CPSC 421/501 Oct 11, 2024 - Characterization of regular languages over 203 - Myhill - Nerode point of View of regular languages over {a} and beyond - See handout ! Non-regular languages and the Myhill-Nerode theorem

Myhill-Herede theorem classifies all regular languages, at least in principle ---- T $L = j a^n \quad n \ge 2, n \in \mathbb{N},$ and n and N+2 are prime numbers } Is L regular?

EU2N : Lis regular iff there are finitely many n sit. n, n+2 are prime. iff the "twin prime conjecture is false 3,5 twin primes - \ ۱۷ 5,7 ι 11,13 L١ ۲۱ 17,19 LV L \ LL 29,31 Scool sclary Solve this => goed position,

Figure 1 Protect cylee of path length no (no directed edges) p edges vertices Netp edges norp \rightarrow states No tp

path at a cycle

Languegos over 223= E

If L is regular, then there is ~ DEA wigh not p stater that looks like Figure \rightleftharpoons Which strings reach qr. : and anoth another another and a second if Gro is accepting: no not p hot Zp EL a, a, a, ---and if que is rejecting, not acceptng, then and, and, -- EL

Similety, for i= C, 1, --, p-1

Quoti get there via anoti anotite notiteze either all these EL OR IN IN EL Upshot! If L is regular, then for some no and p $h^{\circ} \geq 0, h \geq 1$ hoe Zzo, p E [N = {1, 2, -- }

for all i= 0, --, P-1, $A^{n_o \pm i}$, $A^{n_o \pm i \pm p}$, $A^{n_o \pm i \pm 2p}$, either all these EL (+ OR II II EL

aches are for all n=ho

Result: smallest p, then smaller

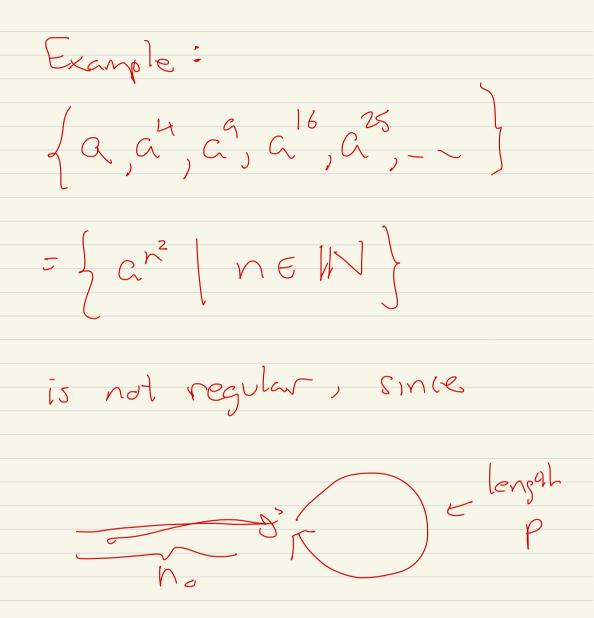
Define: If L¢ {a}, then we say Lis eventually p-periodic if (K) or (KK) hold

for some p. If so, the smellest velve of p for which L is eventually is called the eventual period of L.

e.g. if $q \rightarrow q \rightarrow q^{2}$ $L = \begin{pmatrix} a^{0} \\ or \\ not \end{pmatrix} \begin{pmatrix} a^{1} \\ er \\ not \end{pmatrix}, \begin{pmatrix} a^{2}, a^{4}, a^{6}, \cdots \\ or \\ not \end{pmatrix}, \begin{pmatrix} a^{2}, a^{4}, a^{6}, \cdots \\ or \\ not \end{pmatrix},$ and $\begin{pmatrix} a^3, c^5, a^7, -- \\ or \end{pmatrix}$ Thm ! If L is eventually periodic with overstuck period p, and no is the smallest non-neg integer

such 422 crel GI antpel Vnzno, The DFA receptions L with the fewert states has not p states and look like $\{ c \rightarrow Q, \neg \neg \neg \rightarrow Q, \neg \neg \neg \neg \neg Q, \neg \rangle$

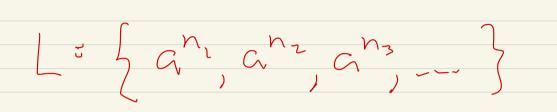
 $\int 2n_{0} + p - 1 \quad (1)$

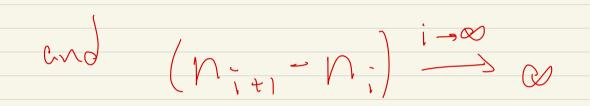


 $q^{2} \pm 1$ $q^{2} \pm 2$ $q^{2} \pm 2$ $q^{2} \pm 2$ $q^{2} \pm q$ not in L potatos an the cycles $if \left[\begin{array}{cc} q^{2} \\ q^{2} \\ \end{array} \right] \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \right] \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \xrightarrow{} \left[\begin{array}{c} q^{2} \\ \end{array} \end{array} \xrightarrow{} \left[\begin{array}{c} \\ \end{array} \end{array}$ 92 *1 3 ro 9 = P sc all states in cycle reject

Similarly N, < N, < N, < N, < N, <

zrf,





then L is not regula

Exercise (Kern Lin) Soy that n_{3} of n_{4} = 7,8 n_{1} = 3, n_{5} = 4,5 n_{3} = 6, n_{4} = 7,8 -

Cald be a nice homework or midtom problem ---grand are the countably many or uncountably " What if Nix, = Nitl ter i large eventul period = 1 n=9 anel () and el

What about if L is Emite, i.e. {a} then this includes a, and not Some h large period = | fan (n, nor are primer