Bug fixed — Example: Hough Transform for Lines
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Bug really fixed — Example: Hough Transform for Lines
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Learning Goals for Optical Flow

LINEARIZE

how do we find more equations”?



Flow at a pixel

ook at previous equation at a single pixel:
oI, "
0X

Au = I(x) — [ (x)
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Optical Flow in 1D

Consider a 1D function moving at velocity v
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative ) optical flow temporal derivative
. y
Forward difference How do we solve for u and v? Frame differencing
Sobel filter

Scharr filter

7 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1; =0

Suppose [z1,y1] = [z, y] is the (original) center point in the window. Let [z2, y2]
be any other point in the window. This gives us two equations that we can write

lp,u+ 1,0 =—14
Lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

BN L. I, 1 [ L
K L, I, | | L

2

orovided that u and v are the same In both equations and provided that the
required matrix inverse exists.



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1; =0

Considering all n points in the window, one obtains

Lo ou+ 1, v=—1
lp,u+1,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av =D
‘[331 [yl I ]tl
1—332 Iy2 Itg
where v =[u,v]’, A=| . 7 | and b= —




Lucas-Kanade
The standard least squares solution Is
v=(A"A)"'A'Db

Note that we can explicitly write down an expression for A* A as

N2 S
ATA: Z T LY
_ > 1.1, ZIyQ

? Where have we seen this before”?
e | Can this tell us something about where LK is likely to work well?
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| ucas-Kanade Summary

A dense method to compute motion, |u, v], at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, I, I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (xd ty ) =0)

3. A window size is chosen so that motion, |u, v|. is constant in the window

4. \Windows are chosen s.t. that the rank of AT A is 2
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Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to
solve for 2 parameters u, v

Lucas Kanade adds constraints by adding more pixels

An alternative approach is to make assumptions about the smoothness of the
flow field, e.g., that there should not be abrupt changes in flow




Optical Flow Smoothness Priors

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

U, v —

min {Es(’i,j) + AEd(’i,j)}
1,7

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

E://uxuﬂ-wat)zwuvu||2+uwu2>

i [ Horn Schunck 1981, Szeliski p395 ]



Horn-Schunck Optical Flow

Brightness constancy Eq(t,7) = [Izui; + Lyvi; + Iy

Smoothness
Es(i, ) = i (wij — wig1,5)” + (wij — wijp1)? + (Vij — vig1,3)* + (Vij — vij11)°
i,7 + 1 j+1 @jfl J+1
(wij = wit1,5) (wij — wij+1) (Vij = Vit1,5) (Vij = ij+1)
s — R e I s O R
i, 7 — 1 ij—1 t,J —1 8,7 — 1

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Brightness Constancy

® All the methods presented In this lecture have relied on
the assumption that

I(x+u) ~ [H(x)

® [his is called the brightness constancy assumption

® [aylor expansion for small motion at a single pixel —
optical flow constraint

[y u+1yv+1 =0

® Horn-Schunk = optical flow constraint + smoothing over u
® | ucas-Kanade = optical flow constraint over patches
assuming u is constant/slowly varying over patch

15



Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ B
g .
(z(1),y(1))
I(z,y,1) I(z,y,2) T
I(x(t),y(t),t) =C
constant

% 2 What does this mean, and why is it reasonable?

dI(x,y,t)

y — (0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+ 1Lyo+ 1 =0

16 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow and 2D Motion

Motion is geometric, Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!

Optical flow with no motion:
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion with no optical flow:

... Spinning cylinder, sphere.

17



Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?

Assuming Image intensity does not change as a conseguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ Lyo+ 1 =0

where |u, v|, is the 2-D motion at a given point, |z, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas—-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image

18
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THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 17: Multiview Reconstruction



Menu for Today

Topics:

— Stereo, Optical Flow recap
— Multiview Reconstruction

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3

Reminders:

— Assignment 4: due March 20th
— Assignment 5: Scene Recognition with Bag of Words is now available



| earning Goals

Putting It all together

22



2-view Rigid Matching

1D search, points constrained to lie along epipolar lines

s A =

‘

,ﬁ
L |




2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]

24


http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

Optical Flow: Example 1




Optical Flow: Example 2
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Optical Flow Recap

Optical Flow the apparent motion of all pixels in an image between a pair of
Image frames

Brightness Constancy a point on an object has the same intensity as it
MOoves (In X, V, t)

Optical Flow Constraint the derivative of brightness constancy at a point,
relates Image gradients In x, vy, t and flow vector u,v

lyu+ Lo+ 1 =0

30



Aperture Problem

In which direction is the line moving”

3 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Problem

In which direction is the line moving”

30 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

33 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

34 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

35 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Propblem

\
gy R

N
.

;

/

™ M

A

N

36 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Algorithms

Flow Ambiguity component of velocity parallel to an edge is not defined by
the above constraint = aperture problem

Lucas Kanade resolves the ambiguity by adding multiple pixels (each with 1D
optical flow constraint) — linear system to solve for 2D flow

Other flow algorithms (e.g., Horn Schunck) use priors over the 2D flow
field (e.g., smoothness)

37



Multiview + Sparse SFM

® Multiview Image Alignment, Residuals, Error Function
® Structure from Motion (SFM)

® Bundle Adjustment, Pose Estimation, Triangulation

| SzeIisCI%<8i 1 1.4 ]



Multiview Image Alignment
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Multiview Image Alignment

Align a set of images given a motion model (e.g., pl
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Step 1: Find all matches between images using SIFT
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Multiview Image Alignment

" —

Align a set of images given a motion model (e.qg., planar affine)
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Step 1: Find all matches between images using SIFT

Step 2: Remove incorrect matches using RANSAC
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Multiview Image Alignment

Align a set of images given a motion model (e.qg., planar affine)
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Step 1: Find all matches between images using SIFT

Step 2: Remove incorrect matches using RANSAC
42



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),

4 outliers (blue, light blue, purple, pink)



Recap: Image Alignment + RANSAC

chbeslevaudmdgtancese
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linliers = 2




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

chebkvoarpoimagehreces

Hinliers = 2



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

Hinliers = 4



Planar Image Alighment

Given a clean set of correspondences, align all images

53






Multiview Image Alignment

Residual = vector between observed feature and projection




Panorama Recognition

560
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Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama
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Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Matthew Brown and David Lowe

Figure Cred



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Panorama Stitching

® We can concatenate pairwise homographies, but over time
multiple pairwise mappings accumulate errors

® We use global alignment (bundle adjustment) to close the gap

69



Structure from Motion

Given an (unordered) set of input images, compute
cameras and 3D structure of the scene

/70



Structure from Motion

71



2-view Structure from Motion

® We can use the combination of SIFT/RANSAC and
triangulation to compute 3D structure from 2 views

00

K27R27t2

Extract R, t

Triangulate to 3D Point Cloud

72



Global Alignment

® (Concatenation of pairwise R, t estimates results in drift, e.g.,

YA\
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Pairwise alignment Global alignment



Global Alignment

® (Concatenation of pairwise R, t estimates results in drift, e.g.,

Pairwise alignment Global alignment

/4



Global Alignment

® |n robotic navigation frame-frame alignment also causes drift

We can use bundle adjustment to close the gap

| Kaess Dellaert 2010 ]
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RANSAC for 3D Matches
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Solved for RANSAC inliers
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Feature Tracking

® Form feature tracks by combining pairwise feature matches

® Tracked features become individual 3D points in the
reconstruction

® Features matched across 3 or more views provide strong
constraints on the 3D reconstruction
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Bundle Adjustment

\ 00
oo O
% %
X

® Minimise errors projecting 3D
points into all images

e Z Z ‘rz’j(RiativXj)‘Q

1€1mages jEpoints

[ Szeliski | 1.4 ]



Bundle Adjustment

® Full bundle adjustment (optimise all cameras and points):

e — Z Z ‘rij(Riat%XjHZ

1 €1mages 7 € points

® Triangulation (optimise points, fixed cameras):

e = Z Z |rz’j<Ri7ti7Xj)‘2

1 € 1Images 9 € points

® Pose estimation for camera i:

e= Y iR, t, X))

9 € points

(optimised parameters are shown in red)

79



E

Bundle Adjustment

Initialization with 3 views

Joint optimization of cameras and structure

80



Bundle Adjustment

® Add camera 4

Estimate camera pose, add new 3D points, jointly optimize

81



Bundle Adjustment

® Add camera 5

Estimate camera pose, add new 3D points, jointly optimize

82



Bundle Adjustment

® Add camera 6

Estimate camera pose, add new 3D points, jointly optimize

83



Bundle Adjustment

ININEg Cameras In same way

® Add rema

84



Structure from Motion




SFM recap

Match features, e.g., SIFT, between all views

Use RANSAC to reject outliers and estimate Epipolar
Geometry / Camera matrices

Form feature tracks by linking multiview matches

Select an initialization set, e.g., 3 images with lots of matches
and good baseline (parallax)

Jointly optimize cameras R, t and structure X for this set

Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure

86



Visual SFM

=unstable points removed: 0+2
Focal Length : [532.971]->[531.451]
‘Radial Distortion : [-0.376 -> -36]

File SfM View ViP Rep Tools Help
S rer ERSOERNI-SANP XOFENY

- — - TFOP A T ST P W P -y - -—

=267: [S1] sees 1053 (+253) 30 ponts

Focal Length in EXIF [1066.367)

| Estimated Focal Length [1066][1.04N]
= 778 pross (179 pts and 15 merges)

SKIP: 14 cams, 8387 ponts, 31583 projs

PBA: 1.110 -> 1.020 (5WMs in 0. 10se¢)
2points outside bunde : 118
=points w/ large errors: 8

23+ ponts removed: 6
=unstable points removed: 043
Radial Distortion : [0.111 -> 12]

= 17 projs (4 pts and 0 merges)

Focal Length : [1066.367]->[1080.209]
Radial Distortion : [0.111 -> 12]

2 A P P L R T T T T T T T Ty
-

268; [57] sees 860 (+253) 3D points
Focal Length in EXIF [822.222]
Estimated Focal Length [822][1.03N]
NOTE: inker ratio 72%, 83%
& 278 projs (0 pts and 3 merges)
SKIP: 12 cams, 7841 points, 284994 projs

- .- -
- . .

PBA: 1,962 -> 1.005 (5 WMs in 0.05se¢)
=points outside bunde : 118
- Z=points w/ large errors: 8
23+ points removed: 3
2unstable points removed: 0+7

b 2 e 2 b o s b a2l 2 b b s st s e s S 2 3 23

#68: 54905 proj, 1596 pts, 47M, 15UP

[ ccwu.me/vsfm ]

PBA: 4387 3D pts, 67(-33) cams and 194951 projs...

PBA: 4937 30D pts, 68(-36) cams and 22730 projs..

PBA: 14054 3D pts, 68(-0) cams and 55740 projs...
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nitps://colmap.github.io

A COLMAP

' ‘; O f“j (’3-\'/

L

Installation

Tutorial

Database Format
Camera Models

Output Format
Datasets

Graphical User Interface
Command-line Interface
Frequently Asked Questions
Changelog

Contribution

License

Bibliography

COLMAP

a COLMAP — COLMAP 3.9-dev documentation

U 8 @

& / COLMAP View page source

COLMAP

S A 4 L
3 ¥ s o] s A
a7 o = o} - i Lo
§ /I’r /‘ﬂj 4 -v_{f, o o ;R i
/ T 53 o S 3o D H ;

Sparse model of central Rome usiﬁg 21K photos" prbduced by COLMAP’s SfM pipeh’ne..

tider

lafa

About <

COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline
with a graphical and command-line interface. It offers a wide range of features for reconstruction of
ordered and unordered image collections. The software is licensed under the new BSD license. If
you use this project for your research, please cite:

@inproceedings{schoenberger2016sfm,
author={Sch\"{o}nberger, Johannes Lutz and Frahm, Jan-Michael},




Application: 3D from Internet Images

® Reconstruct 3D from unordered photo collections

[ Building Rome in a Day, S.Agarwal et al 2009 ] 89
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