CPSC 425: Computer Vision

Lecture 12: Correspondence and SIFT

Menu for Today

Topics:

- Correspondence Problem - Invariance, geometric, photometric
- Patch matching
- SIFT = Scale Invariant Feature Transform

Readings:

- Today’s Lecture: Szeliski Chapter 7, Forsyth \& Ponce 5.4

Reminders:

- Assignment 3: due next Wednesday

Scale Invariant Feature Transform = SIFT

Distinctive Image Features from Scale-Invariant Keypoints

The SIFT paper (David Lowe) was rejected twice (and eventually published only as a Poster). Became one of the most influential and widely cited papers in the field $\sim 99,000$ citations.

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) between images.

This has many applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...

Image Panoramas

Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched

Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) between images.

This has many applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...

Back to Good Local Features

Where are the good features, and how do we match them?

Photometric Transformations

Geometric Transformations

How can we deal with this?

objects will appear at different scales, translation and rotation

Lets assume for the moment we can figure out where the good features (patches) are ... how do we match them?

How do we localize good features to match (think back 1-2 lectures)?
Harris, Blob are locally distinct (this is minimally what we need)

Back to Good Local Features

How do we know which corner goes with which?

Back to Good Local Features

How do we know which blob goes with which?

Back to Good Local Features

Patch around the local feature is very informative

Feature Detector

Regions

Edges

Straight Lines

Feature Descriptor

SIFT

Shape Context

Learned Descriptors

Intensity Image

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged (a.k.a. template matching)

What are the problems?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intensity Image

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged (a.k.a. template matching)

What are the problems?
How can you be less sensitive to absolute intensity values?

Image Gradients / Edges

Use pixel differences

Feature is invariant to absolute intensity values

What are the problems?

Image Gradients / Edges

Use pixel differences

Feature is invariant to absolute intensity values

What are the problems?

How can you be less sensitive to deformations?

Geometric Transformations

How can we deal with this?

objects will appear at different scales, translation and rotation

Local Coordinate Frame

One way to achieve invariance is to use local coordinate frames that follow the surface transformation (covariant) and compute features descriptors in them

Strategy \#1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature point

e.g., extract Harris at multiple scales and align to the local gradient

Strategy \#1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature point

e.g., extract Harris at multiple scales and align to the local gradient

Strategy \#2: Represent Distributions over Gradients

Use pixel differences

Feature is invariant to absolute intensity values

Where does SIFT fit in?

Representation	Result is. .	Approach	Technique
intensity	dense (2D)	template matching	(normalized) correlation, SSD
edge	relatively sparse (1D)	derivatives	$\nabla^{2} G$, Canny
"corner" / "blob"	sparse (0D)	locally distinct features	Harris, SIFT

Object Recognition with Scale Invariant Feature Transform

Task: Identify objects or scenes and determine their pose and model parameters

Applications:

- Industrial automation and inspection
- Mobile robots, toys, user interfaces
- Location recognition
- Digital camera panoramas
- 3D scene modeling, augmented reality

David Lowe's Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

David Lowe's Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be matched to a large database of objects

Quantity: many features can be generated for even small objects
Efficiency: close to real-time performance

Scale Invariant Feature Transform (SIFT)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor

1. Multi-scale Extrema Detection

Half the size

Gaussian

1. Multi-scale Extrema Detection

Half the size

Gaussian

1. Multi-scale Extrema Detection

Gaussian

Half the size

Difference of Gaussian (DoG)
Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Recall: Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Searching over Scale-space

$$
\sigma
$$

Searching over Scale-space

Searching over Scale-space

$s=0.5$

1. Multi-scale Extrema Detection

1. Multi-scale Extrema Detection

Gaussian

Laplacian

1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space

1. Multi-scale Extrema Detection - Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching decreases after 3 scales/octave

1. Multi-scale Extrema Detection - Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching decreases after 3 scales/octave

2. Keypoint Localization

- After keypoints are detected, we remove those that have low contrast or are poorly localized along an edge

2. Keypoint Localization

- After keypoints are detected, we remove those that have low contrast or are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

2. Keypoint Localization

- After keypoints are detected, we remove those that have low contrast or are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

$$
C=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

2. Keypoint Localization

- After keypoints are detected, we remove those that have low contrast or are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

- Lowe suggests computing the ratio of the eigenvalues of \mathbf{C} (recall Harris corners) and checking if it is greater than a threshold
- Aside: The ratio can be computed efficiently in fewer than 20 floating point operations, using a trick involving the trace and determinant of \mathbf{C} - no need to explicitly compute the eigenvalues

2. Keypoint Localization

Example:

(a) 233×189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principal curvatures

3. Orientation Assignment

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram

- Each key specifies stable 2D coordinates (x, y, scale, orientation)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

Assigned Orientation

3. Orientation Assignment

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

Assigned Orientation

3. Orientation Assignment

Multiply gradient magnitude by a Gaussian kernel

Arrows illustrate gradient orientation (direction) and gradient magnitude (arrow length)

3. Orientation Assignment

- Histogram of 36 bins (10 degree increments)
- Size of the window is 1.5 scale (recall the Gaussian filter)

- Gaussian-weighted voting
- Highest peak and peaks above 80% of highest also considered for calculating dominant orientations

3. Keypoint Localization

Example:

(a) 233×189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principal curvatures

Scale Invariant Feature Transform (SIFT)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor

4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point - keypoint detection

- The next step is to compute a keypoint descriptor: should be robust to local shape distortions, changes in illumination or 3D viewpoint
- Keypoint detection is not the same as keypoint description, e.g. some applications skip keypoint detection and extract SIFT descriptors on a regularly spaced grid

4. SIFT Descriptor

- Image gradients are sampled over 16×16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window)
- Create array of orientation histograms
- 8 orientations $\times 4 \times 4$ histogram array

4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor?
(Hint: This diagram shows a 2×2 histogram array but the actual descriptor uses a 4×4 histogram array)

4. SIFT Descriptor - Photometric Invariance

Descriptor is normalized to unit length (i.e. magnitude of 1) to reduce the effects of illumination change

- if brightness values are scaled (multiplied) by a constant, the gradients are scaled by the same constant, and the normalization cancels the change
- if brightness values are increased/decreased by a constant (additive), the gradients do not change

SIFT Recap

Detector:

- Find points that are maxima in a DOG pyramid
- Compute local orientation from gradient histogram
- This establishes a local coordinate frame with scale/orientation

Descriptor:

- Build histograms over gradient orientations (8 orientations, 4×4 grid)
- Normalise the final descriptor to reduce the effects of illumination change

Menu for Today

Topics:

- Correspondence Problem - Invariance, geometric, photometric
- Patch matching
- SIFT = Scale Invariant Feature Transform

Readings:

- Today’s Lecture: Szeliski Chapter 7, Forsyth \& Ponce 5.4

Reminders:

- Assignment 3: due next Wednesday

SIFT Matching

Extract features from the image ...

Each image might generate 100's or 1000's of SIFT descriptors

SIFT Matching

Goal: Find all correspondences between a pair of images

Means: extract and match all SIFT descriptors from both images

SIFT Matching

- Each SIFT feature is represented by 128-D vector (numbers)
- Feature matching becomes the task of finding the closest 128-D vector
- Nearest-neighbor matching:

$$
N N(j)=\arg \min _{i}\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|, i \neq j
$$

- This is expensive (linear time), but good approximation algorithms exist
e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast Library for Approximate Nearest Neighbours) [Muja Lowe 2009]

Match Ratio Test

Compare ratio of distance of nearest neighbour (1 NN) to second nearest (2NN) neighbour - this will be a non-matching point

Rule of thumb: $\mathrm{d}(1 \mathrm{NN})<0.8^{*} \mathrm{~d}(2 \mathrm{NN})$ for good match

Feature Stability to Noise

Match features after random change in image scale \& orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features

Feature Stability to Affine Change

Match features after random change in image scale \& orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features

Summary

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid
- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures)

3. Keypoint orientation assignment

- based on histogram of local image gradient directions

4. Keypoint descriptor

- histogram of local gradient directions - vector with $8 \times(4 \times 4)=128$ dim
- vector normalized (to unit length)

Histogram of Oriented Gradients (HOG) Features

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Histogram of Oriented Gradients (HOG) Features

‘Speeded’ Up Robust Features (SURF)

4×4 cell grid

Each cell is represented by 4 values:

$$
\left[\sum d_{x}, \sum d_{y}, \sum\left|d_{x}\right|, \sum\left|d_{y}\right|\right]
$$

Haar wavelets filters

How big is the SURF descriptor?
64 dimensions

‘Speeded’ Up Robust Features (SURF)

Keypoint Detectors vs. Descriptors

- Harris
- Blob (Laplacian) - HoG
- SIFT
- SIFT
- SURF

Failure Case: Repetitive Structures

Repetitive structures cause problems for feature matching

Multiple locations in an image provide good matches and have similar matching scores

They are particularly common in man-made environments

Learning Descriptors

Descriptor design as a learning (embedding) problem

[Winder Brown 2007]

DeepDesc [ICCV 2015]

Minimize the distance for corresponding matches.
Maximize it for non-corresponding patches.

Learning with SfM dataset

Training set \#1:

3k images, 59k unique points, 380k

Learned vs SIFT

SIFT. Average: $\mathbf{2 3 . 1}$ matches

LIFT. Average: $\mathbf{6 0 . 6}$ matches

Learning

 to FilterPts: 282. Acc: 13:5\% RANSAC (SIFT, 2000 keypoints)

With COTR, we find where the four corners of the first frame went. We visualize the results by augmenting another painting on top.

Image 1

Image 2

With COTR, we find dense correspondences, which we can reconstruct a dense 3D model from just two calibrated views.

Even with the crazy transformations that we never trained COTR for, it finds good correspondences amazingly well.

"semantic" correspondences

"semantic" correspondences

101 [Hedlin, Sharma, Mahajan, Isack, Kar, Tagliasacchi, Yi, NeurlPS, 2023]

Summary

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid
- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures)

3. Keypoint orientation assignment

- based on histogram of local image gradient directions

4. Keypoint descriptor

- histogram of local gradient directions - vector with $8 \times(4 \times 4)=128$ dim
- vector normalized (to unit length)

