SUPPLEMENTAL MIDTERM PRACTICE, CPSC 421/501, FALL 2024

JOEL FRIEDMAN

DOCUMENT UNDER CONSTRUCTION AND IS INCOMPLETE

Copyright: Copyright Joel Friedman 2024. Not to be copied, used, or revised without explicit written permission from the copyright owner.

- (1) For each of ACCEPTANCE, NON-ACCEPTANCE, NON-PYTH-INP, HALTING, REJECTING, LOOPING of the handout "Uncomputability in CPSC 421/501:" which are decidable? Which are recognizable? Explain.
- (2) Explain how we proved in the first few weeks of classes that

 $\{p \in \Sigma^*_{ASCII} \mid p \notin LanguageRecBy(p)\}$

is unrecognizable, by appealing to Cantor's theorem (which states that any map $f: S \to \text{Power}(S)$ is not surjective). In particular, what values of S and f did we use?

- (3) Which of the following are true? Explain: explain why they are (always) true, or give a counterexample and explain why this is a counterexample.
 (a) If L₁, L₂ are Duck-recognizable, then L₁ \ L₂ is Duck-recognizable.
 - (b) If L_1, L_2 are decidable, then $L_1 \setminus L_2$ is decidable.
 - (c) If L_1, L_2 are undecidable, then $L_1 \setminus L_2$ is undecidable.
 - (d) If L_1, L_2 are recognizable, then $L_1 \setminus L_2$ is recognizable.
 - (e) If L_1, L_2 are unrecognizable, then $L_1 \setminus L_2$ is unrecognizable.
- (4) Same as Question (3), where $L_1 \setminus L_2$ is replaced with $L_1 \cup L_2$.
- (5) Same as Question (3), where $L_1 \setminus L_2$ is replaced with $L_1 \cap L_2$.
- (6) Same as Question (3), where $L_1 \setminus L_2$ is replaced with L_1^* .
- (7) Which of the sets below are countable?(a) N;
 - (b) Σ^* where Σ is any alphabet;

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

(c) $\mathbb{N} \times \mathbb{N}$;

- (d) Power(Σ^*); where Σ is any alphabet;
- (e) the set of functions $\Sigma^* \to \{0, 1\}$, where Σ is any alphabet;
- (f) the set of functions $\{0,1\} \to \Sigma^*$, where Σ is any alphabet;
- (g) the set of functions $\Sigma^* \to \mathbb{N}$, where Σ is any alphabet.

(8) MORE PROBLEMS MAY BE ADDED LATER.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

Email address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

 $\mathbf{2}$