle the question visually:

76

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Note: As we have ≤ 25 sub squares to consider which each contain at most one
of the n previously considered points, we can complete 2. in constant time.

Key Idea 3 (new data structure)

• Motivation In the new algorithm, we need a quick way of

– finding the sub square for a given point p

– finding all points contained in a given sub square Sab

• given a set of n already considered points p1, p2, · · · , pn create a dictionary which

– comprises the sub-squares that contain any of the n points

– for each sub square remembers the index i of the corresponding point pi

Note: As any sub square contains at most one of the n points, the total number
of sub squares (N2) is typically much larger than the interesting sub squares we
want to store in the dictionary.

• Have 4 operations on the dictionary:

Lookup(Sab): returns the point in a given sub square Sab, if such a point exists.

Insert(Sab, p): insert a new sub square Sab into the dictionary which contains new
point p

MakeDictionary(p, δ): create a new dictionary for a set of points p and a new grid with
the sub squares of (δ

2
)2 size. For each point p ∈ P , we determine the sub square

Sab containing it and insert the corresponding sub square into the dictionary using
the Insert operation.

DeleteDictionary: deletes the dictionary

Definition RandomizedClosestPair(P)

• order the n input points of P in a random sequence p1, p2, . . . , pn

• δ = d(p1, p2)

• δ′ = δ

• MakeDictionary(P, δ)

• for (i = 1, . . . , n) {

– determine the sub square Sab that contains pi
– loop over ≤ 25 subsquares Sa′b′ close to Sab{

∗ pj = Lookup(Sa′b′)

∗ if (pj exists and j < i) {

· if (δ′ = d(pj, pi) < δ) {
delete the current dictionary
MakeDictionary(Pi, δ

′) where Pi := {p1, p2, . . . , pi}
break (i.e. stop for loop)
}
}

81

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

}

– if(δ′ == δ) {

∗ insert pi into current dictionary

}

}

Group Work In the above algorithm, when dealing with one point pi

• how many Lookup operations are required?

• how many distance computations are required?

• how many MakeDictionary operations are required?

Answer We need at most 25 of each of these operations

Conclusion : As the algorithm loops over n points pi from p1 to pn, it overall requires at
most

• O(n) distance computations

• O(n) Lookup operations and

• O(n) MakeDictionary operations

Question How many Insert-operations does this algorithm require, including those by any
MakeDictionary operation?

Group Work In iteration i in the algorithm, i.e. when dealing with pi, how many Insert
operations do we expect at most?

Answer • we either have to make MakeDictionary call involving set Pi and δ′ or a single
call to Insert (if δ′ == δ)

• if we make a call to MakeDictionary for Pi and δ, we have to make up to i insert
calls

⇒ we require up to i Insert-operations

⇒ throughout the algorithm, the max number of Insert-operations seems to grow
from i = 1 to i = n.

However In the following, we will show that:

• as we loop over i from 1 to n, the chance of having to make a MakeDictionary
call decreases

• the random order of points in P (chosen at the start of the algorithm) affects the
chance of having to make MakeDictionary calls in the for loop of the algorithm

82

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Definition : X := random variable specifying the total number of Insert operations in the
algorithm

Xi :=

{

1 if iteration i causes a change of δ

0 else

Claim 1 The total number of Insert operations performed by the algorithm is

n+
∑

i

i ·Xi

Group Work Proof

Proof Each point in p is inserted once when it is first encountered (hence the n) and, in
each iteration i, i points need to be inserted if the minimum distance δ changes (hence
each term iXi). 2

Claim 2 The probability that considering the ith point p − I in the algorithm causes the
minimum distance δ to change is

P [X − i = 1] ≤
2

i

Proof Suppose that we are in iteration i and that the minimum distance among points
p1, p2, . . . , pi is d(p, q), i.e. p, q ∈ Pi

When considering pi, we only need to update the minimum distance if either pi = p or
pi = q

Group Work Why is this correct?

Answer If pi /∈ {p, q}, both p and q are part of Pi and the minimum distance is already
d(p, q) by the time we start considering pi.

The chance that pi = p or pi = q is 2

i
as we have i points to choose from in Pi and

these points are in a randomly chosen order. 2

Claim 3 The expected total number of Insert operations of the algorithm is O(n).

Group Work Proof

Proof Based on Claim 1, we have

E[X] = n+
∑

i

i · E[Xi] ≤ n+ sumii
2

i
= n+ 2 · n = 3n2

Overall Conclusion The expected number of dictionary operations of the Randomized
Closest Pair algorithm is O(n)

83

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Finally In order to be able to conclude that the algorithm has an expected running time of
O(n), we need to specify a data structure for the dictionary where every Lookup and
Insert operation has an expected running time of O(1).

One such data structure is a so-called universal hashing-scheme (see section 13.6 of the
book) which we will not introduce here.

Overall, we obtain the following:

Conclusion The expected running time of the Randomized Closest Pair algorithm is O(n)

84

