CPSC 425: Computer Vision

Lecture 2: Image Formation
(slide credits / thanks to Bob Woodham, Jim Little and Fred Tung)

This Lecture

Topics: Image Formation

- Image Formation
- Projection
- Cameras and Lenses

Readings:

- Today’s Lecture: Szeliski Chapter 2, Forsyth \& Ponce (2nd ed.) 1.1.1 - 1.1.3
- Next Lecture: Forsyth \& Ponce (2nd ed.) 4.1, 4.5

Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device
Interpreting Device

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lighting condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

Light and Color

-Light is electromagnetic radiation in the $400-700 \mathrm{~nm}$ band
-This is the peak in the spectrum of sunlight passing through the atmosphere

- Newton's Prism experiment showed that white light is composed of all frequencies
-Black is the absence of light!

Spectral Power Distribution

-The spectral distribution of energy in a light ray determines its colour

- Surfaces reflect light energy according to a spectral distribution as well
-The combination of incident spectra and reflectance spectra determines the light colour

Spectral Reflectance Example

』

Our brains already knows this

Our brains already knows this

Surface Reflectance

- Reflected intensity also depends on geometry: surface orientation, viewer position, shadows, etc.

It also depends on surface properties, e.g., diffuse or specular

Diffuse and Specular Reflection

- A pure mirror reflects light along a line symmetrical about the surface normal
- A pure diffuse surface scatters light equally in all directions

Specular surfaces directly reflect over a small angle

Diffuse and Specular Reflection

- A sphere lit with ambient, +diffuse, +specular reflectance

Diffuse and Specular Reflection

- A motivating example that uses this model

Diffuse Reflection

- Light is reflected equally in all directions (Lambertian surface)
- But the amount of light reaching unit surface area depends on the angle between the light and the surface...

Specular Reflection

- Light reflected strongly around the mirror reflection direction
- Intensity depends on viewer position

Phong Illumination Model

- Includes ambient, diffuse and specular reflection

$$
I=k_{a} i_{a}+k_{d} i_{d} \cos \theta+k_{s} i_{s} \cos ^{\alpha} \phi
$$

Light Source

Overview: Image Formation, Cameras and I enses

 Coming back to here...The image formation process that produces a particular image depends on

- Lighting condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

surface element

Sensor (or eye) captures amount of light reflected from the object

(small) Graphics Review

(small) Graphics Review

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing (θ_{v}, ϕ_{v}) and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing (θ_{v}, ϕ_{v}) and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$
source

Lambertian surface:

$\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)=\frac{\rho_{d}}{\pi}$

$$
L=\frac{\rho_{d}}{\pi} I(\vec{i} \cdot \vec{n})
$$

(small) Graphics Review

Surface reflection depends on both the viewing (θ_{v}, ϕ_{v}) and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\mathbf{B R D F}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

Lambertian surface:

Mirror surface: all incident light reflected in one directions $\left(\theta_{v}, \phi_{v}\right)=\left(\theta_{r}, \phi_{r}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing (θ_{v}, ϕ_{v}) and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

Mirror surface: all incident light reflected in one directions $\left(\theta_{v}, \phi_{v}\right)=\left(\theta_{r}, \phi_{r}\right)$

Reflectance in Vision

Reflectance in Graphics

Cameras

Old school film camera
Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

digital sensor (CCD or CMOS)

... and the object we would like to photograph

What would an image taken like this look like?

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

All scene points contribute to all sensor pixels

Bare-sensor imaging

All scene points contribute to all sensor pixels

Pinhole Camera

barrier (diaphragm)

What would an image taken like this look like?

Pinhole Camera

Pinhole Camera

Each scene point contributes to only one sensor pixel

Camera Obscura (latin for "dark chamber")

```
illum in tabula per radios Solis, quam in coelo contin- git: hoc eft,fil in ccelo fuperior pars deliquiū patiatur, in radiis apparebit inferior deficere,vt ratio exigit optica.
Soles delignuinm Amo Chirin
154.4. Dio 24. Januarí
Conami
principles behind the pinhole camera or camera obscura were first mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)
```


Sic nos exactè Anno.1544. Louanii celipfim Solis obferuauimus, inuenimuśq; deficere paulò plus $\underset{q}{\text { q. }}$ dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

First Photograph on Record

La table servie

Pinhole Camera

A pinhole camera is a box with a small hall (aperture) in it

Forsyth \& Ponce (2nd ed.) Figure 1.2

Image Formation

Forsyth \& Ponce (2nd ed.) Figure 1.1

Accidental Pinhole Camera

Pinhole Camera

Perspective Projection

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { where }
$$

$$
\begin{aligned}
x^{\prime} & =f^{\prime} \frac{x}{z} \\
y^{\prime} & =f^{\prime} \frac{y}{z}
\end{aligned}
$$

Pinhole Camera

f^{\prime} is the focal length of the camera

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

Pinhole Camera

It is convenient to think of the image plane being in front of the pinhole

What happens if object moves towards the camera? Away from the camera?

Focal Length

- For a fixed sensor size, focal length determines the field of view (fov)

Sensor size
2.5 Q: What is the field of view of a full-frame (35 mm) camera with a 50 mm lens? 100 mm lens?

Focal length

Focal Length

28 mm

50 mm

35 mm

70 mm

Perspective Projection: Matrix Form

Camera Matrix

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4
$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $\begin{gathered}s P^{\prime}=\mathbf{C} P \\ \text { (s is a scale factor) }\end{gathered}$
$1(20)$

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a
Size is inversely proportions to distance

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Parallel lines meet at a point (vanishing point)

Forsyth \& Ponce (1st ed.) Figure 1.3b

Vanishing Points

Each set of parallel lines meet at a different point

- the point is called vanishing point

Vanishing Points

Each set of parallel lines meets at a different point

- the point is called the vanishing point

Sets of parallel lines on the same plane lead to collinear vanishing points

- the line is called a horizon for that plane

Vanishing Points

Vanishing Points

Vanishing Points

Vanishing Points

Each set of parallel lines meets at a different point

- the point is called the vanishing point

Sets of parallel lines on the same plane lead to collinear vanishing points

- the line is called a horizon for that plane

A good way to spot fake images

- scale and perspective do not work
- vanishing points behave badly

Spotting fake images with Vanishing Points

Perspective Projection: Matrix Form

Camera Matrix

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4
$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $\begin{gathered}s P^{\prime}=\mathbf{C} P \\ \text { (s is a scale factor) }\end{gathered}$
$1(20)$

Aside: Camera Matrix

Camera Matrix

Forsyth \& Ponce (1st ed.) Figure 1.4
$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $P^{\prime}=\mathbf{C} P$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $P^{\prime}=\mathbf{C} P$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned
Coordinate system centered at the pinhole

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & 0 \\
0 & f_{y}^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Sensor and pinhole perfectly aligned
Coordinate system centered at the pinhole

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right] \mathbb{R}_{4 \times 4}
$$

$$
P=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \text { where } P^{\prime}=\mathbf{C} P
$$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right] \mathbb{R}_{4 \times 4}
$$

Camera calibration is the process of estimating the parameters of the camera matrix based on a set of 3D-2D correspondences (usually requires a pattern whose structure and size are known)

$$
P=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \text { where } P^{\prime}=\mathbf{C} P
$$

Perspective Projection

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { where }
$$

$$
\begin{aligned}
x^{\prime} & =f^{\prime} \frac{x}{z} \\
y^{\prime} & =f^{\prime} \frac{y}{z}
\end{aligned}
$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Orthographic Projection

Forsyth \& Ponce (1st ed.) Figure 1.6

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
projects to 2D image point $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
where $\left.\begin{array}{l}\left.\begin{array}{l}x^{\prime}= \\ y^{\prime}= \\ \end{array}\right]\end{array}\right]$

Weak Perspective

Forsyth \& Ponce (1st ed.) Figure 1.5

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in Π_{0} projects to 2D image point $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
where $\begin{aligned} & \begin{array}{ll}x^{\prime}=m x \\ y^{\prime}= & m y\end{array}\end{aligned}$ and $m=\frac{f^{\prime}}{z_{0}}$

Summary of Projection Equations

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]$ where

Perspective

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z} \\
& x^{\prime}=m x \quad m=\frac{f^{\prime}}{z_{0}} \\
& y^{\prime}=m y
\end{aligned}
$$

Orthographic

$$
x^{\prime}=x
$$

$$
y^{\prime}=y
$$

Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics

- accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

When maximum accuracy is required, it is necessary to model additional details of a particular camera

- use perspective projection with additional parameters (e.g., lens distortion)

Projection Illusion

Our brains also know this perspective model very well!

Why Not a Pinhole Camera?

- If pinhole is too big then many directions are averaged, blurring the image
- If pinhole is too small then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are dark, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are slow, because only a very small amount of light from a particular scene point hits the image plane per unit time

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

Solution: use a lens to focus light onto the image plane

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a lens to focus light onto the image plane

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

- We can use these 2 properties to find the thin lens equation

Lens Basics

- A 50 mm lens is focussed at infinity. It now moves to focus on something 5 m away. How far does the lens move?

Pinhole Model with Lens

Lens Basics

- Lenses focus all rays from a plane in the world

- Objects off the plane are blurred depending on distance

Effect of Aperture Size

Smaller aperture \Rightarrow smaller blur, larger depth of field

Depth of Field

- Photographers use large apertures to give small depth of field

Aperture size $=\mathrm{f} / \mathrm{N}, \Rightarrow$ large $\mathrm{N}=$ small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth \& Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Image from lens with Spherical Aberration

Vignetting

Vignetting in a two-lens system

Forsyth \& Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Chromatic Aberration

- Index of refraction depends on wavelength, λ, of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Lens Distortion

Fish-eye Lens

Szeliski (1st ed.) Figure 2.13
Lines in the world are no longer lines on the image, they are curves!

Other (Possibly Significant) Lens Effects

Scattering at the lens surface

- Some light is reflected at each lens surface

There are other geometric phenomena/disto

- pincushion distortion
- harrel distortion

Parametric calibration errors
image from [Schöps et al., 2019]. Reproduced for educational purposes.
[Schöps et al., 2020]

Lecture Summary

- We discussed a "physics-based" approach to image formation. Basic abstraction is the pinhole camera.
- Lenses overcome limitations of the pinhole model while trying to preserve
it as a useful abstraction
- Projection equations: perspective, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and distortions" persist (e.g. spherical aberration, vignetting)

