
Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

7 Dynamic Programming

Motivation So far, we have seen that we can tackle some problems using

• greedy algorithms

• divide and conquer algorithms

in order to devise algorithms that work more efficiently than a simple brute-force
approach which explicitly considers all possible cases separately.

However, for some problems, it is impossible to find a greedy algorithm that can be
shown to derive the desired solution. Likewise, it is not always possible to find a useful
divide and conquer strategy.

Key Idea The key idea of dynamic programming is to

1. divide an original problem into smaller sub-problems and to

2. construct the overall best solution by considering successively larger subproblems,
thereby

3. efficiently discarding sub-solutions at the earliest possible opportunity, i.e. as
soon as we can conclude that they are not relevant for deriving the globally best
solution

4. In order to be able to apply ideas 1 to 3, the desired overall solution must be “best”
w.r.t. some scoring function which has to have the property that the overall score
for a complete solution can be written as a sum (or product) of scores for the
corresponding partial solutions.

7.1 Example 1: Weighted Interval Scheduling

Reminder We saw in section 3 that we can use a greedy algorithm in order to find a set
of non-overlapping intervals that is as large as possible, i.e. where the weight in each
interval is set to 1 (see section 3.1).

Task Now Given a set S of n weighted intervals

S = {(s(1), f(1), v(1)), . . . (s(n), f(n), v(n))}

= {(s(1), f(1), v(1))|i ∈ {1, . . . , n}, s(i), f(i), v(i) ∈ R+, s(i) < f(i)}

where v(i) denotes the weight, s(i) denotes the start point and f(i) denotes the end
point of the interval i,

Find an optimal subset T of S, i.e. T ⊆ S, such that

• T contains only non-overlapping intervals

85

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer:

w(0) = 0

w(1) = max{w(0), v(1) + w(0)} = v(1) = 2

w(2) = max{w(1), v(2) + w(c(2))}

= max{2, 4 + 0}

= 4

w(3) = max{w(2), v(3) + w(c(3))}

= max{4, 4 + 2}

= 6

w(4) = max{w(3), v(4) + w(c(4))}

= max{6, 7 + 4}

= 11

w(5) = max{w(4), v(5) + w(c(5))}

= max{11, 1 + 0}

= 11

w(6) = max{w(5), v(6) + w(c(6))}

= max{11, 20 + 6}

= 26

Answer (cont’d) : (traceback part of the algorithm)

• T = ∅

• besti = 6

• w(6) > w(5) ⇒ T = {6}, besti = c(6) = 3

• w(3) > w(2) ⇒ T = {3, 6}, besti = c(3) = 1

• w(1) > w(0) ⇒ T = {1, 3, 6}, besti = c(1) = 0 ⇒ T = {1, 3, 6}

Question How can we best visualize how the algorithm operates?

88

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2. Based on their definition, the c(i) values do not change during the algorithm. We
can obtain c(i) for a given interval i by considering intervals (i − 1), (i − 2) etc.
and stopping as soon as the interval is compatible with interval i.

3. A set T of compatible intervals can correspond to any subset of input set S. By
introducing a START and an END interval which are each assigned no weight,
we can write the algorithm more elegantly.

Rehash The lines connecting intervals i ∈ {1, . . . , n} the END interval can be formerly
viewed as “reverse c(i)” values, i.e. values c̃(i) defined as follows:

c̃(j) := smallest values of i, j < i such that intervals i and j do not overlap; c(j) =
END = n+ 1 if no such value of i ∈ {1, . . . , n} exists.

[Any green line between i and c(i) = j, i, j ∈ {1, . . . , n}, can thus be viewed as pink
line between j = c̃(j) and j.]

Devising an equivalent new algorithm that does not require c(j) values

Definitions • S and Sj as before, n is the number of intervals, i.e. n = |S|

• w(j) := the sum of weights for the best interval scheduling for set Sj that ends

and includes interval j (different with respect to previous definition)

•

t(j, i) :=

{

1 if interval i and j are compatible (i.e. do not overlap)

0 else

• N
0

i := {0, 1, 2, . . . , i} = Ni ∪ {0}

• START and END are to fake intervals whose indices are 0 and n+1 respectively.
They are assigned a weight of 0 and are compatible with all other intervals.

Algorithm WeightedIntervalScheduling(S) (Version 2)

• initialization: w(0) = 0 ((START Interval))

• recursion:

for (i = 1, . . . , n){

w(i) = max
j∈N0

i−1

{w(j) · t(j, i)}+ v(i)

}

• termination: w(n+ 1) = maxj∈N0
n
{w(j)t(j, n+ 1)}

[We do not add v(n+ 1) here as v(n+ 1) = v(0) = 0]

91

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

(b) recursion:

(3) w(1) = max
j∈N0

0
={0}

{w(j)t(j, 1)}+ v(1) = 0 + 2 = 2

(t(0, 1) = 1)

w(2) = max
j∈N0

1
={0,1}

{w(j)t(j, 2)}+ v(2) = w(0) + v(2) = 0 + 4 = 4

(t(0, 2) = 1)

(t(1, 2) = 0)

(2) w(3) = max
j∈N0

2
={0,1,2}

{w(j)t(j, 3)}+ v(3)

= max{w(0), w(1)}+ v(3) = w(1) + v(3) = 2 + 4 = 6

(t(0, 3) = 1)

(t(1, 3) = 1)

(t(2, 3) = 0)

w(4) = max
j∈N0

3
={0,1,2,3}

{w(j)t(j, 4)}+ v(4)

= max{w(0), w(1), w(2)}+ v(4) = w(2) + v(4) = 4 + 7 = 11

(t(0, 4) = 1)

(t(1, 4) = 1)

(t(2, 4) = 1)

(t(3, 4) = 0)

w(5) = max
j∈N0

4
={0,4}

{w(j)t(j, 5)}+ v(5) = w(0) + v(5) = 1

Note: This is different from the result obtained from algorithm 1. The difference is due
to the different definitions in w(j) in two algorithms. In this algorithm, w(5) = 1 is
the weight of the best path up to and including interval 5, whereas in the previous
algorithm, w(5) = 11 is the weight of the best path up to (but not necessarily including)
interval 5 (it includes intervals 2 and 4, but not 5!).

(1) w(6) = max
j∈N0

5
={0,1,2,3,4,5}

{w(j)t(j, 6)}+ v(6)

= max{w(0), w(1), w(2), w(3)}+ v(6) = 6 + 20 = 26

(t(0, 6) = 1)

(t(1, 6) = 1)

(t(2, 6) = 1)

(t(3, 6) = 1)

(t(4, 6) = 0)

(t(5, 6) = 0)

93

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

(c) termination:

(∗) w(7) = max
j∈N0

6
={0,1,2,3,4,5,6}

{w(j)t(j, 7)}

= max{w(1), w(2), w(3), w(4), w(5), w(6)} = w(6) = 26

(t(0, 7) = 0) (!!!!)

(t(1, 7) = . . . = t(6, 7) = 1)

(d) traceback:

• T = ∅

• besti = argmaxj∈N0

6

{w(j)t(j, 7)} = 6 (see (∗) above)

• enter while-loop because besti = 6 > 0:

– T = {6}

– besti = argmaxj∈N05{w(j)t(j, 6)} = 3 (see (1) above)

– T = {3, 6}

– besti = argmaxj∈N02{w(j)t(j, 3)} = 1 (see (2) above)

– T = {1, 3, 6}

– besti = argmaxj∈N00{w(j)t(j, 1)} = 0 (see (3) above)

• exit while loop because besti = 0

• return T = {1, 3, 6} as answer

Runtime Analysis of the Above Algorithm

As is apparent from the above pseudo-code, the algorithm runs in O(n2) time.

Group Work Which visualization does this algorithm have? And how does this compare
to the visualization of the first algorithm?

Answer Draw the same figure as before (including START and END points) but now
have a connecting line between any pair of intervals (i, j), i, j ∈ {1, . . . , n} that are
compatible. Any inverse i ∈ {1, 2, . . . , n} is compatible with START and END, i.e. we
have corresponding lines.

94

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: Strategy:

We first show that w(i) correspond to the weight of the best path up to and including
interval i.

This immediately implies that w(n+ 1) is the weight of the best overall path.

We then show that the traceback procedure recovers the underlying path that corre-
sponds to w(n+ 1).

(1) Proof by induction:

i = 0: w(0) = 0 is the weight of the best path starting at interval 0 and ending at
interval 0

Suppose that w(i) corresponds to the weight of the best path that starts at interval 0
and finishes at interval i.

When we now calculate w(i+ 1) via:

w(i+ 1) = max
j∈N0

i

{w(j)t(j, i+ 1)}+ v(i+ 1)

we know that the max-operation will pick the interval j ∈ N
0

i = {0, 1, . . . , i} that is

• compatible with interval (i+ 1), i.e. t(j, i+ 1) = 1, and

• has the highest value w(j)

We already know that the values w(0) to w(i) correspond to the weight of the best
state path up to that interval.

By adding the weight of the current interval (i+1), i.e. v(i+1) to the return value of
the max-operation. We therefore obtain the weight of the best path from interval 0 to
interval (i+ 1). Note: For i = n, we do not need to add weight v(n+ 1) as this is 0.

(2) We know that w(n + 1) corresponds to the weight of the best path. In order to derive
the corresponding path, we start at the END interval (n+1) and proceed via intervals
that were identified via previously executed max-operations until we reach the START
interval 0.

w(n+1) derives from the interval j ∈ Nn that maximizes w(j)t(j, n+1) (see termination
step of algorithm 2).

This is equal to the first value of Besti in the traceback part of the algorithm which is
an interval on the optimal path which we therefore add to the return set T

When at interval Besti , we know that the previous interval j is the interval j ∈ N
0

besti−1

that maximizes the expression w(j)t(j, Besti) (see termination step of algorithm 2)

We therefore set the new value of Besti to argmaxj∈N0

Besti−1

{w(j)t(j, Besti)}, add

interval Besti to T and continue until we reach the START, i.e. Besti = 0. 2

97

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer

M(i) = min
j∈Ni

{ M(j − 1)
︸ ︷︷ ︸

+ e(j, i) + C
︸ ︷︷ ︸

} (key idea)

segment(s) one segment for

covering{p1, . . . , pj−1} {pj, . . . , pi}

Observations The previous equation already suggests the recursion of the corresponding
algorithm. Note that j = 1 in the min-bracket yields the term M(0) = 0 and a term
e(0, i) + C which corresponds to a single segment comprising all points from p1, . . . pi
(visually, this would correspond to a single green line in the above figure (not shown)).

Definition Segmented-Least-Squares(P,N) algorithm

• allocate 2-dimensional n× n matrix E

• for (i = 0 . . . n) {

for (j = 0 . . . i) {

calculate ej,i

}

}

• allocate l-dimensional array M (length n)

• M [0] = 0

• for (i = 0 . . . n) {
M [i] = min

j∈Ni

{M [j − 1] + ej,i + C}

}

• T = ∅ (set of all s(i) coordinates of optimal partition)

besti = arg min
j∈Nn

{M [j − 1] + ej,n + C} (segment from {Pbesti , Pn})

• while (besti > 0) {

merge besti and T

besti = arg min
j∈Nbesti−1

{M [j − 1] + ej,besti−1
+ C} (segment from {Pbesti , Pbesti−1

})

102

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• return set T and |T | = N (the number of segments in optimal partition)

Note: The first section of the algorithm is to calculate all errors for all possible linear fits.
The second one derives the optimal total penalty (which is the recursion part), and
the last part is the traceback to derive the optimal partition.

Group Work Which value of M contains the minimum penalty?

Answer M [n] because it corresponds (per definition) to the minimum overall penalty from
p1 up to pn, i.e. all of set P .

Proof of algorithm’s correctness as in 7.1 by induction

Time Requirements of Algorithm :

• calculation of E-matrix: O(n3),

because n2 values ej,i are calculated which each require O(n) time.

• recursion: O(n2)

• traceback: O(n2)

• ⇒ Overall: O(n3)

This algorithm is therefore significantly more efficient than a brute-force approach which
would first list all possible partitions of P and then rank them according to their overall
penalty.

7.3 Sequence Alignment

Motivation We would like to find words that are similar to a word under consideration.

Example STOP should identify TOPS via the sequence alignment

STOP-

-TOPS

where “–” is a gap character.

Motivation We need to find a way to quantitatively express how similar two words are and
we need a way to globally align them as shown in the above example.

Key Idea • judge any possible global alignment between two given words based on

1. how many gaps, and

2. how many mis-matches it contains.

103

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer
c(A,X, Y) = δ

︸︷︷︸
c1

+αT,T
︸︷︷︸
c2

+ α0,0
︸︷︷︸
c3

+αP,P
︸︷︷︸
c4

+ δ
︸︷︷︸
c5

Goal Given two sequences X and Y as defined above, determine the alignment with the
smallest total cost, i.e. find A such that c(A,X, Y) is minimized, i.e. want to find

A∗ = argmin
A

{c(A,X, Y)} = optimal alignment of X and Y

Remark The goal makes sense given the definitions above because the cost of the alignment
will decrease as the quality of the alignment increases.

Question What is the number of possible alignments for two given sequences x (of length
Lx) and y (of length Ly)?

Group Work What is the shortest and longest length of an alignment?

Answer • The shortest alignment length is max{Lx, Ly} which corresponds to no gaps in
the longer sequence and max{Lx, Ly}−min{Lx, Ly} gaps in the shorter sequence.

• The longest alignment is Lx + Ly long and corresponds to the case where all
characters in x and all characters in y are aligned to gaps.

Definitions • N(Lx, Ly) = number of possible alignments between x of length Lx and
sequence y of length Ly

• Lmax = Lx + Ly, maximal alignment length

• Lmin = max{Lx, Ly}, minimal alignment length

• LA = length of the alignment

• gx = LA − Lx = number of gaps inserted in x

• gy = LA − Ly = number of gaps inserted in y

Calculating N(Lx, Ly)

1. What is the number of possible alignments for a fixed alignment length LA? We
already know that LA ∈ {Lmax, . . . , Lx + Ly}.

Given LA ⇒ know the number of gaps in x̃ and ỹ, i.e. know gx and gy.

(a) There are
(
LA

gx

)
=

(
LA

LA−Ly

)
different ways of distributing gx (indistinguishable)

gaps in LA positions in x̃.

(b) For any of the possibilities of (a), there are
(
Lx

gy

)
=

(
Lx

LA−Ly

)
different ways of

inserting gy (indistinguishable) gaps into any of the LX sequence positions in
sequence ỹ that do not correspond to a gap in x̃ (we mustn’t align a gap in
x̃ to a gap in ỹ).

105

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Reminder M(i, j) is the cost of the optimal alignment of xi and yj. δ links already known
answer to M(i, j) which is where we are now.

Group Work In the above equation, why don’t we consider the cases

1. M(i− 1, j) + αxiyj

2. M(i− 1, j − 1) + δ

3. M(i, j − 1) + αaiyj

when calculating the value of M(i, j)?

Answer 1. M(i− 1, j) corresponds to an alignment of xi−1 and yj, i.e. yj is already part
of that alignment and cannot be aligned to xi (by αxiyj) as well.

2. M(i−1, j−1) corresponds to an alignment of xi−1 and yj−1 and by aligning either
xi or yj to a gap (by δ) does not amount to an alignment of xi and yj (which is
what M(i, j) corresponds to).

3. M(i, j − 1) corresponds to an alignment of sequences xi and yj−1. By aligning xi

to yj (see αxiyj) we would be aligning xi again, which is not possible.

Conclusion Observation 2 suggests the recursion of a dynamic programming algorithm.

Definition Optimal Alignment (x, y)

• allocate 2-dimensional (Lx + 1)× (Ly + 1) matrix M

• M [0, 0] = 0 (initialization step)

• for (i = 1 . . . Lx){M [i, 0] = i · δ} (1)

• for (i = 1 . . . Ly){M [0, i] = i · δ} (2)

• for (j = 1 . . . Ly){

for (i = 1 . . . Lx){

M(i, j) = min

M(i− 1, j − 1) + αxiyj

M(i− 1, j) + δ

M(i, j − 1) + δ

}

}

• return M [Lx, Ly] (cost of optimal alignment between x and y)

Note As for the previous examples, we could again add a traceback procedure to the align-
ment to retrieve the corresponding optimal alignment A∗ itself (in addition to the cost
of the optimal alignment = M [Lx, Ly]).

Group Work What are lines (1) and (2) above for?

107

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

M [0, 0] = 0

M [i, 0] = i · δ = i2α for i ∈ {1, . . . , Lx}

M [0, i] = i · δ = i2α for i ∈ {1, . . . , Ly}

the recursion amounts to

for(j = 1 . . . 4) {

for(i = 1 . . . 5) {

M(i, j) = min

M(i− 1, j − 1) + α · δxiyj

M(i− 1, j) + 2α

M(i, j − 1) + 2α

}

}

109

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

j = 1 : M [1, 1] = min{M [0, 0]
︸ ︷︷ ︸

0

+ α
︸︷︷︸

H 6=E

,M [0, 1]
︸ ︷︷ ︸

2α

+2α,M [1, 0]
︸ ︷︷ ︸

2α

+2α} = α

M [2, 1] = min{M [1, 0]
︸ ︷︷ ︸

2α

+ α
︸︷︷︸

E=E

,M [1, 1]
︸ ︷︷ ︸

α

+2α,M [2, 0]
︸ ︷︷ ︸

4α

+2α} = 2α

M [3, 1] = min{M [2, 0]
︸ ︷︷ ︸

4α

+ α
︸︷︷︸

L 6=E

,M [2, 1]
︸ ︷︷ ︸

2α

+2α,M [3, 0]
︸ ︷︷ ︸

6α

+2α} = 4α

M [4, 1] = min{M [3, 0]
︸ ︷︷ ︸

6α

+ α
︸︷︷︸

L 6=E

,M [3, 1]
︸ ︷︷ ︸

4α

+2α,M [4, 0]
︸ ︷︷ ︸

8α

+2α} = 6α

M [5, 1] = min{M [4, 0]
︸ ︷︷ ︸

8α

+ α
︸︷︷︸

L 6=O

,M [4, 1]
︸ ︷︷ ︸

6α

+2α,M [5, 0]
︸ ︷︷ ︸

10α

+2α} = 8α

j = 2 : M [1, 2] = min{M [0, 1]
︸ ︷︷ ︸

2α

+ α
︸︷︷︸

H 6=L

,M [0, 2]
︸ ︷︷ ︸

4α

+2α,M [1, 1]
︸ ︷︷ ︸

α

+2α} = 3α

M [2, 2] = min{M [1, 1]
︸ ︷︷ ︸

α

+ α
︸︷︷︸

E 6=L

,M [1, 2]
︸ ︷︷ ︸

3α

+2α,M [2, 1]
︸ ︷︷ ︸

2α

+2α} = 2α

M [3, 2] = min{M [2, 1]
︸ ︷︷ ︸

2α

+ 0
︸︷︷︸

L=L

,M [2, 2]
︸ ︷︷ ︸

2α

+2α,M [3, 1]
︸ ︷︷ ︸

4α

+2α} = 2α

M [4, 2] = min{M [3, 1]
︸ ︷︷ ︸

4α

+ 0
︸︷︷︸

L=L

,M [3, 2]
︸ ︷︷ ︸

2α

+2α,M [4, 1]
︸ ︷︷ ︸

6α

+2α} = 4α

M [5, 2] = min{M [4, 1]
︸ ︷︷ ︸

6α

+ α
︸︷︷︸

O 6=L

,M [4, 2]
︸ ︷︷ ︸

4α

+2α,M [5, 1]
︸ ︷︷ ︸

8α

+2α} = 6α

j = 3 : M [1, 3] = min{M [0, 2]
︸ ︷︷ ︸

4α

+ α
︸︷︷︸

H 6=L

,M [0, 3]
︸ ︷︷ ︸

6α

+2α,M [1, 2]
︸ ︷︷ ︸

3α

+2α} = 5α

M [2, 3] = min{M [1, 2]
︸ ︷︷ ︸

3α

+ α
︸︷︷︸

E 6=L

,M [1, 3]
︸ ︷︷ ︸

5α

+2α,M [2, 2]
︸ ︷︷ ︸

2α

+2α} = 4α

M [3, 3] = min{M [2, 2]
︸ ︷︷ ︸

2α

+ 0
︸︷︷︸

L=L

,M [2, 3]
︸ ︷︷ ︸

4α

+2α,M [3, 2]
︸ ︷︷ ︸

2α

+2α} = 2α

M [4, 3] = min{M [3, 2]
︸ ︷︷ ︸

2α

+ 0
︸︷︷︸

L=L

,M [3, 3]
︸ ︷︷ ︸

2α

+2α,M [4, 2]
︸ ︷︷ ︸

4α

+2α} = 2α

M [5, 3] = min{M [4, 2]
︸ ︷︷ ︸

4α

+ α
︸︷︷︸

O 6=L

,M [4, 3]
︸ ︷︷ ︸

2α

+2α,M [5, 2]
︸ ︷︷ ︸

6α

+2α} = 4α

j = 4 : M [1, 4] = min{M [0, 3]
︸ ︷︷ ︸

6α

+ α
︸︷︷︸

H 6=A

,M [0, 4]
︸ ︷︷ ︸

8α

+2α,M [1, 3]
︸ ︷︷ ︸

5α

+2α} = 7α

M [2, 4] = min{M [1, 3]
︸ ︷︷ ︸

5α

+ α
︸︷︷︸

E 6=A

,M [1, 4]
︸ ︷︷ ︸

7α

+2α,M [2, 3]
︸ ︷︷ ︸

4α

+2α} = 6α

M [3, 4] = min{M [2, 3]
︸ ︷︷ ︸

4α

+ α
︸︷︷︸

L 6=A

,M [2, 4]
︸ ︷︷ ︸

6α

+2α,M [3, 3]
︸ ︷︷ ︸

2α

+2α} = 4α

M [4, 4] = min{M [3, 3]
︸ ︷︷ ︸

2α

+ α
︸︷︷︸

L 6=A

,M [3, 4]
︸ ︷︷ ︸

4α

+2α,M [4, 3]
︸ ︷︷ ︸

2α

+2α} = 3α

M [5, 4] = min{M [4, 3]
︸ ︷︷ ︸

2α

+ α
︸︷︷︸

O 6=A

,M [4, 4]
︸ ︷︷ ︸

3α

+2α,M [5, 3]
︸ ︷︷ ︸

4α

+2α} = 3α

= minimal cost for aligning X and Y

110

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Traceback to retrieve corresponding optimal alignment:

M [5, 4] → M [4, 3] and (x5, y4) aligned

→ M [3, 2] and (x4, y3) aligned

→ M [2, 1] and (x3, y2) aligned

→ M [1, 0] and (x2, y1) aligned

→ M [0, 0] and (x1,−) aligned

⇒ optimal alignment:

HELLO

-ELLA

Group Work What happens to the above optimal alignment if we set

αpq =

{

α p 6= q

0 p = q

and δ = α
2
?

Answer A gap is now half as expensive as misaligning two dissimilar characters, i.e. we
would expect the optimal alignment to have more gaps than the previously determined
optimal alignment above.

Conclusion The optimal alignment depends on αpq and δ.

Time requirements of the algorithm O(LxLy)

Proof Step (1) and (2) are linear in Lx and Ly.

The recursion is O(LxLy) as the min-operation is O(1), i.e. can be completed in
constant time.

The traceback algorithm requires O(Lx + Ly).

(This is also clear from considering the dimension of the M matrix (i.e. the size of the
search space and the amount of time required to calculate each matrix element.)

111

