Bug fixed - Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \cos \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \cos \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \cos \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

$$
\begin{aligned}
& -2 \cos \left(95^{\circ}\right)+3.3 \cos \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.46 \\
& -2 \cos \left(105^{\circ}\right)+3.3 \cos \left(105^{\circ}\right)+r=0 \rightarrow r \approx 3.71
\end{aligned}
$$

Bug really fixed - Example: Hough Transform for Lines

$$
\begin{aligned}
& -5 \cos \left(95^{\circ}\right)+3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.42 \\
& -5 \cos \left(105^{\circ}\right)+3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 4.18 \\
& -5 \cos \left(115^{\circ}\right)+3 \sin \left(115^{\circ}\right)+r=0 \rightarrow r \approx 4.83
\end{aligned}
$$

$$
\begin{aligned}
& -2 \cos \left(95^{\circ}\right)+3.3 \sin \left(95^{\circ}\right)+r=0 \rightarrow r \approx 3.46 \\
& -2 \cos \left(105^{\circ}\right)+3.3 \sin \left(105^{\circ}\right)+r=0 \rightarrow r \approx 3.71
\end{aligned}
$$

Learning Goals for Optical Flow

LINEARIZE

how do we find more equations?

Flow at a pixel

Look at previous equation at a single pixel:

$$
{\frac{\partial I_{1}{ }^{T}}{\partial \mathbf{x}}} \Delta \mathbf{u}=I_{0}(\mathbf{x})-I_{1}(\mathbf{x})
$$

$2(15.2$

Optical Flow in 1D

Consider a 1D function moving at velocity v
$2(15.3$

$$
\begin{aligned}
& t \\
& I_{x}=\frac{\partial I}{\partial x} \\
& I_{y}=\frac{\partial I}{\partial y} \\
& \begin{array}{|cccc|c|c}
\hline- & - & - & - & - & \\
\hline 0 & 9 & 9 & 9 & 9 & \\
0 & 9 & 9 & 9 & 9 & \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
- & - & - & - & - & 1
\end{array}
\end{aligned}
$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How do we compute ...

$$
I_{x} u+I_{y} v+I_{t}=0
$$

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$

Forward difference
Sobel filter
Scharr filter

How do we solve for u and v ?

Frame differencing

Lucas-Kanade

Optical Flow Constraint Equation: $I_{x} u+I_{y} v+I_{t}=0$
Suppose $\left[x_{1}, y_{1}\right]=[x, y]$ is the (original) center point in the window. Let $\left[x_{2}, y_{2}\right]$ be any other point in the window. This gives us two equations that we can write

$$
\begin{aligned}
& I_{x_{1}} u+I_{y_{1}} v=-I_{t_{1}} \\
& I_{x_{2}} u+I_{y_{2}} v=-I_{t_{2}}
\end{aligned}
$$

and that can be solved locally for u and v as

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{ll}
I_{x_{1}} & I_{y_{1}} \\
I_{x_{2}} & I_{y_{2}}
\end{array}\right]^{-1}\left[\begin{array}{l}
I_{t_{1}} \\
I_{t_{2}}
\end{array}\right]
$$

provided that u and v are the same in both equations and provided that the required matrix inverse exists.

Lucas-Kanade

Optical Flow Constraint Equation: $I_{x} u+I_{y} v+I_{t}=0$
Considering all n points in the window, one obtains

$$
\begin{gathered}
I_{x_{1}} u+I_{y_{1}} v=-I_{t_{1}} \\
I_{x_{2}} u+I_{y_{2}} v=-I_{t_{2}} \\
\vdots \\
I_{x_{n}} u+I_{y_{n}} v=-I_{t_{n}}
\end{gathered}
$$

which can be written as the matrix equation

$$
\mathbf{A v}=\mathbf{b}
$$

where $\mathbf{v}=[u, v]^{T}, \mathbf{A}=\left[\begin{array}{cc}I_{x_{1}} & I_{y_{1}} \\ I_{x_{2}} & I_{y_{2}} \\ \vdots & \vdots \\ I_{x_{n}} & I_{y_{n}}\end{array}\right]$ and $\mathbf{b}=-\left[\begin{array}{c}I_{t_{1}} \\ I_{t_{2}} \\ \vdots \\ I_{t_{n}}\end{array}\right]$

Lucas-Kanade

The standard least squares solution is

$$
\overline{\mathbf{v}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Note that we can explicitly write down an expression for $\mathbf{A}^{T} \mathbf{A}$ as

$$
\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]
$$

2
Where have we seen this before?
Can this tell us something about where LK is likely to work well?

Lucas-Kanade Summary

A dense method to compute motion, $[u, v]$, at every location in an image

Key Assumptions:

1. Motion is slow enough and smooth enough that differential methods apply (i.e., that the partial derivatives, I_{x}, I_{y}, I_{t}, are well-defined)
2. The optical flow constraint equation holds (i.e., $\frac{d I(x, y, t)}{d t}=0$)
3. A window size is chosen so that motion, $[u, v]$, is constant in the window
4. Windows are chosen s.t. that the rank of $\mathbf{A}^{T} \mathbf{A}$ is 2

Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to solve for 2 parameters u, v
Lucas Kanade adds constraints by adding more pixels
An alternative approach is to make assumptions about the smoothness of the flow field, e.g., that there should not be abrupt changes in flow

Optical Flow Smoothness Priors

Many methods trade off a 'departure from the optical flow constraint' cost with a 'departure from smoothness' cost.

$$
\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}
$$

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

$$
E=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2}+\lambda\left(\|\nabla u\|^{2}+\|\nabla v\|^{2}\right)
$$

Horn-Schunck Optical Flow

Brightness constancy

$$
E_{d}(i, j)=\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Smoothness

$$
E_{s}(i, j)=\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]
$$

Brightness Constancy

- All the methods presented in this lecture have relied on the assumption that

$$
I_{1}(\mathbf{x}+\mathbf{u}) \approx I_{0}(\mathbf{x})
$$

- This is called the brightness constancy assumption
- Taylor expansion for small motion at a single pixel \rightarrow optical flow constraint

$$
I_{x} u+I_{y} v+I_{t}=0
$$

- Horn-Schunk = optical flow constraint + smoothing over u
- Lucas-Kanade = optical flow constraint over patches assuming \mathbf{u} is constant/slowly varying over patch

Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

$$
I(x(t), y(t), t)=C
$$

(15.4) What does this mean, and why is it reasonable?

Suppose $\frac{d I(x, y, t)}{d t}=0$. Then we obtain the (classic) optical flow constraint equation

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Optical Flow and 2D Motion

Motion is geometric, Optical flow is radiometric
Usually we assume that optical flow and 2-D motion coincide ... but this is not always the case!

Optical flow with no motion:
. . . moving light source(s), lights going on/off, inter-reflection, shadows
Motion with no optical flow:
. . . spinning cylinder, sphere.

Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, given a scene point located at $\left(x_{0}, y_{0}\right)$ in an image acquired at time t_{0}, what is its position, $\left(x_{1}, y_{1}\right)$, in an image acquired at time t_{1} ?

Assuming image intensity does not change as a consequence of motion, we obtain the (classic) optical flow constraint equation

$$
I_{x} u+I_{y} v+I_{t}=0
$$

where $[u, v]$, is the 2-D motion at a given point, $[x, y]$, and I_{x}, I_{y}, I_{t} are the partial derivatives of intensity with respect to x, y, and t

Lucas-Kanade is a dense method to compute the motion, $[u, v]$, at every location in an image

CPSC 425: Computer Vision

Lecture 17: Multiview Reconstruction

Menu for Today

Topics:

- Stereo, Optical Flow recap
- Multiview Reconstruction

Readings:

- Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3

Reminders:

- Assignment 4: due March 20th
- Assignment 5: Scene Recognition with Bag of Words is now available

Learning Goals

Putting it all together

2-view Rigid Matching

1D search, points constrained to lie along epipolar lines

2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[^0]
2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[^1]
2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[^2]
2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

Optical Flow: Example 1

Optical Flow: Example 2

Optical Flow Recap

Optical Flow the apparent motion of all pixels in an image between a pair of image frames

Brightness Constancy a point on an object has the same intensity as it moves (in x, y, t)

Optical Flow Constraint the derivative of brightness constancy at a point, relates image gradients in x, y, t and flow vector u, v

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Aperture Problem

In which direction is the line moving?

Aperture Problem

In which direction is the line moving?

Aperture Problem

Aperture Problem

Aperture Problem

Aperture Problem

Optical Flow Algorithms

Flow Ambiguity component of velocity parallel to an edge is not defined by the above constraint \rightarrow aperture problem

Lucas Kanade resolves the ambiguity by adding multiple pixels (each with 1D optical flow constraint) \rightarrow linear system to solve for 2D flow

Other flow algorithms (e.g., Horn Schunck) use priors over the 2D flow field (e.g., smoothness)

Multiview + Sparse SFM

- Multiview Image Alignment, Residuals, Error Function
- Structure from Motion (SFM)
- Bundle Adjustment, Pose Estimation, Triangulation

Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

Step 1: Find all matches between images using SIFT

Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

Step 1: Find all matches between images using SIFT Step 2: Remove incorrect matches using RANSAC

Multiview Image Alignment

Align a set of images given a motion model (e.g., planar affine)

Step 1: Find all matches between images using SIFT Step 2: Remove incorrect matches using RANSAC

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),
4 outliers (blue, light blue, purple, pink)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

cbbeslownapribidigepancese
\#inliers $=2$

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

cheblowaqpolinnedgetaneces
\#inliers = 2

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

ctetndurnapcimpdigeargees
\#inliers = 4

Planar Image Alignment

- Given a clean set of correspondences, align all images

\square

Multiview Image Alignment

Residual $=$ vector between observed feature and projection

Panorama Recognition

Panorama Recognition

Panorama Recognition

Panorama Recognition

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Building a panorama

Figure Credit: Matthew Brown and David Lowe

Panorama Stitching

- We can concatenate pairwise homographies, but over time multiple pairwise mappings accumulate errors
- We use global alignment (bundle adjustment) to close the gap

Structure from Motion

Given an (unordered) set of input images, compute cameras and 3D structure of the scene

Structure from Motion

2-view Structure from Motion

- We can use the combination of SIFT/RANSAC and triangulation to compute 3D structure from 2 views

Raw SIFT matches

RANSAC for Epipolar Geom \qquad

Extract R, t
Triangulate to 3D Point Cloud

Global Alignment

- Concatenation of pairwise R, t estimates results in drift, e.g.,

Pairwise alignment

Global alignment

Global Alignment

- Concatenation of pairwise R, t estimates results in drift, e.g.,

Pairwise alignment

Global alignment

Global Alignment

- In robotic navigation frame-frame alignment also causes drift

We can use bundle adjustment to close the gap

RANSAC for 3D Matches

Raw feature matches (after ratio test filtering)

Feature Tracking

- Form feature tracks by combining pairwise feature matches

- Tracked features become individual 3D points in the reconstruction
- Features matched across 3 or more views provide strong constraints on the 3D reconstruction

Bundle Adjustment

- Minimise errors projecting 3D points into all images

$$
e=\sum_{i \in \text { images }} \sum_{j \in \text { points }}\left|\mathbf{r}_{i j}\left(\mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right|^{2}
$$

Bundle Adjustment

- Full bundle adjustment (optimise all cameras and points):

$$
e=\sum_{i \in \text { images }} \sum_{j \in \text { points }}\left|\mathbf{r}_{i j}\left(\mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right|^{2}
$$

- Triangulation (optimise points, fixed cameras):

$$
e=\sum_{i \epsilon \text { images }} \sum_{j \in \text { points }}\left|\mathbf{r}_{i j}\left(\mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right|^{2}
$$

- Pose estimation for camera i:

$$
e=\sum_{j \in \text { points }}\left|\mathbf{r}_{i j}\left(\mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right|^{2}
$$

Bundle Adjustment

- Initialization with 3 views

Joint optimization of cameras and structure

Bundle Adjustment

- Add camera 4

Estimate camera pose, add new 3D points, jointly optimize

Bundle Adjustment

- Add camera 5

Estimate camera pose, add new 3D points, jointly optimize

Bundle Adjustment

- Add camera 6

Estimate camera pose, add new 3D points, jointly optimize

Bundle Adjustment

- Add remaining cameras in same way

Structure from Motion

SFM recap

- Match features, e.g., SIFT, between all views
- Use RANSAC to reject outliers and estimate Epipolar Geometry / Camera matrices
- Form feature tracks by linking multiview matches
- Select an initialization set, e.g., 3 images with lots of matches and good baseline (parallax)
- Jointly optimize cameras R, t and structure X for this set
- Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure

Visual SFM

COLMAP

Application: 3D from Internet Images

- Reconstruct 3D from unordered photo collections

$$
0
$$

4,0,
30
N

[^0]: [vision.middlebury.edu/flow]

[^1]: [vision.middlebury.edu/flow]

[^2]: [vision.middlebury.edu/flow]

