Lecture 1 Recap

Phong Illumination Model

- Includes ambient, diffuse and specular reflection

$$
I=k_{a} i_{a}+k_{d} i_{d} \cos \theta+k_{s} i_{s} \cos ^{\alpha} \phi
$$

Light Source

Diffuse and Specular Reflection

- A sphere lit with ambient, +diffuse, +specular reflectance

Pinhole Camera

f^{\prime} is the focal length of the camera

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

Perspective Projection: Matrix Form

Camera Matrix

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4
$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $\begin{gathered}s P^{\prime}=\mathbf{C} P \\ \text { (s is a scale factor) }\end{gathered}$
$1(20)$

Why Not a Pinhole Camera?

- If pinhole is too big then many directions are averaged, blurring the image
- If pinhole is too small then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are dark, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are slow, because only a very small amount of light from a particular scene point hits the image plane per unit time

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

Solution: use a lens to focus light onto the image plane

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a lens to focus light onto the image plane

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

- We can use these 2 properties to find the thin lens equation

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

- We can use these 2 properties to find the thin lens equation

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent
- We can use these 2 properties to find the thin lens equation

Lens Basics

- A 50 mm lens is focussed at infinity. It now moves to focus on something 5 m away. How far does the lens move?

Pinhole Model with Lens

Lens Basics

- Lenses focus all rays from a plane in the world

- Objects off the plane are blurred depending on distance

Effect of Aperture Size

Smaller aperture \Rightarrow smaller blur, larger depth of field

Depth of Field

- Photographers use large apertures to give small depth of field

Aperture size $=\mathrm{f} / \mathrm{N}, \Rightarrow$ large $\mathrm{N}=$ small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth \& Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Image from lens with Spherical Aberration

Vignetting

Vignetting in a two-lens system

Forsyth \& Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Chromatic Aberration

- Index of refraction depends on wavelength, λ, of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Lens Distortion

Fish-eye Lens

Szeliski (1st ed.) Figure 2.13
Lines in the world are no longer lines on the image, they are curves!

Other (Possibly Significant) Lens Effects

Scattering at the lens surface

- Some light is reflected at each lens surface

There are other geometric phenomena/distor

- pincushion distortion
- harrel distortion

Parametric calibration errors
Image from [Schöps et al., 2019]. Reproduced for educational purposes.
[Schöps et al., 2020]
nragsdale/3192314056/

Lecture Summary

- We discussed a "physics-based" approach to image formation. Basic abstraction is the pinhole camera.
- Lenses overcome limitations of the pinhole model while trying to preserve
it as a useful abstraction
- Projection equations: perspective, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and distortions" persist (e.g. spherical aberration, vignetting)

Course logistics

Times: Mon, Wed 3:30-5:00pm

Instructor: Kwang
Fred

Fri. (ICCS 115) $1-2 \mathrm{pm}$

Teaching Assistants

Ramin

Tues. (Room TBA)
$5-6 \mathrm{pm}$

Bicheng

Wed. (Zoom)
5-6 pm

Rayat

Thurs. (ICCS X239)
2:30-3:30 pm

CPSC 425: Computer Vision

Lecture 3: Image Filtering
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

This Lecture

Topics: Image Filtering

- Image as a function
- Correlation / Convolution
- Linear filters

Readings:

- Today’s Lecture: Szeliski 3.1-3.3, Forsyth \& Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 1 is out! Due 29th

Goal

1. Learn how to mathematically describe image processing

2. Basic building blocks

Image as a 2D Function

A (grayscale) image is a 2D function

$$
I(X, Y)
$$

grayscale image
What is the range of the image function?

$$
I(X, Y) \in[0,255] \in \mathbb{Z}
$$

domain: $(X, Y) \in([1$, width $],[1$, hight $])$

Adding two Images

Since images are functions, we can perform operations on them, e.g., average

$I(X, Y)$

$G(X, Y)$

$$
\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

Adding two Images

$$
a=\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

$$
b=\frac{I(X, Y)+G(X, Y)}{2}
$$

Adding two Images

$$
a=\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

Question:

$$
\begin{aligned}
& a=b \\
& a>b \\
& a<b
\end{aligned}
$$

$$
b=\frac{I(X, Y)+G(X, Y)}{2}
$$

Adding two Images

Red pixel in camera man image $=98$
Red pixel in moon image $=200$

Question:

$$
\frac{98}{2}+\frac{200}{2}=49+100=149
$$

$$
\begin{gathered}
a=b \\
a>b \\
a<b
\end{gathered}
$$

$$
\frac{98+200}{2}=\frac{\lfloor 298\rfloor}{2}=\frac{255}{2}=127
$$

Adding two Images

It is often convenient to convert images to doubles when doing processing

In Python

from PIL import Image
img $=$ Image.open('cameraman.png') \leftarrow
import numpy as np
imgArr $=$ np.asfarray (img)
\# Or do this
import matplotlib. pyplot as plt
camera $=$ plt.imread ('cameraman.png');

What types of transformations can we do?

changes range of image function

What types of filtering can we do?

Point Operation

point processing

Examples of Point Processing

original

$I(X, Y)$
invert

darken

$I(X, Y)-128$
lighten

lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Brightness v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel values stays the same

Contrast: relative difference between pixel values becomes higher / lower

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

$I(X, Y) \times 2$
non-linear lower contrast

non-linear raise contrast

$$
\left(\frac{I(X, Y)}{255}\right)^{2} \times 255
$$

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

$I(X, Y) \times 2$
non-linear lower contrast

non-linear raise contrast

$\left(\frac{I(X, Y)}{255}\right)^{2} \times 255$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What types of filtering can we do?

Point Operation

point processing

Neighborhood Operation

Linear Neighborhood Operators (Filtering)

Non-Linear Neighborhood Operators (Filtering)

Original Image

edge preserving
smoothing

canny edges

Linear Filters

Let $I(X, Y)$ be an $n \times n$ digital image (for convenience we let width $=$ height)
Let $F(X, Y)$ be another $m \times m$ digital image (our "filter" or "kernel")

Filter

For convenience we will assume m is odd. (Here, $m=5$)

Linear Filters

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, $I^{\prime}(X, Y)$, as the sum of $m \times m$ values, where each value is the product of the original pixel value in $I(X, Y)$ and the corresponding values in the filter

Linear Filters

The computation is repeated for each (X, Y)

Linear Filter Example

Linear Filters

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { output }}}{F(i, j)} \underset{\substack{\text { filter }}}{\text { image (signal) }}
$$

For a given X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, $I^{\prime}(X, Y)$, as the sum of $m \times m$ values, where each value is the product of the original pixel value in $I(X, Y)$ and the corresponding values in the filter

Linear Filters

Let's do some accounting ...

$$
\underset{j=-k}{I^{\prime}(X, Y)}=\sum_{i=-k}^{k} \sum_{\substack{\text { output }}}^{F(i, j)} I(X+i, Y+j)
$$

At each pixel, (X, Y), there are $m \times m$ multiplications
There are

$$
n \times n \text { pixels in }(X, Y)
$$

Total: $\quad m^{2} \times n^{2}$ multiplications

When m is fixed, small constant, this is $\mathcal{O}\left(n^{2}\right)$. But when $m \approx n$ this is $\mathcal{O}\left(m^{4}\right)$.

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Three standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y

Linear Filters: Boundary Effects

00															
00															
0 0															
0 0 0															
0															
0															
0 0 0															
00															
00															
00															
00															
00															
00															
00															
00															
00															
00															
00															

Linear Filters: Boundary Effects

Notice decrease in brightness at edges

Linear Filters: Boundary Effects

Three standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge
