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1. The Barcode Theorem

The “barcode theorem” is a theorem in linear algebra that is an integral part of
persistent homology, first discovered in [ELZ02, ELZ00]. Yet, the “barcode theorem”
can be viewed as a general theorem in linear algebra, and specifically [CZCG04] a
consequence of the structure of graded modules over a PID.

In the case of usual interest to us, this theorem results from the Jordan canonical
form of a matrix, specifically that of a matrix, M , that is nilpotent, i.e., such that
Mk = 0 for some sufficiently large integer k (equivalently 0 is the only eigenvalue
of M).

Definition 1.1. Let F be a field. Let n ≥ 0 be an integer. A string of F-vector
spaces of length n + 1 refers to the data consisting of a sequence V 0, . . . , V n of
vector spaces, and linear maps Li : V i → V i+1 for i = 0, . . . , n − 1. We often use
the symbols V ·,L· to refer collectively to {V i}0≤i≤n and {Li}0≤i≤n−1, and (V ·,L·)
to the string.
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2 JOEL FRIEDMAN

We may represent a string of vector spaces with the diagram:

V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n.

Definition 1.2. In Definition 1.1, let i, j be integers with 0 ≤ i ≤ j ≤ n. For
0 ≤ k ≤ n, let Vk = F if i ≤ k ≤ j, and otherwise let Vk = 0. For i ≤ k ≤ j − 1,
let Lk be the identity map. We call this string the (i, j)-bar. As a diagram, the
(i, j)-bar can be represented as:

0 → · · · → 0 → F → · · · → F → 0 → · · · → 0,

where the first appearance of F is in V i, and the last in V j , and all morphisms
F → F are the identity maps (there is only one morphism 0 → F, and only one
F → 0). By a bar we mean any (i, j)-bar.

Our main theorem states that any string of finite dimensional vector spaces is
isomorphic to a direct sum of bars of the form in Definition 1.1. Hence we need to
define the direct sum of two strings and a morphism (and isomorphism) from one
string to another. The reader can likely guess the definitions. Before giving them,
we remark that these definitions are well known in the literature. (These remarks
can be skipped by the reader unfamiliar with or unenthusiastic about sheaf theory.)

Remark 1.3. Definition 1.1 is a presheaf on the category that is a directed path,
endowed with the coarsest topology (la topologie grossière), see [sga72], Exposés I
and II, or, for specifics, [Fri05], Theorem 2.1. This is the notion of morphism we
will use, and we will also use the resulting notion of direct sum.

Remark 1.4. Definition 1.1 can also be understood as a sheaf (in the classic sense)
over the topological space whose underlying set is {0, 1, . . . , n}, and whose n + 2
open subsets are those of the form Ui = {i, i+ 1, . . . , n} for some 0 ≤ i ≤ n+ 1 (so
Un+1 = ∅): this follows since each of the n + 1 non-empty open subsets (Ui with
0 ≤ i ≤ n) is irreducible in the sense of [Fri05], Theorem 2.1.

Definition 1.5. Let S1 = (V ·
1 ,L·

1), S2 = (V ·
2 ,L·

2) be strings of F-vector spaces of
the same length n+ 1. The direct sum of S1 and S2 is the string whose i-th vector
space is V i

1 ⊕ V i
2 , and whose i-th morphism is Li

1 ⊕ Li
2.

Hence the diagram representing the direct sum is:

V 0
1 ⊕ V 0

2

L0
1⊕L0

2−−−−→ · · ·
Ln−1

1 ⊕Ln−1
2−−−−−−−−→ V n

1 ⊕ V n
2 .

The direct sum of any set of strings is similarly defined.

Example 1.6. Let n = 2. The direct sum of the bar (0, 0), the bar (2, 2), 2 copies
of the bar (1, 2), and the bar (0, 2) is visualized by the barcode

V 0 V 1 V 2
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To formalize this, we label each bar with a unique letter from A, . . . , E:
A

B
C
D

E
V 0 V 1 V 2

This describes V 0, V 1, V 2 as

V 0 = F{A,E} → V 1 = F{C,D,E} → V 2 = F{B,C,D,E},

where we understand the following convention: if S is a set, then FS (as usual) refers
to the F-vector space of maps S → F; if S1, S2 are two sets (one usually thinks of
S1, S2 ⊂ T as subsets of an “ambient” set T ), then one defines a “canonical map”
KS1→S2 : FS1 → FS2 taking v ∈ FS1 to the function that agrees on v on S1 ∩ S2,
and otherwise, i.e., on S2 \ S1, takes the value 0.

Remark 1.7. In the above example we have subsets S1, S2, S3 ⊂ T where T =
{A, . . . , E}, and a sequence

(1) FS1 → FS2 → FS3 .

Note that since E ∈ S1, S3, E represents the (0, 2) bar, and hence we also have
E ∈ S2. As a consequence, we have

(2) KS1→S3
= KS2→S3

KS1→S2
.

The above equation is extremely convenient, and so we will insist on it. By contrast,
if we take S1 = S3 = {A} and S2 = ∅, then (1) is the string F → 0 → F (we say
“the” since there is only one way to define the arrows), and (2) doesn’t hold. The
fact that (2) doesn’t hold is reflected in the fact that F → 0 → F is not a single
bar, but the direct sum of a (0, 0) bar and a (2, 2) bar.

In view of the above remark we make the following definition.

Definition 1.8. Let T be a set. We say that a sequence of subsets S0, . . . , Sn ⊂ T
is bar-like if:

(1) S0 ∪ . . . ∪ Sn = T ; and
(2) for all 0 ≤ i < j < k ≤ n and all t ∈ T we have t ∈ Si and t ∈ Sk implies

that t ∈ Sj .

Notice that in the definition above we have for any 0 ≤ i < j < k ≤ n:

KSi→Sk
= KSj→Sk

KSi→Sj
,

and therefore for any i < j we have

KSi→Sj = KSj−1→Sj . . .KSi→Si+1 .

Proposition 1.9. Let F be a field, and t ≥ 0 be an integer. Let a string of n + 1
F-vector subspaces equal the direct sum of m bars. Then for a set, T , of cardinality
m there are subsets S0, . . . , Sn ⊂ T that are bar-like, and where

(1) each element t ∈ T corresponds to a (pt, qt)-bar where pt, qt are the unique
integers satisfying t ∈ Si iff pt ≤ i ≤ qt;

(2) for each i = 0, . . . , n we have V i = FSi ; and
(3) for each i = 0, . . . , n− 1 we have Li = KSi→Si+1

.
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Conversely, for any finite set T and bar-like subsets S0, . . . , Sn ⊂ T , there is a
direct sum of |T | bars that satisfies (1)–(3) above.

Definition 1.10. Let S1 = (V ·
1 ,L·

1), S2 = (V ·
2 ,L·

2) be strings of F-vector spaces of
the same length n+ 1. A morphism S1 → S2 is a collection of maps Mi : V i

1 → V i
2

that intertwine with the morphisms of S1 and S2 in the evident sense, i.e., for all
0 ≤ i ≤ n, we have Mi+1Li+1

1 = Li
2Mi for all i.

Hence we can depict this morphism with a “commutative diagram”:

V 0
1 L0

1

V 1
1 L1

1

· · ·
Ln−2

1

V n−1
1 Ln−1

1

V n
1

V 0
2

L0
2 V 1

2

L1
2

· · ·
Ln−2

2 V n−1
2

Ln−1
2

V n
2

M0 M1 Mn−1 Mn

It is immediate that this morphism is an isomorphism (i.e., this morphism has an
inverse morphism) iff each Mi is an isomorphism.

The main point of this article is the following theorem, and to give an algorithm
in the general case.

Theorem 1.11. Any string, F , of length n+1 of finite dimensional vector spaces
is isomorphic to a direct sum of bars. Moreover, for each 0 ≤ i ≤ j ≤ n, the number
of (i, j)-bars in this direct sum is independent of this direct sum.

Concretely the above theorem can be viewed in a number of ways.
First, any string of n + 1 F-vector spaces (V ·,L·) has a bar-like sequence of

subsets S0, . . . , Sn of a set T and, for each 0 ≤ i ≤ n, a bijection from Si to a basis,
Xi, of V i, such that: for each 0 ≤ i ≤ n−1, Li is the unique linear map taking each
x ∈ Xi corresponding to an element of s ∈ Si to 0 if s ∈ Si \ Si+1, and otherwise
to the x′ ∈ Xi+1 corresponding to the element s ∈ Si+1 (which therefore lies in
Si ∩ Si+1).

Second, for any string of n+ 1 F-vector spaces (V ·,L·) there is a direct sum of
bars (Ṽ ·, L̃·) and isomorphisms Mi : V i → Ṽ i, such that for each 0 ≤ i ≤ n− 1, Li

is given by (Mi+1)−1L̃iMi.

2. The Main Idea in the Proof of the Barcode Theorem

Definition 2.1. Consider a string F = (V ·,L·) of vector spaces:

V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n.

The total space of F is the pair (V,L) where

V = V 0 ⊕ · · · ⊕ V n,

and L : V → V is the map given by

L(v0, . . . , vn) → (0,L0v0, . . . ,Ln−1vn−1).

Hence, in the definition above, L is nilpotent, i.e., Ln = 0.
We next recall the algorithm to put L into its Jordan canonical form, which

determines the barcode of F = (V ·,L·).
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3. Jordan Canonical Form of a Nilpotent Linear Operator

In this section we review Jordan canonical form linear operator L : V → V ,
assuming that L is nilpotent, i.e., Lk = 0 for some k ∈ N. We will then apply this
to the linear transformation L : V → V in Definition 2.1.

[The general case of Jordan canonical form is not much harder, but we won’t
need it in this article.]

[Abstractly, the existence of Jordan canonical form can be viewed as a special
case of the primary decomposition of a module over the PID F[x]; see Appendix A.]

[This article shows the usefulness of Jordan canonical form in certain “applied
settings,” despite the fact that “almost all” matrices are diagonalizable.1 ]

So let L : V → V be a linear transformation of an F-vector space V . Further
assume that L is nilpotent, i.e., Lk = 0 for some k ∈ N, and fix k to be the smallest
such integer. It follows that all eigenvalues of L are 0; since 0 ∈ F whether or not
F is algebraically closed, we can put L into Jordan canonical form (whether or not
F is algebraically closed). Let us review the algorithm.

A Jordan chain2 of length k generated by w of L is any sequence

(3) w,Lw, . . . ,Lk−1w

such that w ∈ V and Lk−1w ̸= 0. Then it is almost immediate that these elements
are linearly independent: indeed, if α0w+α1Lw+ · · ·+αk−1Lk−1w = 0 for αi ∈ F,
and some αi ̸= 0, then for the smallest i with αi ̸= 0 we apply Lk−1−i to both sides
of the equation and conclude that αiLk−1w = 0, which is impossible.

Next note that for a Jordan chain (3), if we restrict L to the subspace, V ′, of
V spanned by Lk−1w,Lk−2w, . . .Lw,w (in this order), then L is identified with
the matrix J ∈ Fn×n acting on column vectors (i.e., acting to the left of column
vectors) where J = Jk(0) ∈ Fk×k is the standard k× k Jordan block matrix for the
eigenvalue λ, i.e.,

(4) Jk(λ)
def
=


λ 1

λ 1
. . . . . .

λ 1
λ


(where a blank space implies a 0).

It follows that to write L in Jordan canonical form is to find w1, . . . , ws ∈ V and
k1, . . . , ks ∈ N such that (1) for each i, wi generates a Jordan chain of length ki,

1A matrix M ∈ Fn×n (i.e., an n×n matrix with entries in F), M , is necessarily diagonalizable
(over F, the algebraic closure of F) when its characteristic polynomial pM (x) = det(Ix−M) has
n distinct roots, i.e., its discriminant (i.e., the resultant of pM and p′M ) is nonzero. [The 2 × 2

all zeros matrix is diagonalizable, and has characteristic polynomial x2, so this condition is not
necessary.] Hence there is a polynomial Q = Q(M), of the entries of M , such that Q(M) ̸= 0
implies that M is diagonalizable. Since Q(M) is not identically zero (it is nonzero on a diagonal
matrix with distinct diagonal elements in F), it follows that Q is not the zero polynomial. It
follows that if F = R,C, the set of non-diagonalizable matrices in Fn×n is of measure 0. More
generally, for any field F, the set of non-diagonalizable matrices in Fn×n lies in a proper, Zariski
closed subset, and therefore is “exceptional” in various senses (assuming F is infinite or sufficiently
large) that we will not bother to specify.

2We would add “with respect to the eigenvalue 0” for a general L, not assumed to be nilpotent,
and the chain would be w, (L − λ)w, . . . , (L − λ)k−1w for an eigenvalue λ.
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(2) k1 + · · ·+ ks = n, and (3) the union of
s⋃

i=1

{wi,Lwi, . . . ,Lki−1wi}

is a basis for V .

Definition 3.1. By a Jordan basis for a nilpotent linear operator L : V → V we
mean any pair of sequences w1, . . . , ws ∈ V and k1, . . . , ks ∈ N satisfying (1)–(3) in
the previous paragraph.

Example 3.2. Let

L =

0 1
0 0

0


(where a blank space implies a 0). Then L is a block diagonal matrix with a J2(0)
block and a J1(0) block. If e1, e2, e3 are the standard basis vectors, then e1, e3 are
eigenvectors (with L acting to the left of column vectors). Also, e2,Le2 and e3 are
two Jordan chains, where L is the operator on F3 expressed as column vectors via
the basis e1, e2, e3.

We say that a Jordan chain in (3) is maximal if Lkw = 0 and if there is no w′

such that Lw′ = w. It is easy to see — and helpful for intuition — to note that
any Jordan basis for L must consist of maximal Jordan chains.

It is now easy to give an algorithm for finding a Jordan basis for a nilpotent
operator L : V → V . The point is that you want to find the longest Jordan chains
of the Jordan basis first.

So let k ∈ N be the largest integer with Lk−1 nonzero. Let u1, . . . , ur be a
basis for the image of Lk−1; then, by definition, there exist w1, . . . , wr such that
Lk−1wi = ui for all i. We easily see that each wi generates a (maximal) chain
of length k, and the vectors Bk = {Ljwi} with i, j ranging over 1 ≤ i ≤ s and
0 ≤ j ≤ k − 1 are linearly independent, similarly to the above argument. Since
Lk = 0, we see that all chains are of length at most k, and that any chain of length
k is generated by a w that is a linear combination of w1, . . . , wr above (since Lk−1w
must be a linear combination of u1, . . . , ur above).

We next find the maximal chains of length k − 1 whose elements are linearly
independent from Bk above: consider the image of Lk−2, which clearly contains
Lk−2wi and Lk−1wi for all 1 ≤ i ≤ r; since these 2r vectors are linearly independent,
we can choose u′

1, . . . , u
′
r′−1 to complete these vectors to a basis for the image of

Lk−2; we then choose w′
i such that Lk−2w′

i = u′
i for all i. We easily show that

Bk = {Ljwi | 1 ≤ i ≤ r, 0 ≤ j ≤ k − 1}

and
Bk−1 = {Ljw′

i | 1 ≤ i ≤ r′, 0 ≤ j ≤ k − 2}
are disjoint subsets whose union is linearly independent.

Next we repeat this step to find vectors Bk−2, independent of Bk ∪ Bk−1 and
coming from chains of length k − 2. We similarly find vectors Bk−3, Bk−4, . . . B1.
Since B1 is a basis of vectors in the image of L0 = idV , i.e., all of V , that completes
B2 ∪ . . .∪Bk, we have that B1 ∪ . . .∪Bk is a basis for all of V . The union over all
i of the chains of length i arising from the Bi is therefore a Jordan basis.
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Example 3.3. In Example 3.2, the image of L on F3 is the span of e1; since
Le2 = e1, this gives us the chain e2,Le2 = e1, so B2 = {e2, e1}. Moreover, B2 is
determined up to scalar multiple. Then B1 consists of a single element, which may
be any vector γ1e1 + γ3e3 with γ1, γ3 ∈ F with γ3 ̸= 0. Notice that if we started
by looking for Jordan chains of length 1, i.e., eigenvectors, there is 2-dimensional
possible space. If we take e1 + e3 and e3 as such a basis, there is no way to extend
either of these “backwards” to make one of them a chain of length 2. This is why we
start by finding the longest Jordan chains and then find successively shorter ones.

Remark 3.4. Despite the problem arising by starting with shorter chains and
extending them backwards, identified in Example 3.3, one can still roughly do this,
using one trick. Namely, in Section 3.1 of [HJ85] one first finds a basis with respect
to which L is an upper triangular matrix, using the Schur decomposition; hence
the diagonal is all 0’s. From there one does an inductive argument, reducing the
n × n case (assuming the matrix is upper triangular with 0’s on the diagonal) to
the (n−1)× (n−1) case (see Subsection 3.1.5 there). So provided that L is already
written in upper triangular form, one can start with short chains and progressively
look for longer (or new) ones.

Remark 3.5. Note that the total space (V,L) of a string of vector spaces is
already an upper triangular matrix: indeed, choose arbitrary bases B0, . . . , Bn for
the respective vector spaces V 0, . . . , V n; then L with respect to Bn, . . . , B0 is a
block matrix whose only nonzero blocks are those just above (or to the right of)
the main diagonal. Hence in Remark 3.4 we can skip the Schur decomposition step.

Remark 3.6. There are likely very many algorithms to find a barcode decomposi-
tion of a string of vector spaces, and I currently (December 2024) don’t know what
is known here for a general string and/or strings arising in homology. However,
given the previous two remarks, I’m guessing there are a lot of options, depending
on the precise features of the string of vector spaces.

4. Proof of the Barcode Theorem

Let notation be as in Definition 2.1. Since L is nilpotent, we will use the algo-
rithm in the previous section. So let k ∈ N be the smallest natural number with
Lk = 0, and let u1, . . . ,ur be a basis for the image of Lk−1; let w1, . . . ,wr be such
that ui = Lk−1wi.

Say that a nonzero element u ∈ V is purely of degree d if u = (u0, . . . , un) and
ui = 0 for i ̸= d. Clearly any nonzero element of V can be uniquely written as a
sum of elements purely of degrees d1 < d2 < . . . < dt with 0 ≤ d1 < . . . < dt ≤ n;
we call each such summand a pure component of u. Clearly if ui is in the image
of Lk−1, then so is each pure component of ui. It follows from the “basis exchange
theorem” that we can replace the basis u1, . . . ,ur of the image of Lk−1 with one
where each uj is purely of some degree. Then if Lk−1wj = uj and uj is purely of
degree d, then the same holds with wj replaced by its pure component of degree
d− (k − 1).

This gives us a set Bk as in the previous section, which is the union of chains
of length k each of which is generated by a wi that is purely ofsome degree. We
easily see that for any d, the dimension of the image of V d in V d+k−1 is precisely
the number of wi that are purely of degree d; hence the number of w1, . . . ,wr that
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are purely of some degree d depends only on d and not the particular choice of
w1, . . . ,wr.

In this way we similarly generate Bk−1, Bk−2, . . . , B1, which give a Jordan basis
for L. Moreover the number of Jordan chains of a given length k′ in Bk′ beginning
in an element purely in any given degree is independent of the choice of elements
in Bk′ . But the decomposition of V into Jordan chains generated by elements of
V, each of which is purely of some degree, is clearly the same thing as a barcode
decomposition.

Appendix A. Modules over PID’s

[I’ve really written this section mostly to jog my memory, since I learned most
of these theorems in a class in the early 1980’s, and haven’t really used them much
since...]

It is well known that any finitely generated abelian group is a sum of groups,
each of which is of the form Z/mZ for integers m ≥ 0 (so either m = 0, which gives
Z, or m ̸= 0, in which case Z/mZ is a finite, cyclic group, and the case m = 1
can be omitted). Furthermore, when m ≥ 2, Z/mZ can be written as a sum of its
primary parts, i.e., as a direct sum over i ∈ [r] of Z/pni

i , where m = pn1
1 · · · pnr

r

is the prime factorization of m. It turns out that the usual proof of the previous
paragraph generalizes to modules over any PID (Z is a PID), and an abelian group
is the same thing as a Z-module). This structure theorem gives a proof — although
not necessarily the best algorithm — for determining the Jordan canonical form of
a square matrix.

Here we will outline some of the main these ideas needed. I will use part of
Lang’s textbook, Algebra, [Lan02], specifically Section III.7, “Modules over Princi-
pal Rings.”

I assume that you know what is meant by a commutative ring, R (we assume
1 ̸= 0), and an R-module (when R is a field, an R-module is just an R vector space).
An ideal in R is a subset of R that is also an R-module. A ring, R, is called an
integrity ring or ring of integrity3 if it has no zero divisors; e.g., R = Z/6Z is not
of integrity, since 2 · 3 = 0 but 2, 3 ̸= 0; similarly, for R = F[x, y]/(xy), xy = 0 but
x, y ̸= 0. A PID4 is a commutative ring, R, of integrity such that every ideal of R
is principal, i.e., of the form (a)

def
= aR for some a ∈ R.

The simplest (interesting) examples of PID’s are Z and F[x] for a field, F. In
algebraic geometry it might be useful to notice that any localization of a PID is
again a PID. It is a famous result that if R is the ring of integers over a finite
extension of the rationals, then R is a PID iff R is a unique factorization domain,
and there are only finitely many such R.5

3This term is truer to the German Integritätsring or the French anneau intègre; Lang [Lan02]
uses the term entire rings; a common English term for these rings is integral domains, which
seems like a needlessly confusing mistranslation of the likely original German (see https://math.
stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from); see
also pages 91-92 II.2 of [Lan02]. In particular, being an “integral domain” has nothing to do with
R being integrally closed over its field of fractions...

4Principal integral domain, where “integral domain” has the problematic name as explained in
the previous footnote.

5Also, it is not hard to prove Fermat’s last theorem regarding xn + yn = zn for the finitely
many n such that Z[ζn] is a PID (or unique factorization domain), where ζn is a primitive n-th
root of unity).

https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from
https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from
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[For intuition on matters below, it may be useful to note that the set of (mul-
tiplicative) units in Z is finite, but is only finitely generated in a general number
field. Also, the set of units in F[x] is F× = F \ {0}.]

We now sketch the proof of the main structure theorems for Abelian groups,
which are the same things as Z-modules. We prove this in the general context of
R-modules for any PID, R. We begin by following Lang [Lan02] (Section III.7,
Modules over Principal Rings).

Lemma A.1. Let R be a PID, and M be a free R-module with basis e1, . . . , en (i.e.,
each element of R can be written uniquely as r1e1+ . . .+rnen; you can also think of
ei as the i-th standard basis vector of Rn). Let F ⊂ M be any R-submodule. Then
there are f1, . . . , fn ∈ F such that F is a free R-module generated by the nonzero
fi. (We allow fi to be 0 for convenience of sketching the proof.)

Proof. For each i = 1, . . . , n, consider the a ∈ R such that

there exist b1, . . . , bi−1 ∈ R such that b1e1 + . . .+ bi−1ei−1 + aei ∈ F .

The set of such a is easily seen to be an ideal of R, and hence equal to (ai) for some
ai ∈ R. If ai ̸= 0, choose any bji such that

fi = b1ie1 + . . .+ bi−1,iei + aiei ∈ F ;

if ai = 0 we set fi = 0. We easily verify — using the triangularity of matrix relating
the fi to the ei where ai ̸= 0 — that these are the fi we seek. □

From here we will diverge from the proof in Lang’s book. (The proof below is
essentially the proof I first learned, following a textbook of Jacobson on algebra...)

If L ∈ Rm×n, i.e., L is an m × n matrix with entries in R, an elementary row
operation on L is any way of

(1) choosing α, β, γ, δ ∈ R such that[
α β
γ δ

]
is invertible (which, using some facts from below, is easily seen to be equiv-
alent to αδ − βγ being a (multiplicative) unit it R);

(2) choosing i, j ∈ [m] with i ̸= j;
(3) then replacing the i-th and j-th rows of L with, respectively, α times the

i-th row plus β times the j-th row, and γ times the i-th row plus δ times
the j-th row.

We make the similar definition for elementary column operations.
[In order to accommodate the situation where m = 1, i.e., L has only one row,

we could allow ourselves to multiply any row by any unit of R. (However, we won’t
really be interested in row operations when m = 1.)]

Hence, each elementary row operation on a matrix in the usual sense, when
R = F is a field, is an elementary row operation in the above sense; moreover, when
R = F is a field, every elementary row operation in the above sense can be achieved
by at most four of the elementary row operations in the usual sense (left to the
reader).

Lemma A.2 (Smith normal form). Let R be a PID, and let L ∈ Rn×n, i.e., L
is an n × n matrix with entries in R. Then one can perform elementary row and
column operations on L to obtain a diagonal matrix L′ whose diagonal elements
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are b1, . . . , bn, with (bn) ⊂ (bn−1) ⊂ · · · ⊂ (b1) (we also write this as b1|b2| . . . |bn,
writing a|b to mean (b) ⊂ (a)).

We remark that Smith normal form is more typically defined for general matrices
rather than only square matrices, i.e., L ∈ Rm×n with m ̸= n; we personally prefer
to think of the square case; it always suffices to consider only the square case, at
the expense of adding 0’s to a non-square matrix to make it square (see also its
application below).

Below we sketch a proof of the above lemma. Before doing so, we make a number
of remarks showing that PID’s work similarly to Z (itself a PID) in many ways,
such as: (I don’t think we really need (7,8) below, but they are a lot of fun...)

(1) If (c1) ⊂ (c2) ⊂ · · · is an increasing infinite sequence of ideals of R (all
ideals are principal), then ci = ci+1 = . . . for some i (proof: the union
of these ideals is an ideal, therefore equal to (c) with c ∈ (ci) for some
i, and the result follows). More generally, a ring R is called Noetherian
if any increasing sequence of ideals in R eventually stabilizes;6 see Lang’s
textbook [Lan02], Chapter X (Noetherian Rings and Modules), Section 1
(Basic Criteria).)

(2) For any a, b ∈ R, (a)(b) = (ab) (proof: very easy).
(3) If for a, b ∈ R are nonzero and (a) = (b), then a, b differ by multiplicative

units in R (proof: by definition b = aα and a = bβ for some α, β ∈ R, and
hence a = aαβ, so a(1− αβ) = 0, so, by the integrity of R, 1− αβ = 0 so
α, β have multiplicative inverses — each other — in R).

(4) For any a, b ∈ R we write a|b if (b) ⊂ (a); in this case we have a = bc for
some c ∈ R (by definition, since b ∈ (b) ⊂ (a), so b ∈ (a) so, by definition
b = ac for some c ∈ R).

(5) We say that a, b ∈ R are relatively prime if (a, b) = R, or, equivalently,
aα + bβ = 1 for some α, β ∈ R. In this case (ab) ⊂ (a) ∩ (b) holds with
equality (proof: any element of (a) ∩ (b) is of the form aA = bB, and so
aAβ = bBβ = (1 − aα)B, and hence B = aAβ + aαB and so a|B so
B = aγ ∈ (a) and so bB ∈ (ab)).

(6) For any a, b ∈ R, one can define their GCD (greatest common divisor) as
any c ∈ R such that (c) = (a, b) (c) = (a, b) (i.e., c generates the ideal
generated by a and b), and c is uniquely defined up to a unit of R. We then
have (a) ⊂ (c) so a = cd1 and similarly b = cd2 for d1, d2 ∈ R, and hence
ab = cL, where L = cd1d2 (so c|L).

(7) The L in the previous item can rightfully be called the LCM (least common
multiple) of a, b since (a) ∩ (b) = (L) (proof: since (c) = (a, b) = c(d1, d2),
we have c ∈ c(d1, d2) so 1 ∈ (d1, d2) so d1, d2 are relatively prime. Hence
(d1)∩ (d2) = (d1d2), and hence (a)∩ (b) = c((d1)∩ (d2)) = (cd1d2) = (L)).

(8) Hence (a)(b) = (a, b)((a)∩ (b)), where the right-hand-side is the product of
ideals corresonding to the GCD and LCM of (a) and (b).

(9) Say that (a, b) = (c). Then c = aα + bβ for some α, β ∈ R; since (a) ⊂
(a, b) = (c), c = aγ for some γ ∈ R, and similarly c = bδ. It follows that

c = c(γα+ δβ),

6Much of algebraic geometry can be written more concisely when working with Noetherian
rings, and Hartshorne’s celebrated textbook exploits this. For example, any ideal in a Noetherian
ring is finitely generated. Of course, if you really need to work with spaces locally modeled by the
spectra of rings like R = F[x1, x2, . . .], then you might think otherwise...
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and so by the integrity of R, γα+ δβ = 1. Hence

det

[
α β
−δ γ

]
= 1,

and [
α β
−δ γ

] [
a
b

]
=

[
c

−δa+ γb

]
=

[
c

−δγc+ γδc

]
=

[
c
0

]
It follows that the column vector [a b] differs from [c 0] by an elementary
column operation.

(10) By induction on the preceding remark, if L ∈ R1×n, i.e., L is a matrix with
a single row and n columns, then there are elementary column operations
on L taking it to a matrix [c 0 0 . . . 0], where c is the GCD of the entries
of L.

Proof of Lemma A.2. First we describe a procedure to find a matrix equivalent to
L whose top left entry is c, and the other entries in the first row and column of L
are all 0’s: to do so, according to (2) above, we may perform column operations on
L to yield a matrix L′ whose first row is of the form [c′ 0 0 . . . 0]. If all entries in
the first column of L′ are divisible by c′, we can clear out all entries under the top
c′ in the first row, which finishes the procedure (with c = c′). If not, then setting c′′

to be the GCD of the entries of the first row of L′, we have (c′) ⊂ (c′′) with strict
containment; we then perform the analogous row operations on L′ to get a matrix
L′′ whose first column is the transpose of [c′′ 0 . . . 0]. If c′′ divides all the entries of
the first column of L′′ we are done; otherwise we go back to column operations on
L′′ to get its first row to be [c′′′ 0 0 . . . 0] where (c′′) ⊂ (c′′′) with strict containment.
Continuing in this way, we get strict containments (c′) ⊂ (c′′) ⊂ (c′′′) ⊂ · · · which
must terminate by (3) above.

Having finished with the first step, we inductively perform elementary row and
column operations on rows and columns numbers 2 through n, so that the we get
an equivalent matrix all of whose first two rows and columns are 0 except on the
diagonal. By induction we can continue until the original matrix L is equivalent to
a diagonal matrix Ldiag, whose diagonal elements are c1, c2, . . . , cn.

Now we wish to bring Ldiag to an equivalent diagonal matrix whose diagonal
entries are b1, . . . , bn with bi|bi+1 for all i.

First, we show that the top left 2×2 block of Ldiag can be brought to a diagonal
matrix whose first diagonal entry is the GCD of c1, c2; the second diagonal entry
will also (or therefore) by divisible by this GCD. (We leave this to the reader.) We
then proceed similarly with the 2 × 2 minor built from rows and columns 1 and
3, and then columns 1 and 4 and so on; this gives an equivalent diagonal matrix
whose diagonal elements are b1, c

′
2, c

′
3, . . . , c

′
n where b1 is the GCD of c1, . . . , cn and

b1 divides c′2, . . . , c
′
n. Proceeding similarly with the lower right (n − 1) × (n − 1)

submatrix, and so on, we eventually get an equivalent diagonal matrix whose entries
are b1, . . . , bn with bi|bi+1 for all i. □

(I’m not claiming that the algorithm given in this proof is particularly efficient...)

Lemma A.3. If R is a PID, and M is an R-module generated by n generators,
then there are b1, . . . , bn such that

R = (b1)⊕ (b2)⊕ · · · ⊕ (bn)
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and (bn) ⊂ (bn−1) ⊂ · · · ⊂ (b1) (one also typically writes this is b1|b2| . . . |bn, where
a|b is its usual meaning in a PID, namely (b) ⊂ (a), which coincides with its usual
meaning in Z or F[x]).
Proof. Let e1, . . . , en generate M . Let S ⊂ Rn be the subset of s = (s1, . . . , sn) ∈
Rn such that

s1e1 + · · ·+ snen ∈ R

(hence S describes “all relations” among e1, . . . , en in R). We easily see that S is
an R-sub-module of Rn; by Lemma A.1, S is free and generated by f1, . . . , fm ∈ S
where m ≤ n. Let L be the matrix n × n matrix with entries in R, whose first
m columns are f1, . . . , fm, and whose remaining ones are all 0’s (if m < n one
alternatively one can take L ∈ Rn×m and use Smith normal form in the more
general (not necessarily square) case). Then M is isomorphic to Rn/image(L). If
L′ is obtained from any sequence of elementary row and column operations (R is a
ring, so we allow multiplying a row/column only by a multiplicative unit in R), then
we still have M is isomorphic to Rn/image(L′), since elementary column operations
don’t change the image of a matrix, and elementary row operations reflect a change
of basis in Rn. After sufficiently many elementary column and row operations we
may bring L into Smith normal form, i.e., we may write L as a diagonal matrix
with elements b1, b2, . . . , bn with bi|bi+1 for all i ∈ [n − 1]. This gives the desired
isomorphism. □

Next we give the version of the above lemma in terms of primary ideals of R.
We say that an ideal (p) of R (i.e., p ∈ R) is prime if (p) is a maximal ideal7 of

R strictly contained in R; an ideal of R is primary if it is of the form (p)n for some
prime p and some n ∈ N.

We now wish to show that for any non-unit c ∈ R, we have
(1) (c) = (p1)

n1 . . . (pr)
nr for some primes p1, . . . , pr where (pi) ̸= (pj) for i ̸= j,

and n1, . . . , nr ∈ N;
(2) if so, then

(5) R/(c) ≃
r⊕

i=1

R/(pni
i ),

which we call a primary decomposition of R/(c) (which is unique up to
permuting the pni

i ).
For (1), let (p1) be any maximal ideal containing (c); there must be a largest n
such that (c) ⊂ (p1)

n, for otherwise we violate the Noetherian property of R. Since
pn1
1 |c we have c = pn1

1 c′, where either c′ is a unit (in which case we are done), or c′

is a non-unit in R with p1 ̸ |c′. If so, choose a prime (p2) with (c′) ⊂ (p2), and so
we have c′ = pn2

2 c′′ with p1 ̸ |c′′ and p2 ̸ |c′′. We continue similarly; this process has
to end, since R is Noetherian. This establishes (1).

To do so, first note that for any a, b ∈ R there are natural maps R/(ab) to both
R/(a) and R/(b), and hence a natural map

(6) ϕ : R/(ab) → R/(a)⊕R/(b).

We claim that if a, b are relatively prime, then ϕ is an isomorphism: indeed, the
kernel of ϕ is zero, since (a) ∩ (b) = (ab). To show that ϕ is onto, it suffices

7Of course, for general rings, R, an ideal I is prime if ab ∈ I implies either a ∈ I or b ∈ I; in
the context of a PID, any prime ideal is also a maximal ideal.
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to show that both (1, 0) and (0, 1) are in the image of ϕ; since a, b are relatively
prime, αa + βb = 1 for some α, β ∈ R, and hence 1 − αa in R/(ab) maps to
(1, 0) ∈ R(a)⊕R(b); hence (1, 0) is in the image of ϕ, and similarly so is (0, 1).

Since ϕ in (6) is an isomorphism when a, b are relatively prime, we apply this
inductively to conclude (5).

In this way we get the following corollary to Lemma A.3.

Corollary A.4. Let R be a PID, and let M be a finitely generated module over R.
Then M is isomorphic to the direct sum of some finite number of copies of R and
modules R/(pni

i ) where pi is a prime of R, ni ∈ N and i ranges over a (possibly
empty) set I.

Remark A.5. The proof in Lang’s textbook [Lan02] goes “the other way,” first
directly proving Corollary A.4 on its own (first splitting M as a direct sum of a
purely torsion part and then a torsion free part), and then deducing Lemma A.3
as a consequence.

Remark A.6. If L : V → V is a linear operator on an F-vector space, then L
gives rise to an action of F[x] on V where p(x) acts on V as the linear operator
p(L). If F is algebraically closed, then every prime ideal in F[x] is necessarily of
the form (x − λ) for some λ ∈ F. Each primary idea of F[x] is therefore of the
form F[x]/(x−λ)k for some k ∈ N, which corresponds to a k×k Jordan block with
eigenvalue λ, i.e., to Jk(λ) in the notation (4).

Remark A.7. Consider Remark A.6 when F is not algebraically closed. Then
every prime ideal is of the form F[x]/(p(x)) where p = p(x) is a monic, irreducible
polynomial over F. So, for example, when F = R, we get ideals where p(x) is a
degree two polynomial with imaginary, complex conjugate roots, as well as p(x) =
x− α with α ∈ R.
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