421/SOI Homework 1 Solutions, 2024 (0) Joel Friedman (1) 9.2.2. (a) Since $T = \{s \mid s \notin f(s)\}$ and $l \in f(l)$, $l \notin T$. Since $l \in \{1, 2\}$, $T \neq \{1, 2\}.$ (b) No ? (there are many possible examples to show that both ZET and 2 & T are possible) if $f(2) = \phi$, then $2 \notin f(2)$ so ZET; if f(2) = S, then 2ff(2) so 2€1; hence both ZET and ZET are possible

(2) 9.2.3 $(a) a \in S$ $a \notin f(a)$; hence but $S \neq f(\alpha)$ (b) Similarly bEE(b) but bes so $S \neq f(b)$, and $c \notin f(c)$ but $c \in S$ so $S \neq f(c)$. (C) Since s¢ f(s) for s=a,b,c, $T = \{ s \in S \mid s \notin f(s) \} = \{ a, b, c \},$

(3) 9,2,4 (this is similar to 9,7.3) (a) $b \in f(b)$ but $b \notin \{a,c\}$. Hence $f(b) \neq \{a, c\}$. (b) $a \notin f(a)$ but $a \in \{a, c\}$. And $C \notin f(c)$ but $C \in \{a, c\}$. Hence $f(a), f(c) \neq \{a, c\}$. (c) Since: S & f (s) for s=a,c, $G, C \in T$ b∉T SEF(S) for S=b hence T= {a,c}.

(4) 9.2.5 [There are many possible examples here...) Let $f(a) = f(b) = f(c) = S = \{a, b, c\}$. Then $\{S \mid S \in f(S)\} = \{a, b, c\} = S$ which is in the image of f (since fla) = S).