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Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .
This version is A DRAFT: I’m in the process of adding material and editing
article as of August 2024. I’ll post to the course website when I revise this article.
Main reference: In this article, [Sip] refer to the course textbook, Introduction
to the Theory of Computation by Michael Sipser, 3rd Edition.
Prerequisities: This article assumes you are familiar with the material in Chap-
ter 0 of [Sip]. In addition, we assume that you are you have seen some analysis
of algorithms, including big-Oh and little-oh notation (e.g., n log2 n + 3n + 5 =
n log2 n + O(n)). We briefly review the definitions of strings and languages (see
Chapter 0 of [Sip]). Appendix B gives a few more details and examples.
Acknowledgement: I have learned from many of my students, TA’s, and col-
leagues; some are acknowledged in footnotes, specifically Benjamin Israel (in the
versions of these notes since roughly the early 2000’s) and Yuval Peres and Sophie
MacDonald (since Fall 2021). Amir Tootooni, a TA for the course (in Fall 2020 and
2021), made many helpful suggestions and corrections for the 2021 version.

1. The Main Goals of This Article

The first two weeks of CPSC 421/501 will be spent covering parts of Sections 1–7
of this article; most of the rest of this article will be covered later in the course.

One main goal of this article is to introduce some material that is typical of the
level of difficulty of CPSC 421/501. In particular, this article includes some material
of Chapters 4 and 5 of [Sip]; this material is more difficult than Chapters 1–3 of
[Sip], where the course usually begins.

Another goal is to introduce some basic terminology used throughout this course:
alphabets, strings, languages, and “descriptions” of various objects (integers, pro-
grams, etc.) as strings.

This article will explain (thereby “spoiling”) one of the main surprises in this
course: “self-referencing” combined with “negation” leads to some wonderful “para-
doxes” and/or “contradictions,” which — sometimes — prove interesting theorems
(e.g., the Halting Problem is undecidable).
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The article is a currently a draft; some corrections and additions,
especially to the exercise section, will likely be made as we cover this
material.

2. Cantor’s Theorem

The point of this section is to prove the deservedly famous Cantor’s theorem. In
Section 4 we apply Cantor’s theorem to produce an unrecognizable language; the
rest of these notes gives material on unrecognizable languages beyond these notes.

A secondary goal is to review some notions regarding set theory and functions.

2.1. Naive Set Theory. In this section we work with “naive set theory,” which
means that we work informally with the usual notion of a set, its elements, a subset
of a set, etc.

The reason we call this naive is that you can easily use the ideas of set theory
to produce a contradition: indeed, Russell’s (most famous) Paradox arises from
considering the set, T , of all sets that don’t contain themselves, i.e.,

T =
{
S | S is a set such that S /∈ S

}
.

One easily shows that both T ∈ T and T /∈ T are impossible (see Section 5). This
caused mathematicians to be more careful about set theory and to give collections
of axioms regarding set theory that avoid Russell’s Paradox. For now we ignore
such problems; just trust that everything we do in this section is justifiable when
working with any of the standard choices of the axioms of set theory.

We warn the reader that working with infinite sets — which we need to do in
this article — has some subtleties that don’t arise if you work exclusively with finite
sets.

2.2. The Power Set. If S is any set, then Power(S) refers to the set of all subsets
of S.

Example 2.1. Let S = {a, b, c}. Then

Power(S) = Power
(
{a, b, c}

)
=

{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
,

where ∅ denotes the empty set.

Remark 2.2. If S is a finite set, and |S| denotes the cardinality (size) of S, then
|Power(S)| = 2|S|. For this reason one sometimes uses 2S to denote the power set
of S. This is also the origin of the term power set.

2.3. Functions. If A,B are sets, we will speak of a function f : A → B, also called
a map of sets and a morphism of sets). A is called the domain of f , and B the range
or codomain of f . The image of f , denoted Image(f), is the subset of B given by

Image(f) = {f(a) | a ∈ A} ⊂ B.

[To formally define what is meant by a function f : A → B, one works with
certain kinds of relations. Namely, a relation on A,B is a subset of A × B (the
cartesian product (or simply product) of A and B). A relation, R ⊂ A × B, is a
function if for each a ∈ A there exists exactly one b ∈ B such that (a, b) ∈ R. To
any such R we associate the “function” f : A → B, where for each a ∈ A, f(a) ∈ B
is the unique element of B such that (a, f(a)) ∈ R. Conversely, to each function
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f : A → B we associate the relation R on A,B, i.e., the subset R ⊂ A × B, given
by {(a, f(a))|a ∈ A}.]

Definition 2.3. Let A,B be sets, and f : A → B a function. We say that f is:

(1) injective (also known as into, an injection, one-to-one, and a monomor-
phism) if a, a′ ∈ A with a ̸= a′ implies f(a) ̸= f(a′);

(2) surjective (a.k.a. a surjection, onto, and an epimorphism) if for all b ∈ B
there is an a ∈ A with f(a) = b;

(3) a bijection (a.k.a. a bijection, a one-to-one correspondence1, and an isomor-
phism) if it is injective and surjective.

Remark 2.4. Let f : A → B be a function of finite sets. Then if |A| < |B|, you
should be able to convince yourself that f cannot be a surjection; hence if A ⊂ B
is a proper subset (i.e., A ̸= B), then f cannot be a surjection.

Remark 2.5. If B is an infinite set, and A ⊂ B is a proper subset, then there
may exist a bijection (which is therefore a surjection) f : A → B. For example, the
natural numbers and non-negative integers are, respectively, the two sets

N = {1, 2, 3, . . .} and Z≥0 = {0, 1, 2, . . .}.

Hence N is a proper subset of Z≥0. Yet there is a bijection f : N → Z≥0 given by
f(x) = x− 1.

Remark 2.6 (The Pigeon Hole Principle). Similarly to Remark 2.4, if A,B are
finite sets with |A| > |B|, you should be able to convince yourself that no function
f : A → B can be injective; this is often called the “Pigeon Hole Principle” (when
you have more pigeons than birdhouses) or, somewhat obsoletely, the “Drawers
Principle” (more pairs of socks than drawers in a dresser).

Example 2.7 (Example of the Pigeon Hole Principle). Say that an academic de-
partment has at least 53 profs, and that each prof has a last name written in English
beginning with a letter A–Z or a–z. Then some two profs have last names beginning
with the same letter.

2.4. Cantor’s Theorem.

Theorem 2.8 (Cantor’s Theorem). Let S be a set, and f : S → Power(S) be any
function. Then f is not a surjection, i.e., some T ∈ Power(S) is not in the image
of f . Specifically the set

(1) T = {s | s /∈ f(s)}

is not in the image of f , i.e., there is no t ∈ S such that f(t) = T .

Proof. Assume, to the contrary, that some t ∈ S has f(t) = T . Either t ∈ T or
t /∈ T : let us derive a contradiction in either case.

If t ∈ T , then by the definition of T , t /∈ f(t). But, by assumption, f(t) = T so
t /∈ f(t) = T , which contradicts the assumption that t ∈ T .

Similarly, if t /∈ T , then t does not sastisfy t /∈ f(t). Hence t ∈ f(t) = T , which
contradicts t /∈ T . □

1We warn the reader that in mathematics, a correspondence from A to B (without writing
“one-to-one”) is often defined to be a morphism g : C → A×B for some set C, contrary to what

the textbook [Sip] writes.
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2.5. Examples of Cantor’s Theorem.

Example 2.9. Let S = {1, 2, 3} and f : S → Power(S) be given by

f(1) = {1, 2, 3}, f(2) = ∅, f(3) = {1, 2}.

Then we easily check that T in Theorem 2.8 is T = {2, 3}, which is visibly not in
the image of f . Of course, |S| = 3, and |Power(S)| = 23 = 8, so it is clear that any
f : S → Power(S) is not surjective.

Example 2.10. A department has 3 profs, P = {a, b, c}. It is given that (1) Prof. a
thinks that everyone in the department is clever, (2) Prof. b thinks that no one in
the department is clever, and (3) Prof. c thinks that they alone are clever (i.e., that c
is clever, and a, b are not clever). This gives a map ThinksIsClever : P → Power(P ),
namely

ThinksIsClever(a) = {a, b, c}
ThinksIsClever(b) = ∅
ThinksIsClever(c) = {c}

Hence

a ∈ ThinksIsClever(a)

b /∈ ThinksIsClever(b)

c ∈ ThinksIsClever(c)

The set T of profs who do not consider themself to be clever is T = {b}; we easily
directly check that T is not in

Image(ThinksIsClever) =
{
{a, b, c}, ∅, {c}

}
.

Remark 2.11. Example 2.9 is really a “toy example” of Cantor’s theorem; it
has no particular application. By contrast, Example 2.10 is much closer in spirit
to our application of Cantor’s theorem in Section 4 to produce an unrecognizable
language: this example involves a set P that “has meaning,” and a conceptual map
ThinksIsClever : P → Power(P ) that “has meaning” but makes Cantor’s theorem
more difficult to “unpack.” Of course, both examples above involve a three-element
set and its power set.

Remark 2.12. Usually Cantor’s theorem is stated more concisely (e.g., for any set,
S, there is no surjection S → Power(S)).2. Theorem 2.8 above is really the usual
statement of Cantor’s theorem plus the usual first step in its proof. The reason we
state Theorem 2.8 as such is that (1) allows us to explicitly describe a subset of S
that is not in the image of f , which we will need in Section 4.

2It is equivalent to say that the cardinality of Power(S) is strictly larger than that of S, but
you have to know what is meant by the cardinality of an infinite set.
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2.6. Cantor’s Theorem, Diagonalization, and Yes/No Tables. Let us de-
scirbe Example 2.10 in the following table:

Is y ∈ ThinksIsClever(x),
i.e., does x think that y is clever? y = a y = b y = c

x = a yes yes yes

x = b no no no

x = c no no yes

The set of profs who do not think of themself as clever is obtained by taking the
diagonal elements:

Is y ∈ ThinksIsClever(x)? y = a y = b y = c
x = a yes

x = b no

x = c yes

and putting s into T if the corresponding “diagonal element” is no. Hence T = {b}
in this case.

In terms of yes/no tables, we can extend the table to include T :

Is y ∈ ThinksIsClever(x)? y = a y = b y = c
x = a yes

x = b no

x = c yes

↓ ↓ ↓
Does x = y lie in T? no yes no

This table gives another way to understand why Cantor’s theorem is true: the
x = a row of this table tells us that ThinksIsClever(a) contains a, but T does not
contain a; hence T ̸= ThinksIsClever(a); similarly for the x = c row; for the x = b
row, ThinksIsClever(b) contains b but T doesn’t, so T ̸= ThinksIsClever(b).

Considering the yes/no tables above shows that Cantor’s theorem is an example
of diagonalization argument; the term diagonalization is really an umbrella term
for a number of mathematical techniques in a number of contexts (e.g., analysis,
including ODE’s and PDE’s) that appeal to “diagonal” of a square gid as above.

3. Generalized Cantor’s Theorem and Partial Information

Often we want to apply the idea of Cantor’s theorem to a function f : S →
Power(B) where S,B are not the same set, but where B is “of the same size or
larger than” S. [We use B to suggest “big,” and S “small,” although we may have
B = S or B ≃ S.3] Then it is still true that f cannot be a surjection, and we
can demonstrate a set that is not in the image of f using an easy generalization of
Cantor’s theorem.

3.1. Larger Sets: Some Subtleties. Note that if S,B are finite sets, then the
following are equivalent:

(1) |B| ≥ |S|;
(2) there exists a surjection f : B → S; and
(3) there exists an injection g : S → B.

3The notation B ≃ S means that B and S are isomorphic, i.e., there exists a bijection B → S.
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Set theory has a bunch of subtleties; for example, if S,B are arbitrary (possibly
infinite) sets, it does not seem obvious (to us) that (2) holds iff (3) holds, unless
you assume the “Axiom of Choice.”

[In slightly more detail: for arbitrary sets B,S, we believe that (3) implies (2) in
the usual (ZF or Zermelo–Fraenkel) axioms of set theory4, and that (2) implies (3)
in ZFC, i.e., the usual ZF axioms plus assuming the Axiom of Choice 5; we (due to
our ignorance) don’t know if (2) implies (3) without the Axiom of Choice.6

3.2. Larger Sets: Definitions.

Definition 3.1. If S,B are arbitrary sets, we write |B| ≥ |S| (and also |S| ≤ |B|)
if there is an injection from S to B.7 We will write |B| = |S| if there is a bijection
S → B, and otherwise write |B| ̸= |S|; we will write |B| > |S| if |B| ≥ |S| and
|B| ≠ |S|.

By Subsection 3.1, |B| ≥ |S| implies that there is a surjection B → S.
In view of (1) and (3) of Subsection 3.1, our definition of |B| ≤ |S| coincides

with the usual meaning of |B| ≤ |S| if S,B are finite sets. You should be able to
convince yourself that if S is finite and B is infinite, then |B| > |S|; it should make
sense that the “size” of an infinite set is larger than that of any finite set.

Example 3.2. There is an injection f : Z≥0 → N given by f(x) = x + 1; another
injection h : Z≥0 → N is given by h(x) = 3x + 2024. Hence |N| ≥ |Z≥0| (even
though N is a proper subset of Z≥0). The function f is a bijection, and hence we
write |N| = |Z≥0|.

3.2.1. More Examples. On class on September 9, 2024, we gave some examples that
are covered later on in this article; much of this material is due to questions asked
in class.

Example 3.3. Let S ⊂ B, i.e., S,B are sets and S is a subset of B (possibly all of
B). Then there is an injection S → B mapping s ∈ S to s ∈ B. Hence |S| ≤ |B|.
For example, if S = {1, 2} and B = {1, 2, 3}, then the map f : S → B given by
f(1) = 1 and f(2) = 2 is an injection.

Example 3.4. Let Q+ be the set of positive rational numbers, and N = {1, 2, 3, . . .}
be the natural numbers. Then we claim |Q+| ≤ |N|, and, moreover, |Q+| = |N|.
Indeed, every rational number appears on the list:

(2) 1/1, 2/1, 1/2, 3/1, 2/2, 1/3, , . . .

4Namely, if f : B → S is any injection, then for any b′ ∈ B, we can define a surjection
gb′ : B → S by setting gb′ (b) = b′ if b is not in the image of f , and for any b in the image of f ,

hence b = f(s) for a unique s, we set gb′ (b) = s. [The fact that b′ ∈ B exists follows from the
Axiom of Regularity in ZF.]

5Given a surjection g : B → S, we can build an injection f : S → B by choosing for each s ∈ S
an element b ∈ B such that g(b) = s and defining f(s) = b; this “choosing” seems to require the

Axiom of Choice.
6Set theory has a number of subtleties; for example, the Schröder–Bernstein Theorem shows

that (under ZF, without assuming the Axiom of Choice), that if there are injections S → B and
B → S then there is a bijection S → B. However, there are sets A,B such that it is easy to
describe injections A → B and B → A but more difficult to describe a bijection A → B; see
Exercise ??. It is also known that ZFC, i.e., ZF plus the Axiom of Choice, implies that there is a

good theory of cardinal numbers, and hence for any sets A,B, either |A| ≤ |B| or |A| ≥ |B|.
7Typo corrected Sept 11; thanks to a CPCS 501 student.
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(see Section 4.2 of [Sip]). By erasing repeated rational numbers from this list, we
get a list

(3) 1/1, 2/1, 1/2, 3/1, , 1/3, 4/1, 3/2, 2/3, 1/4, 5/1, , 1/5, . . .

(4/2, 3/3, 2/4 are all repeats), which gives a bijection Q+ → N.8

Definition 3.5. We say that an infinite set, S, is countably infinite if there is a
bijection S → N.

Hence Q+ is countably infinite.
In class we also gave the definitions in Subsection 4.1 and explained why for any

alphabet, Σ, the set Σ∗ is countably infinite.
For any set, S, it is easy to give an injection S → Power(S): namely the map

s 7→ {s}. It follows that |S| ≤ |Power(S)|; Cantor’s theorem implies that there is
no bijection S → Power(S), and hence |S| < |Power(S)|. Moreover, the statement
“for any set S, |S| < |Power(S)|” is the usual way that Cantor’s theorem is stated.

3.3. Generalized Cantor’s Theorem, Injective Form.

Theorem 3.6 (Injective Form of Generalized Cantor’s Theorem). Let h : S → B
be an injection. Then for any map f : S → Power(B), the image of f is not all of
Power(B); specifically

(1) the set

(4) T = {h(s) | s ∈ S and h(s) /∈ f(s)} ⊂ B

is not in the image of f ;
(2) more generally, any set T ⊂ B such that

(5) ∀s ∈ S h(s) ∈ T ⇐⇒ h(s) /∈ f(s)

is not in the image of f (we say “more generally” because an example of
set T satisfying (5) is given in (4)).

Proof. First we prove (2): if such a T ⊂ B is in the image of f , then for some t ∈ S
we have f(t) = T . Then we have

h(t) ∈ T ⇐⇒ h(t) /∈ f(t) = T,

and hence h(t) ∈ T ⇐⇒ h(t) /∈ T , which is impossible. Using the fact that h is
an injection, we easily see that (4) satisfies (5). □

In Theorem 3.6, note that (5) only specifies which elements of Image(h) are in
or not in T ; hence if the image of h is not all of B, there are at least two possible
sets T satisfying (5).

8The number of rational numbers that are not repeats when you write n terms of (3) is well-
known to be equal to nc + o(n) where c = 1/ζ(2) = 6/π2. It will easily follow that there is no
DFA (see Chapter 1 of [Sip]) that can tell you, for example, if the i-th element of (2) is a repeat
or not (assuming you express i in any base, such as binary or decimal, or even if you express
i in unary). By contrast, there is an efficient algorithm to do this, which involves taking GCD

(greatest common divisors). However, I don’t know of a simple algorithm to produce the i-th
element of (3). This means that even if you know that a bijection exists, it may be harder to
produce an algorithm to describe this bijection.
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Example 3.7. Say we have sets of people and movies, respectively

P = {x, y, z}, M = {Oppenheimer,Barbie, 2001,Encounters}

(referring to the 2023 movies of Oppenheimer and Barbie, and to the (older) movies
2001: A Space Odyssey, and Encounters at the End of the World). (Hence |P | =
3 < 4 = |M |.) Say that

(1) x has seen Barbie and 2001, but not the other movies;
(2) y has seen Oppenheimer and Barbie, but not the others; and
(3) z has seen Encounters, but not the others.

This gives a map HasSeen: P → Power(M), where HasSeen(p) is the set of movies
(in M) seen by p. Hence

HasSeen(x) = {Barbie, 2001},
HasSeen(y) = {Oppenheimer,Barbie},
HasSeen(z) = {Encounters}.

In terms of yes/no tables, the function HasSeen can be represented as:

Is m ∈ HasSeen(p)?,
i.e., has p seen m? m = Oppenheimer m = Barbie m = 2001 m = Encounters

p = x no yes yes no

p = y yes yes no no

p = z no no no yes

Of course, since |P | = 3 and |Power(M)| = 16, it is clear that the map HasSeen
cannot be surjective. Let’s use Theorem 3.6 to produce an element of Power(M)
that is not in the image. First, consider we build an injection h : P → M in an
arbitrary way; to make matters concrete, let h : P → M be the surjection given by:

h(x) = Oppenheimer, h(y) = Barbie, h(z) = 2001.

The upshot of this choice of h is that we will only care about the following parts of
the yes/no table:

Is m ∈ HasSeen(p) ? m = Oppenheimer m = Barbie m = 2001 m = Encounters
p = x no

p = y yes

p = z no

Now according to (4) (with S = P and B = M),

(6) T = {h(p) | p ∈ P and h(p) /∈ f(p)}

does not lie in the image of f ; since h(x) = Oppenheimer and Oppenheimer /∈ f(x),
T contains x; similarly we see T does not contain Barbie and contains 2001; hence
in (6) we have

T = {Oppenheimer, 2001},

which is therefore not in the image of f . More generally, (5) implies says that
as long as T contains Oppenheimer and 2001 and does not contain Barbie, (and
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Encounters can lie in T or not), T cannot be in the image of f . Visibly any such T
is not in the image of f . The extended yes/no table becomes:

Is m ∈ HasSeen(p) ? m = Oppenheimer m = Barbie m = 2001 m = Encounters
p = x no

p = y yes

p = z no

↓ ↓ ↓ ↓
Is m ∈ T? yes no yes Either way

3.4. Generalized Cantor’s Theorem: Surjective Form.

Theorem 3.8 (Surjective Form of Generalized Cantor’s Theorem). Let g : B → S
be a surjection of sets. Then for any map f : S → Power(B), the image of f is not
all of Power(B); specifically the set

(7) T =
{
b ∈ B | b /∈ f

(
g(b)

)}
is not in the image of f .

Proof. Assume, to the contrary, that f(t) = T for some t ∈ S. Since g is surjective,
there exists a b ∈ B with g(b) = t. Then either b ∈ T or b /∈ T ; in both cases we
easily get a contradiction; we leave the details as an exercise (Exercise 9.2.12). □

Example 3.9. Let P,M and HasSeen: P → M be as in Example 3.7. Let’s use
Theorem 3.8 to produce an element of Power(M) that is not in the image. First,
we build a surjection g : M → P arbitrarily; so let g be given by

g(Oppenheimer) = x, g(Barbie) = y, g(2001) = z, g(Encounters) = z.

Then we determine

T =
{
m ∈ M | m /∈ f

(
g(m)

)}
;

since g(Oppenheimer) = x, and x has not seen “Oppenheimer,” we have

Oppenheimer /∈ HasSeen(x) = HasSeen(g(Oppenheimer)),

and so Oppenheimer ∈ T . Similarly we see Barbie /∈ T , 2001 ∈ T , Encounters /∈ T .
Hence

T = {Oppenheimer, 2001};

also, visibly T is not in the image of HasSeen. In terms of an “extended yes/no”
table we can visualize the above as:

Is m ∈ HasSeen(p)? m = Oppenheimer m = Barbie m = 2001 m = Encounters
p = x no

p = y yes

p = z no yes

↓ ↓ ↓ ↓
Is m ∈ T? yes no yes no
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3.5. Partial Information Using Generalized Cantor’s Theorem. Another
point about our generalized Cantor’s Theorems is that they allow you to construct
sets that are not in the image of a map f : S → Power(B) when you only have
partial information about f . You can sometimes do this with Cantor’s Theorem,
but the results are much more limited.

Example 3.10. Say that S = {a, b, c} and f : S → Power(S) is a map such that
a ∈ f(a), b ∈ f(b), and c /∈ f(c). This is only “partial information” on the value of
f , but this is enough to determine:

T = {s ∈ S | s /∈ f(s)},

namely the set T from Cantor’s Theorem 2.8. In particular T = {c}, since c /∈
f(c), and since s ∈ f(s) for s = a, b. Hence this partial information is enough to
determine a set, T , that is not in the image of f . The extended yes/no table for
this situation is:

Is y ∈ f(x)? y = a y = b y = c
x = a yes

x = b yes

x = c no

↓ ↓ ↓
Does x = y lie in T? no no yes

Example 3.11. Say that S = {a, b, c} and f : S → Power(S) is a map such that
a ∈ f(a) and b ∈ f(b), but you know nothing about f(c). This “partial information”
is clearly not enough to produce a T that is not in the image of f , since f(c) could
be any subset of S. The yes/no table looks like:

Is y ∈ f(x)? y = a y = b y = c
x = a yes

x = b yes

x = c ???
↓ ↓ ↓

Does x = y lie in T? no no ???

Example 3.12. Say that S = {a, b, c} and f : S → Power(S) is a map such that
a ∈ f(b), b ∈ f(c), and c /∈ f(a). This partial information on f doesn’t allow us to
determine

T = {s ∈ S | s /∈ f(s)}
(indeed, to see whether or not a ∈ T we need to know if a ∈ f(a) or a /∈ f(a)). The
yes/no table here looks like:

Is y ∈ f(x)? y = a y = b y = c
x = a no

x = b yes

x = c yes

Let’s use the Injective Form of Generalized Cantor’s Theorem and (4) to find a T
not in the image of f : we are given that

a ∈ f(b), b ∈ f(c), c /∈ f(a);
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we now search for an injection h : S → S where the above information is equiva-
lent to knowing whether or not h(x) lies in f(x): since the above information is
equivalent to

(8) c /∈ f(a), a ∈ f(b), b ∈ f(c),

we set h to be the function

(9) h(a) = c, h(b) = c, h(c) = b

so that we have

h(a) = c /∈ f(a), h(b) = a ∈ f(b), h(c) = b ∈ f(c).

Hence we can now determine whether or not h(x) ∈ f(x) for all x ∈ S; note that
luckily h is an injection S → S (and also a bijection). The yes/no table can be
rearranged as:

Is y = h(x) ∈ f(x)? y = h(a) = c y = h(b) = a y = h(c) = b
x = a no

x = b yes

x = c yes

Thanks to h we have information on the “diagonal” elements, and we can take:

(10)

Is y = h(x) ∈ f(x)? y = h(a) = c y = h(b) = a y = h(c) = b
x = a no

x = b yes

x = c yes

↓ ↓ ↓
Does y = h(x) lie in T? yes no no

Hence h(a) ∈ T and h(b), h(c) /∈ T , and therefore

T = {h(a)} = {c}.
[This table should allow you to directly argue that T is not in the image of f : the
first row shows that T cannot equal equal f(a), since h(a) = c ∈ T but h(a) = c /∈
f(a). You should be able to similarly argue that T does not equal f(b) and f(b).]
Note that to more easily read off which elements of S lie in T , we can rearrange
the columns and rows of (10) as

(11)

Is y = h(x) ∈ f(x)? y = h(b) = a y = h(c) = b y = h(a) = c
x = b yes

x = c yes

x = a no

↓ ↓ ↓
Does y = h(x) lie in T? no no yes

In the above example, we have a map S → Power(B) with B = S; ironically,
this “simpler” situation is sometimes conceptually more confusing. Here is a similar
example with B ̸= S.

Example 3.13. Say that:

(1) Ursula Le Guin has written The Dispossessed, The Lathe of Heaven, and
The Left Hand of Darkness;

(2) Daniel Abraham and Ty Franck have co-written Leviathan Wakes.
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Let

B = {Dispossessed,Lathe,Left,Leviathan}, S = {Ursula,Daniel,Ty};

the above data gives a function

CoWrote : S → Power(B)

(we say that s cowrote b even if s is the sole author of b); the yes/no table depicting
CoWrote is:

Did s cowrite b,
i.e., is b ∈ CoWrote(s)? b = Dispossessed b = Lathe b = Left b = Leviathan

s = Ursula yes yes yes no

s = Daniel no no no yes

s = Ty no no no yes

Now imagine that we don’t know the above, and only know the partial information:

Did s cowrite b,
i.e., is b ∈ CoWrote(s)? b = Dispossessed b = Lathe b = Left b = Leviathan

s = Ursula yes

s = Daniel yes

s = Ty no

We can still produce a subset of novels that is not equal to the set of novels written
or co-written by any author; namely, this partial information lets us answer the
question “did s cowrite h(s) ?”, or, equivalently, “is h(s) in CoWrote(s)?”, provided
we set

h(Ursula) = Left, h(Daniel) = Leviathan, h(Ty) = Dispossessed;

notice that h : S → B is injective. Hence we produce a set of books T not in the
image of f via:

Did s cowrite b,
i.e., is b ∈ CoWrote(s)? b = Dispossessed b = Lathe b = Left b = Leviathan
s = Ursula, h(s) = Left yes

s = Daniel, h(s) = Leviathan yes

s = Ty, h(s) = Dispossessed no

↓ ↓ ↓ ↓
Does h(s) lie in T? yes Either way no no

To give this yes/no table a “diagonal look,” we rearrange the rows:

Did s cowrite h(s)? b = Dispossessed b = Lathe b = Left b = Leviathan
s = Ty, h(s) = Dispossessed no

s = Ursula, h(s) = Left yes

s = Daniel, h(s) = Leviathan yes

↓ ↓ ↓ ↓
Does h(s) lie in T? yes Either way no no

Hence

T = {Dispossessed}, {Dispossessed,Lathe}
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are two subsets of books that no author cowrote. If we drop the column corre-
sponding to The Lathe of Heaven, we get the table

Did s cowrite h(s)? b = Dispossessed b = Left b = Leviathan
s = Ty, h(s) = Dispossessed no

s = Ursula, h(s) = Left yes

s = Daniel, h(s) = Leviathan yes

↓ ↓ ↓
Does h(s) lie in T? yes no no

Notice that in this table, the books in the columns appear in alphabetical order,
which is how (11) is organized (i.e., the y’s appear in alphabetical order a, b, c), as
opposed to how (10) is.

4. Some Unrecognizable Languages

It is important to know that a number of problems are “unsolvable.” In this
section we make these ideas in rough terms; we will only be precise after we cover
Turing machines in Chapter 3 of the course textbook [Sip].

4.1. Alphabets, Strings, and Languages. Let us review some common defini-
tions in computer science theory (many can be found in [Sip], Chapter 0).

An alphabet is a finite, nonempty set.
Let Σ be an alphabet. For any k ∈ Z≥0 = {0, 1, 2, . . .}, the set of strings of

length k over Σ refers to Σk (the Cartesian product Σ× . . .× Σ of k copies of Σ);
hence Σ0 = {ϵ} where ϵ denotes the empty string. The set of strings over Σ refers
to union

Σ∗ def
=

∞⋃
k=0

Σk = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·

Example 4.1. If Σ = {a, b}, then (a, b, b, a) ∈ Σ4 is a string of length 4 over Σ;
for brevity we usually write abba instead of (a, b, b, a). Hence

Σ∗ = {ϵ, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(we often list elements of a language by shortest first, and secondarily in lexico-
graphical order).

Example 4.2. The set of strings of length two over Σ = {a, b, c} equals

Σ2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc};

hence |Σ2| = 9 = 32 in this example. You should be able to convince yourself that
for any alphabet Σ and any k ∈ Z≥0:

(1) ∣∣Σk
∣∣ = |Σ|k,

and
(2) there is a bijection between: (1) elements of Σk and (2) functions [k] → Σ,

where [k] is shorthand for the set {1, 2, . . . , k} (and [0] = ∅).

A language over Σ refers to any subset of Σ∗. Hence a language is an element
of Power(Σ∗), and the set of all languages over Σ therefore equals Power(Σ∗).
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4.2. More Languages and Descriptions.

Example 4.3. Let Σdigits = {0, 1, . . . , 9}. Every non-negative integer has a unique
base 10 representation (e.g., 0, 1, 2, 7, 421, 2023), which we interpret as a string over
Σdigits. More formally, if n ∈ {0, 1, 2, . . .}, we use ⟨n⟩ to denote the associated
string; hence ⟨2024⟩ is technically the string of length 4, (2, 0, 2, 4), but for brevity
write 2024; to avoid confusion, at times we write “the integer 2024” for the integer,
and ⟨2024⟩ or “the string 2024” when referring to the string). We also call ⟨2024⟩
“the description of 2024.” We define

PRIMES = {⟨n⟩ | n is prime} = {⟨2⟩, ⟨3⟩, ⟨5⟩, ⟨7⟩, ⟨11⟩, ⟨13⟩, . . .} ⊂ Σ∗
digits

or, for brevity,

PRIMES = {2, 3, 5, 7, 11, 13, . . .} ⊂ Σ∗
digits.

We tend to write languages in ALL CAPITAL LETTERS. When working in math-
ematics, we usually work with the (“actual”) set of prime numbers

{2, 3, 5, 7, 11, 13, . . .} ⊂ N ⊂ Z≥0 ⊂ Z.

Example 4.4. When we work with regular languages (Chapter 1 of [Sip]), we will
discuss languages like:

DIV-BY-5 = {⟨0⟩, ⟨5⟩, ⟨10⟩, ⟨15⟩, . . .} = {0, 5, 10, 15, . . .} ⊂ Σ∗
digits

(by writing ⊂ Σ∗
digits we know that we are speaking about a subset of strings).

Related languages are

POSITIVE-DIV-BY-5 = {5, 10, 15, 20, 25, . . .} ⊂ Σ∗
digits

and

DIV-BY-5-LEADING-ZEROS-OK9

= {0, 5, 00, 05, 10, 15, 20, . . . , 95, 000, 005, 010, . . . , 095, 100, 105, . . .} ⊂ Σ∗
digits

[When we discuss DFA’s in Chapter 1 of [Sip], we10 may prove that the minimum
number of states required to recognize DIV-BY-5-LEADING-ZEROS-OK is 3; by
contrast, recognizing either of the other two languages above with a DFA requires
more than 3 states; moreover, the language

{ ϵ } ∪ DIV-BY-5-LEADING-ZEROS-OK

can be recognized by a DFA with 2 states.]

Remark 4.5. Starting in Section 3.3 of [Sip], we will use the notation ⟨X⟩ to mean
“the description ofX as string” (with some agreed upon conventions). For example,
if G is the set of graphs, G, whose vertex set is of the form [n] = {1, 2, . . . , n}, then
(in class) we will describe each G ∈ G as a string ⟨G⟩ over some fixed alphabet (e.g.,
Σ = {0, 1,#}). Similarly if f is a Boolean formula on variables x1, . . . , xn, we will
fix some conventions so that ⟨f⟩ is a string over some alphabet that describes f (a
convenient alphabet here is Σ = {x, 0, 1,∧,∨,¬, (, )}).

9In this language we allow extraneous leading 0’s, so, for example, the strings 5, 05, 005 ∈
Σ∗

digits are identified with the integer 5, which is divisible by 5, and therefore these strings are

contained in this language.
10Here “we” may actually refer to the students, not the instructor.
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Remark 4.6. When we discuss algorithms that run in “polynomial time” in Chap-
ter 7 of [Sip], we will see that there is a big difference between (1) alphabets with
at least two symbols and (2) unary alphabets, i.e., those with exactly one symbol;
both types of alphabets will be of interest. In this section we discuss only the
concepts of recognizability and decidabilty, where this distinction is unimportant.

4.3. The Language “Duck” (Added Sept 13, 2024). As a warm-up to the
next few subsections, we introduce a toy programming language; we’ll call it
Duck™ 11. We will describe the details in class; let us give the basic idea.

A Duck program will be a string over ΣASCII. We define:

(1) a valid Duck statement is a string over ΣASCII which is concatenation s1s2 =
s1 ◦ s2, where s1 is the 5 symbol string quack, and s2 is an arbitrary string
over Σdigits = {0, 1, . . . , 9}12 For example, the following strings over ΣASCII

are valid Duck statements:

(12) quack3, quack0000, quack2024, quack421,

and quackquack13 while the following are not valid Duck statements

(13) CPSC421, Quack2, 2024, woof23.

(Note: we are using commas (,) and periods (.) here as punctuation marks;
the symbols , and . belong to ΣASCII, but we’ll try to avoid them in
examples. For that matter, we’ll avoid spaces in our Duck programs.]

(2) Since quack ∈ Σ∗
ASCII and Σdigits ⊂ ΣASCII, we have therefore built a

language

VALID-DUCK-STATEMENTS ⊂ Σ∗
ASCII

whose elements are all valid duck statements; hence VALID-DUCK-
STATEMENTS contains the strings in (12), and not those in (13).

(3) A valid Duck program is a finite concatenation of valid Duck statements,
such as:

quack3quack4quack19, quack0.

This gives us a language

VALID-DUCK-PROGRAMS ⊂ Σ∗
ASCII.

(4) A Duck program is any string over the alphabet ΣASCII.
(5) An input to a Duck program is any string over the alphabet ΣASCII.
(6) Given p ∈ VALID-DUCK-PROGRAMS and i ∈ Σ∗

ASCII, we say that p
accepts i, if |i|, i.e., the length of i, is one of the numbers appearing in
the duck program; otherwise we say that p does not accept i. Hence the
program

p = quack3quack4quack19

accepts the strings

aaa, abba, 1234567890123456789, quack3quack4quack19, UBC

but does not accept the strings

aa, abbaa, 12345678901234567.

11Trademark of the 421 Waterfowl Software Foundation.
12After some class discussion, we decided to allow s2 to be the empty string; see Remark 4.7.
13See Remark 4.7.
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(7) For each p ∈ VALID-DUCK-PROGRAMS, we define the language recog-
nized by p to be the language

LanguageRecBy(p)
def
= {i ∈ Σ∗

ASCII | p accepts i}.
If p is an ASCII string not in VALID-DUCK-PROGRAMS, for any i ∈
Σ∗

ASCII we say that p does not accept i, and we define

LanguageRecBy(p)
def
= ∅.

(8) Hence we have defined a map

(14) LanguageRecBy: Σ∗
ASCII → Power(Σ∗

ASCII)

(9) We say that a language L ⊂ Σ∗
ASCII is recognizable if it is in the image of

LanguageRecBy; otherwise we say that it is unrecognizable.

This gives you the rough idea of what is meant by “p accepts i” and “p does not
accept i” in the context of the Duck programming language.

Remark 4.7. In class on September 13, 2024, we found that the above description
of Duck was not completely precise. For example, it is unclear what quack0003

will accept; after a board meeting, we decided to allow leading zeros. Hence

LanguageRecBy(quack0003) = LanguageRecBy(quack3) = Σ3
ASCII.

Also, if ϵ is the empty string in ΣASCII, then quackϵ = quack is a valid Duck
statement, and hence quackquack5 is a valid Duck program. After a contentious
board meeting and coin flip we decided that we ignore any appearance of quackϵ =
quack, and therefore

LanguageRecBy(quackquack5) = Σ5
ASCII.

Finally, we decided that the empty string is not a valid Duck program, and hence
using the common notation:

L∗ =
⋃

k∈Z≥0

Lk = L0 ∪ L1 ∪ L2 ∪ . . .

L+ =
⋃
k∈N

Lk = L1 ∪ L2 ∪ L3 ∪ . . . = LL∗

(and powers are taken to mean concatenation of languages, e.g., L2 = L ◦L rather
than the Cartesian product L× L), we have

VALID-DUCK-PROGRAMS =
(
VALID-DUCK-STATEMENTS

)+
.

It should be clear that {a} is not recognizable (in the context of Duck programs).
The reason is that if a Duck program, p, accepts the string a, then p must accept
all strings of length 1. Moreover if p is not a valid duck program, then by definition
LanguageRecBy(p) = ∅.

For the same reason we have L ⊂ Σ∗
ASCII is recognizable (in the context of Duck

programs) iff there exists an m ∈ Z≥0 and k1, . . . , km ∈ Z≥0 such that

L = Σk1

ASCII ∪ . . .Σkm

ASCII.

(the case m = 0 and therefore L = ∅14 is also recognizable, namely by any string
that is not a valid Duck program).

14The empty set is the “union of 0 sets” or the “empty union.” To understand why, consult
your local expert on the empty set.
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Hence there is a simple way to classify all languages that are Duck-recognizable.
Cantor’s theorem tells us that

T = {p ∈ Σ∗
ASCII | p /∈ LanguageRecByDuck(p)}

is not Duck-recognizable. (At this point we will add the prefix “Duck-” to a lot of
terms, to avoid confusion with other notions of recognizable.) Therefore T contains
the strings

QUACK, woofwoof, abba, quack3, quackquack20

(and contains every string that is not a valid Duck program, including ϵ), but T
does not contain the strings

quack6, quack07, quack3quack4quack19, quackquack12.

This subsection should provide some intuitive basis for the use of Cantor’s the-
orem in the next few subsections, where we discuss the more common notion of a
recognizable versus an unrecognizable language.

4.4. The Language Recognized by a Valid Python Program. In this section
we will provide a rough framework needed to define “recognizable” languages in
the usual sense. You should be convinced that this framework can be made precise
(there are choices to make), and that the notion of a “recognizable language” does
not depend on any the choices you make. The upshot is that we:

(1) define ΣASCII to be the usual ASCII alphabet;
(2) define a subset VALID-PYTHON-PROGRAMS of Σ∗

ASCII (hence VALID-PYTHON-PROGRAMS
is a language over ΣASCII);

(3) for each p ∈ VALID-PYTHON-PROGRAMS, we define the (language of)
strings over ΣASCII accepted by p;

(4) and we define the function

(15) LanguageRecBy: Σ∗
ASCII → Power(Σ∗

ASCII)

given by LanguageRecBy(p) = ∅ if p is not a valid Python program, and
otherwise LanguageRecBy(p) is the set of strings that p accepts.

(5) If L ⊂ Σ∗
ASCII, we say that L is recognizable if it is in the image of

LanguageRecBy, i.e., if there is a valid Python program, p, that recognizes
L, i.e., if L is the set of strings accepted by p.

Everything we say in this subsection and Subsection 4.5 is valid in the
context of any function LanguageRecBy in (15). Hence the “fine print”
below is designed to indicate what terms like “recognizing” and “ac-
cepting” will mean in Chapter 3 of [Sip], using Turing machines, which
is a simple (but limited) model of a “computer program.”

4.4.1. The Fine Print. Let ΣASCII be the usual ASCII alphabet, an alphabet of size
256. Fix a programming language, such as Python (almost any other programming
language will work, e.g., C, C++, APL, Javascript, MATLAB, Maple, etc.).

To fix ideas, here is a sample Python program (called a “function” or “user
defined function” in Python), named isPal(), that checks if an “input” to the
program is a palindrome (i.e., the same as the reverse word):

#

# Python ignores any part of a line after the first "#"

#

def isPal(): # the program is called "isPal()"
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i = input("Your input: ") # i is an input given by the user

n = len( i ) # n is the length of i

for m in range( n ): # hence m runs from 0 to n-1

if ( i[m] != i[ n-1-m] ): # Note that != means "not equal to"

return("no") # no, i is not a palindrome

return("yes") # yes, i is a palindrome

[This program takes an ASCII string i as input, sets n to be the length of i, and
then checks if the m-th character of i equals the (n−m− 1)-th character of i, for
m = 0, 1, . . . , n− 1.]

N.B.: to get the above function to run in Python, you can add a line:

print( "\n Is the input a palindrome? " + isPal() + "\n" )

after the function, give the file a name, and run python on this file.
Assume you have fixed conventions so that the following holds (there is some

flexibility here, but most “reasonable”15 set of conventions will work): there is a
subset

VALID-PYTHON-PROGRAMS ⊂ Σ∗
ASCII

(i.e., a language over ΣASCII) that are designated to be “valid Python programs”
such that if p is a valid Python program, then, after discarding the comments (i.e.,
the #’s and anything that follows them on a line)

(1) The first line of p—although irrelevant to us—is a “def statement” that
names the program and declares it to have no arguments (as in the above
example).

(2) The second line of p is i = input("Your input: "), that sets the vari-
able i to an arbitrary ASCII string specified “externally” by the “user;”
we refer to this value of i as the input to the program.

(3) No other lines of the program use an input statement.
(4) After the line i = input("Your input: "), the program runs with the

“usual conventions” of Python (here there is some flexibility).
(5) When a return statement is reached, the program execution stops. The

program may stop for other reasons (e.g., if you divide by 0, or if it runs
the entire program). A program may never stop, for various reason (e.g., if
it tries to execute something that is obviously an “infinite loop,” if it tries
to find an even prime number greater than 2, maybe if it searches for an
odd perfect number16, etc.).

(6) (Looking forward a bit:) We say that p accepts i (respectively, p rejects
i) if p is a valid Python program that on input i eventually reaches a
return("yes") statement (respectively, a return("no") statement. If p
is a valid Python program that does not accept or reject i, we say that p
loops on i.

[It should be pretty clear how to make the above precise, at least to readers who
have had the pleasure of writing computer programs. As mentioned, there is some
flexibility here; in class I’ll answer questions you have regarding the above. When
we cover Turing machines we will have precise definitions of (1) a “program” (or
Turing machine, (2) an “input” to a program, and (3) when a program accepts or
rejects a program.]

15In class we may give examples of “unreasonable” conventions, such as that in Example 4.34.
16Whether or not there exists an odd perfect number is still, I believe, an open problem.
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Remark 4.8. From the above, it follows that p can loop on an input, i, for various
reasons: it can reach a return statement that does not return "yes" or "no"; it
can stop (e.g., by reaching its end without encountering a return statement, by
dividing by zero, etc.); or it can never stop.

By a pseudo-definition we mean a definition that is not precise, but that you
can probably make precise in some reasonable way (if you read the “fine print,”
Subsubsection 4.4.1).

Pseudo-Definition 4.9. Say that p ∈ Σ∗
ASCII is a valid Python program, and

i ∈ Σ∗
ASCII. We say that p accepts i if, when p is run on input i, p eventually

reaches the statement return("yes"). The language recognized by p is defined to
be

(16) LanguageRecBy(p)
def
= {i ∈ Σ∗

ASCII | p accepts i} ⊂ Σ∗
ASCII.

If p is not a valid Python program, we define

LanguageRecBy(p)
def
= ∅

(one could replace ∅ by any language recognized by a valid Python program).
(Hence LanguageRecBy is a map Σ∗

ASCII → Power(Σ∗
ASCII).) We say that

L ⊂ Σ∗
ASCII is recognizable if there is a valid Python program p such that

L = LanguageRecBy(p), and otherwise we say that L is unrecognizable.

Example 4.10. The program isPal() above recognizes the language PALIN-
DROME, of ASCII strings that are palindromes. Hence PALINDROME is recog-
nizable.

Example 4.11. The language PRIMES is recognized by a Python program (as-
suming a typical interpretation of Python programs); indeed, the program needs to
(1) checks if the input is string representing an integer greater than 1, and (2) check
if the integer has a divisor other than itself and 1. [The naive version of checking (2)
takes “exponential time” in the length of the input.] Similarly for DIV-BY-5 and
many other languages (CPSC 320 gives many examples).

4.4.2. If Didn’t Read the Fine Print Above. Let LanguageRecBy be an arbitrary
function as in (15), i.e., LanguageRecBy: ΣASCII → Σ∗

ASCII. From (15) alone, we
can define all the terms we need in Subsection 4.5:

(1) if p, i ∈ Σ∗
ASCII, we say that p accepts i if i ∈ LanguageRecBy(p);

(2) if p ∈ Σ∗
ASCII, we refer to LanguageRecBy(p) as the language recognized by

p;
(3) we say that L ⊂ Σ∗

ASCII is recognizable if it is in the image of LanguageRecBy;
otherwise L is unrecognizable.

Nonetheless, for Subsection 4.6 you will need to be (at least vaguely) aware of the
fine print above.

4.5. An Unrecognizable Language.

Theorem 4.12. Let LanguageRecBy be any function (15). Then the language{
p ∈ Σ∗

ASCII | p /∈ LanguageRecBy(p)
}

is unrecognizable.
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Proof. This follows immediately from Theorem 2.8, taking S = Σ∗
ASCII and f =

LanguageRecBy there (the rest is “unwinding” the definitions). □

Remark 4.13. In class on September 13, 2023, we named the language in the
above theorem

GROUCHO-MARX-SELF = {p ∈ Σ∗
ASCII | p /∈ LanguageRecBy(p)}

based on the quote:

“I don’t want to belong to any club that will accept me as a mem-
ber.” Groucho Marx (1890–1977).

We also thought of other names for this language. However, it might be truer to
the quote to define

GROUCHO-MARX-WANTS-IN = {p ∈ Σ∗
ASCII |GROUCHO-MARX /∈ LanguageRecBy(p)}.

It’s unclear if we will use this terminology after 2023...

Remark 4.14. Note that by our conventions,

T =
{
p ∈ Σ∗

ASCII | p /∈ LanguageRecBy(p)
}

includes all strings, p, that are not valid Python programs. Say that our conventions
regarding valid Python programs imply that there is some symbol σ0 ∈ ΣASCII that
is never found in a valid Python program; it follows that for k ∈ N sufficiently large,
99.9999% of the ASCII strings of length k do not represent valid Python programs
(why?). It follows that T and the language Σ∗

ASCII agree on 99.9999% of the ASCII
strings of any sufficiently large length. Since Σ∗

ASCII is recognizable (by a program
that always returns "yes"), T can “mostly agree” with a recognizable language.
Theorem 4.12 asserts only that no algorithm can correctly recognize T “100% of
the time.”

4.6. Undecidable and Unrecognizable Languages. There is no obvious reason
why you’d want to produce an algorithm to recognize

(17) T = {p ∈ Σ∗
ASCII | p /∈ LanguageRecBy(p)}.

However, the consequences of the unrecognizability of T are rather drastic.
Here it will be important to roughly understand the “fine print” above (Subsub-

section 4.4.1).
Assume some conventions regarding Python programs are fixed as in Subsec-

tion 4.4.

Convention 4.15. Let σ0 be ASCII symbol 28 (from 0–127), i.e., 1C (in Octal ×
Hexidecimal), i.e., the ⟨FS⟩ (File Separator) symbol.17 We fix the convention that
no valid Python program can contain the ASCII symbol σ0.

The following proposition is almost immediate, but is worth stating formally.

Proposition 4.16. Let s ∈ Σ∗
ASCII. Then:

(1) if s contains the symbol σ0 = ⟨FS⟩, then there is a unique way to write s
as pσ0i where p ∈ Σ∗

ASCII does not contain σ0 and i ∈ Σ∗
ASCII;

17The ASCII character set includes some symbols that are designed to be “separators,” namely
FS,RS,GS,US (file-, record-, group-, and unit-separator), characters 1C–1F, i.e., 28–31. Any of

those would do.
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(2) if s does not contain the symbol σ0 = ⟨FS⟩, then there is no way to write s
as pσ0i for any p, i ∈ Σ∗

ASCII.

[To prove this, note that if s contains symbol σ0, then p must be the word before
the first σ0. We leave a formal proof to the interested reader(s).]

Hence if p is any valid Python program, and i an input to p, we can encode the
pair (p, i) as the string s = pσ0i; given such an s, we can recover p as the substring
of s occurring before the first σ0 in s, and recover i as the substring after the first
σ0.

Notation 4.17. We use the notation:

NOT-PYTH-INP = {s ∈ Σ∗
ASCII | s cannot be written as pσ0i where p is a valid Python program},

ACCEPTANCE = {s ∈ Σ∗
ASCII | s = pσ0i where p is a valid Python program that accepts i},

REJECTION = {s ∈ Σ∗
ASCII | s = pσ0i where p is a valid Python program that rejects i},

LOOPING = {s ∈ Σ∗
ASCII | s = pσ0i where p is a valid Python program that loops on i}.

The following propositions are almost immediate, but they are worth stating
formally.

Proposition 4.18. Every string in Σ∗
ASCII is in exactly one of the four languages

in Notation 4.17.

The proof merely “unwinds the definitions.”
We can restate Proposition 4.18 as saying that Σ∗

ASCII is partitioned into the four
subsets in Notatoin 4.17.

Proposition 4.19. Let

T =
{
q ∈ Σ∗

ASCII

∣∣ q /∈ LanguageRecByPython(q)
}

(18)

=
{
q ∈ Σ∗

ASCII

∣∣ q does not accept (the input) q
}
,

and let q ∈ Σ∗
ASCII. Then

qσ0q ∈ NON-PYTH-INP ⇒ q ∈ T,

qσ0q ∈ ACCEPTANCE ⇒ q /∈ T.

qσ0q ∈ REJECTION ⇒ q ∈ T.

qσ0q ∈ LOOPING ⇒ q ∈ T.

Proof. The proof is a straightfoward case analysis. If qσ0q ∈ NOT-PYTH-INP
then q is not a valid python program; in this case LanguageRecBy(q) = ∅ (by
convention) and so q /∈ LanguageRecBy(q) and so q ∈ T . Otherwise qσ0q lies in
(exactly) one of ACCEPTANCE, REJECTION, LOOPING, and in these cases q
respectively accepts, rejects, or loops on q (as input), and so, respectively, q /∈ T ,
q ∈ T , and q ∈ T . □

Lemma 4.20. There is a Python algorithm (i.e., program) u ∈ Σ∗
ASCII, such that

for each string s ∈ Σ∗
ASCII:

(1) If s ∈ NOT-PYTH-INP, then u terminates on input s and returns the
string "not valid".

(2) If s ∈ ACCEPTANCE, then u terminates on input s and returns the string
"accepted".
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(3) If s ∈ REJECTION, then u terminates on input s and returns the string
"rejected".

(4) If s ∈ LOOPING, then u may or may not terminate on input s; if it
terminates, the algorithm returns the string "loops".

NOTE: we use the word “terminate” to mean that the Python program, run in
the way a Python program is supposed to be run, reaches a return statement or
executes the last line of the program (and has “nothing left to do”), or possibly gives
an error message when you execute a line of code18. Hence if a Python program
on a given input does not “terminate,” then it “loops” because it doesn’t accept or
reject the input.

Proof. (This is not a detailed proof.) The algorithm begins by checking whether or
not s ∈ NOT-PYTH-INP: this can be done by checking whether or not σ0 occurs
somewhere in s, and, if so, writing s = pσ0i (see Proposition 4.16). It then checks
whether or not p is a valid Python program; here we “wave our hands” and claim
this can be done, although likely you’ll have to build a “parser,” and this parser
depends on your Python conventions. [Note: this “parsing” is far easier to do for
Turing machines as opposed to Python programs, since Turing machines are far
simpler (and more limited) in the way they run.]

If s = pσ0i where p ∈ VALID-PYTHON-PROGRAMS, then our algorithm will
work like a “debugger” that “simulates” what happens when the Python program
p is run with input i. Again you should be able to convince yourself that such a
“debugger” or “simulator” can be built (in Python). This is far more tedious to
build than a mere Python parser; indeed, you will first have to parse p to figure out
how it is supposed to be run. □

Definition 4.21. Any u ∈ Σ∗
ASCII that satisfies (1)–(4) of Lemma 4.20 is called a

universal Python program. [It does not have to work the way the algorithm given
in the proof works.]

Corollary 4.22. Let s ∈ Σ∗
ASCII. Then if s /∈ LOOPING, then any universal

Python program halts on input s. If a universal Python program halts on s, then
the string it returns correctly identifies the language of Notation 4.17 in which it
lies.

[By contrast, there is no “universal Duck program,” i.e., a program — written
in Duck (not, say, in awk or Python) — that can “simulate” the result of a Duck
program on an input to this program. see Exercise 9.2.35.]

Remark 4.23. Python contains a universal Python function of sorts, namely
exec(). For example, if in the Python interpreter you set the string code via:

code = """

i = input("Your input: ")

n = int(i)

if ( n % 2 == 0):

print("yes, your input is even")

18This depends on how you define the particular characteristics of a Python program. So if

you want to allow the use of the Python function int(), which takes a string and returns an
integer, then the line int("asdf") may cause your Python program to report an error message

and to terminate.
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else:

print("no, your input is not even")

"""

(you need to enter a blank line after the """), then every time you type the com-
mand

exec(code)

you will be asked to input an integer, and will be told if the integer is even or odd.

Notation 4.24. We use the notation:

HALTING = ACCEPTANCE ∪ REJECTION.

The complements of ACCEPTANCE and HALTING are: In addition, we set

ACCEPTANCEComp = Σ∗
ASCII \ACCEPTANCE

= NOT-PYTH-INP ∪ REJECTION ∪ LOOPING,

HALTINGComp = Σ∗
ASCII \HALTING

= NOT-PYTH-INP ∪ LOOPING.

These differ from

NON-ACCEPTANCE = {pσ0i ∈ Σ∗
ASCII | p is a valid Python program that does not accept i}

= REJECTION ∪ LOOPING,

NON-HALTING = {pσ0i ∈ Σ∗
ASCII | p is a valid Python program that does not halt on i}

= LOOPING

Theorem 4.25. The languages NON-ACCEPTANCE and NON-HALTING are
(Python-)unrecognizable.

Proof. By Cantor’s theorem, there is no Python program that recognizes

T =
{
q ∈ Σ∗

ASCII

∣∣ q /∈ LanguageRecByPython(q)
}

For the sake of contradiction, say that NON-ACCEPTANCE is recognizable; let
us give an algorithm recognizing T (which is impossible). Consider the Python
program that on input q ∈ Σ∗

ASCII does the following: in parallel, it performs one
step of Algorithm 1, then one step of Algorithm 2, then two steps of Algorithms 1
and 2, then three steps of Algorithms 1 and 2, etc., where:

(1) Algorithm 1 runs a universal Python program, u, on qσ0q; u returns the
result accepted, then Algorithm 1 declares that q /∈ T ; if u returns any
other result, then Algorithm 1 declares that q ∈ T . (Algorithm 1 may never
stop running if qσ0q ∈ LOOPING.)

(2) Algorithm 2 runs an algorithm, r, for NON-ACCEPTANCE on input qσ0q;
and if qσ0q is accepted by r, then Algorithm 2 declares q ∈ T . If r rejects or
loops on qσ0q, then Algorithm 2 enters an infinite loop (if r stops running).

In view of Proposition 4.19 and Definition 4.21, when either Algorithms 1 or 2
stops running, they correctly identify whether q ∈ T or q /∈ T ; by Definition 4.21,
Algorithm 1 stops running whenever

qσ0q ∈
(
NOT-PYTH-INP ∪ACCEPTANCE ∪ REJECTION

)
,
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and Algorithm 2 stops running whenever

qσ0q ∈ LOOPING.

Hence this hybrid algorithm always stops and identifies whether or not q ∈ T or
q /∈ T , which is impossible.

Now notice that we may similarly recognize T if we replace r used in Algorithm
2 by any r such that L = LanguageRecBy(r) satisfies

(19) LOOPING ⊂ L ⊂
(
NON-PYTH-INP ∪ REJECTION ∪ LOOPING

)
= ACCEPTANCEComp.

Hence any such L is unrecognizable, including NON-HALTING. □

Scholium 4.26. Let L be any language satisfying (19). Then L is not (Python-
)recognizable.

Remark 4.27. The reason that Algorithm 2 enters an infinite loop when r rejects
qσ0q is simply to let Algorithm 1 take over to determine if q ∈ T or q /∈ T ; one
could equivalently have Algorithm 2 stop and return some message like "I don’t

know, but Algorithm 1 can tell us" (telling us to stop with Algorithm 2 at
that point and to only run Algorithm 1).

Definition 4.28. We say that a Python program is a decider if it halts (terminates)
in a finite number of execution steps on any input and returns either yes or no; we
say that a language is decidable if it is recognized by some Python program that is
a decider.

Remark 4.29. Let us summarize these definitions, plus some extra ones given in
class on September 13, 2023 (and likely this year).

Term Definition
p accepts i on input i, p returns yes
p rejects i on input i, p returns no
p loops on i on input i, p does not return yes or no
p halts on i on input i, p returns yes or no,

i.e., p accepts or rejects i,
i.e., p does not loop on i

LanguageRecBy(p) {i ∈ Σ∗
ASCII | p accepts i}

an L ⊂ Σ∗
ASCII is recognizable for some p, L = LanguageRecBy(p)

p is a decider on all inputs, i, p halts on i
an L ⊂ Σ∗

ASCII is decidable for some decider p, we have
L = LanguageRecBy(p)

Here we list a few easy facts; we will likely discuss why they are true in class.

Proposition 4.30. If L is decidable, then also LComp = Σ∗
ASCII \ L is decidable.

If L is decidable, then L is recognizable. If L and LComp = Σ∗
ASCII \ L are both

recognizable, then they are both decidable. In particular

(20) L is decidable ⇐⇒ L and LComp are recognizable,

and

(21) L is unrecognizable ⇒ L and LComp are undecidable.
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Example 4.31. ACCEPTANCE is undecidable by the proposition above, since
ACCEPTANCEComp is unrecognizable by Scholium 4.26. Similarly for REJEC-
TION and HALTING. Using a universal Turing machine, it is easy to show that
ACCEPTANCE, REJECTION, and HALTING are all recognizable.

Hence the halting problem HALTING = HALTINGPython is recognizable but
undecidable.

Note that aside from (20) and (21), we will also use “reductions” to produce
undecidable and unrecognizable languages.

In class in 2024, we covered this example in class.

Example 4.32. Let

L = {p | p accepts at least one of its possible inputs}
= {p | ∃i ∈ Σ∗

ASCII s.t. p accepts i}

We can recognize L by listing the elements of Σ∗
ASCII as i1, i2, i3, . . . (since Σ∗

ASCII

is countable). To recognize L, on input p we check if p is a valid Python program;
if so, we run (i.e., simulate) p for one execution step on i1; then we run p for two
execution steps on i1 and on i2; then we run p for three execution steps on i1, i2,
and on i3; etc. (In class 2024, we described a slightly different way.) If p accepts
in any phase of this algorithm, we return "yes" (i.e., yes, p ∈ L) It follows that
this procedure accepts p iff p ∈ L. Hence L is recognizable. (We will use this type
of argument a lot...) Next we use a reduction to show that L is undecidable: so
say that L is decidable; we will use a decider for L to show that ACCEPTANCE
is decidable: given pσ0j, we form a Python program q that takes p, and adds the
line i = j after the input statement i = input("Your input: ") (e.g., on the
string pσ037, q is the same as p except we add the line i = 37 right after the line
in p that reads the input). Hence q essentially ignores its input, and uses the value
of j as its input. We easily see that pσ0j ∈ ACCEPTANCE iff q accepts any input,
iff q accepts at least one input, iff q ∈ L. If follows that L is undecidable but
recognizable.

Example 4.33. Let USED-LINE-OF-CODE be the set of strings of the form pσ0ℓ,
where p is a valid Python program and ℓ is a line of the program p that is “exe-
cuted/reached” when p runs on at least one of its inputs. Then USED-LINE-OF-
CODE is undecidable, given that ACCEPTANCE is undecidable, for the following
reason (we’ll get used to this type of argument): given a program p and an in-
put, i to p, one can produce a program p′ with a line of code, ℓ, such that p
accepts i iff p′ executes ℓ on all inputs to p′, by a standard type of construction19;
hence if USED-LINE-OF-CODE were decidable, then so would be ACCEPTANCE.
Moreover, we will also prove that USED-LINE-OF-CODE is recognizable20. Hence

19To see this, you take p′ to be a program that ignores its input and instead sets SpecialInput
to i; then p′ runs like p, except that you create a new line, ℓ, in p′, where p′ sets SpecialOutput
to yes, and you require that wherever p assigns a value to SpecialOutput, you first check if this

value is yes, and if so then you branch to ℓ. Hence p′σ0ℓ lies in USED-LINE-OF-CODE iff pσ0i

lies in ACCEPTANCE.
20This is another type of argument that we will get used to: first, one can write the set of

possible inputs to a program in an (infinite) list i1, i2, i3, . . ., where (1) i1 = ϵ, (2) i2, . . . , i257 are
the elements of Σ1

ASCII, (3) i258, . . . , i1+256+2562 are the elements of Σ2
ASCII, etc. To recognize

USED-LINE-OF-CODE, on input pσ0ℓ, we check if p is a valid Python program; if so, we run
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the complement of USED-LINE-OF-CODE (and therefore the analogously defined
UNUSED-LINE-OF-CODE) is unrecognizable.

4.7. ∗Some Subtle Issues.

Example 4.34. Say that PythonReal is a language that is based on Python, but
is also allowed access to a real constant, x ∈ R as part of its program description;
also assume that the operations +,−,× are performed exactly, as well as the logical
operator >= (greater than or equal to). Then if Σ is a fixed alphabet, then it is
not hard to build for each language over Σ a PythonReal program that recognizes
it. [To do so, set up a bijection Σ∗ with N, and to any subset L ⊂ Power(N) let

x =
∑
n∈L

3−n,

which is a real number between 0 and 1/2; note that 1 ∈ L iff 3x ≥ 1. The rest is
an exercise.]

Example 4.35. A similar comment holds for a Python program that is allowed to
access an infinitely long string, x, as part of its program description.

In the above two examples, as x varies you are allowing for an uncountable num-
ber of programs; these two examples would be considered “unreasonable” as models
for algorithms that involve languages over a finite alphabet. However, a Python-
Real program—without an arbitrary hardwired constant—is an interesting model
for problems involving real computation21: surely a lot of numerical algorithms are
most directly explained as real number computations; of course, working with fi-
nite precision (or exact arithmetic with rational numbers) can introduce additional
hurdles when modeling computation and solving problems.

The following will be explained when we cover Chapter 3 and/or a part of Chap-
ter 9 of [Sip].

Example 4.36. A similar comment holds for oracle Turing machines with an
oracle A ⊂ Σ∗ for some alphabet Σ. However, in this context we usually fix the
same oracle, A, to be used by all machines. Also, the term oracle clarifies that an
A ⊂ Σ∗ is a part of the machine. (And it is immediate that a language, A, can be
decided—in constant time—by a Turing machine using a single oracle call to the
oracle A.)

5. Some “Paradoxes”

Two important results of CPSC 421/501 are: (1) the unsolvabilitiy of the halting
problem, and (2) NP-completeness. The first is linked with a number of other
remarkable results in logic and computing, and appear as paradoxes:

(1) I am lying.
(2) This statement is a lie.

(i.e., simulate) p for one execution step on i1; then we run p for two execution steps on i1 and on
i2; then we run p for three execution steps on i1, i2, and on i3; etc. We halt this procedure and

accept p if we reach line ℓ on any of these runs (i.e., simulations). It follows that this procedure
accepts p iff there is some input, i, such that p reaches line ℓ on input i after some number of

steps. Hence USED-LINE-OF-CODE is recognizable.
21See, e.g., Complexity and Real Computation, by Blum, Cucker, Shub, and Smale, 1998,

Springer.
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(3) The phrase: “the smallest positive integer not defined by an English phrase
of fifty words or fewer” [This is called the “Berry Paradox,” although likely
due to Russell.]

(4) This is a statement that does not have a proof that it is true.
(5) Leslie writes about (and only about) all those who don’t write about them-

selves.
(6) Let S be “the set of all sets that do not contain themselves.” [This is

Russell’s most famous (and serious) paradox.]
(7) Consider a C program, P , that (1) takes as input a string, i, (2) figures out

if i is the description of a C program that halts on input i, and (3) (i) if so,
P enters an infinite loop, and (ii) otherwise P stops running (i.e., halts).
[The paradox is: what happens when this program is given input j where
j is the string representing P ?]

One thing that these statements have in common is that they all either explicity
“refer to themselves” or can be “applied to themselves.” Another is that they
involve fundamental ideas in logic or computing. Another is that on some naive
level they lead to a “paradox.”

Consider the first statement, “I am lying,” famously used, of course, by Captain
Kirk and Mr. Spock22 to destroy the leader of a group of robots. This leads to a
paradox: if the speaker is telling the truth, then the speaker is lying (“I am lying”),
but if the speaker is lying, then the speaker is lying that they are lying, meaning
they are telling the truth. Either way we get a contradition.

All the other statements lead to “paradoxes” (of somewhat different types); this
will be discussed in class and the exercises.

Note the similarity with the proof of Cantor’s Theorem 2.8, that takes a map
f : S → Power(S) and constructs the set

T = {s ∈ S | s /∈ f(s)}.
There is no paradox here: although the phrase s /∈ f(s) has a negation, but not a
true self-reference. On the other hand, Russull’s famous paradox considers

T = {S |S is a set with S /∈ S},
and this does lead to a paradox in “naive set theory,” and had people looking for
a type of set theory that avoided this paradox; the usual fix was that formulas
such as “the set of all sets such that etc.” yields a “class” that may not be a set
(intuitively because it may be “too large”). In brief: “S /∈ S” historically created a
paradox and some rethinking of foundations, but “s /∈ f(s)” gives you a (Cantor’s)
theorem.

6. Dealing with Paradoxes

There are a number of approaches to dealing with paradoxes. They include:

(1) Ignore the paradox. Carry on regardless.
(2) Admit the paradox, but claim it doesn’t matter in practice.
(3) State the paradox in very precise terms and consider the consequences.

For example, when Russell pointed out his paradox (6) of the last section, many
mathematicians carried on with whatever they were doing, regardless; however, this
paradox did lead some mathematicians to formulate axioms of set theories where

22Thanks to Benjamin Israel for pointing out an earlier inaccuracy.
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this paradox does not occur. In this course we aim for approach (3), which can lead
to a number of results, such as:

(1) The paradox goes away when things are stated precisely.
(2) The paradox doesn’t go away, and you have to change your theory if you

want to free it of this particular paradox.
(3) The paradox goes away, but only provided that X is true. Then you have

proved that X is true (assuming that you don’t have paradoxes or related
problems in what you are doing).

As examples: the Berry paradox (3) of the last section goes away when things are
stated precisely; Russell’s paradox (6) lead to a rewriting of set theory with “sets”
and “classes” (which includes things “larger than sets”), in which “the set of all
sets such that blah blah blah” is a class but not necessarily a set. The halting
problem, paradox (7), is an example of a “paradox” that is not really a paradox: it
shows you that a certain assumption leads to a “paradox” or “contradiction,” and
hence the assuption is incorrect; so paradox (7) proves that the “halting problem”
cannot be solved by an “algorithm.”

7. Countable Sets

It is conceptually helpful to note that for any alphabet Σ, the set Σ∗ is countably
infinite, while the set Power(Σ∗) is uncountable (therefore “larger”). This gives
another way of understanding that there is no surjection Σ∗ → Power(Σ∗).

This is explained in Section 4.2 of [Sip].

7.1. Countably Infinite Sets.

Definition 7.1. A set S is countably infinite if there is exists bijection N → S. A
set is countable if it is finite or countably infinite; a set is uncountable if it is not
countable.

Example 7.2. For example, the set of integers

Z = {0, 1,−1, 2,−2, 3,−3, . . .}
is countable: indeed, there is a bijection f : N → Z with

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, f(6) = 3, f(7) = −3, . . .

as indicated above; more precisely, f is given by f(k) = (k − 1)/2 if k is odd, and
f(k) = k/2 if k is even. The map n 7→ sn gives a bijection Note that N is a proper
subset of Z.

For finite sets S′ ⊂ S with S′ ̸= S, there can never be a bijection from S′ → S;
hence for infinite sets any such intuition requires some “getting used to.” [We will
recall a famous quote by John von Neumann regarding this.]

Example 7.3. Let Σ = {a}. Then Σ∗ = {ϵ, a, a2, a3, . . .}, and hence the function
f : N → {a}∗ taking n to an−1 is a bijection.

Example 7.4. Let Σ = {a, b}. It is not hard to prove that we may list Σ∗ as an
infinite sequence

s1 = ϵ, s2 = a, s3 = b, s4 = aa, s5 = ab, s6 = ba, s7 = bb, s8 = aaa, . . .

in order of increasing length, and secondarily in lexicographical order (such that
each string in Σ∗ occurs exactly once). Assuming we have proven this, we get a
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map n → sn that is a bijection N → Σ∗. One can similarly prove this for any
alphabet Σ.

Example 7.5. Let S be any countably infinite set. Then there is a bijection S → N
(which is, in particular, a surjection), and hence, by Theorem 3.6 or 3.8 there is no
surjection N → Power(S). Hence Power(S) is uncountable.

Here are some additional examples that we will likely discuss in class.

(1) for any alphabet, Σ, Σ∗ is countably infinite (see above), and therefore (see
above) Power(Σ∗) is uncountable;

(2) the set, Q, of rational numbers is countably infinite;
(3) if S is countable, for any bijection S → T , T is countable; the same holds

with “countable” replaced both times with “uncoutable” (and “finite” and
“countably infinite”);

(4) Cantor’s theorem implies that if S is any infinite set, then Power(S) is
uncountable;

(5) the set R, i.e., of real numbers, is uncountable; this is often proven by
“diagonalization,” which is essentially the same as (or extremely similar
to) the proof of Cantor’s theorem; the set of maps S → {0, 1} has a simple
bijection to the set of all subsets of S, and similarly with {0, 1} replaced by
{no, yes} or any two-element set. See [Sip], Chapter 4.

We will also use some facts about bijections, surjections, and injections. Some of
these are not intuitive, and some reasonably sounding assertions are false or not
necessarily true.

Remark 7.6. If Σ is a fixed alphabet, and S ⊂ Σ∗, then S is either finite or
countably infinite (we will likely discuss this in class, at least in “naive terms”).
For all infinite S ⊂ Σ∗, is there necessarily a Python program that can compute a
bijection g : N → S ? [Exercise.]

Remark 7.7. If S ⊂ N and there is no bijection S → N, then we will show that S
is finite. Say that S ⊂ Power(N) and that there is no bijection S → Power(N), is
there necessarily true that S is countable? Is the answer obvious?23.

8. Undecidability, Acceptance, Halting, and Delightful Programs

In Section 4, we proved that in the context of Python programs,

T = {p ∈ Σ∗
ASCII | p /∈ LanguageRecBy(p)}

is unrecognizable, and concluded that (1) NON-ACCEPTANCE is unrecognizable,
and therefore (2) ACCEPTANCE is undecidable.

In this section we give the more common argument that shows (1) ACCEP-
TANCE is undecidable, and therefore (2) NON-ACCEPTANCE is unrecognizable;
this is done in Section 4.2 of [Sip].

However, our proof that ACCEPTANCE is undecidably is different — at least
in spirit — from the usual proof in that:

23The assumption that S is countably under these conditions is called the continuum hypoth-

esis; it was a long-standing open problem if the standard set theory axioms (i.e., ZFC, which

assumes the Axiom of Choice) imply the continuum hypothesis; in roughly 1963, Paul Cohen
settled this negatively, using forcing arguments to prove that the continuum hypothesis is inde-

pendent of ZFC.
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(1) We define a delightful program to be any program that recognizes ACCEP-
TANCE; such programs exist in many situations and can be built from
universal programs, e.g., universal Turing machines in the context of Tur-
ing machines, universal Python programs (or certain Python debuggers) in
the context of Python programs, etc.

(2) For any delightful program, we construct an input on which the delightful
program “loops” in the sense that it does not (halt and) answer “yes” or
“no.”

(3) As an immediate consequence, the ACCEPTANCE problem is undecidable.

Since most of the work in proving (1)–(3) is in part (2), we spend most of our time
proving a “true result” about certain programs — delightful programs — which do
exist, and derive the undecidability of the acceptance problem as an immediate
consequence24. However, our proof of (2) above is essentially the usual argument,
i.e., that in Section 4.2 of [Sip].

It will be convenient for us to prove the above theorem in a very general context,
especially when we later discuss oracle machines. We call the general context a
yes/no/loops systems, which is a generalization of the yes/no tables of Sections 2
and 3.

In the second subsection we do the above restricted to the context of Turing
machines; this subsection closely resembles part of Section 4.2 of [Sip].

8.1. Delightful Programs and Undecidability in Yes/No/Loops Systems.

Definition 8.1. By a yes/no/loops system we mean a triple S = (P, I, R,EncodeP,EncodeBoth)
such that

(1) P, I are sets—the programs and inputs;
(2) R : P × I → {yes, no, loops} and is called the result function,
(3) EncodeP is an injection P → I called the program encoding,
(4) EncodeBoth is an injection P ×I → I called the program and input encod-

ing.

For brevity we write ⟨p⟩ for EncodeP(p), and ⟨p, i⟩ for EncodeBoth(p, i). [There is
no ambiguity since the comma “,” distinguishes between ⟨p⟩ and ⟨p, i⟩.] Similarly,
for brevity we use the notation S =

(
P, I, R, ⟨·⟩, ⟨·, ·⟩

)
for a yes/no/loops system.

Notice that Section 4.2 of [Sip] uses the same notation ⟨ ⟩ and ⟨ , ⟩.

Example 8.2. Fix some conventions regarding valid Python programs, such that
no Python program contains a symbol σ0 ∈ ΣASCII. Then we may take P = I =
Σ∗

ASCII, where ⟨p⟩ is p itself, and set ⟨p, i⟩ = pσ0i.

Example 8.3. Say that in the above example all symbols σ0 ∈ ΣASCII can occur in
a valid Python program. Then we can no longer take ⟨p, i⟩ to pσ0i, and the encoding

⟨p, i⟩ needs a way to describe when p ends and i begins (i.e., the map ⟨p, i⟩ def
= pσ0i

24Here we acknowledge a discussion with Yuval Peres, where Yuval emphasized to us the merit
of proving a ”true result” and showing a non-existence theorem as a corollary. For example, one
can prove that that there are infinitely many primes p1 = 2, p2 = 3, p3 = 5, . . . by assuming

that only finitely many exist, say pi is the last, and considering p1 . . . pi + 1. But it is not much
harder to show that

∑
i 1/pi = ∞ (I know of two similar proofs), which is a “true result,” and

immediately implies that there are infinitely many primes.
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may no longer be an injection). In this case, for any string s = σ1 . . . σk of length
k, define Duplex(s) to be the string of length 2k given by

Duplex(s) = σ1σ1σ2σ2σ3 . . . σk−1σkσk.

Let ⟨p, i⟩ = Duplex(p)ab i: we can detect when p ends, and recover p as p =
σ1σ3 . . . σ2m−3 for the smallest m ∈ N such that σ2m−1 ̸= σ2m.

Example 8.4. We can restrict the discussion of Turing machines to “standardized
Turing machines” as discussed in class; in this way, and Turing machine, M , can be
expressed a string ⟨M⟩, over a fixed alphabet, such as {0, 1,#} (with # a separator
and 0, 1 used to express natural numbers); similarly inputs, i, become a subset
of {0, 1,#}∗. Hence we set P = I = {0, 1,#}∗, and if p ∈ P represents a valid
Turing machine, and i ∈ I is a valid input to p it makes sense of whether or not p
accepts i (in which case R(p, i) = yes), or p rejects i (in which case R(p, i) = no),
or something else happens to p on input i (in which case R(p, i) = loops, although
this does not imply that p is necessarily stuck on some infinite loop). If p is not a
valid Turning machine description, or i is not a valid input to p, one can adapt the
convention that R(p, i) is no, although often this convention does not matter.

Example 8.5. Let Σ be an alphabet, and A ⊂ Σ∗. Then one can speak of a
“Turing machines with oracle A,” that for a fixed A gives a yes/no/loops system.
Similarly for “Python program with oracle A,” etc.

We now define recognizable languages in the same way as we did for yes/no
systems; however, there is a new notion of decidable languages.

Definition 8.6. Let S = (P, I, R, ⟨·⟩, ⟨·, ·⟩) be a yes/no/loops system. For each
p ∈ P, the language recognized by p is defined to be

LanguageRecBy(p) = {i ∈ I | R(p, i) = yes} ⊂ I;

we say a subset L ⊂ I is recognizable (in the systems S = (P, I, R) if L =
Recgonizes(p) for some p ∈ P. We define

ACCEPTANCES
def
= {⟨p, i⟩ | R(p, i) = yes},

and

HALTS
def
= {⟨p, i⟩ | R(p, i) ∈ {yes, no}}.

By a decider we mean a p ∈ P such that R(p, i) ∈ {yes, no} for all i ∈ I; we say
that L ⊂ I is decidable if some decider recognizes L.

We also define the negation function, denoted ¬, as

¬no = yes, ¬yes = no, ¬loops = loops;

we easily see that ¬¬v = v for all v ∈ {yes, no, loops}.

Definition 8.7. Let S =
(
P, I, R, ⟨·⟩, ⟨·, ·⟩

)
be a yes/no/loops system. If p ∈ P,

we call a q ∈ P a mysterious counterpart of p if

∀m ∈ P, R
(
q, ⟨m⟩

)
= ¬R

(
p,
〈
m, ⟨m⟩

〉)
.

We say that a p ∈ P is delightful if is recognizes ACCEPTANCES .
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For example, a universal Python program is delightful in this context, as is a
universal Turing machine in the context of Turing machines. Of course, a delightful
program can try to determine if p halts on input i by a number of methods, and
if none of these work (and they all eventually terminate) then afterwards one can
run a universal machine.

Algorithmically, it is straightforward to take any Turing machine (any Python
program, etc.), p, and construct a mysterious version of p, by (1) checking if the
input is of the form ⟨m⟩ for some m ∈ P, then (2) running p on input ⟨m, ⟨m⟩⟩,
then (3) negating the answer. This is true in the above examples, and true in similar
examples when ⟨⟩ and ⟨, ⟩ and their inverses can be computed by some algorithm.

Hence the term mysterious does not refer to the difficulty in its construction,
but rather in the somewhat mysterious theorem it proves.

Theorem 8.8. Let S = (P, I, R, ⟨·⟩, ⟨·, ·⟩) be a yes/no/loops system. Say that
h ∈ P is a delightful program that has a mysterious counterpart d ∈ P. Then:

(1) R(d, ⟨d⟩) = loops; and
(2) R(h, ⟨d, ⟨d⟩⟩) = loops.

In particular, h is not a decider.

Proof. If (1) is not true, then R(d, ⟨d⟩) is either yes or no; we will derive a contra-
diction in either case (very similar to Cantor’s theorem): since

∀m ∈ P, R(d, ⟨m⟩) = ¬R(h, ⟨m, ⟨m⟩⟩),

we have

(22) R(d, ⟨d⟩) = ¬R(h, ⟨d, ⟨d⟩⟩).

Assume that R(d, ⟨d⟩) = yes: then R(h, ⟨d, ⟨d⟩⟩) = ¬yes = no, and since h
recognizes ACCEPTANCE, R(d, ⟨d⟩) cannot equal yes. But this contradicts the
assumption that R(d, ⟨d⟩) = yes. We argue similarlly if we assume R(d, ⟨d⟩) = no.
Hence R(d, ⟨d⟩) = loops.

(2) follows from (1) and (22). □

Corollary 8.9. Let S = (P, I, R, ⟨·⟩, ⟨·, ·⟩) be a yes/no/loops system such that each
program has a mysterious counterpart. Then any delightful program, d, must loop on
input

〈
h, ⟨h⟩

〉
where h is a mysterious version of d. In particular, ACCEPTANCES

is undecidable.

8.2. Delightful Turing Machines and Undecidability.

Definition 8.10. We say that a Turing machine is delightful if it recognizes the
language

ATM = ACCEPTANCETM = {⟨M, i⟩ | M accepts i}.

For example, a universal Turning machine is delightful. As another example,
given the input ⟨M, i⟩, you could run certain subroutines to determine if M accepts
i, and if these subroutines do not succeed, then run a universal Turing machine:
for example, your subroutine might check whether or not ⟨M⟩ is a valid Turing
machine, and, if so, whether or not its δ-function ever transitions to the state
qaccept. There are, of course, more sophisticated tests to try—a lot of practical
algorithms (excluding some video games and electronic media) have a structure
that makes it easy to verify that they always halt.
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There might also be some algorithm that is delightful, i.e., that recognizes
ACCEPTANCETM, for reasons that we do not understand (or are, moreover, un-
provable).

By the definition of how a Turing machine works, on any input, a Turing machine
computation results in either: (1) halting in qaccept, (2) halting in qreject, or (3) never
halting. We define the opposite result of (1) to be (2), and of (2) to be (1), and of
(3) to be (3) (hence the opposite result of never halting is, again, never halting).

Definition 8.11. If H is any Turing machine, we say that D is a mysterious form
of H if for all inputs to D of the form ⟨M⟩, the result of D is the opposite result
of H on input ⟨M, ⟨M⟩⟩. [Hence we don’t require anything about how D behaves
on inputs that are not of the form ⟨M⟩.]

You should convince yourself that there is a mysterious form of any Turing
machine. The term mysterious refers to the theorem below.

Theorem 8.12. Let H be a delightful Turing machine, and D a mysterious form
of H. Then:

(1) D on input ⟨D⟩ must loop (i.e., never terminates in either qaccept or qreject);
and

(2) H on input ⟨D, ⟨D⟩⟩ must loop.

Proof. Assume that D on input ⟨D⟩ terminates in qaccept; let us derive a contradici-
ton: since D is a mysterious form of H, H rejects ⟨D, ⟨D⟩⟩. But since H recognizes
the acceptance problem, this implies that D does not accept ⟨D⟩, which contradicts
our assumption.

Similarly the assumption that D terminates in qreject results in a contradiction.
HenceD loops on input ⟨D⟩, proving statement (1) of the theorem. Statement (2)

follows immediately from (1) and the fact that D is a mysterious version of H. □

Notice that the above theorem is almost identical to the standard proof that
the acceptance problem is undecidable (see also Section 4.2 of [Sip]); however, this
theorem proves a result about Turing machines, H, that actually exist, rather than
merely proving that a certain type of Turing machine does not exist.

Corollary 8.13. The acceptance problem is undecidable (in the context of Turing
machines).

Proof. If the acceptance problem were decided by H, then H would not loop on
any input, contradicting Theorem 8.12. □

9. EXERCISES

The first subsection of exercises are sample problems with solutions, to indicate
the level of detail expected in homework solutions.

Subsections 9.5 and 9.6 will not be covered until we discuss Turing machines in
Chapter 3 of [Sip].

9.1. Sample Exercises with Solutions. People often ask me how much detail
they need in giving explanations for the homework exercises. Here are some exam-
ples. The material in brackets [like this] is optional.
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Sample Question Needing a Proof: If f : S → T and g : T → U are sur-
jective (i.e., onto) is g ◦ f (a map S → U) is necessarily surjective? Justify
your answer.

Answer: Yes.
[To show that g ◦ f is surjective, we must show that if u ∈ U , then there

is an s ∈ S such that (g ◦ f)(s) = u.]
If u ∈ U , then since g is surjective there is a t ∈ T such that g(t) = u.

Since f is surjective, there is an s ∈ S such that f(s) = t. Hence

(g ◦ f)(s) = g(f(s)) = g(t) = u.

Therefore each u ∈ U is g ◦ f applied to some element of S, and so g ◦ f is
surjective.

Sample Question Needing a Counterexample: If f : S → T is injective,
and g : T → U is surjective, is g ◦ f is necessarily injective? Justify your
answer.

Answer: No.
[To show that g ◦f is not necessarily injective, we must find one example

of such an f and g where g ◦ f is not injective.]
Let S = T = {a, b} and U = {c}; let f : S → T be the identity map (i.e.,

f(a) = a and f(b) = b), and let g : T → U (there is only one possible g in
this case) be given by g(a) = g(b) = c.

Then f is injective (since f(a) ̸= f(b)) and g is surjective, since U = {c}
and c = g(a)). However g ◦ f is not injective, since (g ◦ f)(a) = c =
(g ◦ f)(b).

Injectivitiy and Surjectivity of a Given Map: If f : N → N is given by
f(n) = 2n+ 5, is f injective? Is f surjective?

Answer: f is injective, because if f(n1) = f(n2), then 2n1 +5 = 2n2 +5
and therefore n1 = n2.

[Hence f maps distinct values of N to distinct values of N, i.e., n1 ̸= n2

implies that f(n1) ̸= f(n2).]
f is not surjective, because there is no value n ∈ N such that f(n) = 1: if

such an n existed, then 2n+ 5 = 1 and so n = −2 which is not an element
of N.

Level of detail for Cantor’s Theorem Exercise: Let S = {1, 2, 3, 4} and
f : S → Power(S) be given by f(1) = {1, 2}.
(1) Given this information, what can you say about What is T = {s | s /∈

f(s)} ?
(2) Give a direct argument (without using Cantor’s theorem) that f(1) ̸=

T .

Answer:
(1) Since 1 ∈ f(1), it is not true that s /∈ f(s) for s = 1, and hence 1 /∈ T .

(You could write this slightly shorter: since 1 ∈ f(1), it is not true
that 1 /∈ f(1), and hence 1 /∈ T .)

(2) Since 1 /∈ T but 1 ∈ f(1), we have T ̸= f(1).
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9.2. Exercises for Sections 2–3: Cantor’s Theorem, its Generalizations,
and Recognizable/Decidable Languages.

Exercise 9.2.1. Let S = {1, 2, 3} and f : S → Power(S) be given by

f(1) = {1, 2}, f(2) = {1, 3}, f(3) = {2, 3}.
What is T = {s | s /∈ f(s)} ?

Exercise 9.2.2. Let S = {1, 2, 3} and f : S → Power(S) satisfy f(1) = {1, 2}. Let
T = {s | s /∈ f(s)}.
9.2.2(a) Without using Cantor’s theorem, give a direct argument to show that T ̸=

{1, 2} (knowing only that f(1) = {1, 2}).
9.2.2(b) Without any additional information, can you determine whether or not

2 ∈ T ? To answer this question, you should either (1) prove that 2 ∈ T ,
(2) prove that 2 /∈ T , or (3) give an example of an f such that 2 ∈ T and
another example where 2 /∈ T .

Exercise 9.2.3. Let S = {a, b, c} and let f : S → Power(S) any function such that

a /∈ f(a), b /∈ f(b), c /∈ f(c).

9.2.3(a) Explain why f(a) cannot be all of S (argue directly, without appealing to
Cantor’s theorem).

9.2.3(b) Similarly, explain why none of f(b), f(c) equal S.
9.2.3(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

Exercise 9.2.4. Let S = {a, b, c} and let f : S → Power(S) any function such that

a /∈ f(a), b ∈ f(b), c /∈ f(c).

9.2.4(a) Explain why f(b) cannot equal {a, c} (argue directly, without appealing to
Cantor’s theorem).

9.2.4(b) Similarly, explain why none of f(a), f(c) can equal {a, c}.
9.2.4(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

Exercise 9.2.5. Let S = {1, 2, 3} and f : S → Power(S) be given some map. Can
it be that

T = {s | s ∈ f(s)}
lies in the image of f? [Either give an example of such an f , or explain why it
doesn’t exist. You should give an explanation “from scratch,” without relying on
Cantor’s theorem or any other result from class or these notes.]

Exercise 9.2.6. Let f : A → B and g : B → C be functions on sets A,B,C.
Consider the composition gf : A → C of f and g (you may have seen gf written as
g ◦ f for clarity).

9.2.6(a) Say that gf is injective. Is f necessarily injective? Explain (give a proof
that f is injective or give examples of f, g where f is not injective).

9.2.6(b) Say that gf is injective. Is g necessarily injective?
9.2.6(c) Say that gf is injective and, in addition, |B| ≤ |A| and A,B are finite sets.

Is g necessarily injective?
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9.2.6(d) Say that gf is surjective. Is f necessarily surjective?
9.2.6(e) Say that gf is surjective. Is g necessarily surjective?

Exercise 9.2.7. Let f : N → Power(N) be given by

f(n) = {m ∈ N |m+ n/2 is a perfect square} = {m ∈ N |m+ n/2 = k2 for some k ∈ N}

What is T = {s | s /∈ f(s)} ?

Exercise 9.2.8. A department has 3 profs, P = {A,B,C}. It is given that

Prof. A: thinks that no one in the department works too much, and
Prof. C: thinks that everyone in the department works too much.

For x ∈ P , let

f(x) = {y ∈ P | x thinks that y works too much.}

9.2.8(a) What does the above information tell you about f ?
9.2.8(b) What can you say about

T = {s ∈ P | s thinks that s does not work too much},

and how do you know that T ̸= f(A) and T ̸= f(C)?
9.2.8(c) Now say that, in addition, you know that

Prof. B: thinks that Profs. A and C work too much, but not themself.
What is

T = {s ∈ P | s thinks that s does not work too much}?

Exercise 9.2.9. A department has 3 profs, P = {A,B,C}. It is given that

Prof. A: thinks that Prof. B works too much,
Prof. B: thinks that Prof. C works too much, and
Prof. C: thinks that Prof. A does not work too much.

Find a bijection g : P → P such that

T = {s ∈ P | s thinks that g(s) does not work too much}

can be determined. Then state this as an instance of generalized Cantor’s theorem.

Exercise 9.2.10. A department has 3 profs, P = {A,B,C}. It is given that

Prof. A: thinks that no one in the department works too much,
Prof. B: thinks that Profs. A and C work too much, but not themself, and
Prof. C: thinks that everyone in the department works too much.

Describe

T = {s | s thinks that s does not work too much}.
Is there a prof who thinks that the elements of T work too much, but not the
elements of P \ T?

Exercise 9.2.11. A department has 3 profs, P = {A,B,C}, who each have access
to three foods, F = {hummus, falafel,pita}. It is given that

Prof. A and B: like and dislike the same foods, and
Prof. C: likes hummus and falafel, but dislikes pita.
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Can you descibe a subset

T ⊂ {hummus, falafel,pita}
such that no prof likes the foods in T , and dislikes the other foods (i.e., those in
F \ T )? Exaplain.

Exercise 9.2.12. Complete the proof of Theorem 3.8.

Exercise 9.2.13. The Rose family has four people: Johnny, Moira, David, and
Alexis. Let R be the set consisting of these four people, i.e.,

R = {Johnny, Moira, David, Alexis}.
It is given that:

Johnny: loves everyone;
Moira: loves (and only loves) Jonny and Moira;
David: loves no one; and
Alexis: loves (and only loves) David and Alexis.

Let

T = {r ∈ R | r does not love themself} = {r ∈ R | r does not love r},
i.e., T is the subset of R that consists of each person who does not love themself 25.

9.2.13(a) What is T? In other words, list the elements between braces ({, }).
9.2.13(b) Explain why if David does not love themself, then the set T cannot equal

the set of people whom David loves, i.e., the empty set, regardless of whom
anyone else loves.

Exercise 9.2.14. Same as Exercise 9.2.13, with the modification that

Johnny: loves (and only loves) Johnny and Moira;
Moira: loves everyone;
David: loves no one; and
Alexis: loves no one.

Exercise 9.2.15. Same as Exercise 9.2.13, with the modification that no one loves
anyone.

Exercise 9.2.16. Consider the setting in Exercise 9.2.13, with the modification
that everyone loves everyone.

9.2.16(a) What is T?
9.2.16(b) Explain why if David loves themself, then the set T cannot equal the set

of people whom David loves, i.e., all of R, regardless of whom anyone else
loves.

Exercise 9.2.17. A village has five residents: Martin, Short, Gomez, Colbert, and
Batiste. Let V be the set consisting of these five people, i.e.,

V = {Martin, Short, Gomez, Colbert, Batiste}.
It is given that:

Martin: thinks that Martin and Short are old, and the rest are not old;
Short: thinks that Martin is old, and the rest are not old;

25We thank Sophie MacDonald who pointed out to us this singular, gender neutral form in
Fall 2021.
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Gomez: thinks that Martin, Short, and Colbert are old, and the rest are not
old;

Colbert: thinks that Martin and Short are old, and the rest are not old; and
Batiste: thinks that no one is old.

S = {v ∈ V | v does not think of themself as old},

9.2.17(a) What is S?
9.2.17(b) Explain why if Martin thinks of themself as old, then S does not equal the

subset of V whom Martin thinks are old, regardless of what anyone else
thinks.

9.2.17(c) Explain why if Batiste thinks that no one is old, then S does not equal the
subset of V whom Batiste thinks are old, regardless of what anyone else
thinks.

Exercise 9.2.18. Consider the same situation as Exercise 9.2.17. Let f : V → V
be the function (map, morphism, etc.) given by:

f(Martin) = Short, f(Short) = Gomez, f(Gomez) = Colbert,

f(Colbert) = Batiste, f(Batiste) = Martin.

(Notice that f is a bijection, and therefore has an inverse function, f−1.) Let

S = {v ∈ V | v does not think of themself as old},

and

S′ = {v ∈ V | v does not think of f(v) as old}.

9.2.18(a) Explain why if Gomez does not think that Gomez, themself, is old, then
the set S above does not equal the set of people whom Gomez thinks are
old, regardless of what anyone else thinks.

9.2.18(b) Explain why if Gomez thinks that Colbert is old, then the set S′ above
does not equal the set

S′′ = {v ∈ V | v thinks of f(v) as old},

regardless of what anyone else thinks.
9.2.18(c) Explain why if Batiste thinks that no one is old, then both sets S and S′

above do not equal the set of people whom Batiste thinks are old, regardless
of what anyone else thinks.

9.2.18(d) If f : V → V were any other function—not necessarily a bijection—would
part (c) still be true?

Exercise 9.2.19. Let L ⊂ Σ∗
ASCII be decidable by a Python program. Is L neces-

sarily recognizable? Is Σ∗
ASCII \ L necessarily recognizable?

Exercise 9.2.20. Let L ⊂ Σ∗
ASCII be recognizable by a Python program. Is L

necessarily decidable? Is Σ∗
ASCII \ L necessarily recognizable?

Exercise 9.2.21. Let

L = {p ∈ Σ∗
ASCII | p is a valid Python program that halts on at least three distinct inputs to p}.

Is p decidable? Is p recognizable?
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Exercise 9.2.22. Which of the following maps are injections (i.e., one-to-one), and
which are surjections (i.e., onto)? Justify your answer (briefly); the justification
should look like the answers to similar questions in Subsection 9.1.

9.2.22(a) f : N → N given by f(x) = x+ 1.
9.2.22(b) f : N → N given by f(x) = x2.
9.2.22(c) f : Z → Z given by f(x) = x+ 1.
9.2.22(d) f : Z → Z given by f(x) = x2.

Exercise 9.2.23. If f : S → T and g : T → U are both injective (i.e., one-to-one),
is g ◦f (which is a map S → U) necessarily injective? Justify your answer (briefly);
the justification should look like the answers to similar questions in Subsection 9.1.

Exercise 9.2.24. Let

S = {Oppenheimer,Barbie, 2001,Encounters}, S′ = {A,B,C,D}.
Say that:

(1) Student A has seen the movie “Oppenheimer;”
(2) Student B has not seen the movie “Barbie;”
(3) Student C has not seen the movie “Encounters at the End of the World;”
(4) Student D has seen the movie “2001: A Space Odyssey;” and
(5) You don’t have any additional information.

For each x ∈ S′, let f(x) be the movies that Student x has seen; hence f is a
function f : S′ → Power(S).

9.2.24(a) What can you assert about f(A)? What do you NOT know about f(A)?
9.2.24(b) Give a surjection g : S → S′ such that for each x ∈ S you can answer the

question “is x in f(g(x))?”
9.2.24(c) Say that x is a student, perhaps one of A,B,C,D, but perhaps a different

student. Construct a subset T ⊂ S such that if x seen the movies in T and
has not seen the movies not in T , then x cannot equal any of A,B,C,D.

Exercise 9.2.25. Let

S = {Oppenheimer,Barbie, 2001,Encounters}, S′ = {A,B,C,D}.
Say that you know that:

(1) the movie “Oppenheimer” was seen by A,B,C and not by D;
(2) the movie “Barbie” was seen by A,C and not by B,D;
(3) the movie “2001: A Space Odyssey” was seen by C;
(4) the movie “Encounters at the End of the World” was not seen by C.

For each x ∈ S′, let f(x) be the movies that Student x has seen; hence f is a
function f : S′ → Power(S). With only the above information, is there a surjection
g : S → S′ such that for each x ∈ S you can answer the question “is x in f(g(x))?”
Explain. [Hint: It may help to draw a graph/diagram with the elements of S on
the left, elements of S′ on the right, and an arrow from s ∈ S to s′ ∈ S′ if you
can answer the question “was s seen by s′?” However, since each of S, S′ has
only 4 elements, you can probably solve this without a digram, say by considering
A,B,D.]

Exercise 9.2.26. Are the following statements true or false? If they are true,
explain why; if false, give a counterexample. In these statements, Σ = ΣASCII, and
L1, L2 ⊂ Σ∗ = Σ∗

ASCII are subsets.
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9.2.26(a) If L1 is recognizable, then L1 is decidable.
9.2.26(b) If L1 is unrecognizable, then L1 is undecidable.
9.2.26(c) If L1 is decidable, then L1 is recognizable.
9.2.26(d) If L1 is undecidable, then L1 is unrecognizable.
9.2.26(e) If L1, L2 are decidable, then L1 ∪ L2 is decidable.
9.2.26(f) If L1, L2 are undecidable, then L1 ∪ L2 is undecidable.
9.2.26(g) If L1, L2 are recognizable, then L1 ∪ L2 is recognizable.
9.2.26(h) If L1, L2 are unrecognizable, then L1 ∪ L2 is unrecognizable.
9.2.26(i) If L1 is decidable, then Σ∗ \ L1 is decidable.
9.2.26(j) If L1 is recognizable, then Σ∗ \ L1 is recognizable.
9.2.26(k) If L1 is recognizable, then L1 is decidable.
9.2.26(l) If L1, L2 are decidable, then L1 \ L2 is decidable.

9.2.26(m) If L1, L2 are recognizable, then L1 \ L2 is recognizable.

Exercise 9.2.27. For each of the following languages, L, say whether or not L is
decidable and whether or not it is recognizable. Here σ0 is some element of ΣASCII

such that no valid Python program contains σ0 (in class in 2024 we imagined this
to be σ0 equal to ⟨FS⟩, the “file separator” in ΣASCII). Justify your answer (no
points are given for an answer without explanation).

9.2.27(a) The language of strings pσ0i such that p accepts i after running for 10 steps.
9.2.27(b) The language of strings pσ0i such that p rejects i.
9.2.27(c) The language of strings pσ0i such that p halts on input i.
9.2.27(d) The language of strings pσ0i such that p accepts or loops on input i.
9.2.27(e) The language of valid Python programs, p, such that p rejects at least one

input, i.e., at least one i ∈ Σ∗
ASCII.

9.2.27(f) The language of valid Python programs, p, such that p accepts at least two
values of i ∈ Σ∗

ASCII.
9.2.27(g) The language of valid Python programs, p, such that p accepts all its inputs.

Exercise 9.2.28. 26 Let i1, i2, . . . be a sequence elements of Σ∗
ASCII such that each

element of Σ∗
ASCII appears exactly once in this sequence.27 Say that p is a Python

program, and we want to know if p accepts at least one input. We can do this by
the following algorithm:

Phase 1: simulate p for one step on input i1;
Phase 2: simulate p for two steps on i1 and one step on i2;
Phase 3: simulate p for three steps on i1, for two steps on i2, and for one

step on i3;
etc.:
Phase k: on the k-th phase, for j = 1, 2, . . . , k we simulate p for k − j + 1

steps on ij ;

Consider the total number of steps run in each phase; for example, Phase 3 has
6 steps total, and the total number of steps in Phases 1 to 3 is 1 + 3 + 6 = 10.
(Our convention is that when you simulate p on an input for some number of steps,

26This question arose in class, September 2023; we thank, in particular, Vishnu Yadavalli for
the question, and Ellen Lloyd for an algorithm given below.

27In CPSC 421/501, we typically do this by listing the strings according to their length (and
lexicographical order for strings of equal length), so that i1 = ϵ (which is the single string of length
0), i2, . . . , i129 are the elements of ΣASCII, i130, . . . , i1+128+1282 are the elements of Σ2

ASCII, etc.
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you forget all previous simulations of p on any input.) Say that p accepts only one
input, namely iℓ, and that p requires m program steps to do so.

9.2.28(a) Show that the total number of steps until the above algorithm stops (i.e.,
when it detects that p accepts iℓ after m steps) is exactly

(1/6)(ℓ+m)3 +O(1)(ℓ+m)2,

where the O(1) refers to an “order 1 term,” i.e., a function of ℓ,m that is
bounded by a constant for ℓ + m sufficiently large. By exactly we mean
that (1/6)(ℓ + m)3 + O(1)(ℓ + m)2 is both a lower bound and an upper
bound (for different values of O(1)).

9.2.28(b) Say that we use the following variant: for all k ∈ N, the k-the phase consists
of simulating k steps of p on each of i1, . . . , ik. Show that the total number
of steps needed is exactly

(1/3)(max(ℓ,m))3 +O(1)(max(ℓ,m))2.

9.2.28(c) Say that we use the following variant: for all k ∈ N, the k-the phase
consists of simulating 5k steps of p on each of i1, . . . , i5k. Show that the
total number of steps needed is exactly c(max(ℓ,m))3+O(1)(max(ℓ,m))2

for some constant, c. What is c ?
9.2.28(d) Using the previous part, for any constant c > 0, give a variant of the above

algorithm that takes at most c(max(ℓ,m))3 +O(1)(max(ℓ,m))2 steps.

Exercise 9.2.29. Continuing with the setup and notation as in the previous prob-
lem:

9.2.29(a) Describe a variant of the above algorithm that uses no more than
O(1)(max(ℓ,m))2 steps.

9.2.29(b) Prove that there is a constant c > 0 such that any such algorithm requires
at least c(max(ℓ,m))2 steps for max(ℓ,m) sufficiently large, and give such
a constant, c. [This implies that there is a c > 0 for which this holds for
all ℓ,m ∈ N, but it is simpler to find a c that holds when max(ℓ,m) is
sufficiently large.]

Exercise 9.2.30. A department has 3 profs, P = {A,B,C}, who each have access
to three foods, Q = {hummus, falafel,pita}. It is given that

Prof. A: likes pita, and dislikes falafel (and we don’t know about hummus),
Prof. B: likes falafel (and we don’t know about pita and hummus), and
Prof. C: likes hummus and falafel, but dislikes pita.

9.2.30(a) Write a yes/no table for the question “does Prof. p like food q” (ranging
over all p ∈ P and q ∈ Q)?

9.2.30(b) Describe a surjection g : Q → P such that for all q ∈ Q one can answer the
question “does Prof. g(q) like q?”

9.2.30(c) Use g and Theorem 3.8 to give a

T ⊂ {hummus, falafel,pita}

such that no prof likes the foods in T , and dislikes the other foods (i.e.,
those in Q \ T ).



UNCOMPUTABILITY IN CPSC421/501 43

Exercise 9.2.31. Consider the setting of Exercise 9.2.13. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 9.2.32. Consider the setting of Exercise 9.2.14. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 9.2.33. Consider the setting of Exercise 9.2.15. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 9.2.34. Consider the setting of Exercise 9.2.16. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 9.2.35. One sometimes defines a universal program to be a program
that recognizes ACCEPTANCE in a given context (e.g., Python programs, Duck
programs, Turing machines, etc.) (this is a narrower sense of a universal Python
program that we described in class). Since no valid Duck program can contain the
letter Q, let us set σ0 = Q and define

ACCEPTANCEDuck = {pσ0i | p is a valid Duck program that accepts i}.

9.2.35(a) Give strings p1, p2, i1, i2 such that p1σ0i1 and p2σ0i2 have the same length,
but

p1σ0i1 ∈ ACCEPTANCEDuck

and
p2σ0i2 /∈ ACCEPTANCEDuck.

9.2.35(b) Use part (a) to show that there is no Duck program p such that
LanguageRecByDuck(p) = ACCEPTANCEDuck.

Exercise 9.2.36. For each i ∈ Σ∗
ASCII and p ∈ Σ∗

ASCII, we defined what it means
for p to be a valid Duck program, and whether or not “p accepts i” (in the context
of Duck programs). Now say that “p rejects i” if p does not accept i. Hence for
each i ∈ Σ∗

ASCII and p ∈ Σ∗
ASCII, p either accepts i or rejects i (we do not allow p to

“loop” on i). Are the following statements true or false? If they are true, explain
why; if false, give a counterexample. In these statements, Σ = ΣASCII, σ0 = ⟨FS⟩,
and L1, L2 ⊂ Σ∗ = Σ∗

ASCII are subsets.

9.2.36(a) If L1 is Duck-recognizable, then L1 is Duck-decidable.
9.2.36(b) If L1 is Duck-decidable, then Lcomp

1 = Σ∗
ASCII \ L1 is Duck-decidable.

9.2.36(c) If L1, L2 are Duck-decidable, then L1 ∪ L2 is Duck-decidable.
9.2.36(d) If L1, L2 are Duck-decidable, then L1 \ L2 is Duck-decidable.
9.2.36(e) If L1, L2 are Duck-undecidable, then L1 ∪ L2 is Duck-undecidable.
9.2.36(f) If L1, L2 are Duck-undecidable, then L1 \ L2 is Duck-undecidable.
9.2.36(g) REJECTIONDuck is Duck-decidable, where

REJECTIONDuck = {pσ0i | p is a valid Duck program that rejects i}
(see the previous exercise for a similar question).

9.2.36(h) REJECTIONDuck (defined in part (g)) is Python-decidable.
9.2.36(i) REJECTIONDuck ∪ACCEPTANCEDuck is Duck-decidable.
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9.2.36(j) If L1 is Duck-decidable, then L1 is Python-decidable.
9.2.36(k) If L1 is Duck-decidable, then Lcomp

1 = Σ∗
ASCII \ L1 is Python-decidable.

Exercise 9.2.37. We often use the following fact to produce undecidable lan-
guages: “if L is unrecognizable, then L and Lcomp = Σ∗ \ L are undecidable.” Is
the converse true?28

Exercise 9.2.38. Show that

L = {q | q is a valid Python program that accepts none of its inputs}

is unrecognizable in the following way: we know that NON-ACCEPTANCE is
unrecognizable; hence it suffices to show we can use a recognizer for L to build a
recognizer for NON-ACCEPTANCE. Given a string pσ0j where p is a valid Python
program, build a program q such that q ∈ L iff pσ0j ∈ NON-ACCEPTANCE.
What is your procedure for building q from pσ0j? [Hint: You could do something
similar to Example 4.32.]

Exercise 9.2.39. Show that

L = {q | q is a valid Python program that accepts all of its inputs}

is unrecognizable. [Hint: Reduce NON-ACCEPTANCE to L: given pσ0i, let q be
the program that on input j simulates p on input i for |j| steps (using a universal
Python program) and takes an appropriate action based on the result.]

Exercise 9.2.40. Show that

L = {q | q is a valid Python program that accepts exactly three of its inputs}

is unrecognizable. [Hint: you can modify slightly the construction of q from pσ0j
in Exercise 9.2.38.]

Exercise 9.2.41. Show that

L = {pσ0q | p and q are valid Python programs that recognize different languages},

is unrecognizable; you may use the result in any of Example 4.32, Exericse 9.2.38,
or Exericse 9.2.39. [Hint: you can take p be a very simple program.]

Exercise 9.2.42. Show that

L = {pσ0q | p and q are valid Python programs that recognize the same language}

is unrecognizable; you may use the result in any of Example 4.32, Exericse 9.2.38,
or Exericse 9.2.39. [Hint: you can take p be a very simple program.]

Exercise 9.2.43. Show that

L = {pσ0q | p and q are valid Python programs that both accept some i ∈ Σ∗
ASCII}

is undecidable but recognizable; you may use the result in any of Example 4.32,
Exericse 9.2.38, or Exericse 9.2.39. [Hint: you can take p be a very simple program.]

28This question was posed in class, 2024, by Amin Fahiminia.
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9.3. Paradox Exercises.

Exercise 9.3.1. Consider Paradox 3 of Section 5. [This is usually called the “Berry
Paradox,” although likely due to Russell; feel free to look it up somewhere.] The
following exercise is giving a simpler version of this “paradox.”

9.3.1(a) Let W be the four element set

W = {one, two, plus, times}.

Ascribe a “meaning” to each sentence with words from W (i.e., each string
over the alphabet W ) in the usual way of evaluating expressions, so that

one plus two times two means 1 + 2× 2 = 5,

plus times two plus is meaningless,

and each sentence either “means” some positive integer or is “meaningless.”
Show that every positive integer is the “meaning” of some sentence with
words from W .

9.3.1(b) Show, more precisely, that there is a constant, C, such that any positive
integer, n, can be described by a W -sentence of at most 1 + C(log2 n)

2

words.
9.3.1(c) Consider the five element set

U = W ∪ {moo}

with the following meaning for moo:
(a) if it appears anywhere after the first word of a sentence, then the

sentence is meaningless,
(b) if it appears only once and at the beginning of a sentence, then we

evaluate the rest of the sentence (as usual), and
(i) if the rest evaluates to the integer k, then the sentence means

“the smallest positive integer not described by a sentence of k
words or fewer,” and

(ii) if the rest evaluates to meaningless, then the sentence is mean-
ingless.

For example, “moo moo” and “moo plus times two” are meaningless, and
“moo two times two” means “the smallest positive integer not described
by a sentence of four words or fewer.” What is the meaning of “moo one”?

9.3.1(d) What seems paradoxical in trying to ascribe a meaning to “moo two”?
9.3.1(e) Now say we are more precise, with the following meaning for moo:

(a) if it appears anywhere after the first word of a sentence, then the
sentence is meaningless,

(b) if it appears only once and at the beginning of a sentence, then we
evaluate the rest of the sentence (as usual), and

(i) if the rest evaluates to the integer k, AND THE LENGTH OF
THE WHOLE SENTENCE IS MORE THAN k, then the sen-
tence means “the smallest positive integer not described by a
sentence of k words or fewer,” and

(ii) in any other situation, the sentence is meaningless.
Hence “moo two” is meaningless. What is the value of “moo one plus

one”?
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Exercise 9.3.2. Explain why the following questions can’t be answered either yes
(true) or no (false).

9.3.2(a) In a certain village, Chris holds accountable each person who does not
hold themself accountable (and no one else). Does Chris hold themself
accountable?

9.3.2(b) In a certain village, Geddy is blamed by each person who does not blame
themself (and by no one else). Is Geddy blamed by themself?

9.3.2(c) In a certain village, Sandy teaches each person who does not teach themself
(and no one else). Does Sandy teach themself?

Exercise 9.3.3. Say that we assume that no set should contain itself (in a par-
ticular collection of axioms about set theory that we are currently using). If so,
describe C given by

C = {S | S is a set such that S /∈ S}.

Explain why C cannot be a set.

9.4. Exercises: More on Cantor’s Theorem, Countable Sets.

Exercise 9.4.1. Let N2 = N× N, i.e.,

N2 = {(n1, n2) | n1, n2 ∈ N}.

(See Chapter 0 of [Sip].)

9.4.1(a) Show that N2 is countable.
9.4.1(b) Show that N3 = N× N× N is countable.
9.4.1(c) For any set, S, we define S∗ as the union

S∗ def
= S0 ∪ S1 ∪ S2 ∪ . . .

(which generalizes the definition of Σ∗ when Σ is an alphabet). Show that
N∗ is countable.

Exercise 9.4.2. Let C1, C2, . . . be a sequence of countably infinite sets. Is C1 ∪
C2∪. . . countably infinite? Justify your answer. (You get no credit for answering
“yes” or “no” without explanation.)

Exercise 9.4.3. Recall that for n ∈ N, [n] denotes {1, 2, . . . , n} (which is therefore
an alphabet). The point of this exercise is to show that there are very simple
surjections [n]∗ → [m]∗ for any n,m ∈ N; it is less simple to describe bijections
[n]∗ → [m]∗ (although not extremely difficult to do so).

9.4.3(a) Is [2]∗ countably infinite? Justify your answer.
9.4.3(b) Describe a simple bijection f : [2]∗ → [4]∗ (i.e., find a bijection that does

not rely on bijections from these sets to N).
9.4.3(c) Describe a simple bijection f : [2]∗ → [8]∗.
9.4.3(d) Describe a simple bijection f : [4]∗ → [8]∗, based on your answers to (a)

and (b).
9.4.3(e) Describe a surjection [8] → [7], and use it to give a surjection [8]∗ → [7]∗.
9.4.3(f) Describe a surjection [7] → [2], and use it to describe a surjection [7]∗ →

[2]∗.
9.4.3(g) Using parts (c) and (f), describe a simple surjection [7]∗ → [8]∗.
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Exercise 9.4.4. A real number, x, is algebraic if it is the solution to an equation
of the form

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0

where a0, . . . , an ∈ N for some n ∈ N (where a0 ̸= 0). Is the set of algebraic numbers
countable? Justify your answer. [Hint: You may use the fact that a polynomial of
degree n has at most n roots.]

Exercise 9.4.5. Which of the following sets are countably infinite? Justify your
anwer.

9.4.5(a) The negative rational numbers.
9.4.5(b) The real numbers in the closed interval [1, 2].
9.4.5(c) The real numbers in the open interval (1, 2).
9.4.5(d) The set of all functions Σ∗ → {yes, no}, where Σ is an alphabet.
9.4.5(e) The set of all functions {yes, no} → Σ∗, where Σ is an alphabet.
9.4.5(f) The set of all functions Σ∗ → Σ∗, where Σ is an alphabet.

Exercise 9.4.6.

9.4.6(a) Show that the set of subsets of {2, 4, 6, 8, . . .} (i.e., the even positive inte-
gers) is uncountable.

9.4.6(b) Show that the set of infinite subsets of N = {1, 2, 3, . . .} is uncountable.
[Hint: use part (a).]

9.4.6(c) Show that the set of pairs (S, T ) such that S, T are infinite subsets of N is
uncountable.

9.4.6(d) Say that any string Σ∗
ASCII is a assigned at most one “meaning,” so that

each string can describe at most one function from some set to some other
set. Can every bijection S → T between subsets of N be described by a
string in Σ∗

ASCII?
9.4.6(e) Describe a simple way to assign a “meaning” to any string in Σ∗

ASCII so
that each bijection S → T between finite subsets of N is described by
some string. (Ideally the meaning is easy to infer from the string...)

INSERT OTHER PROBLEMS HERE.

9.5. Exercises on Universal Turing Machines: Mechanics.

Exercise 9.5.1. Let Σ = {1, 2}, let L = Σ∗, and let ΣTM = {0, 1,#, L,R}.
9.5.1(a) Give a Turning machine M = (Q,Σ,Γ, δ, q0, qacc, qrej, blank) that (1) recog-

nizes L, (2) has q0 different from both qacc and qrej, and (3) has the product
|Q| |Γ| as small as you can subject to (1) and (2) (or reasonably small, see
the rest of the question).

9.5.1(b) Giave a standardized Turing machine that recognizes the same language as
the above machine.

9.5.1(c) Write the above standardized Turing machine as a word/string over ΣTM

as described in class.
9.5.1(d) Write the above standardized Turing machine as a word/string over ΣTM

and append to it the input 2121, as described in class.
9.5.1(e) Explain—without actually writing down the word/string—how to Write

the above standardized Turing machine as a word/string over ΣTM and
append to it the input 212121, as described in class.

Exercise 9.5.2. Same problem as Exericse 9.5.1 for the language L = ∅.
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Exercise 9.5.3. Same problem as Exericse 9.5.1 for the language L described by
the regular expression 1(1 ∪ 2)∗.

Exercise 9.5.4. Same problem as Exericse 9.5.1 for the language L described by
the regular expression (1 ∪ 2)∗2.

Exercise 9.5.5. Is the set of standardized Turing machines countable or uncount-
able? Explain.

Exercise 9.5.6. Is the set/class/family/etc. of (all) Turing machines countable or
something else (e.g., uncountable, so large that it isn’t even a class, etc.)? Explain.

INSERT MORE EXERCISES HERE

9.6. A Hierarchy of Acceptance, a Hierarchy of Halting.

Exercise 9.6.1. Let ΣTM = {0, 1,#, L,R}. Let π : ΣTM → [5] = {1, . . . , 5} be an
arbitrary bijection.

9.6.1(a) If w = σ1 . . . σn ∈ Σ∗
TM is a word, let

π(w) = π(σ1) . . . π(σn).

Does this give a bijection between elements of Σ∗
TM and elements of [5]∗?

Explain.
9.6.1(b) If L is a language over ΣTM, let

(23) π(L) = {π(w) | w ∈ L}.

Does this give a bijection between laguages over Σ∗
TM and languages over

[5]∗? Explain.

Exercise 9.6.2. Let s ∈ N, and let Σ = [s] = {1, . . . , s}.
9.6.2(a) Explain how to define a standardized 2-tape Turing machine—using the

idea of a regular standardized (1-tape) Turing machine—in a way that
any 2-tape Turing machine for a language over Σ has an equivalent stan-
dardized machine that returns the same result (accept, reject, loops, i.e.,
yes, no, loops).

9.6.2(b) Do the same for k-tapes for k ∈ N for any k ≥ 3.
9.6.2(c) Can you define a standardized Turing machine that allows you to first write

down a value of k and then describe a standardized k-tape machine? Ex-
plain.

9.6.2(d) Let s′ ∈ N, Σoracle = [s′] = {1, . . . , s′}, and A ⊂ Σ∗. Can you define a
standardized oracle Turing machine that has access to a single oracle A,
and some standardized Turing machine as in part (c)? What conventions
do you have specify?

Exercise 9.6.3. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let P be the set of all standardized oracle Turing
machines that can make an oracle query to A, standardized appropriately (one way
of standardizing is given in the above exercises). Let I = Σ∗.

9.6.3(a) Show that the result of running any oracle Turing machine in P on an input
in I gives an expressive program-input system.

9.6.3(b) Show that this expressive program-input system has a universal program.
9.6.3(c) Conclude that this program-input has a delightful program.
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9.6.3(d) Conclude that the acceptance problem in this program-input is undecidable,
i.e., there is no Turing machine with oracle A that decides the acceptance
problem for Turing machines with oracle A.

Exercise 9.6.4. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let us further assume that s ≥ 5, so that we may
identify ΣTM with a subset of Σ = [s], and that we have a standardization of all
multitape Turing machines as described in the problems above. Let

B = ACCEPTANCEA = ACCEPTANCEoracle A.

9.6.4(a) Show that if M is any oracle Turing machine with an oracle call to A, and
w is an input to M , then after some preprocessing one can make a single
oracle call to B to determine whether or not M accepts w.

9.6.4(b) Hence conclude that if an oracle Turing machine MA decides a language,
L, then L is also decided by some oracle Turing machine (M ′)B (i.e., an
oracle machine that calls B, rather than A).

9.6.4(c) Using DecidableΣ(A) to denote the class of languages over Σ decidable with
an oracle A Turing machine, conclude that

Decidable(A) ⊂ Decidable(B) = Decidable
(
ACCEPTANCEA

)
9.6.4(d) Explain why B ∈ Decidable(B) (immediately) and, from the above, B /∈

Decidable(A).
9.6.4(e) Conclude that there is a hierarchy of Turing machine oracles

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . .

of successively more powerful oracles, in the sense that there is a sequence
of strict inclusions

Decidable(∅) ⊂ Decidable(ACCEPTANCE) ⊂ Decidable
(
ACCEPTANCEACCEPTANCE

)
⊂ · · ·

Exercise 9.6.5. Same exercise as above, except with ACCEPTANCE replaced
everywhere with HALT.

Exercise 9.6.6. In the sequence

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . . ,

should the first term be ∅ or its complement, Σ∗? Does it really matter?

Appendix A. ∗Most Languages are Unrecognizable

There are a number of well-known senses that say that “most” languages are un-
recognizable. If you believe that “most” elements of an uncountable set lie outside
of any given countable subset, then that is enough. Otherwise here are some other
ways to make sense of this statement; these require more mathematical sophistica-
tion than we typically assume in CPSC 421/501 (as of 2023). All these are based
on convincing yourself that any countable subset of either [0, 1] or Power(Σ∗) has
0 “measure” or “probability” in a space of positive measure.
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(1) If Σ is any finite alphabet, there is a measure29 on Power(Σ∗) that for any
finite S ⊂ Σ∗ assigns the measure 1/2|S| to the subset of Power(Σ∗) con-
sisting of all languages containing S; moreover, it is a probability measure,
assigning the measure 1 to Power(Σ∗)). Any countable subset of Power(Σ∗)
can be covered by a countable collection of sets whose measure is arbitrarily
small, and therefore any countable set has measure 0.

(2) Build a surjective map Power(Σ∗) → [0, 1] such that each real number has
at most 2 preimages; convince yourself that for this reason, any countable
set in Power(Σ∗) should have zero measure.

(3) Convince yourself that any countable subset of [0, 1] has zero measure. If
A ⊂ N, we define

Density(A,n) =
|A ∩ [n]|

n
.

If

lim
n→∞

Density(A,n)

has a limit, we call this limit the density of A (hence the density of odd
numbers is 1/2). To extend this idea, note that 0 ≤ Density(A,n) ≤ 1, and
hence for any A we can define its density for a subsequence of n over which
the limit exists; we can get such a density function defined unambiguously
for all A ⊂ N by setting

DensityU(A) = lim
{n}⊂U

Density(A,n)

with the choice of an ultrafilter, U; assuming the ultrafilter is non-principal,
it follows that this limit agrees with the limit n → ∞ of Density(A,n)
when it exists. Then the densities of a countable subset of Power(N) is
some countable set in [0, 1]. (Taking an appropriate bijection Zn → N and
using the same idea we see that Zn is an amenable group.)

Appendix B. Decision Problems, Alphabets, Strings, and Languages:
More Details

In this section we explain the connection between algorithms, decision problems,
and some of the definitions in Chapter 0 of [Sip]. We also discuss descriptions,
needed starting in Chapter 3 of [Sip].

B.1. Decision Problems and Languages. The term decision problem refers to
the following type of problems:

(1) Given a natural number, n ∈ N, give an algorithm to decide if n is a prime.
(2) Given a natural number, n ∈ N, give an algorithm to decide if n is a perfect

square.
(3) Given a natural number, n ∈ N, give an algorithm to decide if n can be

written as the sum of two prime numbers.
(4) Given sequence of DNA bases, i.e., a string over the alphabet {C,G,A, T},

decide if it contains the string “ACT” as a substring.

29in the sense of measure theory; the values of this measure are uniquely determined on the

smallest σ-field (i.e., σ-algebra) containing Contains(S), where S varies over all finite subsets of
Σ∗ and where Contains(S) is the subset of languages over Σ that contain S. (One could extend

this to the smallest σ-field containing these subsets and all the outer measure 0 subsets.)
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(5) Given an ASCII string, i.e., a finite sequence of ASCII characters30, decide
if it contains the string “CPSC 421” as a substring.

(6) Given an ASCII string, decide if it contains the string “vacation” as a
substring.

(7) Given an ASCII string, decide if it is a valid C program.

Roughly speaking, such problems take an input and say “yes” or “no”; the term
decision problem suggests that you are looking for an algorithm31 to correctly say
“yes” or “no” in a finite amount of time.

To make the term decision problem precise, we use the following definitions.

(1) An alphabet is a finite set, and we refer to its elements as symbols.
(2) If A is an alphabet, a string over A is a finite sequence of elements of A;

we use A∗ to denote the set of all finite strings over A.
(3) If A is an alphabet, a language over A is a subset of A∗.

(People often use letter instead of symbol, and word instead of string.) For example,
with D = {0, 1, . . . , 9}, we use

PRIMES = {s ∈ D∗ | s represents a prime number}
and

SQUARES = {s ∈ D∗ | s represents a perfect square}
Here are examples of elements of PRIMES:

421, 3, 7, 31, 127, 8191, 131071, 524287, 2147483647

where we use the common shorthand for strings:

127 for (1, 2, 7), 131071 for (1, 3, 1, 0, 7, 1), etc.

So PRIMES is a language over the alphabet D; when we say “the decision
problem PRIMES” we refer to this language, but the connotation is that we are
looking for some sort of algorithm to decide whether or not a number is prime.
Here are some examples of strings over D that are not elements of the set PRIMES:

221, 320, 420, 2019.

B.2. Descriptions of Natural Numbers. From our discussion of PRIMES
above, it is not clear if we consider 0127 to be element of PRIMES; we need to
make this more precise. It is reasonable to interpret 0127 as the integer 127 and
to specify that 0127 ∈ PRIMES. However, in [Sip] we will be careful to distinguish
a natural number n ∈ N and

⟨n⟩ meaning the “description” of n,

i.e., the string that represents n (uniquely, according to some specified convention),
so the natural number 127 has a unique description as the string (1, 2, 7), and
the string (0, 1, 2, 7) is not the description of 127. With this convention, 0127 /∈
PRIMES; this is also reasonable.

[Later in the course we will speak of “the description of a graph” (when studying
graph algorithms), “the description of a Boolean formula” (when studying SAT,
3SAT), “the description of a Turing machine,” etc. In these situtations it will be

30ASCII this is an alphabet of 256 letters that includes letters, digits, and common punctuation.
31The term algorithm means different things depending on the context; in CPSC 421 we will

study examples of this (e.g., a DFA, NFA, deterministic Turing machine, a deterministic Turing

machine with an orale A, etc.
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clear why the input to an algorithm should be a description of something (as a
string over some fixed alphabet) rather than the thing itself.]

If n = Z with n = 127, the symbol ⟨n⟩, meaning the “description of n” can refer
to

(1) “1111111,” when ⟨n⟩ = ⟨n⟩2 means the “binary representation of n” (a
unique string over the alphabet {0, 1});

(2) “11201,” when ⟨n⟩ = ⟨n⟩3 means the “base 3 representation of n” (a unique
string over the alphabet {0, 1, 2});

(3) “one hundred and twenty-seven,” when ⟨n⟩ = ⟨n⟩English means the “English
representation of n” (a unique string over the ASCII alphabet, or at least
an alphabet containing the English letters, a comma, a dash, and a space);

(4) “cent vingt-sept,” similarly for French, ⟨n⟩ = ⟨n⟩French
(5) “wa’vatlh wejmaH Soch,” similarly for Klingon32, ⟨n⟩ = ⟨n⟩Klingon;
(6) and good old “127,” when ⟨n⟩ = ⟨n⟩10 means the “decimal representation

of n.”

Note that haven’t yet specified whether or not ϵ, the empty string, is considered
to be an element of PRIMES.

B.3. More on Strings. Chapter 0 of [Sip] uses the following notion:

(1) if A is an alphabet and k ∈ Z≥0 = {0, 1, 2 . . .}, a string of length k over A
is a sequence of k elements of A;

(2) we use Ak to denote the set of all strings of length k over A;
(3) equivalently, a string of length k over A is a map [k] → A where [k] =

{1, . . . , k};
(4) by consequence (or convention) A0 = {ϵ} where ϵ, called the empty string,

is the unique map ∅ → A;
(5) a string over A is a string over A of some length k ∈ Z≥0;
(6) therefore A∗ is given as

A∗ =
⋃

k∈Z≥0

Ak = A0 ∪ A1 ∪ A2 ∪ · · ·

(7) strings are sometimes called words in other literature;
(8) a letter or symbol of an alphabet, A, is an element of A.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA.

Email address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

32Source: https://en.wikibooks.org/wiki/Klingon/Numbers.
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