2D Transformations

Transformation Matrix # DoF Preserves Icon
translation | I ‘ t 2 orientation
_ 12%x3
rigid (Euclidean) | R ‘ t 3 lengths Q
i 12x3
similarity _ s ‘ t _ 4 angles Q
12x3
affine _ A _ 6 parallelism E
i 12x3
projective _ H _ 3 straight lines E
_ 43%x3




Projective [ransformation

General 3x3 matrix transformation




Projective [ransformation

(General 3x3 matrix transformation

L1 adi1 di12 di3 L1
/

Y1 | = [A21 G292 Q23 Y1
1 a31 Qs 433 1

Lets try an example:

x! 7 | 1 0 O]
Y| =H |yl =10 1 0 —
1 1] Jo1 1 |

Transformation Points Transformed Points



Projective [ransformation

(General 3x3 matrix transformation

Lets try an example:

a,/,/
y'| = H
1

X
Yy
1

331 a11

yi1| = |a2
1 a31
1 0 O]
0O 1 O
0 1 1

Transformation

di12 d13 L1
o9 A23 Y1
32 (33 1

Points Transformed Points

Divide by the last row:

0
0
1

0
0.0
1




Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters

/
L1 adi1 Q12 Aais L1

/
Y1 | = |a21 a22 423 Y1
1 a31 G322 (a33 1

— 4 correspondences to solve for H matrix
Solution uses Singular Value Decomposition (SVD)

In Assignment 4 you can compute this using cv2 . findHomography



Example 1: Fitting a Line

L\ 2 points
\ C.
A
\ \
\ \
\ \ ///— l
L 10 points
\ -t t\ ///
\ /\ B /
\“/y \ /// ///
\ \ - o
\ \ L B
\ \ /// ///
\ \ /// ///
\ \ ///b ///
\ \ e .
‘ | T '\t o
\ \ P ////
\ - L
\ -\ \ ‘ /E/
- =N -
//// \ \ ///
_ - d O
v d.
/// \ \ O
-7 \

Figure Credit: Hartley & Zisserman



Image Alignment

Find corresponding (matching) points between the image

2 points for Similarity

u = Hx 3 for Affine
4 for Homography



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC

solution for Similarity Transform (2 points

chbeslevaudmdgtancese

Y |

linliers = 2

N



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

chebkvoarpoimagehreces

Hinliers = 2



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

Hinliers = 4



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC
Assignment 4

1. Match feature points between 2 views
2. Select minimal subset of matches”
3. Compute transformation T using minimal subset

4. Check consistency of all points with T — compute projected position and
count #inliers with distance < threshold

5. Repeat steps 2-4 to maximize #inliers

* Similarity transform = 2 points, Affine = 3, Homography = 4



2-view Rotation Estimation

FIind features + raw matches, use RANSAC to find Similarity




2-view Rotation Estimation

Remove outliers, can now solve for R using least squares




2-view Rotation Estimation

Final rotation estimation




Object Instance Recognition

Datalbase of planar objects Instance recognition
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known
keypoints extracted from training examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and
geometric transform (e.qg., affine transform)

Optionally refine pose estimate by recomputing the transformation using all
the RANSAC inliers



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of
pairs will consist entirely of ‘good’ data points (inliers)?

25



RANSAC: How many samples?

Let Po be the fraction of outliers (i.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

How many samples do we need to find a good solution”?

& (37

20



RANSAC: How many samples? (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman

2/



N practice...

- Performance vs cost: mAA(5°) — Performance vs cost: mAA(10°)
0.50 — 0.58 —
g 048 0.56
046 0.54
g 0.44 0.52
v —
7042 0.50
>
< 040 0.48
=
g
> 038 0.461
0.36 1 0.44 :
0.00 025 0.50 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
Time in seconds (per image pair) Time in seconds (per image pair)
—=— CV-RANSAC, n = 0.5 px —— PyRANSAC, n = 0.25 px —— MAGSAC, n = 1.25 px

—— sklearn-RANSAC, n = 0.75 px —— DEGENSAC, 7 = 05 px —— GC-RANSAC, 7 = 0.5 px

Fig. 9 Validation — Performance vs. cost for RANSAC. We evaluate
six RANSAC variants, using 8k SIFT features with “both” matching
and a ratio test threshold of r=0.8. The inlier threshold 7 and itera-
tions limit /" are variables — we plot only the best n for each method,
for clarity, and set a budget of 0.5 seconds per image pair (dotted red
line). For each RANSAC variant, we pick the largest I under this time

“limit” and use it for all validation experiments. Computed on ‘nl-
standard-2’ VMs on Google Compute (2 vCPUs, 7.5 GB).

28

[Jin et al., 2021]



Re-cap: RANSAC

RANSAC is a technigque to fit data to a model

— divide data into Inliers and outliers

— estimate model from minimal set of inliers

— Improve model estimate using all inliers

— alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems
— easy to Implement
— easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing
Up

29



Menu for Today

Topics:

— Planar Geometry — RANSAC
— Image Alignment, Object Recognition

— Today’s Lecture: Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders:

—Assignment 3: Due TODAY!
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Lecture 14: Hough Transform



Menu for Today

Topics:

— Hough Transtorm — Line Detection
— Transformation Space Voting

— Today’s Lecture: Szeliski 7.4, Forsyth & Ponce 10.1

Reminders:

— Assignment 4. RANSAC and Panorama Stitching — now available

— ECCV conference deadline is in 1 day



| earning Goals

1. How 1o get multiple nhypothesis
2. Voting-based strategies are useful

34



Image Alignment

Aim: Warp one image to align with another using a 2D transtormation




Image Alignment

Step 1: Find correspondences (matching points) across two images

2 points for Similarity

u—= Hx 3 for Affine
4 for Homography



Image Alignment

Step 2: Compute the transformation to align the two images




RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

RANSAC Is very useful for variety of applications

Slide Credit: Christopher Rasmussen



2-view Rotation Estimation

Final rotation estimation




Example: Photo Tourism

Figure credit: Snavely et al. 2006

Takes as Input unstructured collections of photographs and reconstructs each
photo’s viewpoint and a sparse 3D model of the scene

Uses both SIFT and RANSAC



Example: Photo Tourism

| Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010 ]



Object Instance Recognition

Datalbase of planar objects Instance recognition
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems
— Easy to iImplement and easy to calculate its failure rate

Disadvantages.
— Only handles a moderate percentage of outliers without cost blowing up

— Many real problems have high rate of outliers (but sometimes selective
choice of random subsets can help)

— Hard to deal with multiple solutions (e.g., object detection with many objects)

The Hough transform can handle high percentage of outliers



Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems

— Easy to iImplement and easy to calculate its failure rate

Disadvantages.
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— Hard to deal with multiple solutions (e.g., object detection with many objects)

The Hough transform can handle high percentage of outliers



Hough [ransform: Motivation

How to find lines in this image?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Motivation

Votes / Probabillity Distribution

Space of 2D Image Lines



Hough [ransform

|dea of Hough transform:
— For each token / data point vote for all models to which it could belong

— Return models that get many votes / distribution of possible models

Example: For each point, vote for all lines that could pass through it; the true
ines will pass through many points and so receive many votes

c.f. RANSAC which optimizes a single hypothesis by maximizing the number
of inliers (though modifications exist to find multiple instances of a model)



Lines: Slope intercept form

y=mx + b
P A

slope y-intercept

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables
VAR
Yy =mx + b
N 7
parameters
y4A

Image space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables variables
J N J N
=mx + b y—mx =2>b
N 7 N 7
parameters parameters
Y| b |
a line .(1’ 1)
| becomes a ] D Rnt aaE D
'L point T 7T 7T 1P 1 7 'm
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables

J o\
Yy =mx + b
N 7

parameters

vl

What would a point in iImage space
become In parameter space”?

Image space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables variaples
J N J o\
Yy =mz + b Yy —mx =20b
N7 R 7
parameters parameters
Yyl b |
0(13 1) a point
AAAAAAAAAAAAAAAAAAAA | lbecomes a
"L line
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
o1 1) two
S A SRS R QRSN TR T
r| P m
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
o1 1) two
IREER SRR SRR AR R .’B points?
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
oL 1) three
IREER SRR SRR AR R .’B points?
(_27_2)
o
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
oL 1) three
IREER SRR SRR AR R .’B points?
(_27_2)
o
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
o1 1) four
IREER SRR SRR AR R .’B points?
—2, -0 a1
(=2,—2) (1,-1)
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J o\ VAR
y=mx+b y—mx =0b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
o1 1) four
IREER SRR SRR AR R .’B points?
—2, -0 a1
(=2,—2) (1,-1)
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

How would you find the best fitting line?

Y|
.(3,3)
‘(17 1)
AAAAAA —
_27 —2 -
(=2,—2) (1,-1)
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

IS this method robust to measurement noise”? clutter?

Y|
.(3,3)
‘(17 1)
AAAAAA —
_27 —2 -
(=2,—2) (1,-1)
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Line Detection by Hough [ransform

Algorithm:

l.Quantize Parameter Space(m,c) “\\(mC0

X

2.Create Accumulator Array A(m,c) Parameter Space

3.5et A(m,c)=0 Vm,c A(m,c)

4. For each image edge (x,,,) 1 :
For each element 1in A(m,c) >

If (mc) lies on the line:c=-xm+y, 1] |1
Increment A(m,c)=A(m,c)+1 1 ;

5. Find local maxima in A(m,c)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Problems with Parametrization

How big does the accumulator need to be for the parameterization (m,c)"

A(m,c)

1

1

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Problems with Parametrization

How big does the accumulator need to be for the parameterization (m,c)"

1 1

A(m,c) : L. :
1 1
The space of m Is huge! The space of ¢ Is huge!
— V=MD — X=sC =<

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lines: Slope intercept form

y=mx + b
P A

slope y-intercept

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lines: Normal form

xcos(@) + ysin(f) = p

Forsyth/Ponce convention

xcos(@)+ysin(@)+r=0

r >0

0<6 <27

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
VA \ VA \Y
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
y| p
(1,1) A
a point
> | becomes? |°
0.25n 0.51 0.75n 9
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
VA \ VA Y
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
Y] p
.(1, 1) a point -
vl becomes . | |
0 & awave |
0.25n 0.51 0.75n 9
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
J o\ v '
y = mx + b XCOS(H) + y Sln(é’) =
N 7 N 7 7
parameters variables
V] p

| .(1,1) | _—
a line
I EREF ERR ‘:33) becomes”? i | |

0.25n 0.5 0.75n 9

Image space Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
J o\ v '
y = mx + b XCOS(H) + y Sln(é’) =
N 7 N A
parameters variables
y] p

(1,1)

2
B a line o
oo .. lbecomes . | |
L|  apoint

-2

0.25n 0.5 0.75n 9

Image space Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

— Aline is the set of points, (x, y), such that

xcos(f) + ysin(d) = p

— Different choices of 8, r give different lines



Hough [ransform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

— Aline is the set of points, (x, y), such that

xcos(f) + ysin(d) = p

— Different choices of 8, r give different lines

— For any (z, y) there is a one parameter family of lines through this point. Just
et (x,¥y) be constants and for each value of 8 the value of r will be determined

— Each point enters votes for each line Iin the family

— If there Is a line that has lots of votes, that will be the line passing near the
points that voted for It



Hough [ransform: Lines

variables parameters
VA Y VA \Y
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
£
. e
a line
becomes? | ° ‘ \
0.25n 0.5 0.75n 9
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
VA \ VA \
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
X
a line i
becomes . | |
a point |
0.25n 0.5 0.75n 9
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
J o\ v '
y = mx + b XCOS(H) + y Sln(é’) =
N 7 N 7 7
parameters variables
V] p

(1,1)

<  S— a line N
o IN | becomes . | |
-2 -1 0 1 2 3 4 m a point

0.25n 0.5 0.75n 9

Image space Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
VA \ VA Y
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
Y|
.(3:3)
(1,1)
i two points
o become?
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
VA \ VA Y
y = mx + b XCOS(H) + y Sln(é’) =
KN /7 \ /
parameters variables
Y|
.(373) 3
.(17 1) | e i
three points
o become? g
(_27 _2) -1
e 2\
Image space Parameter space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
J N v "
y = mx + b XCOS(H) + y Sln(é’) =
N 7 N 2y
parameters variables
T

(3,3)

(1,1)
four points
o become”?

(—2,-2) | (1,-1) :
) N 2\ / \

-4

0.25n 0.5n 0.75n

Image space Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Hough Transform for Lines
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Example: Hough Iransform for Lines |
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Example: Hough Iransform for Lines |
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Example: Hough Iransform for Lines §
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines

(.

2,7
J

3

5 ®
‘ . |
L [ >
T |
| |
| |
'
hd | |
' . 4
N
| ! .
| !
| |
.
A & ) & o — N w B
| |
N
| |
| |
N
f—i
| !
| |
o
y

'

90 100110120130 ...

3
3.5
A
4.5

5




Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines

(-233)Y

90 1(%110120130...




Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Clean Data

C o3 04 ol apo

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)



Example: Some Noise

s 0.6 Qo !

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)



Example: 1oo Much Noise

04

“0 0z OA 0e on

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.2



Real World Example

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Real World Example

Original Edges Parameter Hough Lines
space

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Mechanics of Hough [ransform

1. Construct a quantized array to represent 6 and r
2. For each point, render curve (6, r) into this array adding one vote at each cell

Difficulties:
— How big should the cells be”? (too big, and we merge quite different lines; too
small, and noise causes lines to be missed)

How many lines?
— Count the peaks in the Hough array
— [reat adjacent peaks as a single peak



Some Practical Details of Hough Transform

't IS best to vote for the two closest bins In each dimension, as the locations of
the bin boundaries are arbitrary

— [his means that peaks are “blurred” and noise will not cause similar votes to
fall Into separate bins

Can use a hash table rather than an array to store the votes
— This means that no effort is wasted on initializing and checking empty bins

— |t avoids the need to predict the maximum size of the array, which can be
non-rectangular



Hough Transform: Transformation Space Voting

Sometimes a single point / measurement can vote on the entire transformation

e.q., SIFT keypoint matches with location, scale and orientation vote on the
4 parameters of a similarity transform (x,y,s,theta)

In this case, the votes of each sample can be seen as a distribution In the
parameter space of the transformation

This can be effective In preventing noise in the distribution, e.qg., edge
detections with orientation can vote on single lines rather than all lines that
pass through a point.



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape”?

Offline procedure:

At each boundary point,
compute displacement
vector: r = a - p;.

Model shape

Store these vectors in a
£ / table indexed by gradient
“0 \ orientation 6.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980



Example 1: Object Recognition — Implicit Shape Model

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image fetarast Poiite Matched Codebook Probabilistic

\ o Entries

Voting Space

Segmentation ﬂ_‘. a2 | (continuous)
v\ =uses oS /
Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

Basic Idea:

— Find interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)
— Match patch around each interest point to a training patch (e.g., SIFT Descriptor)
— Vote for object center given that training instances

— Find the patches that voted for the peaks (back-project)



Example 1: Object Recognition — Implicit Shape Model

y . . y Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to

Index Index (4D) (128D) Centroid
Image 1 1 X, vy, S, Theta] [...] Xyl A

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

y . . y Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to

Index Index (4D) (128D) Centroid

Image 1 1 X, VY, S, Theta
Image 1 2 X, V, S, Thetal
Image 1 265  [x,V, s, Theta] [...] [X,Y]

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows

Keypoint Keypoint Offset
Image Keypoint Detection Description to
Index Index (4D) (128D) Centroid
Image 1 1 X, V, S, Thetal X,y S
Image 1 2 X, V, S, Thetal X,y
Image 1 265  [x,V, s, Theta] [...] [X,Y]
Image 2 1 X, V, s, Theta X,Y.
Image 2 2 X, V, S, Thetal X,y
Image 2 645 X, v, S, Theta] [...] X,Y]
Image K 1 X, V, S, Thetal X,y
Image K 2 X, V, S, Thetal X,y
Image K 134  [x, v, s, Theta] [...] X, Y]

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image

* Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image

+
+
4 A
+
+
+
+
I

-+

Vote for center of object
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image

Vote for center of object
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image

-+
+
+
+
+
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+
¥

4

Vote for center of object
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image

:
|

4+ + o+ +4 +
+ 4+t + + 4+

4

+

of course sometimes wrong votes are bound to happen
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image

H+E 4 o o+

4+

=

That's ok. We want only peaks in voting space.
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image

Al £ Bl R0 AR 2

-

FInd patches that voted for the peaks (back-project

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

Keypoint Keypoint Offset
Image Keypoint Detection Description to
Index Index (4D) (128D) Centroid
Image 1 1 X, V, S, Theta X,y
Image 1 2 X, V, s, Theta X,Y.
Image 1 265  [X,V, S, Theta] [...] [X,y]
Image 2 1 X, V, S, Theta X,Y.
Image 2 D X, V, S, Theta 2 8Y
Image 2 645  [x, v, s, Theta] [...] X,Y]
Image K 1 X, V, S, Theta X,y
Image K X, V, S, Theta X,y
Image K 134  [x, v, s, Theta] [...] X,Y]

* Slide from Sanja Fidler



Keypoint Keypoint Offset
Image Keypoint Detection Description to
Index Index (4D) (128D) Centroid
Image 1 2 X, v, s, Theta] [..] X,V]
Image 1 265  [x,V, s, Theta] [...] X, Y]
Image 2 1 X, V, S, Theta] [X,V]

W
_

Image K 1 X, V, S, Theta X,y
ImageK 2 X, V, s, Theta . X,V

Example 1: Object Recognition — Implicit Shape Model
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image
box around patches = object

=

+
+
=4
+
+
-
+
i

redf
¥+ TH

i." + + !
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f +o & i ¢+"‘- ' <+
e — Sy

=+

++
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- : Y, ++*T 4+
T e » e S i by b 4

FINnd objects based on the back projected patches
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows “Testing” Image
Really easy ... but slow ... how do we make it fast?

training image of cow

-

+
+
+
+
L
-
+
i

We need to match a patch around each yellow keypoint to
all patches In all training images (slow

* Slide from Sanja Fidler



Visual \Words

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

Index displacements by “visual codeword”

visual codeword with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image fetarast Poiite Matched Codebook Probabilistic

\ o Entries

Voting Space
(continuous)

Segmentation ﬂ_‘.

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

» « ey Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to Segment

Index Index (4D) (128D) Centroid

Image 1 1 X, V, S, Theta .. X,V r
Image 1 2 X, V, s, Theta . X,y -
Image1 265  [x,V, s, Theta] [..] [X,Y]

Image 2 1 X, V, S, Theta . X,y

Image 2 2 X, V, S, Theta L X,y

Image 2 645  [x,V, s, Thetq] [...] [X,Y]

Image K 1 X, V, S, Theta . X,y

Image K 2 X, V, S, Theta L X,Y]

Image K 134  [x, v, s, Theta] [...] [X,y]

* Slide from Sanja Fidler



Inferring Other Information: Segmentation

Idea: \When back-projecting, back-project labeled segmentations per training patch

&3 £33
Y
-

. -
I}

(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]
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Inferring Other Information: Segmentation

B
ol

* Slide from Sanja Fidler

[Source: B. Leibe]



Inferring Other Information: Part Labels

* Slide from Sanja Fidler



Inferring Other Information: Depth

Test image Ground truth Result

* Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

All matched boundary
fragments

Original Image

Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum

Image credit: Opelt et al., 2006



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

- Hough votin Backprojected .
Original S T —— Matching boundary spacge for thg codebook entries D&t: z:;:c:f Segmentation
. Image 9 9 fragments centroid for a maximum
Steps in
Detect. Alg. (1) (2) (3) (4)
. -
| L.‘.‘ '.. ¢ ﬂ
A '
‘}:" .
?.
-, .
- No maximum
- above threshold found
L B ..
", t' e ' No maximum
Rk v "y above threshold found
$ "

Image credit: Opelt et al., 2006



Example 3: Deep Hough Voting

Voting from input point cloud 3D detection output

Figure 1. 3D object detection in point clouds with a deep Hough
voting model. Given a point cloud of a 3D scene, our VoteNet
votes to object centers and then groups and aggregates the votes to
predict 3D bounding boxes and semantic classes of objects.

[Qi et al., 2019, ICCV]



Summary of Hough Transform

|dea of Hough transform:
— For each token vote for all models to which the token could belong
— Return models that get many votes

e.g., For each point, vote for all lines that could pass through it; the true lines
will pass through many points and so receive many votes

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.
— Search time increases exponentially with the number of model parameters
— (Can be tricky to pick a good bin size



