Group Homework 10.5, 2024, solutions

(1) Joel Friedmen (Z) 4 COLOR ENP by non-deterministically guessing a 4-colouring of the graph (i.e. for each vertex connected to at least one edge). To reduce 3 COLOR to 4 COLOR, given a graph G, add a new vertex, vo, to G, connected to every vertex of G (connected to some edge) 0 C C B 0 C New vertex 0 -0 0 0 C + Vo + a bunch of edges Example G / V G 0-0 0 0

The new graph, G', can be described by having one more vertex, and at most 2 new edges for each edge of G. Hence (26%) can be generated from G in poly time. Any 4-colouring of G' gives a 3-colouring of G with the 3 colours different than the colour of Vo; conversely, any 3-colouring of G gives a 4 colouring of G' by colouring Vo with the 4th colour. Hence (G) E 3 COLOR G') € 4 COLBR. So the map GHG gives a reduction 3 COLOR & 4 COLOR. Hence 4COLOR is NP-complete.

(3) DOUBLE-3-SAT is in NP by
non-Jeterministically guessing two satisfying
assignments for an input <0, where
$$@$$

is a 3CNF formula.
To show DOUBLE-3-SAT is NP-complete,
it suffices to reduce 3SAT to DOUBLE-3-SAT.
If $@$ is in 3CNF, let $m \in \mathbb{N}$ be the
smallest natural number such that $@$
Joes not contain the variable Xm.
Then $@ \land (Xm \lor Xm \lor \neg Xm))$ has 2
satisfying assignments for each satisfying
assignment of $@$, namely where we take
 $Xm=T$ and $Xm=F$. Hence $@ 6 3SAT$

Since we can find m by keeping track
of all i with X; occurring in Q, we
can find m in polynomial time in
$$\langle Q \rangle$$
, and each of X₁,...,X_{m-1} must
occur in Q. Hence (unless Q is empty),
 $\langle Q \rangle \ge \langle X_1 \rangle + ... + \langle X_{m-1} \rangle$
 $\ge \sum_{i=1}^{m-1} (i + \log_{10}(i + 1)) \ge m - 1 (crudely),$
so adding the phrase
 $n(X_m \vee X_m \vee \neg X_m)$
to Q doesn't increase the length of the
description by more than Q symbols

no more than polynomial in <4). Hence

(4) (2) G1: 0 (one vertex, no edges) three vertices, each two vertices joined by an edge Gz: (b) We can go through all settings of the variables of a 3CNF formula l (in, for example, lexisographical order, from FF_F to TT._T) in space at most the number of variables, plus some space to evaluate 4 at each of the settings. This tells us whether or not YEBSAT; if it is, we write (Gi), if not, we write (Gz).

(c) If
$$P = NP$$
, then there is a
polynomial time algorithm to decide
if a 3CNF 4 is satisfiable or
not; by writing $\langle G_i \rangle$ if it is,
and $\langle G_2 \rangle$ if it isn't, we get a
polynomial time reduction $3SAT \leq poly 2COLOUR$.
If $P \neq NP$, then $3SAT$ can't be poly
time reducible to $2COLOUR$, since $2COLOUR \in P$
and hence $3SAT \leq poly 2COLOUR$ would imply
 $3SAT \in P$ and hence $P = NP$.
Therefore
 $P = NP \iff 3SAT \leq poly 2COLOUR$.
Since, as of November $2O2Y$, we don't
know whether os not $P = NP$, we don't

know whether or not 3SAT & poly 2 COLOUR. (5) Some as 4 part (b), except that instead of writing (Gi) or (Gz) we, respectively, accept or réject. (6) If LEPSPACE then there is a poly-space deterministic algorithm to decide L. By exchanging "accept" and "reject," we have L comp (the complement of L) E PSPACE. If LENPSACE, then by Savitch's Theorem, LEPSPACE, and hence Loomp EPSPACE. Since PSPACE C NPSPACE, Long & NPSPACE.