
Lecture 1 Recap
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Phong Illumination Model
• Includes ambient, diffuse and specular reflection
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Diffuse and Specular Reflection
• A sphere lit with ambient, +diffuse, +specular reflectance

Ambient +Diffuse +Specular



Pinhole Camera 

x’

x

zf’

image
plane

pinhole object

f’ is the focal length of the camera 

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image 



Perspective Projection: Matrix Form

Forsyth & Ponce (1st ed.) Figure 1.4 
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Why Not a Pinhole Camera?

– If pinhole is too big then many directions are 
averaged, blurring the image  

– If pinhole is too small then diffraction 
becomes a factor, also blurring the image  

– Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane  

– Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 6



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane

The role of a lens is to capture more light while preserving, as much as 
possible, the abstraction of an ideal pinhole camera.



Snell’s Law

n1 sin↵1 = n2 sin↵2
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Snell’s Law

n1 sin↵1 = n2 sin↵2

Index of refraction
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Lens Basics
• A lens focuses rays from infinity at the focal length of the lens


• Points passing through the centre of the lens are not bent

• We can use these 2 properties to find the thin lens equation

from 1

f0
2.6



Lens Basics
• A lens focuses rays from infinity at the focal length of the lens


• Points passing through the centre of the lens are not bent

• We can use these 2 properties to find the thin lens equation

from 1

f0

To focus closer,  
we have to move  

the image plane back

2.6



Lens Basics
• A lens focuses rays from infinity at the focal length of the lens


• Points passing through the centre of the lens are not bent

• We can use these 2 properties to find the thin lens equation

from 1

f0
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Lens Basics
• A 50mm lens is focussed at infinity. It now moves to focus on something 5m 

away. How far does the lens move?

2.6



Pinhole Model with Lens

x’

x

z

image
plane

objectlens

z’
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Lens Basics

• Objects off the plane are blurred depending on distance

Plane of 

focus

In focus

blur

• Lenses focus all rays from a plane in the world



Effect of Aperture Size

defocus 
blur

smaller 
blur

Smaller aperture ⇒ smaller blur,  larger depth of field



Depth of Field
• Photographers use large apertures to give small depth of field

Aperture size = f/N, ⇒ large N = small aperture



Real Lenses

• Real Lenses have multiple stages of 
positive and negative elements with 
differing refractive indices


• This can help deal with issues such as 
chromatic aberration (different colours 
bent by different amounts), vignetting 
(light fall off at image edge) and sharp 
imaging across the zoom range



Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a 
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Spherical Aberration



Vignetting
Vignetting in a two-lens system

The shaded part of the beam never reaches the second lens  

Forsyth & Ponce (2nd ed.) Figure 1.12 
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Vignetting

Image Credit: Cambridge in Colour23



Chromatic Aberration 
— Index of refraction depends on wavelength, λ, of light  

— Light of different colours follows different paths 

— Therefore, not all colours can be in equal focus  

Image Credit: Trevor Darrell
24



Lens Distortion 

Szeliski (1st ed.) Figure 2.13 

Fish-eye Lens

Lines in the world are no longer lines on the image, they are curves! 
25



Other (Possibly Significant) Lens Effects 
Scattering at the lens surface 
— Some light is reflected at each lens surface  

There are other geometric phenomena/distortions   
— pincushion distortion 
— barrel distortion 
— etc 

26

https://www.flickr.com/photos/sorenragsdale/3192314056/ 
Image is cc-by 2.0Image from [Schöps et al., 2019]. Reproduced for educational purposes.

Parametric calibration errors [Schöps et al., 2020]

https://www.flickr.com/photos/sorenragsdale/3192314056/


Lecture Summary

— We discussed a “physics-based” approach to image formation. Basic 
abstraction is the pinhole camera.  

— Lenses overcome limitations of the pinhole model while trying to preserve 
it as a useful abstraction  

— Projection equations: perspective, weak perspective, orthographic  

— Thin lens equation  

— Some “aberrations and distortions” persist (e.g. spherical aberration, vignetting) 

27



Course logistics

Course webpage: https://www.cs.ubc.ca/~lsigal/teaching18_Term2.html
Discussion: piazza.com/ubc.ca/winterterm22018/cpsc425 

Instructor: Kwang

Locations: Friedman (FRDM), Room 153 Times: Mon, Wed 3:30-5:00pm

BichengRaminFred
Teaching Assistants

Rayat

Fri. (ICCS 115) 
1— 2 pm

Wed. (Zoom)  
5 — 6 pm

Tues. (Room TBA)  
5 — 6 pm

Mon. (Zoom)  
5 — 6 pm

Thurs. (ICCS X239)  
2:30 — 3:30 pm

https://www.cs.ubc.ca/~lsigal/teaching18_Term2.html
https://piazza.com/ubc.ca/other/cpsc532l/home


Lecture 3: Image Filtering

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Reminders: 

— Complete Assignment 1 is out! Due 29th 

This Lecture
Topics: Image Filtering 

— Image as a function  
— Linear filters

Reminders:

Readings: 

— Today’s Lecture:  Szeliski 3.1-3.3, Forsyth & Ponce (2nd ed.) 4.1, 4.5  

— Correlation / Convolution 

30



Goal

1. Learn how to mathematically describe 
image processing 

2. Basic building blocks



Image as a 2D Function
A (grayscale) image is a 2D function

What is the range of the 
image function?

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

domain: (X,Y ) 2 ([1, width], [1, hight])
I(X,Y ) 2 [0, 255] 2 Z
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Adding two Images
Since images are functions, we can perform operations on them, e.g., average

I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2
I(X,Y ) G(X,Y )

I(X,Y )

2
+

G(X,Y )

2
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Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2
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Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2

a = b

a > b

b < a

Question:

35

a > ba > b



Adding two Images

a = b

a > b

b < a

Question:

36

a > ba > b

98

2
+

200

2
= 49 + 100 = 149

Red pixel in camera man image = 98 
Red pixel in moon image = 200

98 + 200

2
=

b298c
2

=
255

2
= 127



Adding two Images

It is often convenient to convert images to 
doubles when doing processing  

37

or “imgArr=np.array(img).astype(np.float32)/255.0”



I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )
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What types of filtering can we do?
Point Operation

point processing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)39



Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Brightness v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel 
values stays the same  

Contrast: relative difference between pixel values becomes higher / lower

240 200

112 72

120 100

�128

÷2



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten
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⇥ 255I(X,Y )⇥ 2I(X,Y ) + 128255� I(X,Y )
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2
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)44



Linear Neighborhood Operators (Filtering)
3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).
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(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Original Image

blur sharpen edge filter



Non-Linear Neighborhood Operators (Filtering)3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Original Image

edge preserving 
smoothing

median canny edges



Let               be another             digital image (our “filter” or “kernel”)

Linear Filters
Let              be an           digital image (for convenience we let width = height)I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5For convenience we will assume      is odd. (Here,            )

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Filter

Image
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Linear Filters

Y

X

Compute the new pixel value,              , 
as the sum of             values, where each 
value is the product of the original pixel 
value in              and the corresponding 
values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )

For a give     and   , superimpose the 
filter on the image centered at I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5
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Linear Filters

X

Y

The computation is repeated for each
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5
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Linear Filter Example

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)50
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For a given     and   , superimpose the filter on the image centered at I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5
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n⇥ n
m⇥m
m = 5

I(X,Y )
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n⇥ n
m⇥m
m = 5

Compute the new pixel value,              , as the sum of             values, where 
each value is the product of the original pixel value in              and the 
corresponding values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )
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kX
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Linear Filters
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Let’s do some accounting … 

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

O(n2) O(m4)m ⇡ nWhen     is fixed, small constant, this is           . But when             this is            .O(m4)
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Linear Filters: Boundary Effects 
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1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  

Linear Filters: Boundary Effects 
Three standard ways to deal with boundaries: 

73



74

Linear Filters: Boundary Effects 

00
0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0



Linear Filters: Boundary Effects 

* =

Notice decrease in brightness at edges
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1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  

	4.  Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects 
Four standard ways to deal with boundaries: 
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