
Bug fixed — Example: Hough Transform for Lines
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Learning Goals for Optical Flow

LINEARIZE 

how do we find more equations?

3



Flow at a pixel

Look at previous equation at a single pixel:
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Optical Flow in 1D 

Consider a 1D function moving at velocity v
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencingHow do we solve for u and v?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Suppose                         is the (original) center point in the window. Let            
be any other point in the window. This gives us two equations that we can write  

and that can be solved locally for    and    as 

provided that    and    are the same in both equations and provided that the 
required matrix inverse exists. 
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[x1, y1] = [x, y] [x2, y2]

x
Ix1u+ Iy1v = �It1
Ix2u+ Iy2v = �It2

u v


u
v

�
= �


Ix1 Iy1
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��1 
It1
It2

�

u v

Lucas-Kanade Ixu+ Iyv + It = 0Optical Flow Constraint Equation:



Considering all n points in the window, one obtains  

which can be written as the matrix equation  

where                   ,                                 and
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Note that we can explicitly write down an expression for            as

The standard least squares solution is
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v̄ = (ATA)�1ATb

Lucas-Kanade

ATA =

 P
I2x

P
IxIyP

IxIy I2y

�
ATA

Where have we seen this before? 
Can this tell us something about where LK is likely to work well?



A dense method to compute motion,        , at every location in an image  

Key Assumptions:  

1. Motion is slow enough and smooth enough that differential methods apply 
(i.e., that the partial derivatives,             , are well-defined)  

2. The optical flow constraint equation holds (i.e.,                        ) 

3. A window size is chosen so that motion,        , is constant in the window  

4. Windows are chosen s.t. that the rank of           is 2  
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Lucas-Kanade Summary

[u, v]

Ix, Iy, It

[u, v]

ATA

dI(x, y, t)

dt
= 0



Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to 
solve for 2 parameters u, v 
Lucas Kanade adds constraints by adding more pixels 
An alternative approach is to make assumptions about the smoothness of the 
flow field, e.g., that there should not be abrupt changes in flow 
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382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.
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Many methods trade off a ‘departure from the optical flow constraint’ cost with 
a ‘departure from smoothness’ cost.  

13

E =

Z Z
(Ixu+ Iyv + It)

2 + �(||5 u||2 + ||5 v||2)

[ Horn Schunck 1981, Szeliski p395 ] 

smoothness brightness constancy

weight

Optical Flow Smoothness Priors

e.g., the Horn Schunck objective function penalises the magnitude of velocity: 



Horn-Schunck Optical Flow

14

Brightness constancy

Smoothness

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Brightness Constancy

• All the methods presented in this lecture have relied on 
the assumption that

15

• This is called the brightness constancy assumption

I1(x+ u) ⇡ I0(x)

• Horn-Schunk = optical flow constraint + smoothing over u 
• Lucas-Kanade = optical flow constraint over patches 

assuming u is constant/slowly varying over patch

• Taylor expansion for small motion at a single pixel → 
optical flow constraint

Ixu+Iyv+It = 0

1



Consider image intensity also to be a function of time,  . We write  

Applying the chain rule for differentiation, we obtain 

where subscripts denote partial differentiation 

Define           .  and             . Then          is the 2-D motion and the space of all  

such    and    is the 2-D velocity space  

Suppose                        . Then we obtain the (classic) optical flow constraint  
equation 

Optical Flow Constraint Equation

16

dI(x, y, t)

dt
= 0

Ixu+ Iyv + It = 0

What does this mean, and why is it reasonable? 

constant

Brightness Constancy Assumption: Brightness of the point remains the same

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

15.4



Motion is geometric, Optical flow is radiometric  

Usually we assume that optical flow and 2-D motion coincide ... but this is not 
always the case!

17

Optical Flow and 2D Motion

Optical flow with no motion: 
. . . moving light source(s), lights going on/off, inter-reflection, shadows  

Motion with no optical flow:  

. . . spinning cylinder, sphere.



Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, 
given a scene point located at             in an image acquired at time    , what is 
its position,            , in an image acquired at time    ?  

Assuming image intensity does not change as a consequence of motion, we 
obtain the (classic) optical flow constraint equation  

 
where        , is the 2-D motion at a given point,        , and              are the partial 
derivatives of intensity with respect to   ,   , and  

Lucas–Kanade is a dense method to compute the motion,        , at every 
location in an image 
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(x0, y0) t0
(x1, y1) t1

Ixu+ Iyv + It = 0

[u, v] [x, y] Ix, Iy, It
x y t

[u, v]
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Lecture 17: Multiview Reconstruction

CPSC 425: Computer Vision 

20



Menu for Today
Topics: 

— Stereo, Optical Flow recap  
— Multiview Reconstruction

Readings: 

— Today’s Lecture:  Szeliski 11.4, 12.3-12.4, 9.3                           

Reminders: 
— Assignment 4: due March 20th 
— Assignment 5: Scene Recognition with Bag of Words is now available



Learning Goals

Putting it all together

22



2-view Rigid Matching

1D search, points constrained to lie along epipolar lines

23



2-view Non-Rigid Matching

2D search, points can move anywhere in the image

24 [ vision.middlebury.edu/flow ]

http://vision.middlebury.edu/flow


2-view Non-Rigid Matching

2D search, points can move anywhere in the image
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2-view Non-Rigid Matching

2D search, points can move anywhere in the image

26 [ vision.middlebury.edu/flow ]
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2-view Non-Rigid Matching

2D search, points can move anywhere in the image

27 [ vision.middlebury.edu/flow ]

x
u

x

http://vision.middlebury.edu/flow


Optical Flow: Example 1
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x
u

u

x



Optical Flow: Example 2

29 [ Brox Malik 2011 ]



Optical Flow Recap
Optical Flow the apparent motion of all pixels in an image between a pair of 
image frames 

Brightness Constancy a point on an object has the same intensity as it 
moves (in x, y, t) 

Optical Flow Constraint the derivative of brightness constancy at a point, 
relates image gradients in x, y, t and flow vector u,v

30

Ixu+ Iyv + It = 0



Aperture Problem

31

In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem
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In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem

33 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem

34 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem

35 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem

36 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Optical Flow Algorithms
Flow Ambiguity component of velocity parallel to an edge is not defined by 
the above constraint → aperture problem 

Lucas Kanade resolves the ambiguity by adding multiple pixels (each with 1D 
optical flow constraint) → linear system to solve for 2D flow 

Other flow algorithms (e.g., Horn Schunck) use priors over the 2D flow 
field (e.g., smoothness)

37



Multiview + Sparse SFM

• Multiview Image Alignment, Residuals, Error Function 

• Structure from Motion (SFM) 

• Bundle Adjustment, Pose Estimation, Triangulation

38
[ Szeliski 11.4 ]



Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

39



Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

40

Step 1: Find all matches between images using SIFT



Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

41

Step 2: Remove incorrect matches using RANSAC
Step 1: Find all matches between images using SIFT



Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

42

Step 2: Remove incorrect matches using RANSAC
Step 1: Find all matches between images using SIFT



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

4 inliers (red, yellow, orange, brown), 



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

4 outliers (blue, light blue, purple, pink)



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

4 inliers (red, yellow, orange, brown), 
4 outliers (blue, light blue, purple, pink)



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

choose light blue, purplewarp imagecheck match distances

#inliers = 2



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

check match distanceswarp imagechoose pink, blue

#inliers = 2



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Recap: Image Alignment + RANSAC

check match distanceschoose red, orange

#inliers = 4

warp image
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Planar Image Alignment
• Given a clean set of correspondences, align all images
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Multiview Image Alignment

Residual = vector between observed feature and projection
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Panorama Recognition
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Panorama Recognition
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Panorama Recognition
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Panorama Recognition
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Building a panorama

Figure Credit: Matthew Brown and David Lowe 



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Figure Credit: Matthew Brown and David Lowe 

Building a panorama



Panorama Stitching

69

• We can concatenate pairwise homographies, but over time 
multiple pairwise mappings accumulate errors

• We use global alignment (bundle adjustment) to close the gap



Structure from Motion

70

Given an (unordered) set of input images, compute 
cameras and 3D structure of the scene



Structure from Motion
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2-view Structure from Motion
• We can use the combination of SIFT/RANSAC and 

triangulation to compute 3D structure from 2 views

72

K1,R1, t1 K2,R2, t2

X

u1

u2

Raw SIFT matches

RANSAC for Epipolar Geom

Triangulate to 3D Point CloudExtract R, t



Global Alignment
• Concatenation of pairwise R, t estimates results in drift, e.g., 

73
Pairwise alignment Global alignment



Global Alignment
• Concatenation of pairwise R, t estimates results in drift, e.g., 
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Pairwise alignment Global alignment



Global Alignment
• In robotic navigation frame-frame alignment also causes drift

75[ Kaess Dellaert 2010 ]

We can use bundle adjustment to close the gap



RANSAC for 3D Matches

76

Raw feature matches (after ratio test filtering)

Solved for RANSAC inliers



Feature Tracking
• Form feature tracks by combining pairwise feature matches

77

• Tracked features become individual 3D points in the 
reconstruction

• Features matched across 3 or more views provide strong 
constraints on the 3D reconstruction



Bundle Adjustment

• Minimise errors projecting 3D 
points into all images

Ki,Ri, ti

mij

uij

Xj

[ Szeliski 11.4 ]
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e =
X

i ✏ images

X

j ✏ points

|rij(Ri, ti,Xj)|2
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j ✏ points
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e =
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i ✏ images

X

j ✏ points

|rij(Ri, ti,Xj)|2

1

• Triangulation (optimise points, fixed cameras):

Bundle Adjustment
• Full bundle adjustment (optimise all cameras and points):
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1• Pose estimation for camera i:
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(optimised parameters are shown in red)



Bundle Adjustment
• Initialization with 3 views

80

Joint optimization of cameras and structure



Bundle Adjustment
• Add camera 4

81

Pose EstimationEstimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add camera 5
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Estimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add camera 6
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Estimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add remaining cameras in same way
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Structure from Motion
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SFM recap
• Match features, e.g., SIFT, between all views

• Use RANSAC to reject outliers and estimate Epipolar 
Geometry / Camera matrices

• Form feature tracks by linking multiview matches

• Select an initialization set, e.g., 3 images with lots of matches 
and good baseline (parallax)

• Jointly optimize cameras R, t and structure X for this set

• Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure

86



Visual SFM

87[ ccwu.me/vsfm ]



COLMAP
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Application: 3D from Internet Images
• Reconstruct 3D from unordered photo collections

89[ Building Rome in a Day,  S. Agarwal et al 2009 ]
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