

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 21: Neural Networks

THE UNIVERSITY **OF BRITISH COLUMBIA**

Adam (full form)

Bias correction for the fact that first and second moment estimates start at zero

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Adam with beta 1 = 0.9, beta2 = 0.999, and learning_rate = 1e-4is a great starting point for many models!

THE UNIVERSITY OF BRITISH COLUMBIA

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Learning rate: hyperparameter

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter

Linear + Softmax Regression

• We found the following gradient descent update rule $\mathbf{W}_{t+1} = \mathbf{W}$

- This applies to: Linear regression $\mathbf{h} = \mathbf{W}^T \mathbf{x}$
- The same update rule with a binary prediction function
 - implements the multiclass Perceptron learning rule

$$= \mathbf{W}_t - \alpha (\mathbf{h} - \mathbf{t}) \mathbf{x}^T$$

$$/ \uparrow \checkmark$$
prediction targets data

L2 loss Softmax regression $\mathbf{h} = \sigma(\mathbf{W}^T \mathbf{x})$ cross-entropy loss

 $\mathbf{h} = \mathbb{1}_{\max}(\mathbf{W}^T \mathbf{x})$

2-class Perceptron Classifier

Classification function is

- Linear function of the data (x) followed by 0/1 activation
- Update rule: present data x if correctly classified, do nothing
 - if incorrectly classified, update the weight vector

 $\hat{y} = \operatorname{sign}(\mathbf{w}^{T}\mathbf{x})$

 $\mathbf{w}_{n+1} = \mathbf{w}_n + y_i \mathbf{x}_i$

CIFARIO Feature Extraction

- So far, we used RGB pixels as the input to our classifier
- Feature extraction can improve results by a lot
- features based on k-means of whitened image patches

k-means, whitened

• e.g., Coates et al. achieve 79.6% accuracy on CIFARIO with a

k-means, raw RGB [Coates et al. 2011]

to a fully connected layer in a neural network

• Typically, we'll also add a bias term b

• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

• Typically, we'll also add a bias term b

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

• Typically, we'll also add a bias term b

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

• Typically, we'll also add a bias term b

Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

• Typically, we'll also add a bias term b

Note that our linear matrix multiplication classifier is equivalent

— The basic unit of computation in a neural network is a neuron.

sum, and applies an activation function (or non-linearity) to the sum.

- A neuron accepts some number of input signals, computes their weighted
- Common activation functions include sigmoid and rectified linear unit (ReLU)

Activation Function: Sigmoid

Common in many early neural networks Biological analogy to saturated firing rate of neurons Maps the input to the range [0,1]

Figure credit: Fei-Fei and Karpathy

Activation Function: **ReLU** (Rectified Linear Unit)

Very commonly used in interior (hidden) layers of neural nets

Why can't we have linear activation functions?

 $f(x) = \max(0, x)$

Figure credit: Fei-Fei and Karpathy

Maintains good gradient flow in networks, prevents vanishing gradient problem

Connect a bunch of neurons together — a collection of connected neurons

Connect a bunch of neurons together — a collection of connected neurons

'two neurons'

Connect a bunch of neurons together — a collection of connected neurons

'three neurons'

Connect a bunch of neurons together — a collection of connected neurons

'four neurons'

Connect a bunch of neurons together — a collection of connected neurons

Connect a bunch of neurons together — a collection of connected neurons

This network is also called a Multi-layer Perceptron (MLP)

'input' layer

Neural Network: **Terminology** 'hidden' layer

'input' layer

'input' layer

'output' layer

How many neurons?

How many neurons? 4+2=6

How many neurons? 4+2 = 6

How many weights?

How many neurons? 4+2 = 6

)

How many neurons? 4+2 = 6

How many learnable parameters?

)

How many neurons? 4+2 = 6

How many learnable parameters?

How many weights? $(3 \times 4) + (4 \times 2) = 20$

)
A neural network comprises neurons connected in an acyclic graph The outputs of neurons can become inputs to other neurons Neural networks typically contain multiple layers of neurons

input layer

Figure credit: Fei-Fei and Karpathy hidden layer Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Question: What is a Neural Network? **Answer:** Complex mapping from an input (vector) to an output (vector)

Question: What is a Neural Network? **Answer:** Complex mapping from an input (vector) to an output (vector)

about what specific functions next ...

- **Question:** What class of functions should be considered for this mapping? **Answer:** Compositions of simpler functions (a.k.a. layers)? We will talk more

Question: What is a Neural Network? **Answer:** Complex mapping from an input (vector) to an output (vector)

about what specific functions next ...

Question: What does a hidden unit do? **Answer:** It can be thought of as classifier or a feature.

- **Question:** What class of functions should be considered for this mapping? **Answer:** Compositions of simpler functions (a.k.a. layers)? We will talk more

Question: What is a Neural Network? **Answer:** Complex mapping from an input (vector) to an output (vector)

about what specific functions next ...

Question: What does a hidden unit do? **Answer:** It can be thought of as classifier or a feature.

Question: Why have many layers? **Answer:** 1) More layers = more complex functional mapping 2) More efficient due to distributed representation

- **Question:** What class of functions should be considered for this mapping? **Answer:** Compositions of simpler functions (a.k.a. layers)? We will talk more

Why can't we have **linear** activation functions? Why have non-linear activations?

input layer

 $\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$

hidden layer

input layer

 $\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$ $= \mathbf{W}_{2}^{(2 \times 4)} \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)}$

hidden layer

 $\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma$

hidden layer

$$= \sigma \left(\mathbf{W}_{2}^{(2 \times 4)} \sigma \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)} \right)$$

$$= \mathbf{W}_{2}^{(2 \times 4)} \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)}$$

$$= \mathbf{W}_{2}^{(2 \times 4)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)} + \mathbf{b}_{2}^{(2)}$$

 $\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma$

$$= \sigma \left(\mathbf{W}_{2}^{(2 \times 4)} \sigma \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)} \right)$$

= $\mathbf{W}_{2}^{(2 \times 4)} \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)}$
= $\mathbf{W}_{2}^{(2 \times 4)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)} + \mathbf{b}_{2}^{(2)}$
 $\overline{\mathbf{W}_{*}^{(2 \times 3)}} \mathbf{b}^{(2)}$

hidden layer

Neural Network as Universal Approximator

Non-linear activation is required to provably make the Neural Net a **universal** function approximator

Intuition: with ReLU activation, we effectively get a linear spline approximation to any function.

Optimization of neural net parameters = finding slops and transitions of linear pieces

The quality of approximation depends on the number of linear segments

continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

Universal Approximation Theorem: Single hidden layer can approximate any

[Hornik *et al.*, 1989]

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity. [Hornik *et al.*, 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d + 1 neurons, where d is the dimension of the input space, can approximate any continuous function.

Hidden Layer K

[Lu et al., NIPS 2017]

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity. [Hornik *et al.*, 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d + 1 neurons, where d is the dimension of the input space, can approximate any continuous function.

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lu et al., NIPS 2017]

[Lin and Jegelka, NIPS 2018]

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018]

1 hidden, 1 input/output ons $w_{00}^{(2)}$ h_0 targets $\longrightarrow O \rightarrow e \leftarrow t_0$

$$y = w_2(\max(0, w_1x + b_1))$$

Optimise by gradient descent

 $(1) + b_2 \qquad L = (y - t)^2$

vw_1

(Before) Linear score function:

Justin Johnson

f = Wx $x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$

(**Before**) Linear score function: (Now) 2-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Justin Johnson

f = Wx $f = W_2 \max(0, W_1 x)$

$W_2 \in \mathbb{R}^{C \times H} \quad W_1 \in \mathbb{R}^{H \times D} \quad x \in \mathbb{R}^D$

Lecture 5 - 23

(**Before**) Linear score function: (Now) 2-layer Neural Network or 3-layer Neural Network

> $W_3 \in \mathbb{R}^{C \times H_2} \quad W_2 \in \mathbb{R}^{H_2 \times H_1} \quad W_1 \in \mathbb{R}^{H_1 \times D}$ $x \in \mathbb{R}^D$

> > (In practice we will usually add a learnable bias at each layer as well)

Justin Johnson

f = Wx $f = W_2 \max(0, W_1 x)$ $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Lecture 5 - 24

Neural Networks (**Before**) Linear score function: (Now) 2-layer Neural Network

 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Justin Johnson

f = Wx $f = W_2 \max(0, W_1 x)$

Element (i, j) of W₂ gives the effect on s_i from h_i

Lecture 5 - 26

Neural Networks (**Before**) Linear score function: (Now) 2-layer Neural Network

Element (i, j) of W₁ gives the effect on h_i from x_i

> All elements of x affect all elements of h

f = Wx $f = W_2 \max(0, W_1 x)$

Element (i, j) of W₂ gives the effect on s_i from h_i

> All elements of h affect all elements of s

- Also "Multi-Layer Perceptron" (MLP)

Lecture 5 - 27

Linear classifier: One template per class

Justin Johnson

Before) Linear score function: (Now) 2-layer Neural Network

September 18, 2019

Lecture 5 - 28

Neural net: first layer is bank of templates; Second layer recombines templates

Justin Johnson

(**Before**) Linear score function: (Now) 2-layer Neural Network

Lecture 5 - 29

Can use different templates to cover multiple modes of a class!

Justin Johnson

(**Before**) Linear score function: (Now) 2-layer Neural Network

Lecture 5 - 30

"Distributed representation": Most templates not interpretable!

Justin Johnson

(**Before**) Linear score function: (Now) 2-layer Neural Network

Lecture 5 - 31

Deep Neural Networks

Justin Johnson

 $s = W_6 \max(0, W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 \max(0, W_1 x))))))$

Lecture 5 - 32

$$y = w_2(\max(0, w_1x + b_1))$$

Optimise by gradient descent

 $(1) + b_2 \qquad L = (y - t)^2$

ow_1
(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$F_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Justin Johnson

lem: Very tedious: Lots of matrix lus, need lots of paper

lem: What if we want to change E.g. use softmax instead of ? Need to re-derive from ch. Not modular!

lem: Not feasible for very plex models!

Better Idea: Computational Graphs

Justin Johnson

2-Layer Neural Network — 1 hidden, 1 input/output

1 hidden, 1 input/output ons $w_{00}^{(2)}$ h_0 targets $\longrightarrow O \rightarrow e \leftarrow t_0$

2-Layer Neural Network — 1 hidden, 1 input/output

$$y = w_2(\max(0, w_1x + b_1)) + b_2$$
 $L = (y - t)^2$

Alternative: build a computational graph to apply the chain rule

2-Layer Neural Network — 1 hidden, 1 input/output

Input + Initial weights /target

• $\times w_1 + b_1$ i_1 x

→ L

2-Layer Neural Network — 1 hidden, 1 input/output

Input + Initial weights Forward pass /target

L

2-Layer Neural Network — 1 hidden, 1 input/output

Input + Initial weights /target

 ∂L $\frac{\partial L}{\partial i_2} = \frac{\partial f(i_2)}{\partial i_2} \frac{\partial L}{\partial f(i_2)} = \frac{\partial f(i_2)}{\partial i_2} \frac{\partial L}{\partial L} = \frac{\partial (i_2)^2}{\partial i_2} 1 = 2i_2$ $\frac{\partial L}{\partial y} = \frac{\partial f(y)}{\partial y} \frac{\partial L}{\partial f(y)} = \frac{\partial f(y)}{\partial y} \frac{\partial L}{\partial i_2} = \frac{\partial f(y)}{\partial y} 4 = \frac{\partial y - t}{\partial y} 4 = 1 \times 4$

∂L Backward pass Forward pass -5 3 a $\max(0, \bullet)$ $\bullet imes w_2 + b_2$ y8 16

2-Layer Neural Network — 1 hidden, 1 input/output

Input + Initial weights /target

∂L Forward pass Backward pass $\partial ullet$ -5 3 a $\max(0, \bullet)$ $\bullet imes w_2 + b_2$ y8 16 4

-2 -6

Why **backwards**?

$$y = w_2(\max(0, w_1x + b_2))$$

(20. I

Local gradients

 \mathcal{Z}

Upstream gradient

Local gradients

 \mathcal{Z}

Upstream gradient

gradients

 \mathcal{Z}

Upstream gradient

weights

2-Layer **Neural** Network — multiple outputs

Backward Pass for Some Common Layers

Deep Neural Networks

Justin Johnson

 $s = W_6 \max(0, W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 \max(0, W_1 x))))))$

Lecture 5 - 32

September 18, 2019

Backward Pass for Some Common Layers

Linear layers — fully connected

Fully Connected Layer

Example: 200 x 200 image (small) x 40K hidden units (same size)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large

Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

= 100 parameters

Share the same parameters across the locations (assuming input is stationary)

* slide adopted from Marc'Aurelio Renzato

* slide from Marc'Aurelio Renzato

* slide from Marc'Aurelio Renzato

* slide from Marc'Aurelio Renzato

Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

= 100 parameters

Share the same parameters across the locations (assuming input is stationary)

* slide adopted from Marc'Aurelio Renzato

Optional subtitle

113

Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

of filters: 20

= 2000 parameters

→ multiple filters

* slide from Marc'Aurelio Renzato

ato

3x32x32 image: preserve spatial structure

Justin Johnson

Justin Johnson

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

Lecture 7 - 15

3x32x32 image

Justin Johnson

September 24, 2019

Consider repeating with a second (green) filter:

two 1x28x28 activation map

convolve (slide) over all spatial locations

Lecture 7 - 18

September 24, 2019

Stack activations to get a 6x28x28 output image!

September 24, 2019

September 24, 2019

September 24, 2019

Stacking Convolutions

Lecture 7 - 23

Stacking Convolutions

Justin Johnson

(Recall $y=W_2W_1x$ is **Q**: What happens if we stack a linear classifier) two convolution layers? **A**: We get another convolution!

Lecture 7 - 25

Convolutional Neural Networks

VGG-16 Network

Backward Pass for Some Common Layers

Convolutional layer

What do convolutional filters learn?

Justin Johnson

Linear classifier: One template per class

What do convolutional filters learn?

Justin Johnson

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

What filters do networks learn?

[Zeiler and Fergus, 2013]

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32 **10 5x5** filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 10 x 32 x 32

Justin Johnson

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: ?

Justin Johnson

Input volume: 3 x 32 x 32 **10** 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Parameters per filter: 3*5*5 + 1 (for bias) = 76 **10** filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: 768,000

September 24, 2019

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Justin Johnson

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Input: 7x7 Output: 3x3 Filter: 3x3 Stride: 2

Justin Johnson

Input: 7x7 Filter: 3x3 Output: 3x3 Stride: 2 In general: Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Lecture 7 - 46

Pooling Layers: Another way to downsample

Justin Johnson

224

Hyperparameters: Kernel Size Stride Pooling function

September 24, 2019

Max Pooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Y

Justin Johnson

X

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces invariance to small spatial shifts No learnable parameters!

Lecture 7 - 64
Components of a Convolutional Network

Convolution Layers

Activation Function

Justin Johnson

Pooling Layers

Fully-Connected Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

September 24, 2019

Lecture 7 - 94

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

September 24, 2019

Example: LeNet-5

Layer	Output Size	Weight
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 5
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 76

September 24, 2019

Optical Character Recognition (OCR)

Technology to convert scanned documents to text (comes with any scanner now days)

Digit recognition, AT&T labs http://www.research.att.com/~yann/

Yann LeCun

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

AlexNet: Deep Learning Goes Mainstream

Justin Johnson

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Lecture 1 - 29

January 5, 2022

Justin Johnson

Lecture 1 - 28

January 5, 2022

AlexNet on ImageNet

container 3	mile
containe	mite
life	black widow
amph	cockroach
fire	tick
drilling pla	starfish
No. of Concession, Name	All in the second
450	
·	
. 149	
N Carlo Maria	
mushroo	arille
musmoor	gime

ag	convertible
mushr	grille
jelly fur	pickup
gill fur	beach wagon
dead-man's-fin	fire engine

Comparing **Complexity**

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Summary

computes gradients via recursive application of the chain rule

network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters

A pooling layer performs spatial downsampling

A fully-connected layer is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

- The parameters of a neural network are learned using **backpropagation**, which
- A convolutional neural network assumes inputs are images, and constrains the