
Harris Corners

1

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

SSD = �x
T
H�x

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD function must be large for all shifts for a corner / 2D structure

This implies that both eigenvalues of must be large

Note that is a 2x2 matrix

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

Recap: Computing Eigenvalues and Eigenvectors

2

10.2

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Harris Corner Detection

3

1.Compute image gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eigenvalues

4.Use threshold on eigenvalues to
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

4 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

5

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

10.3

Difference of Gaussian

DoG = centre-surround filter

6

=⇤

• Find local-maxima of the centre surround response

Non-maximal suppression:
These points are maxima in

a 10 pixel radius

Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

Note: DOG ≈ Laplacian of Gaussian

Scale Invariant Interest Point Detection

8

Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

9 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Characteristic Scale

10

characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

11

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

12

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

13

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

14

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

15

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

16

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

17

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

18

2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales

Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

19

Detections are local
maxima in a 3x3x3
scale-space window

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

20

12 Lindeberg

original image scale-space maxima of (�2
normL)2

(traceHnormL)2 (detHnormL)2

Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.

(traceHnormL)2 (detHnormL)2

Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).

[T. Lindeberg]

Difference of Gaussian blobs in 2020

21

Multi-Scale Harris Corners

22

For each level of the Gaussian pyramid

compute Harris feature response

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature

Multi-Scale Harris Corners

23
Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ϵ I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly

Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function
DoG maxima can be reliably located in scale-space and are useful as interest
points

24

Lecture 11: Texture

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today
Topics:

— Texture Analysis, Synthesis
— Filter Banks, Data-driven Methods

Readings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders:

— Midterm is right after reading break! February 26th 3:30 pm

— Quiz 3: Open noon Feb 15th, closes Feb 16th (midnight)

— Assignment 3: Texture Synthesis (released Feb 14th, due March 6th)

Learning Goals

Understanding image as a collection of basis elements

A first step towards a “generative modelling” of images

27

Texture

Texture is widespread, easy to recognize, but hard to define

Views of large numbers of small objects are often considered textures
— e.g. grass, foliage, pebbles, hair

Patterned surface markings are considered textures
— e.g. patterns on wood

What is texture?

Figure Credit: Alexei Efros and Thomas Leung

Definition of Texture

(Functional) Definition:

Texture is detail in an image that is at a scale too small to be resolved into its
constituent elements and at a scale large enough to be apparent in the spatial
distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated
instances of one (or more) identifiable elements, called textons.
— e.g. bricks in a wall, spots on a cheetah

Uses of Texture

Texture can be a strong cue to object identity if the object has distinctive
material properties

Texture can be a strong cue to an object’s shape based on the deformation of
the texture from point to point.
— Estimating surface orientation or shape from texture is known as “shape
from texture"

We will look at two main questions:

1. How do we represent texture?
→ Texture analysis

2. How do we generate new examples of a texture?
→ Texture synthesis

We begin with texture synthesis to set up Assignment 3

Lecture 11: Re-cap Texture

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.
— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics
— Good textures make object models look more realistic

Texture Synthesis

Szeliski, Fig. 10.49

Texture Synthesis

Photo Credit: Associated Pres

Photo Credit (right): Reuters/Larry Downing

Cover of “The Economist,” June 19, 2010

Texture Synthesis

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Texture Synthesis

Objective: Generate new examples of a texture. We take a “data-driven"
approach

Idea: Use an image of the texture as the source of a probability model
— Draw samples directly from the actual texture
— Can account for more types of structure
— Very simple to implement
— Success depends on choosing a correct “distance”

Texture Synthesis by Non-parametric Sampling

Alexei Efros and Thomas Leung
UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

wood granite

white bread brick wall

Efros and Leung

Like Copying, But not Just Repetition

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?
— Directly search the input image for all such neighbourhoods to produce a
histogram for p

Efros and Leung: Synthesizing One Pixel

p

p

Efros and Leung: Synthesizing One Pixel

p

p

Efros and Leung: Synthesizing One Pixel

p(dark gray) = 0.5

p(light gray) = 0.5

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25

Efros and Leung: Synthesizing One Pixel

p

pixel value

probability

0 255

0.25

0.75

20 23040 190

Conditional distribution of p
given known neighborhood

light gray dark gray

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?
— Directly search the input image for all such neighbourhoods to produce a
histogram for p

— To synthesize p, pick one match at random

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not
be present

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not
be present

— Find the best match using SSD error, weighted by Gaussian to emphasize
local structure, and take all samples within some distance from that match

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel

Similarity (cos)

Infinite sample image

SAMPLE

p

Ranked List Similarity (cos)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it

Infinite sample image

SAMPLE

p

Ranked List Similarity (ssd)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.13

0.25

0.28

0.36
x = 4, y = 57 0.40

threshold = best match * 2.5 = 0.325

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it

For multiple pixels, "grow" the texture in layers
— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see
 https://una-dinosauria.github.io/efros-and-leung-js/
(written by Julieta Martinez, a previous CPSC 425 TA)

Efros and Leung: Synthesizing Many Pixels

https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Forsyth & Ponce (2nd ed.) Figure 6.12

Efros and Leung: More Synthesis Results
Window Size

Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

“Big Data” Meets Inpainting

“Big Data" enables surprisingly simple non-parametric, matching-based
techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million
images. What could you do?

“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007

Figure Credit: Hays and Efros 2007

Scene MatchesInput Output

“Big Data” Meets Inpainting

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

10 nearest neighbors from a collection of 20,000 images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

10 nearest neighbors from a collection of 2 million images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007

Algorithm sketch (Hays and Efros 2007):

1. Create a short list of a few hundred “best matching" images based on global
image statistics

2. Find patches in the short list that match the context surrounding the image
region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images

“Big Data” Meets Inpainting

“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

How do we analyze texture?

73

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Texture Representation

Figure Credit: Leung and Malik, 2001

First derivative of Gaussian at 6 orientations and 3 scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Second derivative of Gaussian at 6 orientations 3 scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Laplacian of the Gaussian filters at different scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Gaussian filters at different scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4

Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5

Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4–9.5

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales

Question: How do we “summarize”?

Answer: Compute the mean or maximum of each filter response over the region
— Other statistics can also be useful

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

A Short Exercise: Match the texture to the response

Slide Credit: James Hays

A Short Exercise: Match the texture to the response

90

Slide Credit: James Hays

i

j

k Chi-square
0.1

0.8

}
}

Texture Representation

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

• Texture is characterized by the repetition of basic elements or textons

• For stochastic textures, it is the identity of the textons, not their spatial
arrangement, that matters

Texture representation and recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture representation and recognition

Universal texton dictionary

histogram

Relevant modern Computer Vision example

[Rombach et al., 2022] — https://github.com/CompVis/stable-diffusion

https://github.com/CompVis/stable-diffusion

Relevant modern Computer Vision example

[Rombach et al., 2022] — https://github.com/CompVis/stable-diffusion

https://github.com/CompVis/stable-diffusion

Summary

Texture representation is hard
— difficult to define, to analyze
— texture synthesis appears more tractable

Objective of texture synthesis is to generate new examples of a texture
— Efros and Leung: Draw samples directly from the texture to generate one
pixel at a time. A “data-driven" approach.

Approaches to texture embed assumptions related to human perception

