
Neural Network

Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy



2-Layer Neural Network — 1 hidden, 1 input/output
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Gradient descent step

Initial weightsInput + 
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 + update weights
Repeat: +Input/target, Forward,


Backward, Update until convergence!

/target

1
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f
Local 

gradients

Upstream 
gradient

Downstream
gradients



Fully Connected Layer

* slide from Marc’Aurelio Renzato 

Example: 200 x 200 image (small)  
x 40K hidden units (same size)

Spatial correlations are generally local

Waste of resources + we don’t have 
enough data to train networks this large 

= 1.6 Billion parameters (for one layer!)



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters



Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Learn multiple filters 
→ multiple output channels

= 2000 parameters

# of filters: 20
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Convolution	Layer

Lecture	7	- 12

32

3

3x32x32 image: preserve	spatial	structure

width
depth	/	
channels

height32
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Convolution	Layer

Lecture	7	- 14

32

3

3x32x32 image

width

height

depth	/	
channels

3x5x5	filter

Filters	always	extend	the	full	
depth	of	the	input	volume

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

32
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Convolution	Layer

Lecture	7	- 15

32

3

3x32x32	image

3x5x5	filter

32
1	number:	
the	result	of	taking	a	dot	product	between	the	filter	
and	a	small	3x5x5	chunk	of	the	image
(i.e.	3*5*5	=	75-dimensional	dot	product	+	bias)
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Convolution	Layer

Lecture	7	- 16

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

1x28x28	
activation	map

1

28

28
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Convolution	Layer

Lecture	7	- 17

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

two	1x28x28	
activation	map

1

28

1

28

28

Consider	repeating	with	
a	second	(green)	filter:
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Convolution	Layer

Lecture	7	- 18

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28

Consider	6	filters,	
each	3x5x5	

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 19

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 20

32

3

3x32x32	image

32

28x28	grid,	at	each	
point	a	6-dim	vector

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 21

32

3

2x3x32x32
Batch	of	images

32

2x6x28x28
Batch	of	outputs

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters
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Convolution	Layer

Lecture	7	- 22

W

Cin

N	x	Cin x	H	x	W
Batch	of	images

H

N	x	Cout x	H’	x	W’
Batch	of	outputs

Also	Cout-dim	bias	vector:

Convolution	
Layer

Cout x	Cinx Kw x	Kh
filters

Cout
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32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
A:	We	get	another	convolution!

(Recall	y=W2W1x	is	
a	linear	classifier)

ReLU Conv ReLU Conv ReLU



Convolutional Neural Networks

VGG-16 Network



Backward Pass for Some Common Layers
Convolutional layer

20.3
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

Linear	classifier:	One	template	per	class
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

First-layer	conv	filters:	local	image	templates
(Often	learns	oriented	edges,	opposing	colors)

AlexNet:	64	filters,	each	3x11x11



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]
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Convolution	Example

Lecture	7	- 47

Input	volume:	3	x 32 x 32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	?
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Convolution	Example

Lecture	7	- 48

Input	volume:	3	x 32 x 32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	
(32+2*2-5)/1+1	=	32	spatially,	so
10 x	32 x 32
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Convolution	Example

Lecture	7	- 49

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	?
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Convolution	Example

Lecture	7	- 50

Input	volume:	3 x	32	x	32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Parameters	per	filter:	3*5*5	+	1	(for	bias)	=	76
10 filters,	so	total	is	10 *	76 =	760
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Convolution	Example

Lecture	7	- 51

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	?
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Convolution	Example

Lecture	7	- 52

Input	volume:	3 x	32	x	32
10	5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	768,000
10*32*32 =	10,240	outputs;	each	output	is	the	inner	product	
of	two	3x5x5	tensors	(75	elems);	total	=	75*10240	=	768K
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3

In	general:
Input:	W
Filter:	K
Padding:	P
Stride:	S
Output:	(W	– K	+	2P)	/	S	+	1
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Pooling	Layers:	Another	way	to	downsample

Lecture	7	- 63

Hyperparameters:
Kernel	Size
Stride
Pooling	function
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Max	Pooling

Lecture	7	- 64

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single	depth	slice

x

y

Max	pooling	with	2x2	
kernel	size	and	stride	2 6 8

3 4

Introduces	invariance to	
small	spatial	shifts
No	learnable	parameters!



Optional subtitle

38Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 94

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization
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Convolutional	Networks

Lecture	7	- 67

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

Classic	architecture:	[Conv,	ReLU,	Pool]	x	N,	flatten,	[FC,	ReLU]	x	N,	FC

Example:	LeNet-5
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Example:	LeNet-5

Lecture	7	- 76

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

As	we	go	through	the	network:

Spatial	size	decreases	
(using	pooling	or	strided conv)

Number	of	channels	increases
(total	“volume”	is	preserved!)



Optical Character Recognition (OCR)
Technology to convert scanned documents to text  

(comes with any scanner now days) 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

Yann 
LeCun

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
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1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

2012
AlexNet

AlexNet: Deep Learning Goes Mainstream

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

Enter Deep Learning

2012
AlexNet



AlexNet on ImageNet

44

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Summary

The parameters of a neural network are learned using backpropagation, which 
computes gradients via recursive application of the chain rule  

A convolutional neural network assumes inputs are images, and constrains the 
network architecture to reduce the number of parameters  

A convolutional layer applies a set of learnable filters 

A pooling layer performs spatial downsampling 

A fully-connected layer is the same as in a regular neural network  

Convolutional neural networks can be seen as learning a hierarchy of filters 

46



Lecture 22: Neural Networks 3

CPSC 425: Computer Vision 

47



Menu for Today
Topics: 

— Neural Networks part 3 
— Weight Initialization

Readings: 

— Today’s Lecture:  Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS 
498/598                           

— Normalization 
— Preventing Overfitting 

Reminders: 
—Quiz 6: Open Apr 10th, due Apr 11th! 
—Assignment 6: Deep Learning due April 12th! 
—Final: April 16th 
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1959
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1963
Roberts

1970s
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1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
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Enter Deep Learning

2012
AlexNet



So why now?



Rise of large datasets

4/4/2017

22K categories and 14M images

www.image-net.org

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009 

• Animals 
• Bird 
• Fish 
• Mammal 
• Invertebrate

• Plants 
• Tree 
• Flower 

• Food 
• Materials

• Structures 
• Artifact 

• Tools 
• Appliances 
• Structures

• Person 
• Scenes 

• Indoor 
• Geological Formations 

• Sport Activities 

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
51

http://cs231n.stanford.edu/


Rise of large datasets

https://laion.ai/blog/laion-5b/



Clever architectures
Convolutional neural networks

[Lecun, Bottou, Bengio, and Haffner, “Gradient-Based Learning Applied to Document Recognition”, 1998] 



Clever architectures
Convolutional neural networks

[Lecun, Bottou, Bengio, and Haffner, “Gradient-Based Learning Applied to Document Recognition”, 1998] 

[Nair and Hinton, “Rectified Linear Units Improve 
Restricted Boltzmann Machines”, 2010] 



Clever architectures
Transformers, Vaswani et al., 2017



Proper initialization schemes
Much more important than you think

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

“Xavier initialization” 
[Glorot et al., 2010] 

Neuron activations are 
well spread

Less important now with “normalization” 

(But still can be VERY important in some cases)

http://cs231n.stanford.edu/


Weight initialization



Q: what happens when W=0 init is used?

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

58

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

59

First idea: Small random numbers  
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

60

Let’s look at 
some 
activation 
statistics

E.g. 10-layer net with 
500 neurons on each 
layer, using tanh non-
linearities, and initializing 
as described in last slide.

Init with small random numbers

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

61

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

62

All activations 
become zero! 

Q: think about the 
backward pass. 
What do the 
gradients look like?

Hint: think about backward 
pass for a W*X gate.

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

63

Almost all neurons 
completely saturated, 
either -1 and 1. 
Gradients will be all 
zero.

*1.0 instead of *0.01

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
Glorot initialization [Glorot et al., 2010]

64

Statistically motivated  

Good for tanh 

Some number according to “fan in”

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
Glorot initialization [Glorot et al., 2010]

65

Statistically motivated  

Good for tanh 

Not so good for ReLU

Some number according to “fan in”

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
He initialization [He et al., 2015]

66

magic number 2

Statistically motivated  

Good for ReLU 

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
He initialization [He et al., 2015]

67

magic number 2

Statistically motivated  

Good for ReLU 

http://cs231n.stanford.edu/


Recall: But it is never that easy
A typical sad loss curve

68

Loss

Steps

Did something wrong, network not learning

Finally learning, but I graduated last year



Recall: But it is never that easy
A typical sad loss curve

69

Loss

Steps

Did something init wrong, network not learning gradients saturated?

Finally learning, but I graduated last year



Normalization



Batch normalization
Recall…

71

[Ioffe and Szegedy, 2015]



Batch normalization
Recall…

72

[Ioffe and Szegedy, 2015]

Linear operations should cancel out



Batch normalization
Forcing a zero-mean and unit standard deviation

73

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

consider a batch of activations at some layer. To 
make each dimension unit gaussian, apply:

this is a linear differentiable 
function...

http://cs231n.stanford.edu/


Batch normalization
Forcing a zero-mean and unit standard deviation

74

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

XN

D

1. Compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize

http://cs231n.stanford.edu/


Batch normalization
Forcing a zero-mean and unit standard deviation

75

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected 
or Convolutional layers, and before 
nonlinearity.

http://cs231n.stanford.edu/


Batch normalization
Introducing learnable scale / shift

76

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

And then allow the network to squash  
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

http://cs231n.stanford.edu/


Batch normalization
Introducing learnable scale / shift

77

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

And then allow the network to squash  
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

IMPORTANT: At test time, we don’t have these — use training time stats

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

78Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Batch Normalization

79
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

80
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

This is why train/test needs to be different

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

81
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

This is why train/test needs to be different
Always watch out when implementing!!!

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

82Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Layer Normalization

83Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Layer Normalization

84Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Instance Normalization

85Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Instance Normalization

86Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Group Normalization

87Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Group Normalization

88Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Group Normalization

89Image from Wu and He 2018. Reproduced for educational purposes.

No train/test-time differences. 

Much preferred in my opinion.

Skipped in class 
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Other normalization techniques
Group Normalization

90Image from Wu and He 2018. Reproduced for educational purposes.

Can be implemented using PyTorch’s Group norm.

Skipped in class 
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Other normalization techniques
Group Normalization

91Image from Wu and He 2018. Reproduced for educational purposes.

Choice of normalization should be data dependent

Skipped in class 

(outside of scope)



92

By the way… with normalization 
something else also happens



Batch normalization

93
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

[Ioffe and Szegedy, 2015]

http://cs231n.stanford.edu/


Batch normalization
Recall... 

94

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize



Batch normalization

95

[Ioffe and Szegedy, 2015]

This imbalance between 
dimensions is the problem



Batch normalization

96
Let’s artificially make it like this!

[Ioffe and Szegedy, 2015]



Batch normalization

97
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

[Ioffe and Szegedy, 2015]

http://cs231n.stanford.edu/


Preventing overfitting



Beyond training loss
Recall the other problem

99
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Better optimization 
algorithms help reduce 
training loss

But we really care about error 
on new data - how to reduce 
the gap?

http://cs231n.stanford.edu/


Beyond training loss
Recall the other problem

100
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Better optimization 
algorithms help reduce 
training loss

But we really care about error 
on new data - how to reduce 
the gap?

NOTE: No validation loss!

http://cs231n.stanford.edu/


A typical approach to overfitting
Regularization

101

Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor:  
“Among competing hypotheses, 
the simplest is the best” 
William of Ockham, 1285 - 1347

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

http://cs231n.stanford.edu/


Common regularizers

102
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

http://cs231n.stanford.edu/


Common regularizers

103
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

http://cs231n.stanford.edu/


Common regularizers
My personal warning against L2

104
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

Laarhoven, 2017, “However, we show that L2 
regularization has no regularizing effect when 
combined with normalization. Instead, 
regularization has an influence on the scale of 
weights, and thereby on the effective learning rate.”

http://cs231n.stanford.edu/
https://arxiv.org/pdf/1706.05350.pdf


Why does this happen in the first place?

105



Why does this happen in the first place?

106

Can we somehow encode 
uncertainty in data?



Regularization: Dropout
Making it impossible to trust the data 100%

107
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In each forward pass, randomly set some neurons to zero 
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

http://cs231n.stanford.edu/


Regularization: Dropout
Making it impossible to trust the data 100%

108
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Forces the network to have a redundant representation; 
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous  
look

cat  
score

X

X

X

http://cs231n.stanford.edu/


Regularization: Dropout
Making it impossible to trust the data 100%

109
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Another interpretation: 

Dropout is training a large ensemble of 
models (that share parameters). 

Each binary mask is one model 

An FC layer with 4096 units has 
24096 ~ 101233 possible masks! 
Only ~ 1082 atoms in the universe...

Skipped in class 

(outside of scope)
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Regularization: Dropout at test time
Again the train / test gap

110
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Dropout makes our output random!

Output 
(label)

Input 
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Skipped in class 

(outside of scope)
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Regularization: Dropout at test time
An approximate solution

111
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

Skipped in class 
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Regularization: Dropout at test time
An approximate solution

112
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

Skipped in class 

(outside of scope)
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Regularization: Dropout at test time
An approximate solution

113
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

During training we have:  

Skipped in class 
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Regularization: Dropout at test time
An approximate solution

114
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

During training we have:  

At test time, multiply by 
dropout probability 

Skipped in class 

(outside of scope)
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Regularization: Dropout
How good is it?

115
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Figures copyright JLMR, 2014. Reproduced for educational purposes.
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Regularization: A common pattern

116
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Training: Add some kind of randomness

Testing: Average out randomness 
(sometimes approximate)

Skipped in class 
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Regularization: A common pattern

117
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Training: Add some kind of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch Normalization 

Training: Normalize using stats 
from random minibatches 

Testing: Use fixed stats to 
normalize

Skipped in class 

(outside of scope)
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Why does this happen in the first place?

118

Skipped in class 
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Why does this happen in the first place?

119

How can we have more data?

Skipped in class 

(outside of scope)



Regularization: Data augmentation

120
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

This image by Nikita is 
licensed under CC-BY 2.0

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/
https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Regularization: Data augmentation

121
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image

Skipped in class 
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Regularization: Data augmentation

122
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image
- Horizontal / vertical flips 
- Color / brightness 
- Rotations / scaling 
- Elastic transformation

Skipped in class 
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Regularization: Data augmentation

123
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image
- Horizontal / vertical flips 
- Color / brightness 
- Rotations / scaling 
- Elastic transformation

Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

Skipped in class 
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Regularization: Data augmentation
Elastic deformations

124
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

1. Create random 
displacement field with 
uniform distribution 

2. Smooth the displacement 
field with a Gaussian

Figures copyright IEEE, 2003. Reproduced for educational purposes.

Skipped in class 
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Regularization: Data augmentation
Elastic deformations

125
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

Skipped in class 
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Regularization: Data augmentation
Elastic deformations

126
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Ronneberger et. al,, "U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

Skipped in class 
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Regularization: Data augmentation
Synthetic data

127
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Shotton et. al,, "Real-Time Human Pose Recognition in Parts from Single Depth Images”, 2011

Skipped in class 
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Regularization: Data augmentation
Synthetic data + generative models

128
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Shrivastava et. al,, "Learning from Simulated and Unsupervised Images through Adversarial Training”, 2011

Skipped in class 
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Using pretrained networks

129

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Skipped in class 
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Using pretrained networks

130

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these 

Reinitialize 
this and train
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Using pretrained networks

131

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these 

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these 

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Skipped in class 
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Large generative models

[Video from https://twitter.com/HaiperGenAI/status/1745845670844522760 
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Image from [Hertz et al., ICLR, 2023]

Fishing information within SD

133

Skipped in class 
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Correspondences from SD

134
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Keypoints from SD
Skipped in class 
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Text-to-3D from SD
Skipped in class 


(outside of scope)



Visualize VISUALIZE VISUALIZE

137
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Iterations

Skipped in class 
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138

Lots more to learn! A good place to start is 

Justin Johnson, University of Michigan, EECS 498/598, e.g.,


https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/ 


More on Neural Networks Skipped in class 

(outside of scope)
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

Training Neural Nets: Clever Hans Skipped in class 
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

The course was smart, just not in the way van Osten thought! 

Training Neural Nets: Clever Hans Skipped in class 
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