Lines: Normal form

$x \cos (\theta)+y \sin (\theta)=\rho$

Forsyth/Ponce convention

$x \cos (\theta)+y \sin (\theta)+r=0$

$$
\begin{gathered}
r \geq 0 \\
0 \leq \theta \leq 2 \pi
\end{gathered}
$$

Hough Transform: Lines

$\left.\begin{array}{l}\text { variables } \\ y=m x \\ y\end{array}\right)+b$
parameters

	y		
			. $(3,3)$
		$(1,1)$	
			x
$(-2,-2)$		($1,-1$)	

Image space

four points become?

Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Example: Hough Transform for Lines

Example: Hough Transform for Lines

$$
-5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42
$$

Example: Hough Transform for Lines

$$
-5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

$$
-2 \cos \left(95^{\circ}\right)+3.3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.46
$$

$$
-2 \cos \left(105^{\circ}\right)+3.3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 3.71
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

$$
-2 \cos \left(95^{\circ}\right)+3.3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.46
$$

$$
-2 \cos \left(105^{\circ}\right)+3.3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 3.71
$$

Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

$$
-2 \cos \left(95^{\circ}\right)+3.3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.46
$$

$$
-2 \cos \left(105^{\circ}\right)+3.3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 3.71
$$

Example 1: Object Recognition - Implicit Shape Model

"Training" images of cows

Image Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	
Image 1	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 1	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 1	265	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	645	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image K	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image K	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image K	\ldots	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	. $[\mathrm{x}, \mathrm{y}]$

Visual Words

- Visual vocabulary (we saw this for retrieval)
- Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

Example 1: Object Recognition - Implicit Shape Model

Index displacements by "visual codeword"

visual codeword with displacement vectors
training image

Example 1: Object Recognition - Implicit Shape Model

Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.

[^0]ECCV Workshop on Statistical Learning in Computer Vision 2004

Example 1: Object Recognition - Implicit Shape Model

"Training" images of cows

Image Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	$\begin{aligned} & \text { Offset } \\ & \text { to } \\ & \text { Centroid } \end{aligned}$
Image 1	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 1	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 1	265	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image 2	645	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image K	1	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
Image K	2	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]
. ${ }^{\text {a }}$,	134	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]		
Image K	134	[$\mathrm{x}, \mathrm{y}, \mathrm{s}$, Theta]	[...]	[x, y]

Inferring Other Information: Segmentation

Idea: When back-projecting, back-project labeled segmentations per training patch

[Source: B. Leibe]

Inferring Other Information: Segmentation

[Source: B. Leibe]

Inferring Other Information: Part Labels

Inferring Other Information: Depth

Test image

"Depth from a single image"

Example 2: Object Recognition - Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains an estimate of the object's contour.

Example 2: Object Recognition - Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains an estimate of the object's contour.

Hough voting
space for the centroid

Backprojected codebook entries for a maximum (3)

$\rightarrow \quad$ No maximum above threshold found

Image credit: Opelt et al., 2006

Example 3: Deep Hough Voting

Voting from input point cloud
3D detection output

Figure 1. 3D object detection in point clouds with a deep Hough voting model. Given a point cloud of a 3D scene, our VoteNet votes to object centers and then groups and aggregates the votes to predict 3D bounding boxes and semantic classes of objects.

Summary of Hough Transform

Idea of Hough transform:

- For each token vote for all models to which the token could belong
- Return models that get many votes
e.g., For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Advantages:

- Can handle high percentage of outliers: each point votes separately
- Can detect multiple instances of a model in a single pass

Disadvantages:

- Search time increases exponentially with the number of model parameters
- Can be tricky to pick a good bin size

CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 15: Stereo

Menu for Today

Topics:

- 3D Correspondence, Epipolar Geometry
- Stereo Vision

Readings:

- Today’s Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

- Assignment 4: RANSAC and Panoramas due March 20th

Recap: 2D Transformations

- We will look at a family that can be represented by 3×3 matrices

- This group represents perspective projections of planar surfaces

Recap: Linear (or Affine) Transformations

Consider a single point correspondence

Correspondences in 3D

Find all matches between views

Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation

Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation

Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation

Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation

Consistent matches can be used for subsequent stages, e.g., 3D reconstruction, object recognition etc.

2-view Geometry

How do we find correspondences between two views?

2-view Geometry

How do we find correspondences between two views?

Planar case: the mapping can be obtained by a homography

2-view Geometry

How do we find correspondences between two views?

Non-planar case: depends on the depth of the 3D point

Epipolar Line

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Aside: The Epipolar Constraint - CPSC533Y

For any pair of corresponding points $\mathbf{x} \leftrightarrow \mathbf{x}^{\prime}$ in the two images

$$
\mathbf{x}^{\top} \mathbf{F} \mathbf{x}=0
$$

Improving RANSAC + Alignment with Epipolar Geometry

Improving RANSAC + Alignment with Epipolar Geometry

Raw SIFT features and their matches

Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)

Improving RANSAC + Alignment with Epipolar Geometry

Better matches lead to fewer iterations of RANSAC

(gives more consistent geometrically valid matches)

RANSAC for Epipolar Geometry

Raw feature matches (after ratio test filtering)

Solve for camera geometry and RANSAC

Triangulation

Going back to Epipolar Geometry

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

Stereo Camera Configuration

Humans and many stereo cameras have parallel optical axes

Axis Aligned Stereo

A common stereo configuration has camera optical axes aligned, with cameras related by a translation in the x direction
14.2

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matches
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images (Left)

[D. Scharstein]

Stereo Matching in Rectified Images (Right)

Stereo Matching in Rectified Images (Right)

[D. Scharstein]

Anaglyph

Stereo pair with images encoded in different color channels

Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120 Hz

Stereo Displays

VR headsets send L/R images directly to each eye

[Google Cardboard]

Rectified Stereo Pair

Any two camera views that overlap can be rectified so that epipolar lines correspond to scan lines (no special conditions must hold)

Rectified Stereo Pair

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3×3 transform), one for each input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Rectified Stereo Pair: Example

Before Rectification

After Rectification

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Matching along a Scanline

Left

\mathbf{w}_{L} and \mathbf{w}_{R} are corresponding $m \times m$ windows of pixels
Define a distance function between image patches, e.g.,

$$
\begin{aligned}
\text { SSD } & =\left\|\mathbf{w}_{L}-\mathbf{w}_{R}(d)\right\|^{2} \\
\text { correlation } & =\mathbf{w}_{L} \cdot \mathbf{w}_{R}(d)=\cos \theta
\end{aligned}
$$

Matching along a Scanline

(simple) Stereo Algorithm

1.Rectify images
(make epipolar lines horizontal)
2.For each pixel in image 1
a.Search along epipolar line in image 2
b.Find best match and record offset = disparity
c.Compute depth from disparity

$$
Z=f \frac{\Delta X}{d i s p}
$$

Effect of Window Size

Larger windows \rightarrow smoothed result

Occlusions

Sometimes a point in image 1 does not appear in image 2, or vice-versa (this is called an occlusion)

- Occlusions cause gaps in the stereo reconstruction
- + Matching is difficult nearby as aggregation windows often overlap the occluded region

Edge Aware Stereo

Occlusions and depth discontinuities cause problems for stereo matching, as aggregation windows overlap multiple depths

- Segmentation-based stereo approaches aim to solve this by trying to guess the depth edges (e.g., joint segmentation and depth estimation [Taguchi et al 2008])

Ordering Constraint

If point B is to the right of point A in image 1 , the same is usually true in image 2

Not always, e.g., if an object
is wholly within the ray
triangle generated by A

Occlusions + Ordering

Note that the ordering constraint is still maintained in the presence of occlusions (unless there is an object off surface as in the previous slide)

Stereo Cost Functions

- Energy function for stereo matching based on disparity $d(x, y)$
- Sum of data and smoothness terms

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

- Data term is cost of pixel x, y allocated disparity d (e.g., SSD)

$$
E_{d}(d)=\sum_{(x, y)} C(x, y, d(x, y))
$$

- Smoothness cost penalises disparity changes with robust $\rho($.

$$
E_{s}(d)=\sum_{(x, y)} \rho(d(x, y)-d(x+1, y))+\rho(d(x, y)-d(x, y+1))
$$

- This is a Markov Random Field (MRF), which can be solved using techniques such as Graph Cuts

Stereo Comparison

- Global vs Scanline vs Local optimization

Application: Microsoft Kinect v1

Stereo Vision Summary

With two eyes, we acquire images of the world from slightly different viewpoints We perceive depth based on differences in the relative position of points in the left image and in the right image

Stereo algorithms work by finding matches between points along corresponding lines in a second image, known as epipolar lines.

A point in one image projects to an epipolar line in a second image
In an axis-aligned / rectified stereo setup, matches are found along horizontal scanlines

[^0]: B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,

