
Lecture 21: Neural Networks

CPSC 425: Computer Vision 



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam (full form)

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9,  
beta2 = 0.999, and learning_rate = 1e-4 
is a great starting point for many models! 

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Adam

SGD

SGD+Momentum

RMSProp

Adam

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Learning rate: hyperparameter
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter

Iteration

http://cs231n.stanford.edu/


Linear + Softmax Regression
• We found the following gradient descent update rule

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq
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cross-entropy loss

Linear regression

Softmax regression

• The same update rule with a binary prediction function

h = max(W
Tx)

h = WTx

h = �(WTx)

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq
1

implements the multiclass Perceptron learning rule



2-class Perceptron Classifier
• Classification function is

• Linear function of the data (x) followed by 0/1 activation 

ŷ = sign(wTx)

• Update rule:  present data x

- if correctly classified, do nothing

- if incorrectly classified, update the weight vector 

wn+1 = wn + yixi



CIFAR10 Feature Extraction
• So far, we used RGB pixels as the input to our classifier

• Feature extraction can improve results by a lot

• e.g., Coates et al. achieve 79.6% accuracy on CIFAR10 with a 
features based on k-means of whitened image patchesAn Analysis of Single-Layer Networks in Unsupervised Feature Learning

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using di↵erent learning algorithms.
Best viewed in color.
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Figure 4: E↵ect of stride.

Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the e↵ect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often di�cult and always
extremely slow. Thus we only ran this algorithm with up
to 800 components.
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Figure 5: E↵ect of receptive field size.

the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, whitened 

An Analysis of Single-Layer Networks in Unsupervised Feature Learning
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by incorporating whitening.
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the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, raw RGB
[ Coates et al. 2011 ]



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent 

to a fully connected layer in a neural network

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1



A Neuron

— The basic unit of computation in a neural network is a neuron. 

— A neuron accepts some number of input signals, computes their weighted 
sum, and applies an activation function (or non-linearity) to the sum. 

— Common activation functions include sigmoid and rectified linear unit (ReLU) 

inputs

weights

output

sum activation function

+b

y = f

 
NX

i=1

wixi + b

!



Activation Function: Sigmoid 

Common in many early neural networks 
Biological analogy to saturated firing rate of neurons  
Maps the input to the range [0,1] 

Figure credit: Fei-Fei and Karpathy



Maintains good gradient flow in networks, prevents vanishing gradient problem 
Very commonly used in interior (hidden) layers of neural nets

Activation Function: ReLU (Rectified Linear Unit) 

Figure credit: Fei-Fei and Karpathy

Why can’t we have linear activation functions?19.3



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’



Neural Network
Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’



Neural Network
This network is also called a Multi-layer Perceptron (MLP)



Neural Network: Terminology

‘input’ layer



Neural Network: Terminology
‘hidden’ layer

‘input’ layer



Neural Network: Terminology

‘output’ layer
‘hidden’ layer

‘input’ layer



Neural Network: Terminology
this layer is a 

‘fully connected layer’



Neural Network: Terminology
so is this



How many neurons?

Neural Network



How many neurons? 4+2 = 6

Neural Network



How many neurons? 4+2 = 6 How many weights?

Neural Network



How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network



How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network



How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network



Neural Network

Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy



Neural Network Intuition
Question: What is a Neural Network? 
Answer: Complex mapping from an input (vector) to an output (vector) 

Question: What class of functions should be considered for this mapping? 
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more 
about what specific functions next … 

Question: What does a hidden unit do? 
Answer: It can be thought of as classifier or a feature.  

Question: Why have many layers? 
Answer: 1) More layers = more complex functional mapping  

                  2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato 
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Activation Function
Why can’t we have linear activation functions? Why have non-linear activations?



Figure credit: Fei-Fei and Karpathy
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2-Layer Neural Network
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2-Layer Neural Network — n hidden, 1 input/output
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2-Layer Neural Network — n hidden, 1 input/output

3 hidden units



2-Layer Neural Network — n hidden, 1 input/output

4 hidden units



2-Layer Neural Network — n hidden, 1 input/output

6 hidden units



2-Layer Neural Network — n hidden, 1 input/output

8 hidden units



2-Layer Neural Network — n hidden, 1 input/output

20 hidden units



Non-linear activation is required to provably make the Neural Net a universal 
function approximator

Intuition: with ReLU activation, we 
effectively get a linear spline approximation to 
any function. 

Optimization of neural net parameters = 
finding slops and transitions of linear pieces  

The quality of approximation depends on the 
number of linear segments  

Neural Network as Universal Approximator



Universal Approximation Theorem: Single hidden layer can approximate any 
continuous function with compact support to arbitrary accuracy, when the 
width goes to infinity. [ Hornik et al., 1989 ] 

Light Theory: Neural Network as Universal Approximator
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Universal Approximation Theorem: Single hidden layer can approximate any 
continuous function with compact support to arbitrary accuracy, when the 
width goes to infinity. 

Universal Approximation Theorem (revised): A network of infinite depth 
with a hidden layer of size          neurons, where    is the dimension of the input 
space, can approximate any continuous function.   

[ Hornik et al., 1989 ] 

Light Theory: Neural Network as Universal Approximator

[ Lu et al., NIPS 2017 ] 
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Universal Approximation Theorem: Single hidden layer can approximate any 
continuous function with compact support to arbitrary accuracy, when the 
width goes to infinity. 

Universal Approximation Theorem (revised): A network of infinite depth 
with a hidden layer of size          neurons, where    is the dimension of the input 
space, can approximate any continuous function.   

Universal Approximation Theorem (further revised): ResNet with a single 
hidden unit and infinite depth can approximate any continuous function.  

[ Hornik et al., 1989 ] 

Light Theory: Neural Network as Universal Approximator

[ Lin and Jegelka, NIPS 2018 ] 

[ Lu et al., NIPS 2017 ] 
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Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any 
continuous function with compact support to arbitrary accuracy, when the 
width goes to infinity. 

Universal Approximation Theorem (revised): A network of infinite depth 
with a hidden layer of size          neurons, where    is the dimension of the input 
space, can approximate any continuous function.   

Universal Approximation Theorem (further revised): ResNet with a single 
hidden unit and infinite depth can approximate any continuous function.  

[ Lin and Jegelka, NIPS 2018 ] 
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2-Layer Neural Network — n hidden, 1 input/output
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How to compute the gradients? e.g., 
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61

19.5

Optimise by gradient descent 

How to compute the gradients? e.g., 



62Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 22

(Before)	Linear	score	function:
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Neural	Networks

Lecture	5	- 23

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

(In	practice	we	will	usually	add	a	learnable	bias	at	each	layer	as	well)
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Neural	Networks

Lecture	5	- 24

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network
or	3-layer	Neural	Network

(In	practice	we	will	usually	add	a	learnable	bias	at	each	layer	as	well)
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Neural	Networks

Lecture	5	- 26

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Element	(i,	j)	
of	W1	gives	
the	effect	on	
hi from	xj

Element	(i,	j)	
of	W2 gives	
the	effect	on	
si from	hj

W1 W2
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Neural	Networks

Lecture	5	- 27

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

Element	(i,	j)	of	W1	
gives	the	effect	on	
hi from	xj

Element	(i,	j)	of	W2
gives	the	effect	on	
si from	hj

All	elements	
of	x	affect	all	
elements	of	h

All	elements	
of	h	affect	all	
elements	of	s

Fully-connected	neural	network
Also	“Multi-Layer	Perceptron”	(MLP)
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Neural	Networks

Lecture	5	- 28

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

Linear	classifier:	One	template	per	class

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network
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Neural	Networks

Lecture	5	- 29

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Neural	net:	first	layer	is	bank	of	templates;
Second	layer	recombines	templates

W1 W2
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Neural	Networks

Lecture	5	- 30

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Can	use	different	templates	to	
cover	multiple	modes	of	a	class!

W1 W2
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Neural	Networks

Lecture	5	- 31

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

“Distributed	representation”:	
Most	templates	not	interpretable!

W1 W2
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Deep	Neural	Networks

Lecture	5	- 32

x h1W1 sW6

Input:
3072

Output:	10

h2 h3 h4 h5W2 W3 W4 W5

Depth	=	number	of	layers

Width:
Size	of	
each	
layer
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19.5

Optimise by gradient descent 

How to compute the gradients? e.g., 



73Justin Johnson September 23, 2019

(Bad) Idea: Derive              on paper 

Lecture 6 - 6

Problem: What if we want to change 
loss? E.g. use softmax instead of 
SVM? Need to re-derive from 
scratch. Not modular!

Problem: Very tedious: Lots of matrix 
calculus, need lots of paper

Problem: Not feasible for very 
complex models!



74Justin Johnson September 23, 2019

Better Idea: Computational Graphs

Lecture 6 - 7

x

W

hinge 
loss

R

+ Ls (scores)*
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2-Layer Neural Network — 1 hidden, 1 input/output

Alternative: build a 
computational graph to 

apply the chain rule
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1 3 1 2 -5

Initial weightsInput + 
/target
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/target
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2-Layer Neural Network — 1 hidden, 1 input/output

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward passInitial weightsInput + 
/target

1

Gradient =
8
8

16
4



2-Layer Neural Network — 1 hidden, 1 input/output

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput + 

1/4
3
1
2

-5

1
-1
-2
-6

=

1 -1 -2 -6

 + update weights
Repeat: +Input/target, Forward,


Backward, Update until convergence!

/target

1



Why backwards?

20.1
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f
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f

Upstream 
gradient
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f
Local 

gradients

Upstream 
gradient
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f
Local 

gradients

Upstream 
gradient

Downstream
gradients
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f
Local 

gradients

Upstream 
gradient

Downstream
gradients



2-Layer Neural Network
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2-Layer Neural Network — multiple inputs
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2-Layer Neural Network — multiple outputs
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Backward Pass for Some Common Layers
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Deep	Neural	Networks

Lecture	5	- 32

x h1W1 sW6

Input:
3072

Output:	10

h2 h3 h4 h5W2 W3 W4 W5

Depth	=	number	of	layers

Width:
Size	of	
each	
layer



Backward Pass for Some Common Layers
Linear layers — fully connected

20.2



Fully Connected Layer

* slide from Marc’Aurelio Renzato 

Example: 200 x 200 image (small)  
x 40K hidden units (same size)

Spatial correlations are generally local

Waste of resources + we don’t have 
enough data to train networks this large 

= 1.6 Billion parameters (for one layer!)



Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters



Convolutional Layer

* slide from Marc’Aurelio Renzato 
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Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters
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Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Learn multiple filters 
→ multiple output channels

= 2000 parameters

# of filters: 20
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Convolution	Layer

Lecture	7	- 12

32

3

3x32x32 image: preserve	spatial	structure

width
depth	/	
channels

height32
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Convolution	Layer

Lecture	7	- 14

32

3

3x32x32 image

width

height

depth	/	
channels

3x5x5	filter

Filters	always	extend	the	full	
depth	of	the	input	volume

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

32
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Convolution	Layer

Lecture	7	- 15

32

3

3x32x32	image

3x5x5	filter

32
1	number:	
the	result	of	taking	a	dot	product	between	the	filter	
and	a	small	3x5x5	chunk	of	the	image
(i.e.	3*5*5	=	75-dimensional	dot	product	+	bias)
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Convolution	Layer

Lecture	7	- 16

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

1x28x28	
activation	map

1

28

28



Optional subtitle

119Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 17

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

two	1x28x28	
activation	map

1

28

1

28

28

Consider	repeating	with	
a	second	(green)	filter:
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Convolution	Layer

Lecture	7	- 18

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28

Consider	6	filters,	
each	3x5x5	

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 19

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 20

32

3

3x32x32	image

32

28x28	grid,	at	each	
point	a	6-dim	vector

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 21

32

3

2x3x32x32
Batch	of	images

32

2x6x28x28
Batch	of	outputs

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters
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Convolution	Layer

Lecture	7	- 22

W

Cin

N	x	Cin x	H	x	W
Batch	of	images

H

N	x	Cout x	H’	x	W’
Batch	of	outputs

Also	Cout-dim	bias	vector:

Convolution	
Layer

Cout x	Cinx Kw x	Kh
filters

Cout
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32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
A:	We	get	another	convolution!

(Recall	y=W2W1x	is	
a	linear	classifier)

ReLU Conv ReLU Conv ReLU



Convolutional Neural Networks

VGG-16 Network



Backward Pass for Some Common Layers
Convolutional layer

20.3
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

Linear	classifier:	One	template	per	class
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

First-layer	conv	filters:	local	image	templates
(Often	learns	oriented	edges,	opposing	colors)

AlexNet:	64	filters,	each	3x11x11



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]
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Convolution	Example

Lecture	7	- 47

Input	volume:	3	x 32 x 32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	?
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Convolution	Example

Lecture	7	- 48

Input	volume:	3	x 32 x 32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	
(32+2*2-5)/1+1	=	32	spatially,	so
10 x	32 x 32
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Convolution	Example

Lecture	7	- 49

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	?
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Convolution	Example

Lecture	7	- 50

Input	volume:	3 x	32	x	32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Parameters	per	filter:	3*5*5	+	1	(for	bias)	=	76
10 filters,	so	total	is	10 *	76 =	760
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Convolution	Example

Lecture	7	- 51

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	?
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Convolution	Example

Lecture	7	- 52

Input	volume:	3 x	32	x	32
10	5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	768,000
10*32*32 =	10,240	outputs;	each	output	is	the	inner	product	
of	two	3x5x5	tensors	(75	elems);	total	=	75*10240	=	768K
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3



Optional subtitle

142Justin	Johnson September	24,	2019Lecture	7	- 46

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3

In	general:
Input:	W
Filter:	K
Padding:	P
Stride:	S
Output:	(W	– K	+	2P)	/	S	+	1
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Pooling	Layers:	Another	way	to	downsample

Lecture	7	- 63

Hyperparameters:
Kernel	Size
Stride
Pooling	function
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Max	Pooling

Lecture	7	- 64

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single	depth	slice

x

y

Max	pooling	with	2x2	
kernel	size	and	stride	2 6 8

3 4

Introduces	invariance to	
small	spatial	shifts
No	learnable	parameters!
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Components	of	a	Convolutional	Network

Lecture	7	- 94

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization



Optional subtitle

146Justin	Johnson September	24,	2019

Convolutional	Networks

Lecture	7	- 67

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

Classic	architecture:	[Conv,	ReLU,	Pool]	x	N,	flatten,	[FC,	ReLU]	x	N,	FC

Example:	LeNet-5
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Example:	LeNet-5

Lecture	7	- 76

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

As	we	go	through	the	network:

Spatial	size	decreases	
(using	pooling	or	strided conv)

Number	of	channels	increases
(total	“volume”	is	preserved!)



Optical Character Recognition (OCR)
Technology to convert scanned documents to text  

(comes with any scanner now days) 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

Yann 
LeCun

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
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AlexNet on ImageNet
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Summary

The parameters of a neural network are learned using backpropagation, which 
computes gradients via recursive application of the chain rule  

A convolutional neural network assumes inputs are images, and constrains the 
network architecture to reduce the number of parameters  

A convolutional layer applies a set of learnable filters 

A pooling layer performs spatial downsampling 

A fully-connected layer is the same as in a regular neural network  

Convolutional neural networks can be seen as learning a hierarchy of filters 
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