THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 18: Visual Classification 1, Bag of Words



Menu for Today

Topics:

— Visual Classification — Bag of Words, K-means

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:

— Assignment 4: due TODAY
— Assignment 5: Scene Recognition with Bag of Words is now available



| earning Goals

Understanding the visual classification “pipeline”



Object Recognition

® Object recognition with SIFT features [Lowe [999]

What is present! Where? What orientation?



Object Recognition
® PASCAL Visual Object Classes Challenges [2005-2012]
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What is present! Where! What orientation?




Classification and Detection

® (lassification: Label per image, e.g., ImageNet

e

container ship motor scooter leopard ' ~_mushroom

mite | container ship motor scooter ledpard ~ convertible agaric
i black widow lifeboat go-kart | jaguar grille mushroom
cockroach amphibian moped cheetah pickup jelly fungus
I tick fireboat bumper car snow leopard beach wagon gill fungus
i starfish drilling platform golfcart Egyptian cat fire engine || dead-man's-fingers
® Detection: Label per region, e.g., PASCALVOC
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Segmentation

® Segmentation: Label per pixel, e.g., MS COCO
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Structured Image Understanding

® “Girl feeding large elephant”
® “A man taking a picture behind girl”
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visualgenome.org [ Krishna et al 2017 ]



http://visualgenome.org

Shape + Tracking

® Other vision applications might need shape modelling (possibly
deformable) and/or tracking in video

[ Zuffi et al 2017 ] | SMPL Loper et al 2015 ]

We'll focus on single image classification today



Classification: Instance vs Categor

Category of Aeroplanes [ Caltech 101 ] 10



Instance vs Category

Classification

Instance of a cat

Category of domestic cats



Taxonomy of Cats

 Mammals (Class Mammalia)

Ly Therians (Subclass Theria) Bengal Tiger
& Placental Mammals (Infraclass Placentalia) [Omveer ChOUdharY]

“ Ungulates, Carnivorans, and Allies (Superorder Laurasiatheria)

'+ Carnivorans (Order Carnivora)

Ocelot
[Jitze Couperus]

5 Felines (Family Felidae)
5 Small Cats (Subfamily Felinae)
— Genus Felis
— Chinese Mountain Cat (relis bieti)

'+ Domestic Cat (Felis catus)

“ Jungle Cat (Frelis chaus) EU ropean Wildcat

[the wasp factory]
“ African Wildcat (relis lybica)

L Sand Cat (Felis margarita)

' Black-footed Cat (relis nigripes)

— European Wildcat (relis silvestris) [ inatu ralist.org ] |2


http://inaturalist.org

Taxonomy of Boats

sailboat

[ Deng et al 2009 ] trimaran 13



WordNet

We can use language to organise visual categories

This is the approach taken in ImageNet [Deng et al 2009], which
uses the WordNet lexical database [wordnet.princeton.edu]

As in language, visual categories have complex relationships
e.g.,a ‘sail” is part of a “sailboat” which is a “watercraft”

e S: (n) sailboat, sailing boat (a small sailing vessel; usually with a single mast)
o direct hyponym | full hyponym

e S: (n) catboat (a sailboat with a single mast set far forward)

e S: (n) sharpie (a shallow-draft sailboat with a sharp prow, flat
bottom, and triangular sail; formerly used along the northern
Atlantic coast of the United States)

e S: (n) trimaran (a fast sailboat with 3 parallel hulls)

o part meronym
o direct hypernym | inherited hypernym | sister term

e S: (n) sailing vessel, sailing ship (a vessel that is powered by the

wind; often having several masts)

If we call a “sailboat” a watercraft, is this wrong? What if
we call it a “sail”’?

14


http://wordnet.princeton.edu

Tiny Image Dataset

Precursor to ImageNet and CIFARIT0/100

80 million images collected via image search circa 2008 using
75,062 noun synsets from VWordNet (labels are noisy)

Very small images (32x32xRGB) used to minimise storage
Note human performance is still quite good at this scale!
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CIFAR |0 Dataset

® Hand labelled set of 10 categories from Tiny Images dataset
® 60,000 32x32 images in 10 classes (50k train, |0k test)
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Classification

Problem:
Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of
Instances In that category

17



Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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assification
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Classification

A classifier is a procedure that accepts as input a set of features and outputs
a class label

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples { (x;, y;) }, where
each X; IS a feature vector and each y; Is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

20



Classification

— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classitier on test images

Example training set

Label

Feature vector
computed from —
the image

21



Instance Recognition using Local Features

® Feature-based object instance recognition is similar to image
registration (2D) or camera pose estimation (3D):

|. Detect Local Features (e.g., SIFT) in all images

2. Match Features using Nearest Neighbours

3. Find geometrically consistent matches using RANSAC
(with Affine/Homography or Fundamental matrix)

® The final stage is to verify the match, e.g., require that #
consistent matches > threshold

22



Scaling Local Feature Recognition

® To avoid performing all pairwise comparisons O(n?):
® Match query descriptors to entire database using k-d tree
® Select subset with max # raw matches and check geometry
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Application: Location Recognition

® Find photo in streetside imagery

[ Philbin et al 2007 ] 24



Local Feature Recognition Failures

Features + RANSAC fails with large appearance variation, e.g.,
most object categories and some instance problems

Few correct matches

25



Local Feature Recognition Failures

® Features + RANSAC fails with large appearance variation, e.g.,
most object categories and some instance problems

No correct matches

26



Traditional Image Classification Pipeline

D
—eatures

HOG
SET ML model
Daisy SVM

Random Forests



How do we then represent images”?



Visual Words

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classify a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.



Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Vector Space Model

A document (datapoint) is a vector of counts over each word (feature

— W1,d

What is the similarity between two documents”?

counts the number of occurrences
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Visual Words

In Images, the equivalent of a word is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.



What Objects do These Parts Belong To*

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Some local feature are
very Informative -

a collection of local features
(lbag-of-features)

e deals well with occlusion
e gscale Invariant
e rotation invariant

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeling (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

1. Extract features (e.g., SIFT) from images

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Features Should \We Extract?

— Regular grid
Vogel & Schiele, 2003
Fel-Fel & Perona, 2005

— Interest point detector
Csurka et al. 2004
Fel-Fel & Perona, 2005
Sivic et al. 2005

— Other methods

Random sampling (Vidal-Naqguet & Uliman,
2002)

Segmentation-based patches (Barnard et
al. 2003)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

[Lowe’99]

Detect patches
Mikojaczyk and Schmid 02}
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Creating Dictionary
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K-means clustering



K-Means Clustering

Assume we know how many clusters there are in the data - denote by K
Each cluster Is represented by a cluster center, or mean

Our objective is to minimize the representation error (or quantization error) Iin
letting each data point be represented by some cluster center

Minimize

Z Z | — 1] |7

1€clusters | j€ith cluster

48



K-Means Clustering

K-means clustering alternates between two steps:

1. Assume the cluster centers are known (fixed). Assign each point to
the closest cluster center.

2. Assume the assignment of points to clusters is known (fixed).
Compute the best center for each cluster, as the mean of the points assigned
to the cluster.

The algorithm is initialized by choosing K random cluster centers

K-means converges to a local minimum of the objective function
— Results are Initialization dependent

49



K-Means Clustering Example
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K-Means Clustering Example
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K-Means Clustering Example
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K-Means Clustering Example
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K-Means Clustering Example
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Expectation Maximization

Description |edit]

The symbols | edit]

Given the statistical model which generates a set X of observed data, a set of unobserved latent data or missing values Z, and a vector of
unknown parameters @, along with a likelihood function L(8; X, Z) = p(X, Z | ), the maximum likelihood estimate (MLE) of the
unknown parameters is determined by maximizing the marginal likelihood of the observed data

L(6;X) = p(X | 6) = /p<x,z 16)dZ = /p(x | Z,0)p(Z | 6) dZ

However, this quantity is often intractable since Z is unobserved and the distribution of Z is unknown before attaining 6.

The EM algorithm [ edit]

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying these two steps:

Expectation step (E step): Define Q(0 | H(t)) as the expected value of the log likelihood function of @, with respect to the current

conditional distribution of Z given X and the current estimates of the parameters 6.
t
Q(G I 0( )) — Ezwp(.|x,9(t)) [logp(X, ZIO)]

Maximization step (M step): Find the parameters that maximize this quantity:

6"V = argmax Q(60 | 89)
6
More succinctly, we can write it as one equation:

oit+1) — arg max Ez~p(‘|x,9(t)) log p(X, Z|0)]

0 From Wikipedia — | will not ask you this

00



Expectation Maximization

A simpler version

The K-Means centers
Given a model repeat N\
1. Create an “expectation” of the (log-)likelihood with the current hypothesis
2. Update the hyp7;esis to one that maximizes the expectation above

Not exactly the hard assignments of K-Means

560



K-Means Clustering Example

Clusters at iteration 13
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Example Visual Dictionary
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Example Visual Dictionary
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Standard Bag-of-Words Pipeline (or image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

) (¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (or image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Classify Visual Word Histograms

e.g., bird vs plane classifier as linear classifier in space of histograms

Histograms of visual word frequencies = vector X, linear classifier w




Support Vector Machines (SVM)

o O Learn the decision boundary

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Intuitively, the line that Is the farthest
from all interior points

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

‘/“ support vectors

Want a hyperplane that is far away from ‘inner points’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

Find hyperplane w such that ...

minimize w5
w, b

subject to yi(w x; —b)>1 Vie{l,...,n}

the gap between parallel hyperplanes Hi—H IS maximized

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Distance 1o the border

Becomes 1 because It’s the
. thing at the border (+1)

W g
\T‘ (Hsz /Wz

Maximize 5

Minimize  ||[W/|3

/0



Support Vectors

® T[he active constraints are due to the data that define the
classification boundary, these are called support vectors

Final classifier can be
written in terms of the
support vectors:

y = sign (?ﬁo + Z Oéz'yz'XiTX)

a; >0
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Non-Linear SVM

Replace inner product with kernel

x; X — &(x;) d(x) — k(xi, X)

(

Data are (ideally) linearly
separable in P(x)

But we don’t need to know
P(x), we just specify k(x,y)
Points with 0t>0 (circled) are
support vectors

Other data can be removed
& | without affecting classifier

/8



Bag-of-Words Representation

Algorithm:

Initialize an empty K -bin histogram, where K is the number of codewords
Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x

Map (Quantize) x to its closest codeword — ¢(x)
Increment the histogram bin for ¢(x)
Return histogram

We can then classify the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier
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Alexnet

® Won the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012 by a large margin

® Some ingredients: Deep neural net (Alexnet), Large dataset
(Imagenet), Lots of compute (2 GPU weeks), non-saturating
activation functions (ReLU)
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Perronnin (AlexNet) Fergus  Zisserman (GoogleNet) (ResNet) (SENet) et al
(VGG)
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Summary

Factors that make image classification hard
— Intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of visual words contains representative local patch descriptors

— can be constructed by clustering local descriptors (e.g. SIFT) in training
images

The bag of words model accumulates a histogram of occurrences of each
visual word

An supervised classifier, such as a Support Vector Machine (SVM) is then
used to classity the word histograms
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