Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

7 Dynamic Programming

Motivation So far, we have seen that we can tackle some problems using

e greedy algorithms

e divide and conquer algorithms
in order to devise algorithms that work more efficiently than a simple brute-force
approach which explicitly considers all possible cases separately.

However, for some problems, it is impossible to find a greedy algorithm that can be
shown to derive the desired solution. Likewise, it is not always possible to find a useful
divide and conquer strategy.

Key Idea The key idea of dynamic programming is to

1. divide an original problem into smaller sub-problems and to

2. construct the overall best solution by considering successively larger subproblems,
thereby

3. efficiently discarding sub-solutions at the earliest possible opportunity, i.e. as
soon as we can conclude that they are not relevant for deriving the globally best
solution

4. In order to be able to apply ideas 1 to 3, the desired overall solution must be “best”
w.r.t. some scoring function which has to have the property that the overall score
for a complete solution can be written as a sum (or product) of scores for the
corresponding partial solutions.

7.1 Example 1: Weighted Interval Scheduling

Reminder We saw in section 3 that we can use a greedy algorithm in order to find a set
of non-overlapping intervals that is as large as possible, i.e. where the weight in each
interval is set to 1 (see section 3.1).

Task Now Given a set S of n weighted intervals

S =A{(s(1), f(1),v(1)), ... (s(n), f(n),v(n))}
= {(s(1), fF(V),v(W))]i € {1,...,n}, 5(2), f (i), v(i) € R+, s(i) < f(i)}

where v(i) denotes the weight, s(i) denotes the start point and f(i) denotes the end
point of the interval i,

Find an optimal subset 7" of S, i.e. T'C S, such that

e T contains only non-overlapping intervals

85

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

e there is no other subset 17 of S, T # I", whose intervals are non-overlapping and

where
> i) > v()

iinT" wnd

i,e. whose sum of interval weights is larger than the sum of interval weights in 7.

Visually

u(r) =&

@)=Y

U-(3) = Y

o) =7

o (v)=1

v (6)=do

Note: The weight v(7) of interval i has nothing to do with its length, i.e. with f(i) — s(i).
Assume In the following, assume WLOG that the intervals are ordered by their end points.

Define o §; := {(s(4), f(i),v(i))|i < j},j € {1,....n} the subset of intervals from S
whose end points are f(i) < f(j). S; C S.

e w(j) := the sum of the weights for the best interval scheduling for set S;, w(0) =0
o c(j) := largest value of i, i < j, such that intervals ¢ and j do not overlap; ¢(j) =0
if there exists no such value of ¢

o N, :={1,2,...,i}
Group Work What is ¢(4) in the previous example?
Answer 2, because intervals 2 and 4 are non-overlapping, but 3 and 4 are.
Algorithm WeightedIntervalScheduling(S)
e set w(0) =0
o for (i =1ton){
— w(i) = max{w(i — 1), v(i) + w(c(i))}

86

N "

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

}
o I'=yg
e besti=n
e while (best_i > 0) {
— if (w(best i) > w(best_i — 1)){
* add best_i to set T
« best_t = c(best_i)

}

— else {
*x best_i = best; — 1
}
}

e return set T

Example Execute algorithm on the following set of intervals (group work)

o(r) =&

v@) =Y

U"(G) =Y

n

o(¥) =7

U-(é‘)r-

v (6)=do

87

V

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer:

w(0) =0

w(1l) = max{w(0),v(1l) + w(0)} =v(1) =2

w(2) = max{w(1),v(2) + w(c(2))}
= max{2,4 + 0}
=4

w(3) = max{w(2),v(3) + w(c(3))}
= max{4,4 + 2}
=6

w(4) = max{w(3),v(4) + w(c(4))}
= max{6,7+ 4}
=11

w(5) = max{u(4), o(5) + w(c(5)}
= max{11,1+ 0}
=11

w(6) = max{u(5), (6) + w(c(6)}
= max{11,20 + 6}
=26

Answer (cont’d) : (traceback part of the algorithm)

T=g9

best; = 6

w(6) > w(5) = T = {6}, best; = ¢(6) =3
w(3) > w(2) =T ={3,6},best; =c(3) =1

w(l) >w(0) =T ={1,3,6},best; =c(1) =0 =T ={1,3,6}

Question How can we best visualize how the algorithm operates?

88

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

() =&

@)=Y

U"(G) =Y

o)) 1

o(T)=1

L0

U (‘:)

AN"4

148 463 £®) £ £@ f)

1. order intervals by end-points f(i)
2. draw a box at f(i) for every interval and at 0 (START)

3. draw a line connecting interval i to ¢(i)

/

START F(.\ F(a) }?(3) F(q) F(s) F(e) end

4. add an END point and connect all intervals i € {1,...,n} to that point if they
do not have an interval j > i,j € {1,2,...,n} that is compatible with it.

89

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

S%ART ‘Fé.\ Fi(a.) F}(S) F(llq) Fi (J)]:E (6) E-A)ib >

Ak (n Coaded fo
hl m S
sr7 S T ° e

5. finding the best solution w(i) then corresponds (visually) to identifying the best
path in the agove figure connecting the START and END points where “best”
means having the highest sum of interval weights.

>@\1‘3

Definition weight of a path := sum of weights of intervals ¢ on that path. In this example,
we have three possible paths:

T = {5} weight = v(5) =1
T =1{1,3,6} weight = v(1) + v(3) 4+ v(6) = 26
T=1{2,4} weight =11

[Note: Different paths need not be disjoint as we will see in other examples.|

Group Work 1. Why does it suffice to study the above paths in order to derive the
optimal solution? For example, what about connecting 1 and 6 or connecting 2
and 37
2. How cumbersome is it to calculate the values c(i) for all intervals i € {1,...n}?
Do the ¢(i) values change during the algorithm? How do we calculate them most
efficiently?

3. What are the START and END points for?

Answers 1. Any additional lines would add either sub-optimal or invalid paths. We can
also not remove any of the existing lines shown above as these correspond to valid

paths.

90

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2. Based on their definition, the ¢(i) values do not change during the algorithm. We
can obtain ¢(i) for a given interval i by considering intervals (i — 1), (i — 2) etc.
and stopping as soon as the interval is compatible with interval i.

3. A set T of compatible intervals can correspond to any subset of input set S. By
introducing a START and an END interval which are each assigned no weight,
we can write the algorithm more elegantly.

Rehash The lines connecting intervals i € {1,...,n} the END interval can be formerly
viewed as “reverse c¢(i)” values, i.e. values ¢(i) defined as follows:

¢(7) := smallest values of 4, j < i such that intervals i and j do not overlap; ¢(j) =
END = n + 1 if no such value of i € {1,...,n} exists.

[Any green line between i and ¢(i) = j, i,j € {1,...,n}, can thus be viewed as pink
line between j = ¢(j) and j. |

Devising an equivalent new algorithm that does not require c(j) values

Definitions e S and S; as before, n is the number of intervals, i.e. n =[5

e w(j) := the sum of weights for the best interval scheduling for set S; that ends
and includes interval j (different with respect to previous definition)

1. 1) {1 if interval ¢ and j are compatible (i.e. do not overlap)
J,t) =
0 else

o NV:=1{0,1,2,...,i} =N; U {0}

e START and END are to fake intervals whose indices are 0 and n + 1 respectively.
They are assigned a weight of 0 and are compatible with all other intervals.

Algorithm WeightedIntervalScheduling(S) (Version 2)

e initialization: w(0) =0 ((START Interval))

e recursion:

for i =1,...,n){

w(i) = max {w(j) - 4(5,9)} + (@)

e termination: w(n + 1) = max;eno {w(j)t(j,n + 1)}
[We do not add v(n + 1) here as v(n + 1) = v(0) = 0]

91

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

e traceback:

T=9
best; = argmax; o {w(j)t(j,n + 1)} [i.e. best; = j € N, that
maximizes w(j)"t(j,n + 1)]
while(best; > 0){
add best; to set T
besl; = argmax e o {w(j)t(y, best;)}

est; —1

}

return 7T’

Example Execute algorithm on the following set of intervals (group work):

o) =&

@)=Y

T(G) =Y

n

o) = 7

o (5)=1

v (6)=do

Answer (a) initialization: w(0) =0

92

WV

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

(b) recursion:
3 w(l)= max (G} (1) =0+2=2
(1(0,1) = 1)
w(@) = max {w()10,2)} +0(2) = w(0) +0(2) = 0+4 =4
(10,2) = 1)
(1(1,2) = 0)
2 w@ = max {w()3)}+ ()

jEN9={0,1,2}
= max{w(0),w(1)} +v(3) =w(l)+v(38)=2+4=06

(¢(0,3) = 1)
(¢(1,3) = 1)
(t(2,3) =0)
w4) = max {w(j)t(5,4)} +v(4)

JENg:{O7172:3}

(t(0,4) = 1)
(t(1,4) =1)
(t(2,4) =1)
(1(3,4) = 0)
w(b) =]GI\rélzafé Y w(Nt(7,5)} +v(5) =w(0)+v(5) =1

Note: This is different from the result obtained from algorithm 1. The difference is due
to the different definitions in w(j) in two algorithms. In this algorithm, w(5) = 1 is
the weight of the best path up to and including interval 5, whereas in the previous
algorithm, w(5) = 11 is the weight of the best path up to (but not necessarily including)
interval 5 (it includes intervals 2 and 4, but not 5!).

W) wE©=_ max {wl)G.6) +(6)

= max{w(0),w(1),w(2), w(3)} + v(6) = 6 + 20 = 26

93

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

(c) termination:

(x) w(?)= max {w()t(5,7)}

JENI={0,1,2,3,4,5,6}
= max{w(1),w(2),w(3),w(4), w(5),w(6)} = w(6) = 26

(£(0,7) = 0) (1)
(t(1,7) = ... =(6,7) = 1)

(d) traceback:

o I'=0
o best; = argmax;cyo{w(j)i(j,7)} =6 (see (x) above)

e enter while-loop because best; =6 > 0:
— T ={6}
— best; = argmax ey, {w(7)t(4,6)} = 3 (see (1) above)
— T =13,6}
— best; = argmax ey, {w(j)t(4,3)} =1 (see (2) above)
— T =1{1,3,6}

— best; = argmax;yg, {w(5)t(4,1)} =0 (see (3) above)

exit while loop because best; = 0

return 7' = {1, 3,6} as answer

Runtime Analysis of the Above Algorithm

As is apparent from the above pseudo-code, the algorithm runs in O(n?) time.

Group Work Which visualization does this algorithm have? And how does this compare
to the visualization of the first algorithm?

Answer Draw the same figure as before (including START and END points) but now
have a connecting line between any pair of intervals (i,j),4,j € {1,...,n} that are
compatible. Any inverse i € {1,2,...,n} is compatible with START and END, i.e. we
have corresponding lines.

94

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

02\ L)oo
mﬁ\\ (st oo 1)
T < ew
o) >
START ST | 213 Y [¥ |6 |74
/ addiN el Linen
O 01% VRUTA. L

Group Work What are the differences between the two algorithms?
Answer (1) The main difference is that the

e first algorithm considers paths via interval i even if the weight of the interval i is
not added to the total weight of the path (and the traceback therefore does not
include the interval i to return set T. See for loop: w(i) = max{w(i — 1),v(i) +
w(e(i))}

e whereas the second version of the algorithm considers only paths involving in-
tervals @ whose weight is added to the overall weight of that path. See for loop:

w(i) = maxjery {w(5)E(J, 1)} + 0(2)

(2) The first algorithm requires ¢(i) values, whereas the second one refers to ¢(j,i) values.
The second algorithm therefore considers more paths, including all those that the first
algorithm considers.

The additional paths that the second algorithm considers can all be shown to be
suboptimal ones, but all of them are valid, i.e. do not contain any pair of mutually
exclusive intervals.

Group Work Which key feature makes the algorithms (in particular alg. version 2) so
efficient?

Answer The brute-force approach to finding the highest-scoring path would be to list all
possible paths and to then calculate their overall score (i.e. weight) and rank the
remaining paths accordingly.

Algorithm 2, however, discards potential sub-paths as it loops from i = 1 to i = n
in the recursion because it discards all but a simple previous subpath due to the max
operation.

Answer (cont’d) :

Reminder: in the recursion of the algorithm we have:

95

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

o for (i=1..n){
w(i) = maxjer_ {w(j) - 4(j, 1)} + (i)

}

Suppose we are at i = 6:

e the only values of j € NY_| with ¢(j,i) =1 are j € {0,1,2,3}.

5—\ Ko Whaen
TWN(Q)T;«M

V&J\f}% WW €
smer S POV RS E e T]f_olél33 d

e when we thus calculate

w(®) = max{u(j)- 17,0} + (o)

=maxj € {0,1,2,3{w(j)} + v(6)

i.e. the max-operation picks the highest scoring subpath that links one of the
earlier intervals (j € {0,1,2,3}) to the current interval i = 6 without causing a
clash (i.e. consider only j-values with ¢(j,6 # 0).

Note that this decision among the j-values j € {0, 1,2, 3} is not influenced by v(6)
itself, but only depends on the best sub-path that ends at 7 and whose weight is
specified by w(7).

Conclusion: The algorithm discards sub-optimal paths as it goes along.

Big Question: Does it possibly discard any subpath that would belong to the overall win-
ning path? If this was the case, the algorithm would not be guaranteed to derive the
optimal solution.

Theorem: The algorithm (version 2) retrieves the optimal solution.

96

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: Strategy:

We first show that w(i) correspond to the weight of the best path up to and including
interval 1.

This immediately implies that w(n + 1) is the weight of the best overall path.
We then show that the traceback procedure recovers the underlying path that corre-
sponds to w(n + 1).

(1) Proof by induction:

i = 0: w(0) = 0 is the weight of the best path starting at interval 0 and ending at
interval 0

Suppose that w(i) corresponds to the weight of the best path that starts at interval 0
and finishes at interval i.

When we now calculate w(i + 1) via:
w(i+1) = m%%({w(j)t(j,i + 1)} +v(i+1)
JEN]

we know that the max-operation will pick the interval j € N? = {0,1,...,4} that is

e compatible with interval (i 4+ 1), i.e. ¢(j,i+ 1) =1, and
e has the highest value w(}j)

We already know that the values w(0) to w(i) correspond to the weight of the best
state path up to that interval.

By adding the weight of the current interval (i 4 1), i.e. v(i+ 1) to the return value of
the max-operation. We therefore obtain the weight of the best path from interval 0 to
interval (7 + 1). Note: For ¢ = n, we do not need to add weight v(n + 1) as this is 0.

(2) We know that w(n + 1) corresponds to the weight of the best path. In order to derive
the corresponding path, we start at the END interval (n+ 1) and proceed via intervals
that were identified via previously executed max-operations until we reach the START
interval 0.

w(n+1) derives from the interval j € N,, that maximizes w(j)t(j, n+1) (see termination
step of algorithm 2).

This is equal to the first value of Best; in the traceback part of the algorithm which is
an interval on the optimal path which we therefore add to the return set T'

When at interval Best; , we know that the previous interval j is the interval j € Nj,,, |
that maximizes the expression w(j)t(j, Best;) (see termination step of algorithm 2)

We therefore set the new value of Best; to argmaxjene — {w(j)t(j, Best;)}, add
estj_1
interval Best; to T and continue until we reach the START, i.e. Best; =0. O

97

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

7.2 Example 2: Segmented least squares problem

Problem Setting: Given a set S of n points in two dimensions, determine a linear fit to
these points that minimizes the overall distance to all n points.

Y SS—/UI\D.NM
/ rm

7

X

Z;

Definitions o S:= {p1,p2,...,Pn}, where points p; = (y_]) and the points are ordered
according to their z-coordinates, i.e. 1 < x5 < ... < z, Note n:= |S|.

e a line in two dimensions is defined via a function
l(z):=a-z+b=y

i.e. depends on two parameters a,b € R. x and y are elements from R?, i.e. small
vectors.

a is the slope of the line and b the intersection of the line as the y-axis.

e the distance between a line [(as defined above) and a set of points S, n = |S| is
defined as:

i.e. the sum of the squared distances between the y-coordinates of points and the
respective y-coordinates of the line at the same x;-coordinate.

y; = y-coordinate of point p;
l(y;) = y-coordinate of line at z;

We can visualize e(l, s) as follows:

98

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

N Z S)
yd
|

n

e(l,S)=> ()}

i=1

N

Goal Given the n points of set S; we we want to find the line, i.e. values a and b; that
minimizes e(l, $)

Comment It does not always make sense to want to fit a line to a given set of points.

Exatnple - T fui, Loot, mose. Uke o
are & ho &Jw& fo offaun
o Abcosd Alhey fﬁf‘.

N\,

/7

Problem In order to derive the optimal combination of @ and b that correspond to the line
of best fit, we need to express a and b as a function of points in S.

How do we go about this?

Answer Calculus. Interpret e(l,S) as function g(a,b) of the two free parameters as S is
kept fixed.

Set, partial derivatives g—g =0 and ‘;—g = 0 and we use these two equations to obtain the
solutions for a and b.

(After a lengthy calculation, one obtains...)

i iy — (0) (i v)
ny i i — (o xz‘)2

99

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Z;L:l Y —a- Z;L:l i)

n

b=

Those a and b values define a line I(z) = ax + b that provides the best linear fit to
points S = {p1,p2,...,pn} with p; = (;?), i.e. the lines that minimizes e(l, S).

Motivation Often, the n points in set p = {p1,p2,...,p,} are such that a simple line
produces an insufficient fit.

\

L‘V\—’-\/‘WK’—V—\J
maa,w J m&m&& n-e&w\!l' S

AN
V'

In the above example, a piecewise-linear fit would reduce the total error and yield an
overall better fit than a single line.

Definitions e apartition P into N segments is a decomposition of set P = {p1,p2, ..., Pn}
into N subsets S;, i € Ny such that UY S, =p, S, #0,5n05;=0.
for i # j and S; = {Psq), Psyx1s - - - » Pei)=1, Pesy }, where s(i) is the start index
and e(7) is the end-index of segment S; and where e(i—1)4+1 = s(i) and e(i)+1 =
s(i+1).
Example:

p=1{ps, ..., P15}
S1 = {p1, 2, 3}
Sy = {pa, ps}
S3={ps,-- D15}

e ¢, ; is defined as the minimal error e(l, S) for the optimal line [(z) through points
{P,,....,P;}, i <j (ie. the line {(z) = a-z + b with a and b determined by
formula () before)

100

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

P(Sy,...,Sy) := total penalty for a partition of P into segment S;, i € Ny

Z €s5(i),e(2) +C

i=1
where C' € R, denotes a constant penalty for each segment (segment penalty).
e M(i) := minimum total penalty for all points Py, P, ..., P

Goal Given a set of n points P = {p1,pa,...,pn} with x; < 25 < ... < z,, find the optimal
partition into segments that minimize the overall penalty P defined above.

What happens to the optimal partition of P

1. as we increase C7
2. as we decrease C'? (What about C' = 0)7

Answers 1. If (' increases, having more segments becomes more costly. The optimal
partition of P thus tends to contain fewer segments as we increase C.

2. if C decreases, the optimal partition tends to contain more segments.

For C' = 0, we can obtain the optimal solution by fitting a simple line through
each of the n points in P, i.e. by having n segments that each contain only a a
single point of P. Each line would provide a perfect fit to its corresponding single
point (set b = y; and a = 0 in those cases, i.e. [(x) = y;).

Question Given a fixed segment penalty C' € R, derive the corresponding optimal parti-
tion of P; i.e. the corresponding segments Sq, Sy, ..., Sy that minimize

P(S1,52,...,8y), i.e. the overall penalty.

Key Observation Suppose we know the values of M (1) to M (i — 1), where (reminder)

M (i) corresponds to the minimum penalty up to points p;

Can we use those values M (1) to M(i — 1) to derive M(i)?

e M- oy

ik 5““‘“‘”“3 opkmizea perally oo for

(e o mare n2preutho)

101

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer
M (i) = min{ MG —1) + e(g,i) + C} (key idea)
JeEN; —— N——
segment(s) one segment for
COVGI‘il’lg{pl, s 7pj—1} {p]7 s 7p2}

Observations The previous equation already suggests the recursion of the corresponding
algorithm. Note that j = 1 in the min-bracket yields the term M (0) = 0 and a term
e(0,4) + C which corresponds to a single segment comprising all points from py, ... p;
(visually, this would correspond to a single green line in the above figure (not shown)).

Definition Segmented-Least-Squares(P, N) algorithm

e allocate 2-dimensional n x n matrix F

e for (i=0...n){

for (j=0...49) {
calculate e;;

}

e allocate [-dimensional array M (length n)
o M[0] =0
o for (i=0...n){

M = min{M[j - 1] + ¢;; + C}
JEN;

}

o T =1 (set of all s(7) coordinates of optimal partition)

best; = arg m&n{M[j —1]+e;,+C} (segment from {Pyest,, Pn})
]G n

e while (best; > 0) {

merge best; and T'

best; = arg min {M[j — 1] + €jpest; , + C} (segment from { BPrest;, Prest,_, })

jENbesti_l

102

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

e return set 7 and |T| = N (the number of segments in optimal partition)

Note: The first section of the algorithm is to calculate all errors for all possible linear fits.
The second one derives the optimal total penalty (which is the recursion part), and
the last part is the traceback to derive the optimal partition.

Which value of M contains the minimum penalty?

Answer M [n] because it corresponds (per definition) to the minimum overall penalty from
p1 up to p,, i.e. all of set P.

Proof of algorithm’s correctness as in 7.1 by induction

Time Requirements of Algorithm :

e calculation of F-matrix: O(n?),
because n? values e;; are calculated which each require O(n) time.

e recursion: O(n?)
e traceback: O(n?)
e = Overall: O(n?)

This algorithm is therefore significantly more efficient than a brute-force approach which
would first list all possible partitions of P and then rank them according to their overall
penalty.

7.3 Sequence Alignment

Motivation We would like to find words that are similar to a word under consideration.

Example STOP should identify TOPS via the sequence alignment

STOP-
-TOPS

“o»

where is a gap character.

Motivation We need to find a way to quantitatively express how similar two words are and
we need a way to globally align them as shown in the above example.

Key Idea e judge any possible global alignment between two given words based on

1. how many gaps, and

2. how many mis-matches it contains.

103

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Definitions e a mis-match consists of two characters p and ¢, p # ¢, that are aligned
e sequence X = (xq,2,...,21,) of length L,
e sequence Y = (y1,¥2,...,¥yr,) of length L,

e a (global) alignment A between two sequences X and Y is a pair of strings X =
(Z1,...,21,) and Y = (91, ...,7r,) of alignment length L 4, where #; € A, U{—}
and g, € A, U {—}, (where A, and A, denote the alphabets from which the
characters = and y, respectively, derive from) such that

— when we remove the gaps from z, we get x
— when we remove the gaps from gy, we get y
— two gaps are never aligned (i.e. ; =g; = “” fornoi € {1,2,...,La})

e ¢, = alignment column number ¢

;g 'Eg lage S aligrmoed ety
a,—-a,,,_‘w-’t-v—"w—’ d,im Mabmmaj}\ :‘}:5

: qus ay 4y

S

11

o2

Determine the alignment M for the following example

STOP-
-TOPS

Answer :
X = (s,T,0,P,-)
Y = (-,T,0,P,8) and L, = S and A = (X,Y)
Definitions e 0 € R, is the gap penalty, i.e. the penalty assigned to each gap (the
above example has two gaps)
e «,, is the mis-match cost for aligning p and ¢ (typically, we choose a,, = 0 for
p = q and a,, > 0 for p # q)

e the cost of alignment A between sequences X and Y ¢(M,X,Y) is the sum of
the corresponding gap and mis-match costs for each column ¢ in the alignment of
length L4, i.e.

La
(A, X,)Y) = Z ¢ where ¢; is the cost of alignment column ¢;
i=1

Given A, X, and Y, how do you calculate the corresponding cost ¢(A, X,Y)
for the above example?

104

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer

(A, X)Y)= arrT+ Qoo +app+

o +)
NN~ =~ YT

a 2 c3 c4 ¢

Goal Given two sequences X and Y as defined above, determine the alignment with the
smallest total cost, i.e. find A such that ¢(A, X,Y) is minimized, i.e. want to find

A* = arg mjn{c(A, X, Y)} = optimal alignment of X and Y

Remark The goal makes sense given the definitions above because the cost of the alignment
will decrease as the quality of the alignment increases.

Question What is the number of possible alignments for two given sequences = (of length
L,) and y (of length L,)?

What is the shortest and longest length of an alignment?

Answer e The shortest alignment length is max{L,, L, } which corresponds to no gaps in
the longer sequence and max{L,, L,} —min{L,, L,} gaps in the shorter sequence.

e The longest alignment is L, + L, long and corresponds to the case where all
characters in x and all characters in y are aligned to gaps.

Definitions e N(L,, L,) = number of possible alignments between z of length L, and
sequence y of length L,

Lpow = Ly + Ly, maximal alignment length

Lypin, = max{L,, L,}, minimal alignment length

L4 = length of the alignment
e g, = L, — L, = number of gaps inserted in x

e g, = Ly — L, = number of gaps inserted in y
Calculating N(L,, L,)

1. What is the number of possible alignments for a fixed alignment length L7 We
already know that Ls € {Lyag, ..., Ly + Ly}

Given L4 = know the number of gaps in Z and g, i.e. know g, and g,.

(a) There are (f}:) = (LAL_ALy) different ways of distributing g, (indistinguishable)
gaps in L4 positions in Z.

(b) For any of the possibilities of (a), there are (5;”) = (LAL_ZLU) different ways of
inserting g, (indistinguishable) gaps into any of the Lx sequence positions in
sequence ¢ that do not correspond to a gap in & (we mustn’t align a gap in

T to a gap in 7).

105

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Can combine any possible case (a) for sequence 7 in the alignment with any
possible case (b) for sequence g in the alignment:

L L,
(a),(b) = 4 is the number of possible alignments of length L 4
Li—L,)\La—L,

L
max LA L.’L’
N(L.’L'7Ly> = Z <LA — Lm) <LA - LZ/)

LA:Lmin
where L,,;, is the shortest and L,,,, the longest possible alignment length.

Example
(1 + \/§> (2L+1)

VL
e.g. L =40 = N(40,40) ~ 3.8 - 10* possible alignments!

N(L,L) ~

Conclusion Even for two rather short sequences, the number of possible alignments grows
too fast to explicitly list and then rank them in a brute-force approach!

Observation 1 In any possible alignment A of two sequences x and y, any possible pair of
sequence positions (m,n) is

e aligned (i.e. Z; =z, =y, = §; for some i € {1,2,...,La}) or
e not aligned to each other in A

Remark Statement 6.14 in the textbook and the corresponding proof are wrong.

Definitions e M (i, j) = minimum cost of an alignment between subsequences x; = (z1, T2, ..., ;)
and Y = (y17y27' . 7yj>7 (&S Nsz j € NLy

Observation 2 Suppose we already know values M (i,j—1), M(i—1,j—1) and M(i—1,j)
then we can derive M (i, j) as follows:

M(i,j) = min{M (@ — 1,7 — 1) + agyy,, (align z; and y;)
M@ —1,5)+ J, (align z; to a gap)
M(i,j—1) +_ 6 } (align y; to a gap)

NEW!

already known values

106

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Reminder M(i,) is the cost of the optimal alignment of z; and y;. ¢ links already known
answer to M (7, j) which is where we are now.

In the above equation, why don’t we consider the cases

L M(i_laj)—i_a%yj
2. M(i—1,7—1)+9¢
3. M(Z,j - 1) + Qa,y;
when calculating the value of M (3, j)?
Answer 1. M(i—1,j) corresponds to an alignment of z;_; and y;, i.e. y; is already part

of that alignment and cannot be aligned to z; (by ay,,,) as well.

2. M(i—1, j—1) corresponds to an alignment of z;_; and y,;_; and by aligning either
x; or y; to a gap (by) does not amount to an alignment of x; and y; (which is
what M (i, 7) corresponds to).

3. M(i,j — 1) corresponds to an alignment of sequences z; and y;_;. By aligning z;
to y; (see ayg,y,) we would be aligning x; again, which is not possible.

Conclusion Observation 2 suggests the recursion of a dynamic programming algorithm.

Definition Optimal Alignment (z,y)

e allocate 2-dimensional (L, + 1) x (L, + 1) matrix M
M][0,0] =0 (initialization step)
for (i =1...L,){M][i,0] =i-6}
for (i =1...L,){M][0,i] =i-6}
for (j=1...L,)
for (1 =1...L,){

M(i—1,7 = 1) + gy,
M(i,j) =min M(i—1,7)+ 0
M(i,j—1)+0

}

e return M|[L,, L,] (cost of optimal alignment between x and y)

Note As for the previous examples, we could again add a traceback procedure to the align-
ment to retrieve the corresponding optimal alignment A* itself (in addition to the cost
of the optimal alignment = M[L,, L,]).

What are lines (1) and (2) above for?

107

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer They correspond to alignments that start with ¢ gaps in either x or g.
M{i, 0] corresponds to an alignment of x; to i gaps in ¢

M0, 4] corresponds to an alignment of y; to i gaps in

Comment We can visualize the algorithm as follows:

L’\(t 8') La"’*é
J ML L]
6 e 1 oL el
. =(,uq¢{;er, ahawnua‘-
. (coleofed L5at)
g =47 T
. I

reminder: recursion
M(Z - 17] - 1) + al"iyj (1>

M(i,7) =min M(i—1,7)+¢ (2)
M(i,j—1)+6
Using
{Oz p#q
Qpg = 0 -
pP=49q

a € RT and § = 2a as mismatch and gap penalties, respectively, calculate the optimal
alignment between

X
y

HELLO Lz =5
ELLA Ly = 4

Answer In that case, M is a 6 X 5 matrix.

108

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

MI0,0] = 0
Mi,0) =1i-d =i2« fori e {1,..., L}
MI0,i] =1i-d =12« forie{1,...,L,}

the recursion amounts to
for(j=1...4){
for(i =1...5) {

(0 = 1LJ = 1) + - Oy,

M
M(i,j) =min{ M(i —1,7) + 2«
M(i,j— 1) + 2a

109

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

j=1
j=2
j=3
j=4

M[1,1] = min{M[0,0]+ _ « , M[0,1]+2c, M[1,0] +2a} = «
~~ ——

0 H#E 2a 2a
M[2,1] = min{M[1,0]+_ « , M[1,1]+2«a, M[2,0] +2a} = 2«
E=F
2a - o' 4o
M[3,1] = min{M[2,0]+ o« ,M][2,1] +2«a, M[3,0] +2a} = 4a
—— o —
4o #E 2a 6o
M4,1] = min{M[3,0] +_a , M[3,1] +2a, M[4,0] +2a} = 6a
L
6 7B 4o 8a
MI5,1] = min{M[4,0]+ o« ,M[4,1] +2«a, M[5,0] +2a} = 8«
~— . ,
8a L#O 6a 10
M[1,2] = min{M[0,1] +_a , M[0,2] +2a, M[1,1] +2a} = 3a
—— ui —
2a #L 4o o
M[2,2] = min{M[1, 1]+ « ,M[1,2]+2a, M[2,1] +2a} = 2«
—— =
[} #L 3a 2
M[3, 2] = min{M[Q, 1] + 0 ,M[Q, 2] +2a, M[3, 1] +2a} =2«
—— ?—/L/ —— ——
2a = 2a 4o
M[4,2] = min{M[3,1]+ 0 ,MI[3,2]+2a, M[4,1] +2a} = 4«
—— ?—’L/ —— ——
4o - 2c 6a
MI5,2] = min{M[4,1]+ « , MI4,2]+2c, M[5,1] +2a} = 6«
—_—— = ——
6a OF#L 4o 8a
MI1,3] = min{M[0,2]+ « ,MJ[0,3]+2a, M1, 2] +2a} = b
—_— ——
4o H#L 6 3o
M[2,3] = min{M[1,2]+ « ,M[1,3]+2a, M[2,2] +2a} = 4«
—— ?/" ——
3a #L Sa 2a
M[3, 3] = min{M[Q, 2] + 0 ,M[Q, 3] +2a, M[3, 2] +2a} =2«
—_—— N e — ——
2« L=L da 2a
M[4,3] = min{M[3,2]+ 0 , MI[3,3]+2a, M[4,2] +2a} = 2«
—— vL—L ——
2c - 2a 4o
MI5,3] = min{M[4,2] + « ,MI4,3]+2c, M[5,2] +2a} = 4o
—— F/ ——
4o #L 2a 6o
M[1,4] = min{M[0,3] +_a , M[0,4] +2a, M[1,3] +2a} = 7a
M~ — ——
6o H#A 8a S5a
M2,4] = min{M[1,3]+ o ,M[1,4] +2«a, M[2,3]+2a} = 6
—_—— =~ ——
S5a E#A To 4o
M[3,4] = min{M[2,3]+_ « ,M][2,4] +2a, M[3,3] +2a} = 4
LAA ”
4o 6a 2c

M[4,4] = min{M[3,3]+_ « , M[3,4] +2a, M[4,3] +2a} = 3a
—_—— N e — ——

2« L#A 4o 2c
M[5,4] = min{M[4,3]+_ « ,M[4,4] +2a, M[5, 3] +2a} = 3«
O#A
2« 3a Yo"

= minimal cost for aligning X and Y

110

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Traceback to retrieve corresponding optimal alignment:

M][5,4] — M4, 3] and (x5, ys) aligned
— M|[3,2] and (z4,ys) aligned
— M|[2,1] and (z3,y2) aligned
— M][1,0] and (z2,y1) aligned
— M][0,0] and (z, —) aligned

= optimal alignment:

HELLO
-ELLA
What happens to the above optimal alignment if we set
W e pFa
Pq 0 p=gq
and 6 = 5 7

Answer A gap is now half as expensive as misaligning two dissimilar characters, i.e. we
would expect the optimal alignment to have more gaps than the previously determined
optimal alignment above.

Conclusion The optimal alignment depends on «,,, and ¢.
Time requirements of the algorithm O(L,L,)

Proof Step (1) and (2) are linear in Lz and Ly.

The recursion is O(LxzLy) as the min-operation is O(1), i.e. can be completed in
constant time.

The traceback algorithm requires O(L, + Ly).

(This is also clear from considering the dimension of the M matrix (i.e. the size of the
search space and the amount of time required to calculate each matrix element.)

111

