CPSC 425: Computer Vision

Lecture 21: Neural Networks

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x) Momentum
    first_moment = beta1 * first_moment + (1 - beta1) * dx
second_moment = beta2 * second moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - beta1 ** t)
second_unbias = second_moment / (1 - beta2 ** t) Bias correction
x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 $=0.9$,
beta2 $=0.999$, and learning_rate $=1 e-4$ is a great starting point for many models!

Adam

- SGD

SGD+Momentum
RMSProp

Adam

Learning rate: hyperparameter

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter

Linear + Softmax Regression

- We found the following gradient descent update rule

$$
\mathbf{W}_{t+1}=\mathbf{W}_{t}-\alpha(\mathbf{h}-\mathbf{t}) \mathbf{x}^{T}
$$

- This applies to:

Linear regression $\quad \mathbf{h}=\mathbf{W}^{T} \mathbf{x} \quad$ L2 loss
Softmax regression $\quad \mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}\right) \quad$ cross-entropy loss

- The same update rule with a binary prediction function

$$
\mathbf{h}=\mathbb{1}_{\max }\left(\mathbf{W}^{T} \mathbf{x}\right)
$$

implements the multiclass Perceptron learning rule

2-class Perceptron Classifier

- Classification function is

$$
\hat{y}=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

- Linear function of the data (x) followed by $0 / I$ activation
- Update rule: present data x
- if correctly classified, do nothing
- if incorrectly classified, update the weight vector

$$
\mathbf{w}_{n+1}=\mathbf{w}_{n}+y_{i} \mathbf{x}_{i}
$$

CIFARIO Feature Extraction

- So far, we used RGB pixels as the input to our classifier
- Feature extraction can improve results by a lot
- e.g., Coates et al. achieve 79.6\% accuracy on CIFARIO with a features based on k-means of whitened image patches

k-means, whitened

k-means, raw RGB
[Coates et al. 20II]

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

A Neuron

- The basic unit of computation in a neural network is a neuron.
- A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.
- Common activation functions include sigmoid and rectified linear unit (ReLU)

Activation Function: Sigmoid

Figure credit: Fei-Fei and Karpathy
Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range $[0,1]$

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy
Maintains good gradient flow in networks, prevents vanishing gradient problem Very commonly used in interior (hidden) layers of neural nets

Why can't we have linear activation functions?

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

Neural Network

Connect a bunch of neurons together - a collection of connected neurons

'six neurons'

Neural Network

This network is also called a Multi-layer Perceptron (MLP)

Neural Network: Terminology
'input' layer

Neural Network: Terminology
'hidden' layer
'input' layer

Neural Network: Terminology
'hidden' layer
'input' layer 'output' layer

Neural Network: Terminology

this layer is a
'fully connected layer'

Neural Network: Terminology

Neural Network

How many neurons?

Neural Network

How many neurons? $\quad 4+2=6$

Neural Network

How many neurons? $\quad 4+2=6$
How many weights?

Neural Network

How many neurons? $\quad 4+2=6$
How many weights?

Neural Network

How many neurons? $\quad 4+2=6$
How many weights?

$(3 \times 4)+(4 \times 2)=20$

How many learnable parameters?

Neural Network

How many neurons? $\quad 4+2=6$
How many weights?

Neural Network

A neural network comprises neurons connected in an acyclic graph The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

hidden layer
Figure credit: Fei-Fei and Karpathy
Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)
Question: What class of functions should be considered for this mapping? Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)
Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)
Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.
Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping
2) More efficient due to distributed representation

Activation Function

Why can't we have linear activation functions? Why have non-linear activations?

Activation Function

$$
\hat{\mathbf{y}}=f\left(\mathbf{x}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}\right)=\sigma\left(\mathbf{W}_{2}^{(2 \times 4)} \sigma\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)}\right)
$$

Figure credit: Fei-Fei and Karpathy

Activation Function

$$
\begin{aligned}
\hat{\mathbf{y}}=f\left(\mathbf{x}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}\right) & =\sigma\left(\mathbf{W}_{2}^{(2 \times 4)} \sigma\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)}\right) \\
& =\mathbf{W}_{2}^{(2 \times 4)}\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)}
\end{aligned}
$$

Figure credit: Fei-Fei and Karpathy

Activation Function

$$
\begin{aligned}
\hat{\mathbf{y}}=f\left(\mathbf{x}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}\right) & =\sigma\left(\mathbf{W}_{2}^{(2 \times 4)} \sigma\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)}\right) \\
& =\mathbf{W}_{2}^{(2 \times 4)}\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)} \\
& =\mathbf{W}_{2}^{(2 \times 4)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)}+\mathbf{b}_{2}^{(2)}
\end{aligned}
$$

Figure credit: Fei-Fei and Karpathy

Activation Function

$$
\begin{aligned}
\hat{\mathbf{y}}=f\left(\mathbf{x}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}\right)= & \sigma\left(\mathbf{W}_{2}^{(2 \times 4)} \sigma\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)}\right) \\
= & \mathbf{W}_{2}^{(2 \times 4)}\left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{b}_{1}^{(4)}\right)+\mathbf{b}_{2}^{(2)} \\
= & \frac{\mathbf{W}_{2}^{(2 \times 4)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x}+\mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)}+\mathbf{b}_{2}^{(2)}}{\mathbf{W}_{*}^{(2 \times 3)}} \frac{\mathbf{b}^{(2)}}{}
\end{aligned}
$$

hidden layer
Figure credit: Fei-Fei and Karpathy

2-Layer Neural Network

activations

2-Layer Neural Network - n hidden, 1 input/output activations
input data

2-Layer Neural Network - n hidden, 1 input/output

3 hidden units

2-Layer Neural Network - n hidden, 1 input/output

4 hidden units

2-Layer Neural Network - n hidden, 1 input/output

6 hidden units

2-Layer Neural Network - n hidden, 1 input/output

8 hidden units

2-Layer Neural Network - n hidden, 1 input/output

20 hidden units

Neural Network as Universal Approximator

Non-linear activation is required to provably make the Neural Net a universal function approximator

Intuition: with ReLU activation, we effectively get a linear spline approximation to any function.

Optimization of neural net parameters $=$ finding slops and transitions of linear pieces

The quality of approximation depends on the number of linear segments

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size $d+1$ neurons, where d is the dimension of the input space, can approximate any continuous function.

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.
[Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size $d+1$ neurons, where d is the dimension of the input space, can approximate any continuous function.
[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.
[Lin and Jegelka, NIPS 2018]

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

2-Layer Neural Network - n hidden, 1 input/output
activations
input data

2-Layer Neural Network - 1 hidden, 1 input/output
input data
activations

weights

2-Layer Neural Network - 1 hidden, 1 input/output

$$
y=w_{2}\left(\max \left(0, w_{1} x+b_{1}\right)\right)+b_{2} \quad L=(y-t)^{2}
$$

Optimise by gradient descent

$$
\left[\begin{array}{c}
w_{1} \\
b_{1} \\
w_{2} \\
b_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
w_{1} \\
b_{1} \\
w_{2} \\
b_{2}
\end{array}\right]-\alpha\left[\begin{array}{c}
\frac{\partial L}{\partial w_{1}} \\
\frac{\partial L}{\partial b_{1}} \\
\frac{\partial L}{\partial w_{2}} \\
\frac{\partial L}{\partial b_{2}}
\end{array}\right]
$$

(19.5 How to compute the gradients? e.g., $\frac{\partial L}{\partial w_{1}}$

Neural Networks

(Before) Linear score function: $\quad f=W x$

$$
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
$$

Neural Networks

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

$$
W_{2} \in \mathbb{R}^{C \times H} \quad W_{1} \in \mathbb{R}^{H \times D} \quad x \in \mathbb{R}^{D}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural Networks

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)
$$

$$
W_{3} \in \mathbb{R}^{C \times H_{2}} \quad W_{2} \in \mathbb{R}^{H_{2} \times H_{1}} \quad W_{1} \in \mathbb{R}^{H_{1} \times D} \quad x \in \mathbb{R}^{D}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural Networks

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Element (i, j)	
of W_{1} gives	Input:
the effect on	3072
$\mathrm{~h}_{\mathrm{i}}$ from x_{j}	

100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural Networks

Linear classifier: One template per class

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Networks

Neural net: first layer is bank of templates; Second layer recombines templates

(Before) Linear score function:
(Now) 2-layer Neural Network

100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Can use different templates to cover multiple modes of a class!

(Before) Linear score function:
(Now) 2-layer Neural Network

100
$x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Neural Networks

"Distributed representation":
Most templates not interpretable!

(Before) Linear score function:
(Now) 2-layer Neural Network

100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Deep Neural Networks

2-Layer Neural Network - 1 hidden, 1 input/output

$$
y=w_{2}\left(\max \left(0, w_{1} x+b_{1}\right)\right)+b_{2} \quad L=(y-t)^{2}
$$

Optimise by gradient descent

$$
\left[\begin{array}{c}
w_{1} \\
b_{1} \\
w_{2} \\
b_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
w_{1} \\
b_{1} \\
w_{2} \\
b_{2}
\end{array}\right]-\alpha\left[\begin{array}{c}
\frac{\partial L}{\partial w_{1}} \\
\frac{\partial L}{\partial b_{1}} \\
\frac{\partial L}{\partial w_{2}} \\
\frac{\partial L}{\partial b_{2}}
\end{array}\right]
$$

(19.5 How to compute the gradients? e.g., $\frac{\partial L}{\partial w_{1}}$

(Bad) Idea: Derive $\nabla_{W} L$ on paper

$$
\begin{array}{rlrl}
s & =f(x ; W)=W x & & \text { Problem: Very tedious: Lots of matrix } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & & \text { calculus, need lots of paper } \\
& =\sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right) & & \text { Problem: What if we want to change } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} & & \text { loss? E.g. use softmax instead of } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2} \\
\nabla_{W} L & =\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)
\end{array}
$$

Better Idea: Computational Graphs

2-Layer Neural Network - 1 hidden, 1 input/output
input data
activations

weights

2-Layer Neural Network - 1 hidden, 1 input/output

$$
y=w_{2}\left(\max \left(0, w_{1} x+b_{1}\right)\right)+b_{2} \quad L=(y-t)^{2}
$$

Alternative: build a computational graph to apply the chain rule

2-Layer Neural Network - 1 hidden, 1 input/output
Input + Initial weights
/target

2-Layer Neural Network - 1 hidden, 1 input/output

Input + Initial weights Forward pass
/target

2-Layer Neural Network - 1 hidden, 1 input/output

 /target

$$
\frac{\partial L}{\partial y}=\frac{\partial f(y)}{\partial y} \frac{\partial L}{\partial f(y)}=\frac{\partial f(y)}{\partial y} \frac{\partial L}{\partial i_{2}}=\frac{\partial f(y)}{\partial y} 4=\frac{\partial y-t}{\partial y} 4=1 \times 4
$$

2-Layer Neural Network - 1 hidden, 1 input/output

Input + Initial weights Forward pass \quad Backward pass $=\frac{\partial L}{\partial \bullet}$ /target

$$
\text { Gradient }=\left[\begin{array}{c}
8 \\
8 \\
16 \\
4
\end{array}\right]
$$

2-Layer Neural Network - 1 hidden, 1 input/output

 Input + Initial weights \quad Forward pass \quad Backward pass $=\frac{\partial L}{\partial \bullet}$ /target

Repeat: +Input/target, Forward, Backward, Update until convergence!

+ update weights

Why backwards?

$$
y=w_{2}\left(\max \left(0, w_{1} x+b_{1}\right)\right)+b_{2} \quad L=(y-t)^{2}
$$

2-Layer Neural Network

activations

2-Layer Neural Network - multiple inputs
activations

weights

2-Layer Neural Network - multiple outputs
activations

"plane"

Backward Pass for Some Common Layers

[You will do this for Assignment 6]

Deep Neural Networks

Backward Pass for Some Common Layers

Linear layers - fully connected
(20.2

Fully Connected Layer

Example: 200×200 image (small) $x 40 K$ hidden units (same size)
= 1.6 Billion parameters (for one layer!)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large

Convolutional Layer

Example: 200×200 image (small) x 40K hidden units (same size)

Filter size: 10×10
$=100$ parameters

Share the same parameters across the locations (assuming input is stationary)

Convolutional Layer

Example: 200×200 image (small) x 40K hidden units (same size)

Filter size: 10×10
$=100$ parameters

Share the same parameters across the locations (assuming input is stationary)

Convolutional Layer

Example: 200×200 image (small) $\times 40 \mathrm{~K}$ hidden units (same size)

Filter size: 10×10
\# of filters: 20
$=2000$ parameters

Learn multiple filters
 \rightarrow multiple output channels

Convolution Layer

$3 \times 32 \times 32$ image: preserve spatial structure

Convolution Layer

$3 \times 32 \times 32$ image

$3 x 5 x 5$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products" depth of the input volume

Filters always extend the full compling dot

Convolution Layer

$3 \times 32 \times 32$ image

1 number:

the result of taking a dot product between the filter and a small $3 \times 5 \times 5$ chunk of the image
(i.e. $3 * 5 * 5=75$-dimensional dot product + bias)

$$
w^{T} x+b
$$

Convolution Layer

$3 \times 32 \times 32$ image

convolve (slide) over all spatial locations

Convolution Layer

$3 \times 32 \times 32$ image

Consider repeating with a second (green) filter:
two $1 \times 28 \times 28$ activation map

Convolution Layer

$3 \times 32 \times 32$ image

Consider 6 filters,

6 activation maps, each $1 \times 28 \times 28$

Stack activations to get a $6 \times 28 \times 28$ output image!

Convolution Layer

3×32×32 image

Also 6-dim bias vector:

6 activation maps, each $1 \times 28 \times 28$

Stack activations to get a $6 \times 28 \times 28$ output image!

Convolution Layer

Also 6-dim bias vector:

point a 6-dim vector
28×28 grid, at each

Convolution Layer
2×3×32×32

$2 \times 6 \times 28 \times 28$

$\mathrm{N} \times \mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$ Batch of images

Also $\mathrm{C}_{\text {out }}$-dim bias vector:

Convolution

Layer

$\mathrm{N} \times \mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ Batch of outputs

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack (Recall $y=W_{2} W_{1} x$ is two convolution layers?

First hidden layer:
$\mathrm{N} \times 6 \times 28 \times 28$

A: We get another convolution!

Convolutional Neural Networks

VGG-16 Network

Backward Pass for Some Common Layers

Convolutional layer
20.3

What do convolutional filters learn?

Linear classifier: One template per class

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

First hidden layer:
$N \times 6 \times 28 \times 28$

What do convolutional filters learn?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each $3 \times 11 \times 11$

What filters do networks learn?

[Zeiler and Fergus, 2013]

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1 , pad 2

Output volume size: ?

Convolution Example

Input volume: $3 \times 32 \times 32$

105×5 filters with stride 1, pad 2

Output volume size:
$(32+2 * 2-5) / 1+1=32$ spatially, so $10 \times 32 \times 32$

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: ?

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Parameters per filter: $3 * 5 * 5+1$ (for bias) $=76$
10 filters, so total is 10 * $76=760$

Convolution Example

Input volume: $3 \times 32 \times 32$ $105 x 5$ filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Number of multiply-add operations: ?

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1 , pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Number of multiply-add operations: 768,000
$10 * 32 * 32=10,240$ outputs; each output is the inner product of two $3 \times 5 \times 5$ tensors (75 elems); total $=75 * 10240=768 \mathrm{~K}$

Strided Convolution

Input: 7x7

Filter: 3×3
Stride: 2

Strided Convolution

Input: 7x7
 Filter: 3×3

Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3

Output: 3x3

Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3
Output: 3x3
Stride: 2
In general:
Input: W
Filter: K
Padding: P
Stride: S
Output: (W-K+2P)/S+1

Pooling Layers: Another way to downsample

Hyperparameters:
Kernel Size
Stride
Pooling function

Max Pooling

Single depth slice

Max pooling with 2×2
kernel size and stride 2
\longrightarrow

6	8
3	4

Introduces invariance to small spatial shifts
No learnable parameters!

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)	10	500×10

As we go through the network:

Spatial size decreases

(using pooling or strided conv)
Number of channels increases (total "volume" is preserved!)

Optical Character Recognition (OCR)

Technology to convert scanned documents to text (comes with any scanner now days)

Digit recognition, AT\&T labs http://www.research.att.com/~yann/

4YCHL28 4YCH428 4YCH428

License plate readers
http://en.wikipedia.org/wiki/Automatic number plate recognition

AlexNet: Deep Learning Goes Mainstream

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

IM. ${ }^{\circ} G E N E T$ Large Scale Visual Recognition Challenge

Lecture 1-28
January 5, 2022

AlexNet on ImageNet

Comparing Complexity

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Summary

The parameters of a neural network are learned using backpropagation, which computes gradients via recursive application of the chain rule

A convolutional neural network assumes inputs are images, and constrains the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters
A pooling layer performs spatial downsampling
A fully-connected layer is the same as in a regular neural network
Convolutional neural networks can be seen as learning a hierarchy of filters

