
Quiz 4 feedback

Going back to Epipolar Geometry

(u1, v1) (u2, v2)?

X?
X?

X?

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

Stereo Matching in Rectified Images

— In a standard stereo setup, where cameras are related by translation in the x
direction, epipolar lines are horizontal

— Stereo algorithms search along scanlines for matches
— Distance along the scanline (difference in x coordinate) for a corresponding
feature is called disparity

534 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

Axis Aligned Stereo

A common stereo configuration has camera optical axes aligned, with cameras
related by a translation in the x direction

4

14.2

Effect of Window Size

Larger windows → smoothed result

5

Aggregation window, error and cost functions

Ground truth SAD W=11SAD W=3 SAD W=25

Effect of window size (W) for aggregating the photometric cost:

W=3 W=11 W=25

Smaller window
+ More detail
- More noise

Larger window
+ Smoother disparity maps
- Less detail
- Fails near boundaries

Stereo Cost Functions
• Energy function for stereo matching based on disparity d(x,y)

• Sum of data and smoothness terms

6

552 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

correcting the apparent gaze during video conferencing, and background replacement. We
discuss the first two applications below and defer the discussion of background replacement
to Section 11.5.3.

The use of head tracking to control a user’s virtual viewpoint while viewing a 3D object
or environment on a computer monitor is sometimes called fish tank virtual reality, since the
user is observing a 3D world as if it were contained inside a fish tank (Ware, Arthur, and
Booth 1993). Early versions of these systems used mechanical head tracking devices and
stereo glasses. Today, such systems can be controlled using stereo-based head tracking and
stereo glasses can be replaced with autostereoscopic displays. Head tracking can also be used
to construct a “virtual mirror”, where the user’s head can be modified in real-time using a
variety of visual effects (Darrell, Baker, Crow et al. 1997).

Another application of stereo head tracking and 3D reconstruction is in gaze correction
(Ott, Lewis, and Cox 1993). When a user participates in a desktop video-conference or video
chat, the camera is usually placed on top of the monitor. Since the person is gazing at a
window somewhere on the screen, it appears as if they are looking down and away from the
other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking
resulting in virtual eye contact. Real-time stereo matching is used to construct an accurate 3D
head model and view interpolation (Section 13.1) is used to synthesize the novel in-between
view (Criminisi, Shotton, Blake et al. 2003).

11.5 Global optimization
Global stereo matching methods perform some optimization or iteration steps after the dis-
parity computation phase and often skip the aggregation step altogether, because the global
smoothness constraints perform a similar function. Many global methods are formulated in
an energy-minimization framework, where, as we saw in Sections 3.7 (3.100–3.102) and 8.4,
the objective is to find a solution d that minimizes a global energy,

E(d) = Ed(d) + �Es(d). (11.8)

The data term, Ed(d), measures how well the disparity function d agrees with the input image
pair. Using our previously defined disparity space image, we define this energy as

Ed(d) =

X

(x,y)

C(x, y, d(x, y)), (11.9)

where C is the (initial or aggregated) matching cost DSI.
The smoothness term Es(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted

552 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

correcting the apparent gaze during video conferencing, and background replacement. We
discuss the first two applications below and defer the discussion of background replacement
to Section 11.5.3.

The use of head tracking to control a user’s virtual viewpoint while viewing a 3D object
or environment on a computer monitor is sometimes called fish tank virtual reality, since the
user is observing a 3D world as if it were contained inside a fish tank (Ware, Arthur, and
Booth 1993). Early versions of these systems used mechanical head tracking devices and
stereo glasses. Today, such systems can be controlled using stereo-based head tracking and
stereo glasses can be replaced with autostereoscopic displays. Head tracking can also be used
to construct a “virtual mirror”, where the user’s head can be modified in real-time using a
variety of visual effects (Darrell, Baker, Crow et al. 1997).

Another application of stereo head tracking and 3D reconstruction is in gaze correction
(Ott, Lewis, and Cox 1993). When a user participates in a desktop video-conference or video
chat, the camera is usually placed on top of the monitor. Since the person is gazing at a
window somewhere on the screen, it appears as if they are looking down and away from the
other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking
resulting in virtual eye contact. Real-time stereo matching is used to construct an accurate 3D
head model and view interpolation (Section 13.1) is used to synthesize the novel in-between
view (Criminisi, Shotton, Blake et al. 2003).

11.5 Global optimization
Global stereo matching methods perform some optimization or iteration steps after the dis-
parity computation phase and often skip the aggregation step altogether, because the global
smoothness constraints perform a similar function. Many global methods are formulated in
an energy-minimization framework, where, as we saw in Sections 3.7 (3.100–3.102) and 8.4,
the objective is to find a solution d that minimizes a global energy,

E(d) = Ed(d) + �Es(d). (11.8)

The data term, Ed(d), measures how well the disparity function d agrees with the input image
pair. Using our previously defined disparity space image, we define this energy as

Ed(d) =

X

(x,y)

C(x, y, d(x, y)), (11.9)

where C is the (initial or aggregated) matching cost DSI.
The smoothness term Es(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted

11.5 Global optimization 553

to measuring only the differences between neighboring pixels’ disparities,

Es(d) =

X

(x,y)

⇢(d(x, y)� d(x + 1, y)) + ⇢(d(x, y)� d(x, y + 1)), (11.10)

where ⇢ is some monotonically increasing function of disparity difference. It is also possi-
ble to use larger neighborhoods, such as N8, which can lead to better boundaries (Boykov
and Kolmogorov 2003), or to use second-order smoothness terms (Woodford, Reid, Torr et
al. 2008), but such terms require more complex optimization techniques. An alternative to
smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski
and Coughlan 1997).

In standard regularization (Section 3.7.1), ⇢ is a quadratic function, which makes d smooth
everywhere and may lead to poor results at object boundaries. Energy functions that do not
have this problem are called discontinuity-preserving and are based on robust ⇢ functions
(Terzopoulos 1986b; Black and Rangarajan 1996). The seminal paper by Geman and Ge-
man (1984) gave a Bayesian interpretation of these kinds of energy functions and proposed a
discontinuity-preserving energy function based on Markov random fields (MRFs) and addi-
tional line processes, which are additional binary variables that control whether smoothness
penalties are enforced or not. Black and Rangarajan (1996) show how independent line pro-
cess variables can be replaced by robust pairwise disparity terms.

The terms in Es can also be made to depend on the intensity differences, e.g.,

⇢d(d(x, y)� d(x + 1, y)) · ⇢I(kI(x, y)� I(x + 1, y)k), (11.11)

where ⇢I is some monotonically decreasing function of intensity differences that lowers
smoothness costs at high-intensity gradients. This idea (Gamble and Poggio 1987; Fua 1993;
Bobick and Intille 1999; Boykov, Veksler, and Zabih 2001) encourages disparity discontinu-
ities to coincide with intensity or color edges and appears to account for some of the good
performance of global optimization approaches. While most researchers set these functions
heuristically, Scharstein and Pal (2007) show how the free parameters in such conditional
random fields (Section 3.7.2, (3.118)) can be learned from ground truth disparity maps.

Once the global energy has been defined, a variety of algorithms can be used to find a
(local) minimum. Traditional approaches associated with regularization and Markov random
fields include continuation (Blake and Zisserman 1987), simulated annealing (Geman and
Geman 1984; Marroquin, Mitter, and Poggio 1987; Barnard 1989), highest confidence first
(Chou and Brown 1990), and mean-field annealing (Geiger and Girosi 1991).

More recently, max-flow and graph cut methods have been proposed to solve a special
class of global optimization problems (Roy and Cox 1998; Boykov, Veksler, and Zabih 2001;
Ishikawa 2003). Such methods are more efficient than simulated annealing and have produced
good results, as have techniques based on loopy belief propagation (Sun, Zheng, and Shum

• Smoothness cost penalises disparity changes with robust 𝜌(.)

• Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

• This is a Markov Random Field (MRF), which can be solved
using techniques such as Graph Cuts

[Szeliski B5]

Stereo Comparison
• Global vs Scanline vs Local optimization

7[Scharstein Szeliski 2002]

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.

28

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.

28

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.

28

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.

28

Ground
truth

Graph Cuts Dynamic
Programming

SSD 21px
aggregation[Kolmogorov

Zabih 2001]

Lecture 16: Optical Flow

CPSC 425: Computer Vision

8

Menu for Today
Topics:

— Stereo recap, 1D vs 2D motion
— Optical Flow

Readings:

— Today’s Lecture: Szeliski 12.1, 12.3-12.4, 9.3

— Brightness Constancy
— Lucas Kanade

Reminders:
— Assignment 4: RANSAC and Panoramas due March 20th

Learning Goals for Optical Flow

LINEARIZE

how do we find more equations?

10

Epipolar Line

How do we transfer points between 2 views? (non-planar)

11

(u1, v1) (u2, v2)?

X?
X?

X?

A point in image 1 gives a line in image 2

2-view Rigid Matching

1D search, points constrained to lie along epipolar lines

12

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

13 [vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

14 [vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

15 [vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

16 [vision.middlebury.edu/flow]

x
u

x

http://vision.middlebury.edu/flow

Optical Flow: Example 1

17

x
u

u

x

Optical Flow: Example 2

18 [Brox Malik 2011]

Optical Flow

Optical flow is the apparent motion of brightness patterns in the image

Problem:
Determine how objects (and/or the camera itself) move in the 3D world.
Formulate motion analysis as finding (dense) point correspondences over time.

Applications
— image and video stabilization in digital cameras, camcorders
— motion-compensated video compression schemes such as MPEG
— image registration for medical imaging, remote sensing

19

Dense vs Sparse Matching

534 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

Sparse: correspondence /
depth estimated at discrete
feature points, e.g., SIFT
feature matches

Dense: correspondence /
depth estimated at all
locations, e.g., using stereo
matching algorithms

Dense vs Sparse Matching

21
[Z. Teed, Z. Deng, RAFT 2020]

In this lecture we’ll focus on
• Dense flow — compute correspondence / flow at every pixel
• Short baselines — assume small distances between frames, e.g.,
successive frames in a video

Wide baseline non-rigid matching algorithms do exist, but techniques are
different (e.g., feature tracking)

Dense vs Sparse Matching in 2021

22

?

“ where does the point go in the other image? ”

COTR: Correspondence Transformers

Dense vs Sparse Matching in 2021

23

COTR: Correspondence Transformers

Given an image pair and a query coordinate, it directly provides
the corresponding coordinate in the other image.

Dense vs Sparse Matching in 2021

Red: Camera motion

Blue: Multi-object motion

Green: Object-pose change

Solving sparse motions:
(actual results from our algorithm)

COTR(meshgrid | ,) =

and warping.Solving dense correspondence map

Sp
ar

se
De

ns
e

Solving both sparse and dense correspondences

Dense vs Sparse Matching in 2021

Dense vs Sparse Matching in 2021

Input Flow Error
Images from [Teed and Deng, 2020], reproduced for educational purposes

Dense vs Sparse Matching

27
[Z. Teed, Z. Deng, RAFT 2020]

In this lecture we’ll focus on
• Dense flow — compute correspondence / flow at every pixel
• Short baselines — assume small distances between frames, e.g.,
successive frames in a video

Wide baseline non-rigid matching algorithms do exist, but techniques are
different (e.g., feature tracking)

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

28 [vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

Lucas Kanade method

The previous algorithm suggested a discrete search over displacements/flow
vectors u

We can do better by looking at the structure of the error surface:

29

396 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a)

(b)

(c)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image:
(a) highly textured area, strong minimum, low uncertainty; (b) strong edge, aperture prob-
lem, high uncertainty in one direction; (c) weak texture, no clear minimum, large uncertainty.

u

I1(x)I0(x)

15.1

e = |I1(x+ u)� I0(x)|2

Lucas Kanade method

30

396 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a)

(b)

(c)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image:
(a) highly textured area, strong minimum, low uncertainty; (b) strong edge, aperture prob-
lem, high uncertainty in one direction; (c) weak texture, no clear minimum, large uncertainty.

u

I1(x)I0(x)

15.1

e = |I1(x+ u)� I0(x)|2

Flow at a pixel

Look at previous equation at a single pixel:

31

@I1
@x

T

�u = I0(x)� I1(x)

15.2

Optical Flow in 1D

Consider a 1D function moving at velocity v

32

15.3

Consider image intensity also to be a function of time, . We write

Applying the chain rule for differentiation, we obtain

where subscripts denote partial differentiation

Define . and . Then is the 2-D motion and the space of all

such and is the 2-D velocity space

Suppose . Then we obtain the (classic) optical flow constraint
equation

Optical Flow Constraint Equation

33

dI(x, y, t)

dt
= 0

Ixu+ Iyv + It = 0

Another way to look at it

constant

Brightness Constancy Assumption: Brightness of the point remains the same

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Optical Flow Constraint Equation, another way to think

34

constant

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

15.4

How do we compute …

35 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute …

36

spatial derivative

Forward difference
Sobel filter
Scharr filter

…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute …

37

spatial derivative

Forward difference
Sobel filter
Scharr filter

…

temporal derivative

Frame differencing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Frame Differencing: Example

38

1 1 1 1 1
1 1 1 1 1
1 10 10 10 10
1 10 10 10 10
1 10 10 10 10
1 10 10 10 10

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 10 10 10
1 1 10 10 10
1 1 10 10 10

0 0 0 0 0
0 0 0 0 0
0 -9 -9 -9 -9
0 -9 0 0 0
0 -9 0 0 0
0 -9 0 0 0

- =

(example of a forward temporal difference)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

39

1 1 1 1 1
1 1 1 1 1
1 10 10 10 10
1 10 10 10 10
1 10 10 10 10
1 10 10 10 10

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 10 10 10
1 1 10 10 10
1 1 10 10 10

- 0 0 0 -
- 0 0 0 -
- 9 0 0 -
- 9 0 0 -
- 9 0 0 -
- 9 0 0 -

- - - - -
0 9 9 9 9
0 9 9 9 9
0 0 0 0 0
0 0 0 0 0
- - - - -

0 0 0 0 0
0 0 0 0 0
0 -9 -9 -9 -9
0 -9 0 0 0
0 -9 0 0 0
0 -9 0 0 0

y

x

-1 0 1

-1
0
1

y

x

y

x

y

x

y

x

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute …

40

spatial derivative optical flow

Forward difference
Sobel filter
Scharr filter

…

temporal derivative

Frame differencingHow do we solve for u and v?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

41

Equation determines a straight line in velocity space

We have one equation in the two unknown
components of velocity u, v

Many possible solutions for u, v — need more
constraints or prior knowledge to solve

Optical Flow Constraint Equation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Flow Ambiguity

• The stripes can be interpreted
as moving vertically,
horizontally (rotation), or
somewhere in between!

• The component of velocity
parallel to the edge is
unknown

Aperture Problem

43

In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

44

In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

45 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

46 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

47 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

48 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous

— Locally, one can compute only the component of the visual motion in the
direction perpendicular to the contour

49

Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous

— Locally, one can compute only the component of the visual motion in the
direction perpendicular to the contour

50

51

Lucas-Kanade

Assumption: Locally constant motion

Suppose is the (original) center point in the window. Let
be any other point in the window. This gives us two equations that we can write

and that can be solved locally for and as

provided that and are the same in both equations and provided that the
required matrix inverse exists.

52

[x1, y1] = [x, y] [x2, y2]

x
Ix1u+ Iy1v = �It1
Ix2u+ Iy2v = �It2

u v


u
v

�
= �


Ix1 Iy1

Ix2 Iy2

��1 
It1
It2

�

u v

Lucas-Kanade Ixu+ Iyv + It = 0Optical Flow Constraint Equation:

Considering all n points in the window, one obtains

which can be written as the matrix equation

where , and

53

Ix1u+ Iy1v = �It1
Ix2u+ Iy2v = �It2

...
Ixnu+ Iynv = �Itn

A =

2

6664

Ix1 Iy1

Ix2 Iy2

...
...

Ixn Iyn

3

7775

b = �

2

6664

It1
It2
...

Itn

3

7775

Av = b

v = [u, v]T

Lucas-Kanade

A =

2

6664

Ix1 Iy1

Ix2 Iy2

...
...

Ixn Iyn

3

7775

b = �

2

6664

It1
It2
...

Itn

3

7775

Ixu+ Iyv + It = 0Optical Flow Constraint Equation:

Note that we can explicitly write down an expression for as

The standard least squares solution is

54

v̄ = (ATA)�1ATb

Lucas-Kanade

ATA =

 P
I2x

P
IxIyP

IxIy I2y

�
ATA

Where have we seen this before?
Can this tell us something about where LK is likely to work well?

A dense method to compute motion, , at every location in an image

Key Assumptions:

1. Motion is slow enough and smooth enough that differential methods apply
(i.e., that the partial derivatives, , are well-defined)

2. The optical flow constraint equation holds (i.e.,)

3. A window size is chosen so that motion, , is constant in the window

4. Windows are chosen s.t. that the rank of is 2

55

Lucas-Kanade Summary

[u, v]

Ix, Iy, It

[u, v]

ATA

dI(x, y, t)

dt
= 0

Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to
solve for 2 parameters u, v
Lucas Kanade adds constraints by adding more pixels
An alternative approach is to make assumptions about the smoothness of the
flow field, e.g., that there should not be abrupt changes in flow

56

382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.

382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.

Many methods trade off a ‘departure from the optical flow constraint’ cost with
a ‘departure from smoothness’ cost.

57

E =

Z Z
(Ixu+ Iyv + It)

2 + �(||5 u||2 + ||5 v||2)

[Horn Schunck 1981, Szeliski p395]

smoothness brightness constancy

weight

Optical Flow Smoothness Priors

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

Horn-Schunck Optical Flow

58

Assumption: Locally smooth motion

Horn-Schunck Optical Flow

59

Brightness constancy

Smoothness

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Summary of LK and HS

• All the methods presented in this lecture have relied on
the assumption that

60

• This is called the brightness constancy assumption

I1(x+ u) ⇡ I0(x)

• Horn-Schunk = optical flow constraint + smoothing over u
• Lucas-Kanade = optical flow constraint over patches

assuming u is constant/slowly varying over patch

• Taylor expansion for small motion at a single pixel →
optical flow constraint

Ixu+Iyv+It = 0

1

Motion is geometric, Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!

61

Optical Flow and 2D Motion

Optical flow with no motion:
. . . moving light source(s), lights going on/off, inter-reflection, shadows

Motion with no optical flow:

. . . spinning cylinder, sphere.

Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,
given a scene point located at in an image acquired at time , what is
its position, , in an image acquired at time ?

Assuming image intensity does not change as a consequence of motion, we
obtain the (classic) optical flow constraint equation

where , is the 2-D motion at a given point, , and are the partial
derivatives of intensity with respect to , , and

Lucas–Kanade is a dense method to compute the motion, , at every
location in an image

62

(x0, y0) t0
(x1, y1) t1

Ixu+ Iyv + It = 0

[u, v] [x, y] Ix, Iy, It
x y t

[u, v]

