
PSPACE, NPSPACE, Savitch's Theorem

 



• Instance: Given a quantified Boolean formula (QBF)  φ

• Problem: Is φ true? 

True Quantified Boolean Formulas (TQBF)

∀w ∃x ∀y ∃z (w ∨ x ∨ ¬y) ∧ (¬w ∨ ¬x) ∧ (x ∨ y ∨ ¬z) ∧ z



• Describe a simple algorithm for TQBF. 
• What is its time/memory (space) complexity?

True Quantified Boolean Formulas (TQBF)



• Describe a simple algorithm for TQBF. 
• What is its time/memory (space) complexity?

True Quantified Boolean Formulas (TQBF)



• Describe a simple algorithm for TQBF. 
• What is its time/memory (space) complexity?

True Quantified Boolean Formulas (TQBF)



• Distinguish between a read-only input tape and 
work tapes of a Turing Machine (TM).

Space Bounded Complexity Classes



• SPACE(s(n)) is the set of languages accepted by 
deterministic TMs that always halt and use O(s(n)) 
work tape cells on inputs of length n.

• NSPACE(s(n)): replace “deterministic” by 
“nondeterministic”. (Regardless of nondeterministic 
choices made, the TM halts.)

Space Bounded Complexity Classes



• PSPACE = ∪c>0 SPACE(nc)
• NPSPACE = ∪c>0 NSPACE(nc)

• L = SPACE(log n)
• NL = NSPACE(log n)

How do these classes relate to each other, and to the
time-bounded classes P, NP, EXPTIME, NEXPTIME?

Space Bounded Complexity Classes



What classes are contained in PSPACE?



What classes contain PSPACE?

• If a TM uses O(nc) space, how many different
configurations can it be in?



What classes contain NPSPACE?

• We can represent a computation on a fixed input as 
a configuration graph



• Let M be a NTM using O(nc) space .
• Exp-time algorithm for L(M): On input w:

– Write down the configuration graph of M on w; 
the size of the graph is 2O(|w|c)

– Check  if the accepting configuration can be 
reached from the initial configuration (use 
depth first search or breadth first search)

• More generally, if s(n) is space-constructible then
   DSPACE(s(n)) ⊆ DTIME(2O(s(n))

NPSPACE ⊆ EXP



Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



• Proof idea: Let L be accepted by NTM M within c.s(n)) 
space and 2c.s(n) time. We'll describe a deterministic 
algorithm that accepts L in O(s(n)2) space.

• Fix input w of length n, and let G be the configuration 
graph of M on w.

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



• Let Reach(x,y,i) be true if there is a path of length ≤ 2i 
from node x  to node y in configuration graph G, and 
false otherwise. 

• On input w, the DTM computes
    Reach(init,acc,c.s(n) )
 and accepts if and only if the function returns true

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 then 
  If x = y Return True 
  Else Return False 
 Else
  For each node z of G
   If (Reach (x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
      Else 
    Return False

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 then 
  If x = y Return True 
  Else Return False 
 Else
  For each node z of G
   If (Reach (x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
      Else 
    Return False

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 then 
  If (x = y) or ( (x,y) is an edge of G) Return True 
  Else Return False 
 Else
  For each node z of G
   If (Reach (x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
     Return False

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 





Reach(x,y,i) analysis:
• The space per recursion level is proportional to the 

space, s(n) used by M on w (where |w| = n)
• The recursion depth is i
• So, the recursion depth is c.s(n) on call 
    Reach(init, acc, c.s(n) ),
 and the total space used is O(s(n)2.

Savitch’s Theorem: NSPACE(s(n)) ⊆ DSPACE(s(n)2) 



TQBF is PSPACE-complete

• Let L be a PSPACE language, accepted by TM M 
within space c.s(n) and time 2c.s(n) .

• Goal: Poly-time reduction w  QBF(w) such that 
QBF(w) is true iff w is in L.

• Equivalently, if Reach(x, y, i) is as before, then
   QBF(w) is true iff  Reach(init, acc,c.s(|w|)).



TQBF is PSPACE-complete

• Let L be a PSPACE language, accepted by TM M 
within space c.s(n) and time 2c.s(n) .

• Goal: Poly-time reduction w  QBF(w) such that 
w is in L iff QBF(w) is true.

• Equivalently, if Reach(x,y,i) is as before, then
   Reach(init,acc,c.s(|w|)) iff QBF(w) is true.



TQBF is PSPACE-complete

First try at expressing this using logic:
   ∃ config z: Reach(x,z,i-1) ⋀ Reach(z,y,i-1) )
Problem: formula size will blow up, because of 2 Path 
expressions

Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 [base case omitted] 
 Else
  For each node z of G
   If (Reach(x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
     Return False



TQBF is PSPACE-complete

First try at expressing this using logic:
   ∃ config z: Reach(x,z,i-1) ⋀ Reach(z,y,i-1) )
Problem: formula size will blow up when expanding the 
Reach expressions, because of doubling

Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 [base case omitted] 
 Else
  For each node z of G
   If (Reach(x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
     Return False



TQBF is PSPACE-complete

Reach(x,y,i)  // does G have a path of length ≤ 2i  from x to y?
 If i = 0 [base case omitted] 
 Else
  For each node z of G
   If (Reach(x, z, i-1) and Reach(z, y, i-1) ) 
    Return True
     Return False

Better way of expressing this using logic:
   ∃ config z ∀ v∈{True, False} ∃ configs z',z''
 (v ⇒ z',z''=x,z) ⋀ (¬v ⇒z',z''=z,y) ⋀ Reach(z',z'',i-1)



TQBF is PSPACE-complete

Overall QBF: 
 ∃ z1 ∀ v1 ∃ z1',z1'' ∃ z2 ∀ v2 ... ∃ zm',zm''

   ϕ(z0',z0'', z1,v1, z1',z1'', ,..., zm ,vm ,zm',zm'')

where m = c.s(n) and ϕ encodes that
• z0' and z0''  are the initial and accepting configs of M on w
• for each i, if vi = true then zi', zi''= zi-1', zi

• for each i, if vi = false then zi', zi''= zi, zi-1''
• all of the zi,  zi' and zi'' encode valid configurations
• zm' = zm'' or (zm', zm'') is an edge of G (base case)



• Motivation: schedule jobs at the same time 
period each day; want to minimize processors

• Example:

• Succinct representation:

Periodic Graph Colouring

A A
B

C C
D D

…
…

A

B C D
+
1



• Succinct graph is 3-colourable, suggesting that 
we need 3 processors (since two jobs in 
overlapping time intervals cannot be 
scheduled on the same processor)

• But the infinite graph is actually 2-colourable, 
and so we can use just 2 processors!

Periodic Graph Colouring

A

B C D

A

B C D
+
1

A

B C D

A

B C D



• A periodic graph G is an infinite undirected 
graph, specified by a triple (V,E,E')

• G’s nodes: 

–∪ Vi  where Vi  = {vi | v in V}, for all i in ℤ

• G’s edges:  (∪ Ei ) ∪ (∪ Ei')
– where Ei = {{ui vi} | {u,v} in E}
– and Ei' = { {ui vi+1}| (u,v) in E'}

Periodic Graph Colouring



• Instance: A periodic graph G = (V,E,E') and a positive 
number k

• Problem: Is G k-colourable?

• Can you suggest a nondeterministic algorithm for 
Periodic Graph Colouring that runs in polynomial 
space?

Periodic Graph Colouring

A

B C D
+
1



Summary

• PSPACE refines the categorization of problems within 
EXP: those that can be solved with only polynomial 
space vs those that seem to need both exponential 
time and space

• NPSPACE = PSPACE! (Savitch’s Theorem)
• We can leverage Savitch’s Theorem to simplify proofs 

that some problems are in PSPACE (e.g., Periodic 
Graph Colouring, which also happens to be PSPACE-
complete.



Decidable

NP

PSPACE 
(=NPSPACE)

EXP
…

Summary

TQBF
PSPACE-complete

Periodic Graph 
Colouring


