Harris Corners

This implies that **both eigenvalues of** H must be large Note that **H** is a **2x2 matrix**

 $SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$ $= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$ $\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

SSD function must be large for all shifts Δx for a corner / 2D structure

Recap: Computing **Eigenvalues** and **Eigenvectors**

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Harris Corner Detection

1.Compute image gradients 🔿 small region

2.Compute the covariance matrix

- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x} \qquad \qquad I_y = \frac{\partial I}{\partial y}$$

Interpreting **Eigenvalues**

Threshold on Eigenvalues to Detect Corners (a function of)

mi

Harris & Stephens (1988)

 $\det(C) - \kappa \operatorname{trace}^2(C)$

Kanade & Tomasi (1994)

$$\operatorname{n}(\lambda_1,\lambda_2)$$

Nobel (1998) $\det(C)$ $\operatorname{trace}(C) + \epsilon$

Difference of Gaussian

DoG = centre-surround filter

• Find local-maxima of the centre surround response

Non-maximal suppression: These points are maxima in a 10 pixel radius

Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

Note: $DOG \approx Laplacian of Gaussian$ red = [1 - 2 1] * g(x; 5.0)black = g(x; 5.0) - g(x; 4.0)

Scale Invariant Interest Point Detection

Find local maxima in both **position** and **scale**

Characteristic Scale

characteristic scale - the scale that produces peak filter response

we need to search over characteristic scales

characteristic scale

Full size

3/4 size

-0.03 0.06 -0.07

x 10

x 10 0.5 -0.5 1.5

2.1

4.2

6.0

15.5

18

Scale Selection

is formed with ultiple scales per ocatve Scale scale space, the initial image is repeatedly convolved with Gaussians to Scale mages are subtracted ³ Dete e Gaussian image is ocal maxima in a 3x3x3 ference-of-Gaussian function provides a close approximation to the

possible image functions, such as the gradient, Hessian, or Harris corner function. The relationship between D and $\sigma^2 \nabla^2 G$ can be understood from the heat diffusion equa-tion (parameterized in terms of σ rather than the more usual t = 0). with circles).

Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

[T. Lindeberg]

Difference of Gaussian blobs in 2020

CV-SIFT		
CV-RootSIFT		
CV-SURF		
CV-AKAZE		
CV-ORB		
CV-FREAK		
L2-Net		
DoG-HardNet		
DoG-AffNet-HardNet		
DoG-SOSNet		
Key Net-Hard Net		
Kow Not-SOSNot		
CooDesc		
ContoxtDosc		
LogPolorDosc	1	
DOD (best model)		
KZDZ (Dest model)		
SuperPoint		
LF-INET		
D2-Net(55)		
D2-Net (MS)		
0.	0 0	.1
		Me

Multi-Scale Harris Corners

- For each level of the Gaussian pyramid
 - compute Harris feature response
- For each level of the Gaussian pyramid if local maximum and cross-scale
 - save scale and location of feature (x, y, s)

Multi-Scale Harris Corners

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function **DoG** maxima can be reliably located in scale-space and are useful as interest points

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 11: Texture

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- Texture Analysis, Synthesis

— Filter Banks, Data-driven Methods

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders:

- Midterm is right after reading break! February 24th 12:30 pm
- Quiz 3: Wednesday (Feb 12th)
- Assignment 2: due Feb 13th

Learning Goals

Understanding image as a collection of basis elements

A first step towards a "generative modelling" of images

Texture

What is **texture**?

Figure Credit: Alexei Efros and Thomas Leung Texture is widespread, easy to recognize, but hard to define

- Views of large numbers of small objects are often considered textures
- e.g. grass, foliage, pebbles, hair
- Patterned surface markings are considered textures e.g. patterns on wood

Definition of **Texture**

(Functional) **Definition**:

distribution of image measurements

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

Uses of **Texture**

Texture can be a strong cue to **object identity** if the object has distinctive material properties

the texture from point to point.

from texture"

Texture can be a strong cue to an **object's shape** based on the deformation of

- Estimating surface orientation or shape from texture is known as "**shape**

Lecture 11: Re-cap Texture

We will look at two main questions:

- 1. How do we represent texture? → Texture **analysis**
- 2. How do we generate new examples of a texture? → Texture **synthesis**

We begin with texture synthesis to set up **Assignment 3**

Why might we want to synthesize texture?

- 1. To fill holes in images (inpainting)
- remove scratches or marks.
- We synthesize regions of texture that fit in and look convincing
- 2. To produce large quantities of texture for computer graphics - Good textures make object models look more realistic

— Art directors might want to remove telephone wires. Restorers might want to

— We need to find something to put in place of the pixels that were removed

radishes

Szeliski, Fig. 10.49

lots more radishes

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

Photo Credit: Associated Pres

Cover of "The Economist," June 19, 2010

Photo Credit (right): Reuters/Larry Downing

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Texture Synthesis

- **Objective:** Generate new examples of a texture. We take a "data-driven" approach
- **Idea:** Use an image of the texture as the source of a probability model Draw samples directly from the actual texture
- Can account for more types of structure
- Very simple to implement
- Success depends on choosing a correct "distance"

Texture Synthesis by Non-parametric Sampling

Alexei Efros and Thomas Leung UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

granite

Efros and Leung

white bread

brick wall

Like Copying, But not Just Repetition

Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a **histogram** for p

p(dark gray) = 0.5

p(light gray) = 0.5

p(dark gray) = 0.75

p(light gray) = 0.25

pixel value

255

p(dark gray) = 0.75

p(light gray) = 0.25

Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a ${\bf histogram}$ for p

- To synthesize *p*, pick one match at random

Infinite sample image

Since the sample image is finite, as be present

- Since the sample image is finite, an exact neighbourhood match might not

Infinite sample image

Since the sample image is finite, as be present

— Find the **best match** using SSD error, weighted by Gaussian to emphasize local structure, and take all samples within some distance from that match

- Since the sample image is finite, an exact neighbourhood match might not

Infinite sample image

Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

Similarity (cos)

0.87	← best	match	
0.75			
0.72			
0.64		threshold = best match " U.8	0.8 = 0.696
0.60			
•			
•			

Infinite sample image

Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

Similarity (cos)

Infinite sample image

Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

For multiple pixels, "grow" the texture in layers - In the case of hole-filling, start from the edges of the hole

For an interactive demo, see

(written by Julieta Martinez, a previous CPSC 425 TA)

https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

0

Efros and Leung: More Synthesis Results

Forsyth & Ponce (2nd ed.) Figure 6.12

Window Size

Efros and Leung: Image Extrapolation

Slide Credit: <u>http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt</u>

"**Big** Data" enables surprisingly simple non-parametric, matching-based techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million images. What could you do?

Original Image

Input

Input

Scene Matches

Output

Effectiveness of "Big Data"

Effectiveness of "Big Data"

10 nearest neighbors from a collection of 20,000 images

Effectiveness of "Big Data"

10 nearest neighbors from a collection of 2 million images

Algorithm sketch (Hays and Efros 2007):

image statistics

region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images

1. Create a short list of a few hundred "best matching" images based on global

2. Find patches in the short list that match the context surrounding the image

Original Image

Input

How do we analyze texture?

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

First derivative of Gaussian at 6 orientations and 3 scales

Second derivative of Gaussian at 6 orientations 3 scales

Laplacian of the Gaussian filters at different scales

Gaussian filters at different scales

Result: 48-channel "image"

Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4

Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5

Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4–9.5

Result: 48-channel "image"

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Question: How do we "summarize"?

Answer: Compute the mean or maximum of each filter response over the region Other statistics can also be useful

Result: 48-channel "image"

A Short Exercise: Match the texture to the response

Slide Credit: James Hays

A Short Exercise: Match the texture to the response

Slide Credit: James Hays

Texture representation and recognition

- Texture is characterized by the repetition of basic elements or textons
- arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

• For stochastic textures, it is the **identity of the textons**, not their spatial

Texture representation and recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Relevant modern Computer Vision example

[Rombach et al., 2022] — <u>https://github.com/CompVis/stable-diffusion</u>

Relevant modern Computer Vision example

[Rombach et al., 2022] -

Summary

Texture representation is hard

- difficult to define, to analyze
- texture synthesis appears more tractable

Objective of texture **synthesis** is to generate new examples of a texture pixel at a time. A "data-driven" approach.

Approaches to texture embed assumptions related to human perception

- Efros and Leung: Draw samples directly from the texture to generate one