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Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

There are a number of ways to test whether or not a language, L, is regular,
and—if so—what is the smallest number of states that a DFA recognizing L can
have. Most techniques we know can be organized as follows:

(1) results on languages over an alphabet of size one, new to this article as of
Fall 20211;

(2) “derived results,” where proven results on languages give similar results on
related languages;

(3) the Myhill-Nerode Theorem;
(4) consequences of linear algebra, applied to the adjacency matrix of a DFA;

and
(5) the Pumping Lemma.

Methods (1,2,4) are the easiest to apply; in recent years I have not covered (4),
because (4) requires linear algebra that is not a prerequisite for CPSC 421/501.2

Date: Monday 21st October, 2024, at 18:15(get rid of time in final version).
Research supported in part by an NSERC grant.
1Based on class discussion of September 28, 2021, and, in particular a question of Markus de

Medeiros.
2There is a strong argument that a first-term linear algebra course is more relevant to computer

science than, say, a second-term calculus course; we thank Vee Kay for discussions on this point.
1



2 JOEL FRIEDMAN

q0
a

q1
a

q2
a

qn0

a a a qm = qn0+(p−1)

a

Figure 1. A DFA over Σ = {a} with a cycle of length p.

Much of this article is devoted to method (3), the Myhill-Nerorde theorem, which—
in principle—always tells you whether or not a language is regular, and, if so, the
minimum number of states needed in a DFA that recognizes it.

Method (5), the Pumping Lemma, is by far the most awkward technique to use;
its only advantage is that there is an analogous Pumping Lemma for context-free
languages. In CPSC 421 this year we are skipping over the chapter on context-free
languages, so we have little motivation to cover the Pumping Lemma. Moreover,
any result that can be proven with the Pumping Lemma can be proven (usually
more simply and directly) using the Myhill-Nerode theorem.

1. Languages Over an Alphabet Consisting of a Single Letter

In class we explain that if M = (Q,Σ, δ, q0, F ) is a DFA over a language where
Σ consists of a single letter, then the DFA begins in state q0 and begins with some
number of new states:

q0

a
q1

a
q2

a

Since the DFA has only finitely many states, at some point there is a state qm that
points to a previous state, namely qn0

with 0 ≤ n0 ≤ m; we depict this in Figure 1.
Notice that all strings in {a}∗ must land in one of states q0, . . . , qm, and hence—for
the sake of recognizability—we may discard any additional states in the DFA. The
equivalent Figure 2 may be more suggestive of the geometry: a path of length n0

(i.e., n0 edges) followed by a cycle of length p (i.e. p edges).3

Definition 1.1. Let M = (Q,Σ, δ, q0, F ) be a DFA where Σ = {a}, and is of the
form depicted in Figure 2 (i.e., we have discarded any irrelevant states from M
beyond q0, . . . , qm). We refer to p as the cycle length of M , and to n0 as the cycle
start point of M .

Let M be a DFA over {a}, with p, n0 as depicted in Figure 2 (hence discard or
ignore any irrelevant states of M). It is clear that for n < n0 + p, the string an is
taken to the state qn in this DFA. Since M has a cycle of length p traversing the
vertices

qn0
, qn0+1, . . . , qm = qn0+(p−1), qn0

,

it is clear that the strings

an0 , an0+p, an0+2p, an0+3p, . . .

3The terms path and cycle are notions in graph theory, and make sense both for directed
graphs and graphs (i.e., undirected graphs); for the definition of graphs and digraphs (i.e., directed
graphs), see [Sip], Chapter 0 (page 10 in the 3rd edition of [Sip]). We will use the terms path and
cycle in their intuitive meaning (as often done in graph theory), and leave their formal definition
to the reader (who may look up these definitions elsewhere).
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Figure 2. Figure 1 Redrawn to Emphasize the Cycle

are all taken to state qn0
in this DFA. Similarly, for any i = 0, 1, . . . , p− 1,

an0+i, an0+i+p, an0+i+2p, an0+i+3p, . . .

are all taken to state qn0+i in this DFA.
Hence we have proven the following.

Proposition 1.2. Let M = (Q,Σ, δ, q0, F ) be a DFA with {a}. L be the language
recognized by M . Then for some integers n0 ≥ 0 and p ≥ 1, M has n0 + p states,
and for all n ≥ n0 we have

an ∈ L ⇐⇒ an+p ∈ L.

In other words, for any i = 0, 1, . . . , p− 1 we have that

an0+i, an0+i+p, an0+i+2p, an0+i+3p, . . .

either (1) all lie in L or (2) all lie outside L. In other words, for n ≥ n0, whether
or not an lies in L or outside L depends only on the value of n mod p (which is
between 0 and p− 1).

Of course, the analogous proposition is true for any Σ consisting of a single
symbol.

We therefore easily deduce the following theorem.

Definition 1.3. Let p ∈ N. We say that a language, L, over Σ = {a} is eventually
p-periodic if for some integer n0 ≥ 0 we have

(1) ∀n ≥ n0, an ∈ L ⇐⇒ an+p ∈ L.

If so, we also say that L is eventually periodic. If so, the eventual period of L is the
smallest p ∈ N for which L is eventually p-periodic.

Theorem 1.4. A language, L ⊂ Σ∗, over Σ = {a} is regular iff it is eventually
periodic. Moreover, if L, n0, p satisfy (1), then L has a DFA with n0 + p states.

Proof. If L is recognized by a DFA, then Proposition 1.2 shows that L is eventually
p-periodic.

Conversely, say that L is eventually p-periodic, and let p, n0 be integers for which
(1) holds. Consider the DFA depicted in Figure 2, where q0 is the initial state, and
the set, F , of final (accepting) states are the qi such that ai ∈ L. We easily verify
that this DFA recognizes L: indeed, if i ≤ n0 + p− 1, then qi is a state of the DFA,
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and qi ∈ F iff ai ∈ L. Next, if n0 ≤ i ≤ n0 + p− 1, then by the cyclic in the DFA
of Figure 2, we see that for any k ∈ N, ai+kp is taken to the state qi; by repeatedly
application of (1), ai+kp ∈ L iff ai ∈ L; since the latter holds iff qi ∈ F , we have
that ai+kp ∈ L iff ai+kp is accepted by this DFA.

Notice that the above DFA has n0 + p states, namely n0 states q0, . . . , qn0−1

before the cycle begins, and p states qn0
, . . . , qn0+p−1 in the cycle. □

Remark 1.5. It is not hard to see that if a language L over Σ = {a} is eventually
periodic, then DFA accepting L with the smallest number of states is the DFA
depicted in Figure 1 where p is the eventual period of L and n0 is the smallest
integer such that (1) holds (see Exercise 6.1.2). Also, another way to describe n0

is that n0 − 1 is the largest integers such that one of an0−1 and an0−1+p lies in L
and the other does not.

Example 1.6. Let

L = {a(n
3) | n ∈ N} = {a, a8, a27, a64, . . .}

be the language of strings of a’s whose length is a perfect cube. Then since the
interval between any two perfect cubes is

(n+ 1)3 − n3 = 3n2 + 3n+ 1,

which is arbitrarily large, L cannot be eventually p-periodic (since for any fixed
p and for n sufficiently large an

3+1, an
3+2, . . . , an

3+p /∈ L, so if L were eventually
p-periodic then aj /∈ L for all j ≥ n3 + 1, which is impossible).

One can similarly show that if n1 < n2 < · · · is an infinite (increasing) sequence
of non-negative integers, then if

L = {ani |i ∈ N} = {an1 , an2 , . . .}
is regular, we must have ni+1 − ni must be bounded above over all i (see Exer-
cise 6.1.8).

2. Derived Results: Part 1

Here is a standard way of producing more lower bounds (or examples of non-
regular languages) from others.

Proposition 2.1. Let L1, L2 ⊂ Σ∗ be lanuages over Σ. If L1 is regular, and L1∩L2

is non-regular, then L2 is non-regular.

This follows immediately from the fact that the intersection of any two regular
languages is, again, regular.

Example 2.2. Let L ⊂ Σ∗ be the language over Σ = {a, b} of strings/words whose
length is a perfect cube. Then L is non-regular, since L ∩ {a}∗ is, according to
Example 1.6, non-regular.

3. The Myhill-Nerode Theorem: Part 1

Definition 3.1. If L is a language over an alphabet Σ, and s ∈ Σ∗, we define the
accepting futures of s in L to be

AcceptingFutureL(s)
def
= {s′ ∈ Σ∗ | ss′ ∈ L}.

We will also use the abbreviation AccFut.
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Example 3.2. Let Σ = {0, 1, . . . , 9}, and

L = DIV-BY-2 = {0, 2, 4, 6, 8, 10, 12, . . .}.
In class we gave a 5 state DFA that recognizes this language. We have

AccFutL(ϵ) = L = {0, 2, 4, 6, 8, 10, . . .}
AccFutL(0) = {ϵ}
AccFutL(00) = ∅
AccFutL(1) = Σ∗(0, 2, 4, 6, 8)

AccFutL(2) = {ϵ} ∪ Σ∗(0, 2, 4, 6, 8)

Note that we have

AccFutL(2) = AccFutL(4) = AccFutL(2238) = · · · ,
so many strings have the same accepting future with respect to L.

In class we similarly gave 6 different strings with different accepting futures for
the language DIV-BY-3. We also explained why if DIV-BY-3 has 6 different ac-
cepting futures, then any DFA recognizing DIV-BY-3 must have at least 6 different
states. More generally we have the following observation.

Proposition 3.3. If a language, L, over an alphabet, Σ, has at least n distinct
accepting futures (i.e., n distinct values of AccFutL(s) with s ∈ Σ∗), then any DFA
recognizing L has at least n states.

Proof. If s, s′ ∈ Σ∗ are taken to the same state in a DFA, then for any t ∈ Σ∗, st
lands in an accepting state of the DFA iff s′t does. Hence if s1, . . . , sn ∈ Σ∗ are
states such that

AccFutL(s1), . . . ,AccFutL(sn)

are distinct, then a DFA recognizing L must take s1, . . . , sn to distinct states. □

Example 3.4. Let Σ = {0, 1} and

L = {0n1n | n ∈ N} = {01, 0011, 000111, 0414, . . .}
we have

AccFutL(0) = {1, 011, 00111, . . .}
AccFutL(00) = {11, 0111, 001111, . . .}
AccFutL(000) = {111, 01111, . . .}

and, more generally, AccFutL(0
k) has a unique shortest string, namely 1k. Hence

AccFutL(0
k) for k ∈ N are all distinct, and so L is not regular.

4. The Myhill-Nerode Theorem: Part 2

The second part of the Myhill-Nerode is a converse to the proposition in the last
section.

Theorem 4.1. Let L be a language over an alphabet Σ, and assume that there is
a finite number, n, of distinct values of

AccFutL(s)

as s varies over Σ∗. Then there exists a DFA with n states that recognizes L.
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Actually, much more is true in the above theorem: one can actually build the
DFA, and to do so one does not need to describe all of AccFutL(s) for strings, s—
rather, one needs only to be able to tell for s, s′ ∈ Σ∗ whether or not AccFutL(s)
equals AccFutL(s

′).
To prove the theorem we consider the languages:
(1) AccFutL(ϵ);
(2) AccFutL(a), AccFutL(b);
(3) AccFutL(aa), AccFutL(ab), AccFutL(ba), AccFutL(bb);
(4) etc.

Each time we see a new language, i.e., a new value of AccFutL(s), we introduce a
new state; the transition rule δ : Q× Σ → Q is given by

δ(AccFutL(s), σ) = AccFutL(sσ)

(where we identify a value of AccFutL(s) with its corresponding state). It is much
easier to understand the theorem and its proof from an example.

Example 4.2. Let Σ = {a, b} and

L = {s ∈ Σ∗ | s contains ab as a substring}.
We begin by computing

AccFutL(ϵ) = L,

which we associate with a state q0 and to the string ϵ; we then comptue

(2) AccFutL(a) = bΣ∗ ∪ L, AccFutL(b) = L,

which gives us a new state, q1 associated to bΣ∗ ∪ L and associate to the input
string a; we do not introduce a new state for b, since we have already seen the
language AccFutL(b) = L associated to q0 and ϵ.

At this point:
(1) We have determined two states, q0, q1, of our DFA;
(2) q0 is the initial state of the DFA, since the initial state is the state you

reach on input ϵ;
(3) from q0, associated to ϵ, based on (2) we have the transition rules

(3) δ(q0, a) = q1, δ(q0, b) = q0.

As a next step we want to determine δ(q1, σ) for σ = a, b. We compute that

AccFutL(aa) = bΣ∗ ∪ L, AccFutL(ab) = Σ∗;

since we have already encountered bΣ∗ ∪ L but not Σ∗, we introduce a new state
q2 associated to ab and to Σ∗, and declare

(4) δ(q1, a) = q1, δ(q1, b) = q2.

Next we want to determine δ(q2, σ) for σ = a, b. We compute that

AccFutL(aba) = Σ∗, AccFutL(abb) = Σ∗;

since we have already seen Σ∗, which is associated to q2, we declare

(5) δ(q2, a) = q2, δ(q2, b) = q2.

At this point we have determined δ(q, σ) for all σ = a, b and all states, i.e.,
q0, q1, q2, without introducing new states. Hence Q = {q0, q1, q2}, and δ is given by
(3)–(5) above.
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Finally, since

ϵ /∈ L, ϵ /∈ bΣ∗ ∪ L, ϵ ∈ Σ∗,

the state q2 is an accepting (or final) state, and q0, q1 are not. (The general principle
here is that ϵ ∈ AccFutL(s) iff s ∈ L.) This determines the DFA.

Abstractly, the reason why the above construction works is that if

AccFutL(s) = AccFutL(s
′)

for some s, s′, then for any σ ∈ Σ we have

AccFutL(sσ) = AccFutL(s
′σ).

In the above example we have

AccFutL(a) = AccFutL(aa),

and this implies that for σ = a, b we have

AccFutL(aσ) = AccFutL(aaσ);

hence the transition from the state of aa to that of aaσ is the same as of that from
a to aσ.

Notice that in the above construction we don’t need to determine all of
AccFutL(s) for strings, s ∈ Σ∗; it suffices to know for certain s, s′ ∈ Σ∗ whether or
not AccFutL(s) and AccFutL(s

′) are equal.

5. Derived Results: Part 2

Once we prove that certain langauges are not regular, we can infer that other
languages are not regular. Here is one such examples of a “derived result.”

Above we have proven that L = {0n1n | n ∈ N} is not regular; this is also
done in the textbook by Sipser (and similar textbooks) using the Pumping Lemma.
Consider the language

L′ =
{
s ∈ {0, 1}∗ | s has the same number of 0’s and 1’s

}
.

Then L′ is not regular, for if L′ were regular then

L′ ∩ 0∗1∗

would also be regular, which is impossible since L = L′ ∩ 0∗1∗.
Note that the Myhill-Nerode theorem gives a more direct proof that L′ is not

regular: for any k ∈ N, FutAccL′(0k) has a unique shortest length string, which is
1k; hence the languages FutAccL′(0k) are distinct for k ∈ N, and so the Myhill-
Nerode theorem implies that L′ is not regular.

In the the appendix we will also explain how to use linear algebra tests to show
that L′ is not regular.
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6. EXERCISES

6.1. Exercises on Languages over Σ = {a}.

For all these exercises, recall that Z≥0 refers to the set {0, 1, 2, . . .}, i.e.,
the set of non-negative integers.

Unless otherwise instructed, DO NOT USE THE MYHILL-NERODE
THEOREM for the exercises in this subsection. You can assume the results
of Section 1, but do not assume anything further, such as consequences
of this section that we discussed in class; do not merely quote results
stated in class.

Exercise 6.1.1. Let L be a language over the alphabet Σ = {a}. Let m ∈ Z≥0.
6.1.1(a) Explain why if L is finite and am ∈ L, then any DFA accepting L must

have at least m+2 states. Do this by referring to Figure 2, and do not use
Exercise 6.1.2 below.

6.1.1(b) Explain why if L contains am+1, am+2, am+3 . . ., but does not contain am,
then any DFA accepting L must have at least m+ 2 states.

Exercise 6.1.2. Let L ⊂ Σ∗ be a regular language with Σ = {a}.
6.1.2(a) Show that for any positive naturals m < m′, if L is eventually m-periodic

and eventually m′-periodic, then L is eventually (m′ −m)-periodic.
6.1.2(b) Let p be the eventual period of L, i.e., the smallest positive integer such that

L is eventually p-periodic. Show that if L is p′-periodic for some p′ ∈ N,
then p′ must be a multiple p.

6.1.2(c) Let p be the eventual period of L. Show that the cycle length of any DFA
that recognizes L has period divisible by p.

6.1.2(d) Let p be the eventual period of L. Show that if M is a DFA that recognizes
L and whose cycle length is larger than p, then there exists a DFA with
fewer states than M that also recognizes L. [Hint: can you replace the
cycle in M by a cycle of smaller length?]

6.1.2(e) Let p be the eventual period of L. Explain why if n0 is the smallest integer
such that (1) holds, then the DFA with the fewest states that recognizing
L has n0 + p states. [Hint: by (d) the cycle length of the DFA with the
fewest states must be p. You need to show that there is a DFA recognizing
L with n0 + p states, and no DFA with fewer than n0 + p can recognize L.
Can you quote some theorem in Section 1 for the first statement? For the
second statement, what can you say about an0−1 and an0−1+p?]

Exercise 6.1.3. Let L be a finite language over the alphabet Σ = {a}.
6.1.3(a) What is the eventual period of L?
6.1.3(b) Using Exercise 6.1.2 above, show that if am is the longest string in L for

some m ∈ Z≥0, then the DFA accepting L with the fewest states has exactly
m+ 2 states.

Exercise 6.1.4. Let L = {a3n | n ∈ Z≥0}. What is the minimum number of states
in a DFA needed to recognize L? Explain this as briefly as possible. Give such
a DFA. You may use the results in Exercise 6.1.2.
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Exercise 6.1.5. Let L = {a3n | n ∈ N}. What is the minimum number of states
in a DFA needed to recognize L? Explain this as briefly as possible. Give such
a DFA. You may use the results in Exercise 6.1.2.

Exercise 6.1.6. Let L be a regular language over the alphabet Σ = {a} that
contains all strings of sufficiently large even length. What are the possible values
of the eventual period of L? You may use the results in Exercise 6.1.2.

Exercise 6.1.7. Let

L = {ap | p is a prime number} = {a2, a3, a5, a7, . . .}.
What does it mean to conjecture that (a2L) ∩ L is infinite? Identify this as a
well-known conjecture in number theory.

Exercise 6.1.8. Let n1 < n2 < n3 < · · · be an infinite sequence of non-negative
integers, and let

L = {an1 , an2 , . . .}

6.1.8(a) Show that if L is eventually p-periodic, then ni+1 ≤ ni + p. [Hint: What
can you infer if ani+1, . . . , ani+p /∈ L?]

6.1.8(b) Use (a) to show that ni+1 − ni is not bounded as i → ∞, then L is non-
regular.

Exercise 6.1.9. Let L ⊂ {a}∗ be a regular language over the alphabet Σ = {a},
and let p be the eventual period of L, and let n0 be the smallest integer such that
for all n ≥ n0, we have an ∈ L iff an+p ∈ L. Hence the DFA, M , with the fewest
states that recognizes L has n0 + p states. Recall that M looks like Figure 2, i.e.,
in brief:

q0 qn0
n0 edges

p edges

Say that ak ∈ L for some k; the forward gap of L at k refers to the smallest t ∈ N
such that ak+t ∈ L. Assume that (1) ak ∈ L, (2) the forward gap of L at k is t,
and (3) for some 0 ≤ t′ ≤ t we have ak−t′ ∈ L.

6.1.9(a) Show that if k − t′ ≥ n0, then p ≥ t + t′ + 1, and therefore the number of
states in M is at least t+ t′ + 1.

6.1.9(b) Show that if k − t′ ≤ n0 ≤ k, then p ≥ t+ 1; conclude that M has at least
k + t− t′ + 1 states.

6.1.9(c) Show that if k + t ≤ n0, then M has at least k + t states.
6.1.9(d) Using (a)–(c), conclude that M has at least

min(t+ t′ + 1, k + t− t′ + 2, k + t)

states.

Exercise 6.1.10. Let L ⊂ {a}∗ be a regular language over the alphabet Σ = {a},
and let p be the eventual period of L, and let n0 be the smallest integer such that
for all n ≥ n0, we have an ∈ L iff an+p ∈ L. Hence the DFA, M , with the fewest
states that recognizes L has n0 + p states. Recall that M looks like Figure 2, i.e.,
in brief:

q0 qn0
n0 edges

p edges
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Say that ak ∈ L for some k; the forward gap of L at k refers to the smallest t ∈ N
such that ak+t ∈ L. Assume that (1) ak ∈ L, (2) the forward gap of L at k is t,
and (3) for some 0 ≤ t′ ≤ t we have ak−t′ ∈ L.

6.1.10(a) Show that if k − t′ ≥ n0, then p ≥ t + t′ + 1, and therefore the number of
states in M is at least t+ t′ + 1.

6.1.10(b) Show that if k − t′ ≤ n0 ≤ k, then p ≥ t+ 1; conclude that M has at least
k + t− t′ + 1 states.

6.1.10(c) Show that if k + t ≤ n0, then M has at least k + t states.
6.1.10(d) Using (a)–(c), conclude that M has at least

min(t+ t′ + 1, k + t− t′ + 2, k + t)

states.

Exercise 6.1.11. Let L ⊂ {a}∗ be an infinite, regular language over the alphabet
Σ = {a}, such that a100, a110, a121 ∈ L, but a111, a112, . . . , a120 /∈ L.

6.1.11(a) Use Exercise 6.1.8 to show that any DFA recognizing L must have at least
21 states.

6.1.11(b) Give a language L that satisfies the above conditions and is recognized by
a DFA with exactly 21 states.

Exercise 6.1.12. Add another exercise or two.

Appendix A. Consequences of Linear Algebra

The following matertial is not required in CPSC 421 this year.
If L is a language over an alphabet Σ, we set

CountL(k)
def
=

∣∣L ∩ Σk
∣∣,

which counts how many words of length k over Σ lie in L. Theorems in linear
algebra show that CountL(k) must satisfy certain conditions if L is regular and
accepted by a DFA with n states.

For example, if

(6) CountL(k) =
(
C + o(1)

)
10k/k

where C is a positive real number, then facts from linear algebra show that L is
not regular; similarly if 10 above is replaced with any positive real.

As an application, since the number of primes less than N is N/ logN+o(N) (this
is called the Prime Number Theorem), the language PRIMES of primes written in
base 10 is asymptotically (

C + o(k)
)
10k/k

for some C > 0 (the constant C depends on whether or not leading 0’s are allowed).
It follows that PRIMES is not regular.

Let us briefly describe more general consequences of linear algebra. We call these
consequences “linear algebra tests.”

A DFA with n states has an adjacency matrix, which is an n× n matrix whose
i, j entry counts the number of symbols (in the alphabet, Σ, of the DFA) that take
you from state i to state j in the DFA. It follows a DFA has adjacency matrix, M ,
and recognizes the langauge, L, then

CountL(k)
def
=

∣∣L ∩ Σk
∣∣
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is a sum of the 1, j components of Mk over all final states j, were state 1 is the
initial state. The Cayley-Hamilton theorem implies that CountL(k) satisfies an
n-term recurrence equation

(7) CountL(k) = c1CountL(k − 1) + · · ·+ cnCountL(k − n)

for all k ≥ n for fixed integers c1, . . . , cn.
As an application, (7) easily implies that

L =
{
am | m is a perfect square

}
is not regular; it also shows that the language

L =
{
am | m ∈ N, m ≥ 20

}
cannot be recognized by a DFA with 20 states or fewer (which is optimal, since
there is a 21 state DFA for this language).

The “Jordan canonical form” therem implies that for any regular language, L,
there are complex numbers λ1, . . . , λm and polynomials p1, . . . , pm such that for k
sufficiently large we have

CountL(k) =

m∑
i=1

pi(k)λ
k
i .

As a consequence, one can show that if

λ = lim
k→∞

CountL(k + 1)

CountL(k)

exists, then there is a polynomial p such that

(8) CountL(k) = p(k)λk(1 + o(1)).

This implies that if
CountL(k) =

(
C + o(k)

)
10k/k

for some C > 0, then L is not regular. So the results regarding (8) generalize those
of (6).

If L = {0n1n | n ∈ N} (which is a favourite example in textbooks of a non-regular
language), then CountL(k) alternates between 0 and 1. You get the same counting
function for the regular language {

02n | n ∈ N
}
.

Hence linear algebra tests can fail to provide optimal bounds on DFA’s and regu-
larity.

One actually gets more information from linear algebra: for example, in (8), λ
must be an algebraic integer, and C must be an algebraic number.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA.

Email address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf


	1. Languages Over an Alphabet Consisting of a Single Letter
	2. Derived Results: Part 1
	3. The Myhill-Nerode Theorem: Part 1
	4. The Myhill-Nerode Theorem: Part 2
	5. Derived Results: Part 2
	6. EXERCISES
	6.1. Exercises on Languages over ={a}

	Appendix A. Consequences of Linear Algebra

