Quiz 4 feedback

Going back to Epipolar Geometry

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

Stereo Matching in Rectified Images

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matches
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

- Distance along the scanline (difference in x coordinate) for a corresponding

Axis Aligned Stereo

related by a translation in the x direction

A common stereo configuration has camera optical axes aligned, with cameras

Effect of Window Size

Larger windows -> smoothed result

W=3

Smaller window

- + More detail
- More noise

W = II

W=25

ndow etail oise

Larger window

- + Smoother disparity maps
 - Less detail
- Fails near boundaries

Stereo Cost Functions

• Energy function for stereo matching based on disparity d(x,y)• Sum of data and smoothness terms

• Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

$$E_d(d) = \sum_{(x,y)} C(x, y, d(x, y))$$

• Smoothness cost penalises disparity changes with robust $\rho(.)$

$$E_s(d) = \sum_{(x,y)} \rho(d(x,y) - d(x+1,y)) + \rho(d(x,y) - d(x,y+1))$$

This is a Markov Random Field (MRF), which can be solved using techniques such as Graph Cuts

 $E(d) = E_d(d) + \lambda E_s(d)$

Stereo Comparison

Global vs Scanline vs Local optimization

Ground truth

Graph Cuts [Kolmogorov Zabih 2001]

Dynamic Programming

SSD 21px aggregation

[Scharstein Szeliski 2002] 7

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 16: Optical Flow

8

Menu for Today

Topics:

- Stereo recap, 1D vs 2D motion

— Optical Flow

Readings:

- Today's Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

- Assignment 4: RANSAC and Panoramas due March 20th

Brightness Constancy Lucas Kanade

Learning Goals for Optical Flow

LINEARIZE

how do we find more equations?

Epipolar Line

How do we transfer points between 2 views? (non-planar)

A point in image 1 gives a **line** in image 2

11

1D search, points constrained to lie along epipolar lines

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

Optical Flow: Example 1

17

Optical Flow: Example 2

[Brox Malik 2011]

Optical Flow

Optical flow is the apparent motion of brightness patterns in the image

Problem:

Determine how objects (and/or the camera itself) move in the 3D world. Formulate motion analysis as finding (dense) point correspondences over time.

Applications

- image and video stabilization in digital cameras, camcorders
- motion-compensated video compression schemes such as MPEG
- image registration for medical imaging, remote sensing

gital cameras, camcorders ression schemes such as MPEG ging, remote sensing

Dense vs Sparse Matching

Sparse: correspondence / depth estimated at discrete feature points, e.g., SIFT feature matches

Dense: correspondence / depth estimated at all locations, e.g., using stereo matching algorithms

Dense vs Sparse Matching

In this lecture we'll focus on

- **Dense flow** compute correspondence / flow at every pixel • Short baselines — assume small distances between frames, e.g.,
- successive frames in a video

different (e.g., feature tracking)

Optical Flow

Wide baseline non-rigid matching algorithms do exist, but techniques are

[Z. Teed, Z. Deng, RAFT 2020]

Dense vs Sparse Matching in 2021 COTR: Correspondence Transformers

" where does the point go in the other image?"

Dense vs Sparse Matching in 2021 **COTR: Correspondence Transformers**

Given an image pair and a query coordinate, it directly provides the corresponding coordinate in the other image.

COTR(x | I, I') = x'

Dense vs Sparse Matching in 2021 Solving both sparse and dense correspondences

ense **COTR**(meshgrid

Sparse

Solving **dense** correspondence map

Solving **sparse** motions: (actual results from our algorithm)

Red: Camera motion

Blue: Multi-object motion

Green: Object-pose change

and warping.

Dense vs Sparse Matching in 2021

Dense vs Sparse Matching in 2021

Images from [Teed and Deng, 2020], reproduced for educational purposes

Dense vs Sparse Matching

In this lecture we'll focus on

- **Dense flow** compute correspondence / flow at every pixel • Short baselines — assume small distances between frames, e.g., successive frames in a video

different (e.g., feature tracking)

Optical Flow

Wide baseline non-rigid matching algorithms do exist, but techniques are

[Z. Teed, Z. Deng, RAFT 2020]

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

Lucas Kanade method

The previous algorithm suggested a discrete search over displacements/flow vectors **u**

We can do better by looking at the structure of the error surface:

 $I_0(\mathbf{x})$

Lucas Kanade method

 $I_0(\mathbf{x})$

 $I_1(\mathbf{x})$

$e = |\mathbf{I}_1(\mathbf{x} + \mathbf{u}) - \mathbf{I}_0(\mathbf{x})|^2$

Flow at a pixel

$\frac{\partial I_1}{\partial \mathbf{x}}^T \Delta \mathbf{u} = I_0(\mathbf{x}) - I_1(\mathbf{x})$

Look at previous equation at a single pixel:

Optical Flow in 1D

Consider a 1D function moving at velocity v

Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

I(x(t),

Suppose
$$\frac{dI(x, y, t)}{dt} = 0$$
. Then we obtain the second seco

$$y(t), t) = C$$
 constan

Another way to look at it

otain the (classic) optical flow constraint

 $I_y v + I_t = 0$

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Optical Flow Constraint Equation, another way to think

I(x(t), y(t), t) = C

constant

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute ...

$I_x u + I_y v + I_t = 0$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute ...

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$I_x u + I_y v + I_t = 0$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute ...

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$I_x u + I_y v + I_t = 0$

$$I_t = \frac{\partial I}{\partial t}$$
 temporal derivative

Frame differencing

Frame Differencing: Example

t+1

	t				I_t		$\frac{\partial I}{\partial t}$	
1	1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0
10	10	10	10	 0	-9	-9	-9	-9
10	10	10	10	0	-9	0	0	0
10	10	10	10	0	-9	0	0	0
10	10	10	10	0	-9	0	0	0

(example of a forward temporal difference)

$$I_x = \frac{\partial I}{\partial x}$$

					X	
Ι	0	0	0	_		
-	0	0	0	-		
-	9	0	0	-		
-	9	0	0	-		
-	9	0	0	-		
-	9	0	0	_		
-101						

-	-
0	Q
0	Q
0	(
0	(
-	-

У

Х

у

0

$$I_t = \frac{\partial I}{\partial t}$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Х

How do we compute ...

 $I_x u + l$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \\ \text{spatial derivative} \end{bmatrix} \quad \begin{bmatrix} u = \frac{dx}{dt} & v = \frac{dy}{dt} \\ \text{optical flow} \end{bmatrix} \quad \begin{bmatrix} I_t = \frac{\partial I}{\partial t} \\ \text{temporal derivative} \end{bmatrix}$$

Forward difference Sobel filter Scharr filter

. . .

$$I_y v + I_t = 0$$

How do we solve for u and v?

Optical Flow Constraint Equation

$$I_x u + I_y v + I_t = 0$$

We have one equation in the two unknown components of velocity u, v

Many possible solutions for u, v - need more constraints or prior knowledge to solve

Equation determines a **straight line** in velocity space

Flow **Ambiguity**

• The stripes can be interpreted as moving vertically, horizontally (rotation), or somewhere in between!

• The component of velocity parallel to the edge is unknown

In which direction is the line moving?

In which direction is the line moving?

- Without distinct features to track, the true visual motion is ambiguous
- direction perpendicular to the contour

- Locally, one can compute only the component of the visual motion in the

— Without distinct features to track, the true visual motion is ambiguous

 Locally, one can compute only the component of the visual motion in the direction perpendicular to the contour

Assumption: Locally constant motion

 $I_{x_1}u + I_{x_2}u +$

and that can be solved locally for u and v as

$$\begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{x_1} & I_{y_1} \\ I_{x_2} & I_{y_2} \end{bmatrix}^{-1} \begin{bmatrix} I_{t_1} \\ I_{t_2} \end{bmatrix}$$

provided that u and v are the same in both equations and provided that the required matrix inverse exists.

Suppose $[x_1, y_1] = [x, y]$ is the (original) center point in the **window**. Let $[x_2, y_2]$ be any other point in the window. This gives us two equations that we can write

$$I_{y_1}v = -I_{t_1}$$
$$I_{y_2}v = -I_{t_2}$$

Considering all n points in the **window**, one obtains

 $I_{x_n}u +$

 $I_{x_1}u +$

 $I_{x_2}u +$

which can be written as the matrix equation

where
$$\mathbf{v} = [u, v]^T$$
, $\mathbf{A} = \begin{bmatrix} I_{x_1} & I_{y_1} \\ I_{x_2} & I_{y_2} \\ \vdots & \vdots \\ I_{x_n} & I_{y_n} \end{bmatrix}$

Optical Flow Constraint Equation: $I_x u + I_y v + I_t = 0$

$$I_{y_1}v = -I_{t_1}$$
$$I_{y_2}v = -I_{t_2}$$
$$\vdots$$

$$I_{y_n}v = -I_{t_n}$$

Av = b

and
$$\mathbf{b} = - \begin{bmatrix} I_{t_1} \\ I_{t_2} \\ \vdots \\ I_{t_n} \end{bmatrix}$$

The standard least squares solution is

Note that we can explicitly write down an expression for $\mathbf{A}^T \mathbf{A}$ as

Where have we seen this before? Can this tell us something about where LK is likely to work well?

$\bar{\mathbf{v}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

$$\sum_{x} I_x^2 \qquad \sum_{x} I_x I_y \\ \sum_{x} I_x I_y \qquad \sum_{y} I_y^2$$

Lucas-Kanade Summary

A dense method to compute motion, [u, v], at every location in an image

Key Assumptions:

- **1**. Motion is slow enough and smooth enough that differential methods apply (i.e., that the partial derivatives, I_x , I_y , I_t , are well-defined)
- **2**. The optical flow constraint equation
- **3**. A window size is chosen so that motion, [u, v], is constant in the window
- **4**. Windows are chosen s.t. that the rank of $\mathbf{A}^T \mathbf{A}$ is 2

n holds (i.e.,
$$\frac{dI(x, y, t)}{dt} = 0$$
)

Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to solve for 2 parameters u, v Lucas Kanade adds constraints by adding more pixels An alternative approach is to make assumptions about the **smoothness of the** flow field, e.g., that there should not be abrupt changes in flow

Optical Flow Smoothness Priors

Many methods trade off a 'departure from the optical flow constraint' cost with a 'departure from smoothness' cost.

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\} \\ \underset{\text{weight}}{\overset{\text{smoothness}}{\overset{\text{brightness constancy}}{\overset{\text{weight}}{\overset{weight}}{\overset{weight}}}}}}}}}}}$$

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

$$E = \int \int (I_x u + I_y v + I_t)^2 + \lambda(|| \nabla u||^2 + || \nabla v||^2)$$

[Horn Schunck 1981, Szeliski p395]

Horn-Schunck Optical Flow

Assumption: Locally **smooth** motion

Horn-Schunck Optical Flow

Brightness constancy

$$E_d(i,j) = \left[I_x u_{ij} + I_y v_{ij} + I_t\right]^2$$

Smoothness

$$\left[u_{i,j+1} \right]^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right]$$

$$i, j+1$$

 $i, j+1$
 $(v_{ij} - v_{i+1,j})$
 $(v_{ij} - v_{i+1,j})$
 $(v_{ij} - v_{i,j+1})$
 $(i, j-1)$
 $i, j-1$
 $i, j-1$
 $i, j-1$
 $i, j-1$
 $i, j-1$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

59

Summary of LK and HS

- the assumption that $I_1(\mathbf{x} +$
- Taylor expansion for small motion at a single pixel \rightarrow optical flow constraint
 - $I_x u + I_y$
- assuming **u** is constant/slowly varying over patch

All the methods presented in this lecture have relied on

$$(\mathbf{u}) \approx I_0(\mathbf{x})$$

• This is called the **brightness constancy** assumption

$$_{y}v+I_{t}=0$$

• Horn-Schunk = optical flow constraint + smoothing over \mathbf{u} Lucas-Kanade = optical flow constraint over patches

Optical Flow and 2D Motion

Motion is geometric, **Optical flow** is radiometric

always the case!

Optical flow with **no motion:**

Motion with no optical flow:

Usually we assume that optical flow and 2-D motion coincide ... but this is not

. . . moving light source(s), lights going on/off, inter-reflection, shadows

. . . spinning cylinder, sphere.

Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, given a scene point located at (x_0, y_0) in an image acquired at time t_0 , what is its position, (x_1, y_1) , in an image acquired at time t_1 ?

Assuming image intensity does not change as a consequence of motion, we obtain the (classic) optical flow constraint equation

 $I_x u + I_u v + I_t = 0$

derivatives of intensity with respect to x, y, and t

Lucas–Kanade is a dense method to compute the motion, [u, v], at every location in an image

where [u, v], is the 2-D motion at a given point, [x, y], and I_x, I_y, I_t are the partial