Quiz 4 feedback



Going back to Epipolar Geometry

How do we find correspondences between two views?

A point In Image 1 must lie along the line in Image 2



Stereo Matching in Rectified Images

— In a standard stereo setup, where cameras are related by translation in the x
direction, epipolar lines are horizontal

— Stereo algorithms search along scanlines for matches

— Distance along the scanline (difference in x coordinate) for a corresponding
feature Is called disparity



AXxis Aligned Stereo

A common stereo configuration has camera optical axes aligned, with cameras
related by a translation in the x direction
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Fffect of Window Size

Larger windows — smoothed result

S

W=3 W=l | W=25

Smaller window Larger window
+ More detall + Smoother disparity maps
- More noise - Less detall

- Falls near boungaries



Stereo Cost Functions

® Energy function for stereo matching based on disparity d(x,y)
® Sum of data and smoothness terms

E(d) = Eq(d) + AEs(d)

® Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

Eq(d) = )  C(z,y,d(z,y))

(z,y)

® Smoothness cost penalises disparity changes with robust o(.)

Es(d> — Z p(d(.ﬁlj‘,y) - d(aj T 1vy)) T p(d(x,y) - d($,y + 1))

(,y)

® This is a Markov Random Field (MRF), which can be solved

using techniques such as Graph Cuts
[ Szeliski B5]



Stereo Comparison

® Global vs Scanline vs Local optimization

Ground Graph Cuts Dynamic SSD 21 px

truth [ Kolmogorov Programming aggregation
Zabih 2001]

[ Scharstein Szeliski 2002 ]
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Menu for Today
Topics:
— Stereo recap, 1D vs 2D motion — Brightness Constancy
— Optical Flow — Lucas Kanade

— Today’s Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

— Assignment 4: RANSAC and Panoramas due March 20th



Learning Goals for Optical Flow

LINEARIZE

how do we find more equations”?
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Epipolar Line

How do we transfer points between 2 views”? (hon-planar)

A point In Image 1 gives a line in image 2
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2-view Rigid Matching

1D search, points constrained to lie along epipolar lines




2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]

14


http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image
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http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

Optical Flow: Example 1




Optical Flow: Example 2
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Optical Flow

Optical flow is the apparent motion of brightness patterns in the image

Problem:

Determine how objects (and/or the camera itself) move in the 3D world.
Formulate motion analysis as finding (dense) point correspondences over time.

Applications

— Image and video stabilization in digital cameras, camcorders
— motion-compensated video compression schemes such as MPEG
— Image registration for medical Imaging, remote sensing
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Dense vs Sparse Matching

. W

l,g_ Sparse: correspondence /
depth estimated at discrete
feature points, e.qg., SIFT
feature matches

Dense: correspondence /
depth estimated at all
locations, e.g., using stereo
matching algorithms




Dense vs Sparse Matching

IN this lecture we’ll focus on

Optical Flow

® Dense flow — compute correspondence / flow at every pixel
* Short baselines — assume small distances between frames, e.q.,

successive frames in a video

Wide baseline non-rigid matching algorithms do exist, but techniques are

different (e.qg., feature tracking)

21
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Dense vs Sparse Matching in 2021
COTR: Correspondence Transformers

: 1 .‘.35&‘!&
1 LT
(1, P

" where does the point go In the other image”? ”
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Dense vs Sparse Matching in 2021
COTR: Correspondence Transformers

OTR(x | I,I') =

Given an image pair and a guery coordinate, it directly provides
the corresponding coordinate in the other image.




Dense vs Sparse Matching in 2021

olving both sparse and dense corresponadences

Solving dense correspondence map

Solving sparse motions:

(actual results from our algorithm)

Red: Camera motion

[I——— -
T

Pea AN - 2

Slue: Multi-object motion

Green: Object-pose change

and warping.



Dense vs Sparse Matching in 2021
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Dense vs Sparse Matching in 2021
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Iégeg from [Teed and Deng, 2020], reproduced for educational purposes



Dense vs Sparse Matching

IN this lecture we’ll focus on

Optical Flow

® Dense flow — compute correspondence / flow at every pixel
* Short baselines — assume small distances between frames, e.q.,

successive frames in a video

Wide baseline non-rigid matching algorithms do exist, but techniques are

different (e.qg., feature tracking)
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2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

Lucas Kanade method

The previous algorithm suggested a discrete search over displacements/flow
vectors u

We can do better by looking at the structure of the error surface:
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Flow at a pixel

ook at previous equation at a single pixel:
oI, "
0X

Au = I(x) — [ (x)

& (52

31



Optical Flow in 1D

Consider a 1D function moving at velocity v

& (153
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Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ B
g .
(z(1),y(1))
I(z,y,1) I(z,y,2) T
I(x(t),y(t),t) =C
constant

Another way to ook at it

dI(x,y,t)

y — (0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+ 1Lyo+ 1 =0

33 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation, another way to think
% 5.4 I(z(t),y(t),t) =C

constant

34 Image Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Iwu—l—ly’v—l—ft = ()

35 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia;’U,-FIy’U-I-It =0

ol ol
IL=— I,=—
or 7 Oy

spatial derivative

Forward difference
Sobel filter
Scharr filter

36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

lyu+L,v+1; =0

- \ - \
I — ol I — ol I ol
xr — 8_.’13 y 8y t — a
\ spatial derivative ) ! temporal derivative
y
Forward difference Frame differencing
Sobel filter

Scharr filter

37 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Frame Differencing: =xample
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(example of a forward temporal difference)
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative ) optical flow temporal derivative
. y
Forward difference How do we solve for u and v? Frame differencing
Sobel filter

Scharr filter

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

We have one equation in the two unknown
components of velocity u, v

Many possible solutions for u, v — need more
constraints or prior knowledge to solve

Equation determines a straight line in velocity space

41 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Flow Ambiguity

® [he stripes can be interpreted
as moving vertically,
horizontally (rotation), or
somewhere in between!

® [he component of velocity
parallel to the edge is
unknown




Aperture Problem

In which direction is the line moving”

43 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Problem

In which direction is the line moving”

A4 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

15 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

A6 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

A7 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

48 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour

49



Aperture Problem

Detected
direction

\

\

Receptive \ Motion
field < direction
(aperture) g

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour

50



Lucas-Kanade

Assumption: Locally constant motion

51



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1; =0

Suppose [z1,y1] = [z, y] is the (original) center point in the window. Let [z2, y2]
be any other point in the window. This gives us two equations that we can write

lp,u+ 1,0 =—14
Lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

BN L. I, 1 [ L
K L, I, | | L

2

orovided that u and v are the same In both equations and provided that the
required matrix inverse exists.

52



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1; =0

Considering all n points in the window, one obtains

Lo ou+ 1, v=—1
lp,u+1,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av =D
‘[331 [yl I ]tl
1—332 Iy2 Itg
where v =[u,v]’, A=| . 7 | and b= —

53



Lucas-Kanade
The standard least squares solution Is
v=(A"A)"'A'Db

Note that we can explicitly write down an expression for A* A as

N2 S
ATA: Z T LY
_ > 1.1, ZIyQ

? Where have we seen this before”?
e | Can this tell us something about where LK is likely to work well?

54



| ucas-Kanade Summary

A dense method to compute motion, |u, v], at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, I, I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (xd ty ) =0)

3. A window size is chosen so that motion, |u, v|. is constant in the window

4. \Windows are chosen s.t. that the rank of AT A is 2

0O



Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to
solve for 2 parameters u, v

Lucas Kanade adds constraints by adding more pixels

An alternative approach is to make assumptions about the smoothness of the
flow field, e.g., that there should not be abrupt changes in flow




Optical Flow Smoothness Priors

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

U, v —

min {Es(’i,j) + AEd(’i,j)}
1,7

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

E://uxuﬂ-wat)zwuvu||2+uwu2>

- [ Horn Schunck 1981, Szeliski p395 ]



Horn-Schunck Optical Flow

Assumption: Locally smooth motion
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Horn-Schunck Optical Flow

Brightness constancy Eq(t,7) = [Izui; + Lyvi; + Iy

Smoothness
Es(i, ) = i (wij — wig1,5)” + (wij — wijp1)? + (Vij — vig1,3)* + (Vij — vij11)°
i,7 + 1 j+1 @jfl J+1
(wij = wit1,5) (wij — wij+1) (Vij = Vit1,5) (Vij = ij+1)
s — R e I s O R
i, 7 — 1 ij—1 t,J —1 8,7 — 1

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Summary of LK and HS

® All the methods presented In this lecture have relied on
the assumption that

I(x+u) ~ [H(x)

® [his is called the brightness constancy assumption

® [aylor expansion for small motion at a single pixel —
optical flow constraint

[xU—F[yU—F[t = ()

® Horn-Schunk = optical flow constraint + smoothing over u
® | ucas-Kanade = optical flow constraint over patches
assuming u is constant/slowly varying over patch

o0



Optical Flow and 2D Motion

Motion is geometric, Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!

Optical flow with no motion:
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion with no optical flow:

... Spinning cylinder, sphere.

o1



Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?

Assuming Image intensity does not change as a conseguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ Lyo+ 1 =0

where |u, v|, is the 2-D motion at a given point, |z, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas—-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image
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