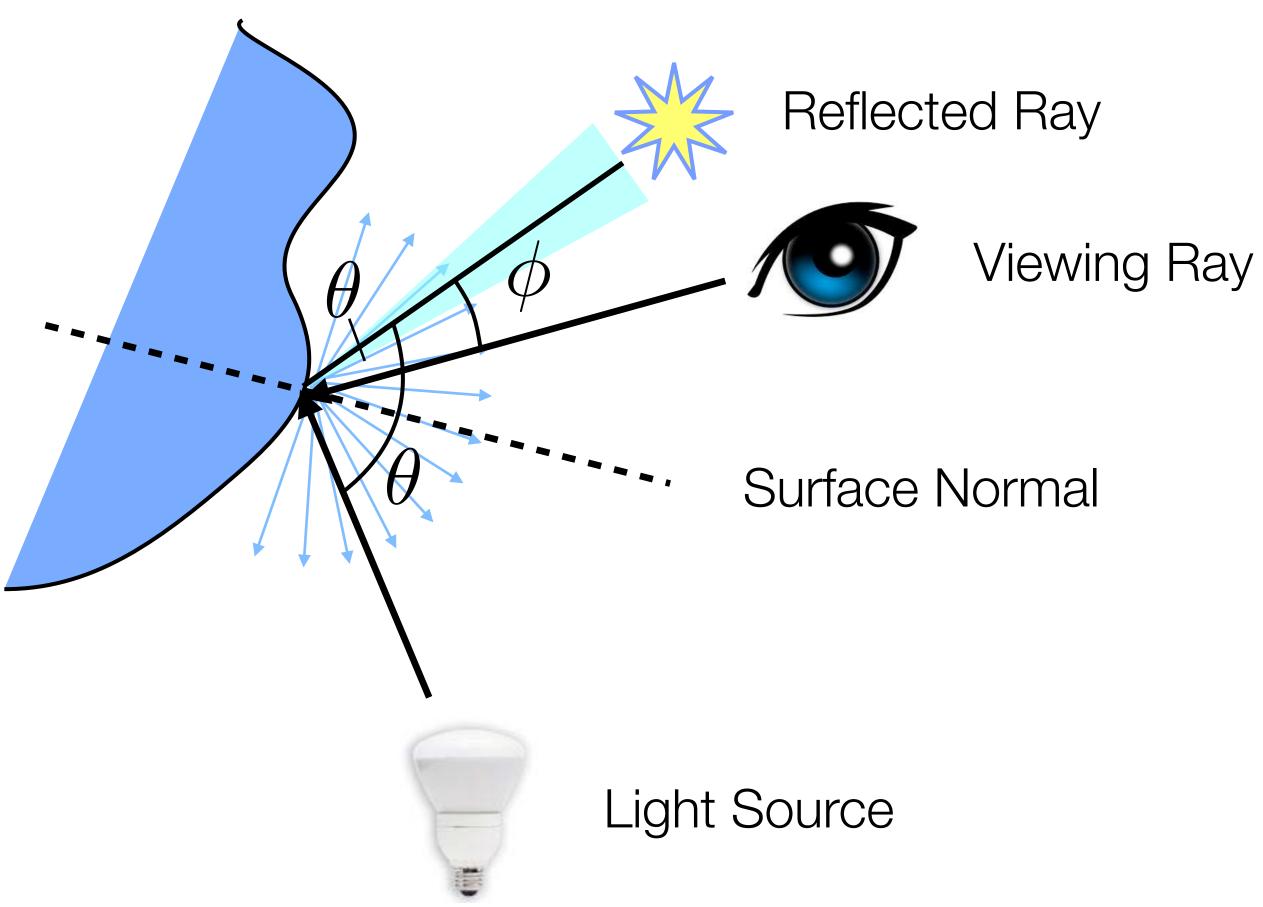
Lecture 1 Recap

1

Phong Illumination Model

Includes ambient, diffuse and specular reflection

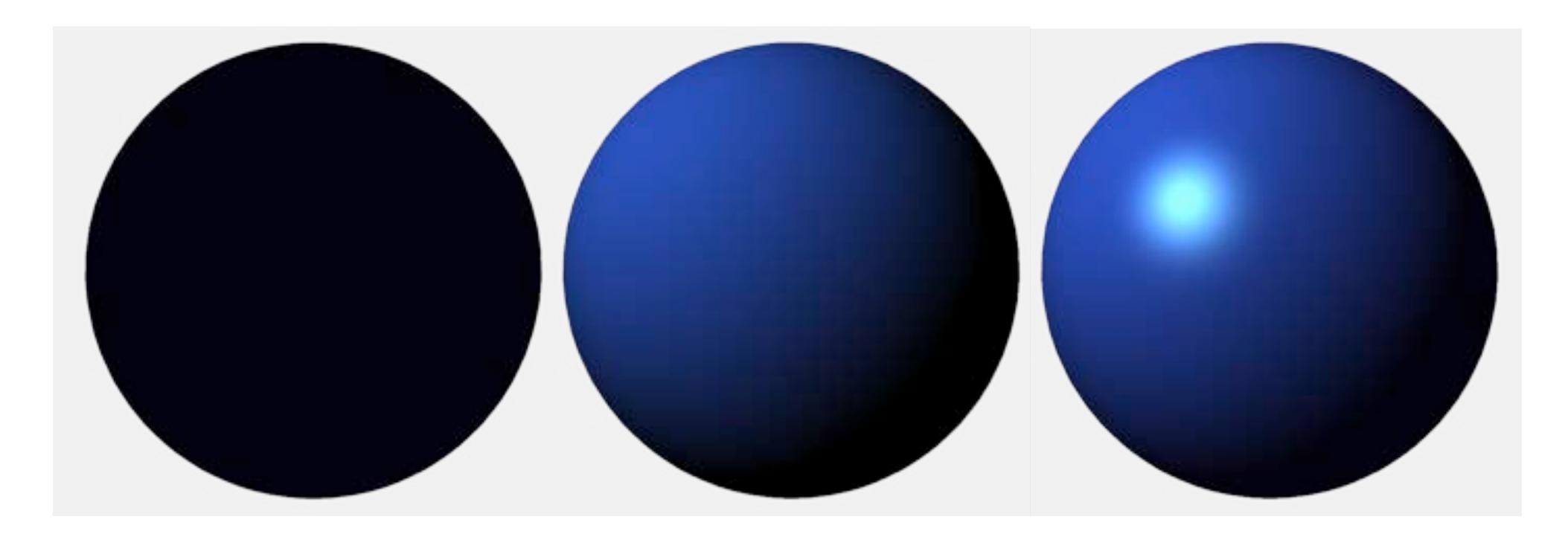
$$I = k_a i_a + k_d i_a$$



 $d\cos\theta + k_s i_s\cos^{\alpha}\phi$

Diffuse and Specular Reflection

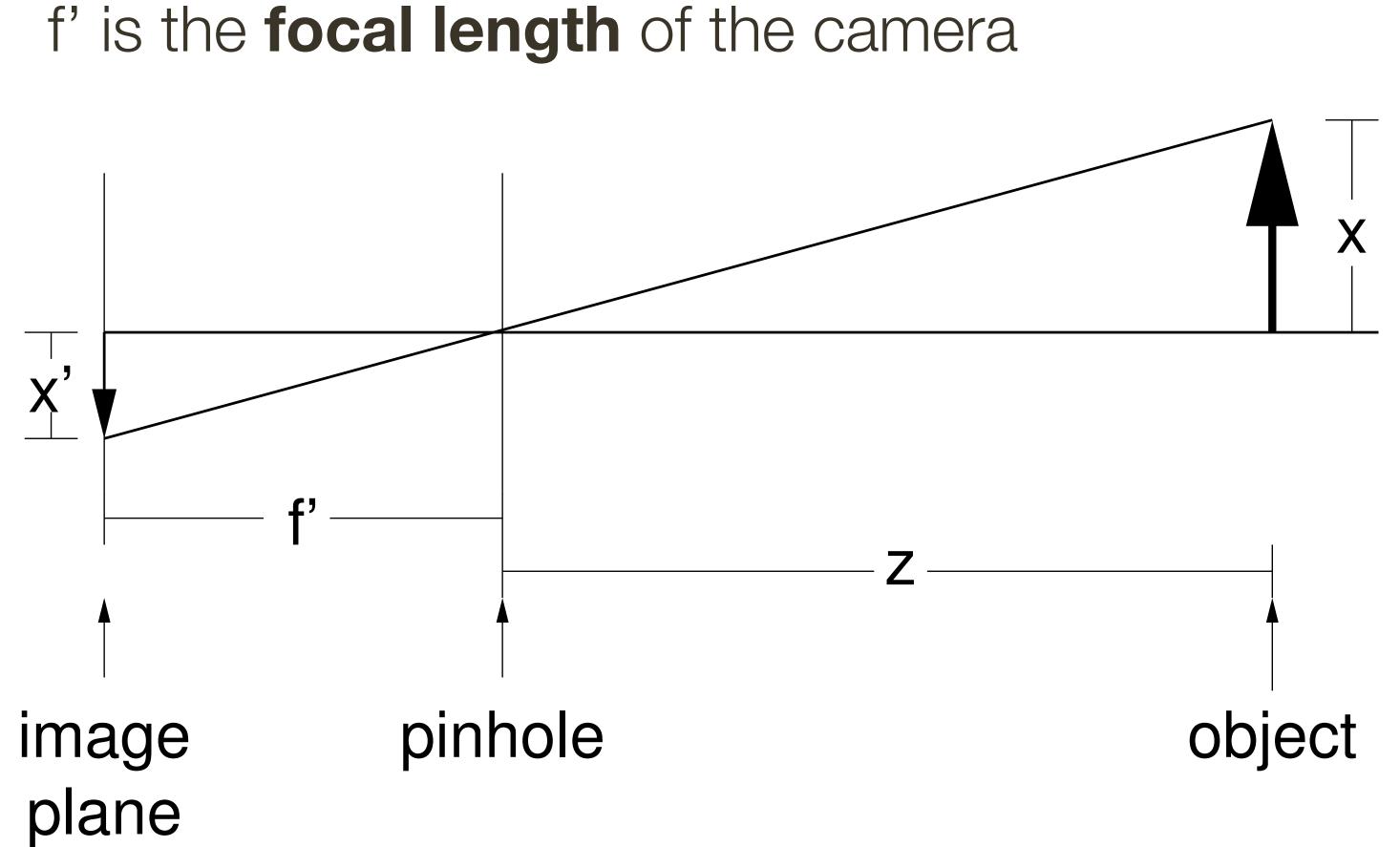
• A sphere lit with ambient, +diffuse, +specular reflectance



Ambient

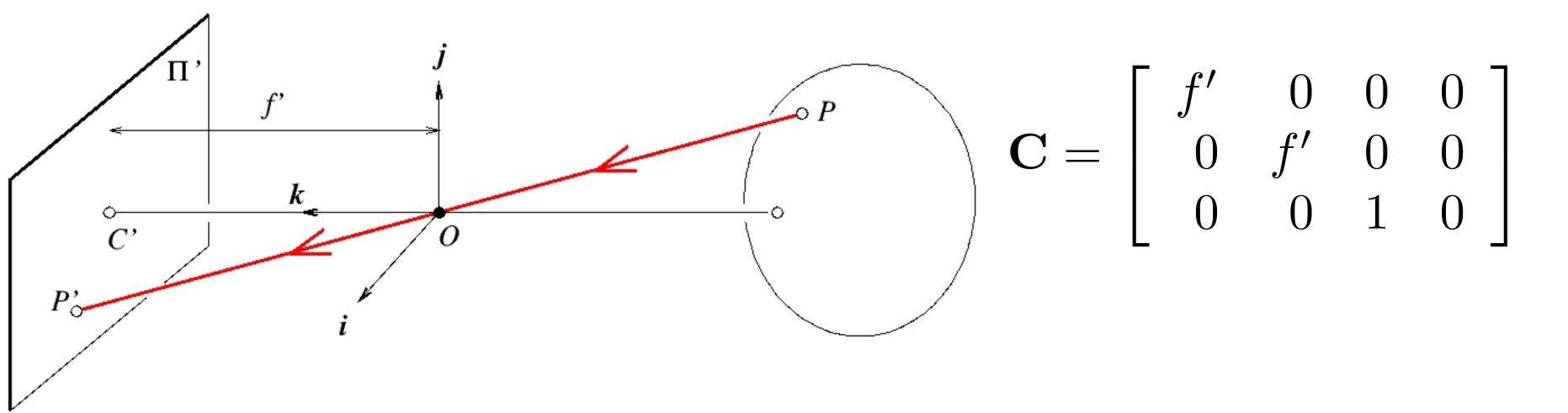
+Diffuse

Pinhole Camera

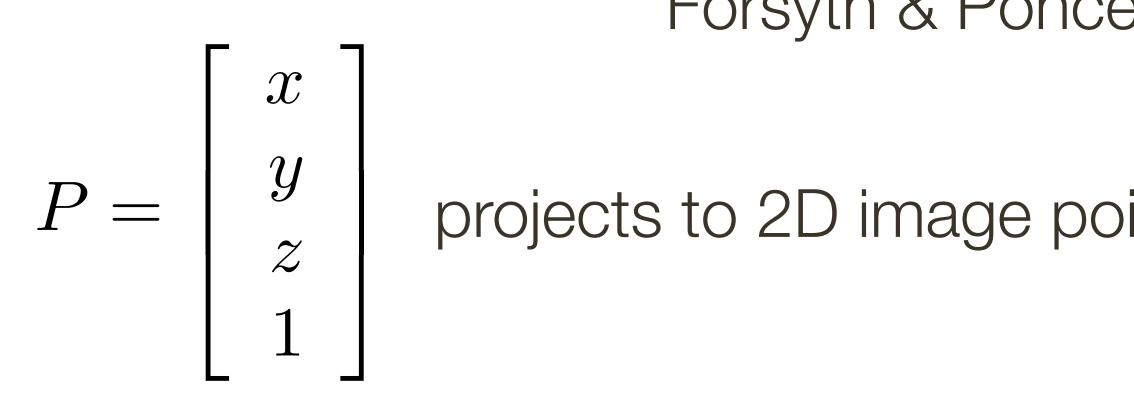


Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

Perspective Projection: Matrix Form



3D object point



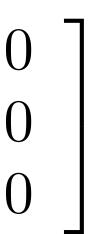


Camera Matrix

Forsyth & Ponce (1st ed.) Figure 1.4

pint
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $\mathbf{S}P' = \mathbf{C}P$

(s is a scale factor)



Why **Not** a Pinhole Camera?

- If pinhole is **too big** then many directions are averaged, blurring the image
- If pinhole is **too small** then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

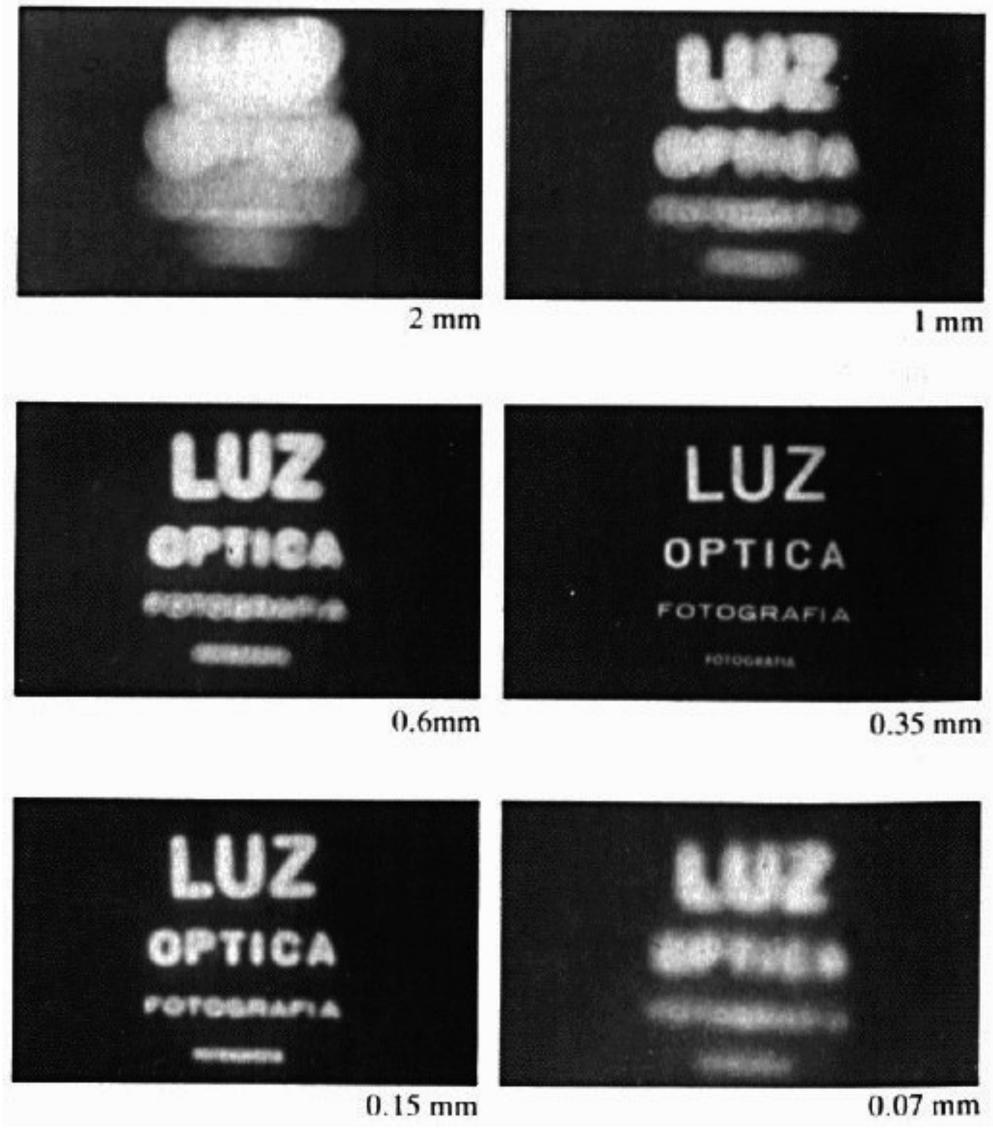
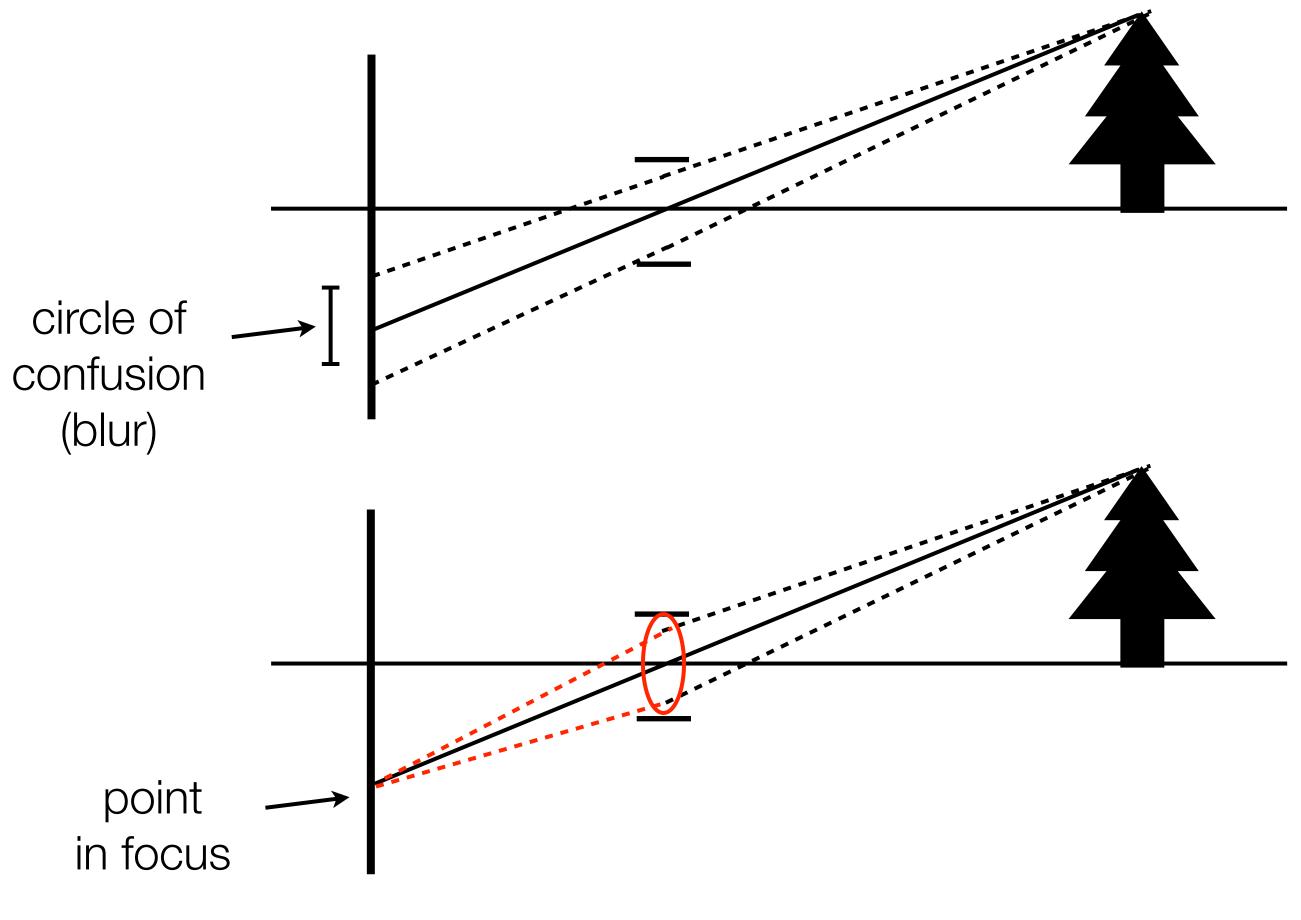


Image Credit: Credit: E. Hecht. "Optics," Addison-Wesley, 1987

Reason for Lenses

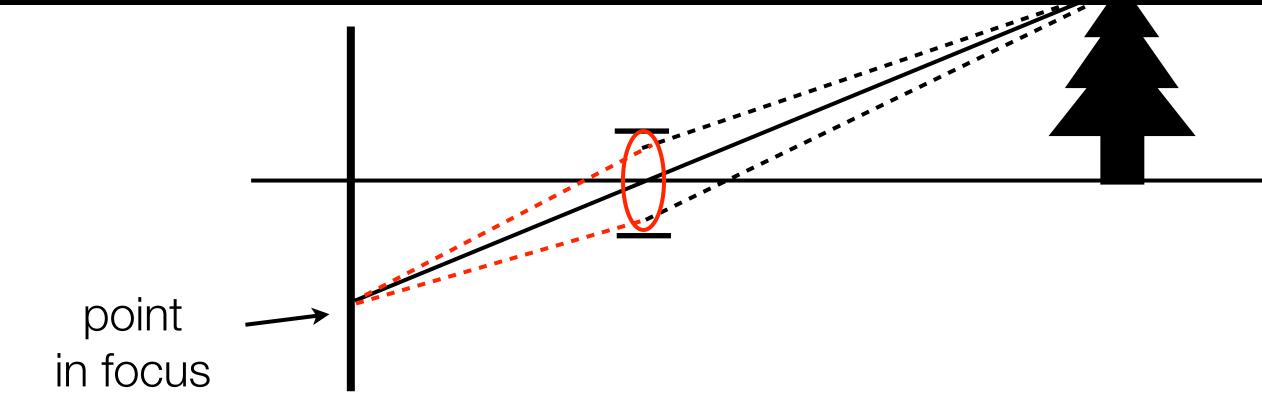
A real camera must have a finite aperture to get enough light, but this causes blur in the image

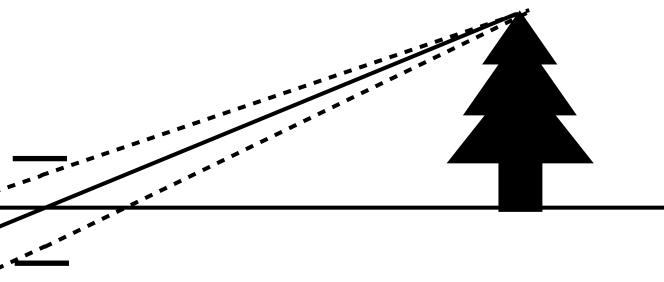


Solution: use a lens to focus light onto the image plane

Reason for **Lenses**

A real camera must have a finite aperture to get enough light, but this causes blur in the image





The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a **lens** to focus light onto the image plane

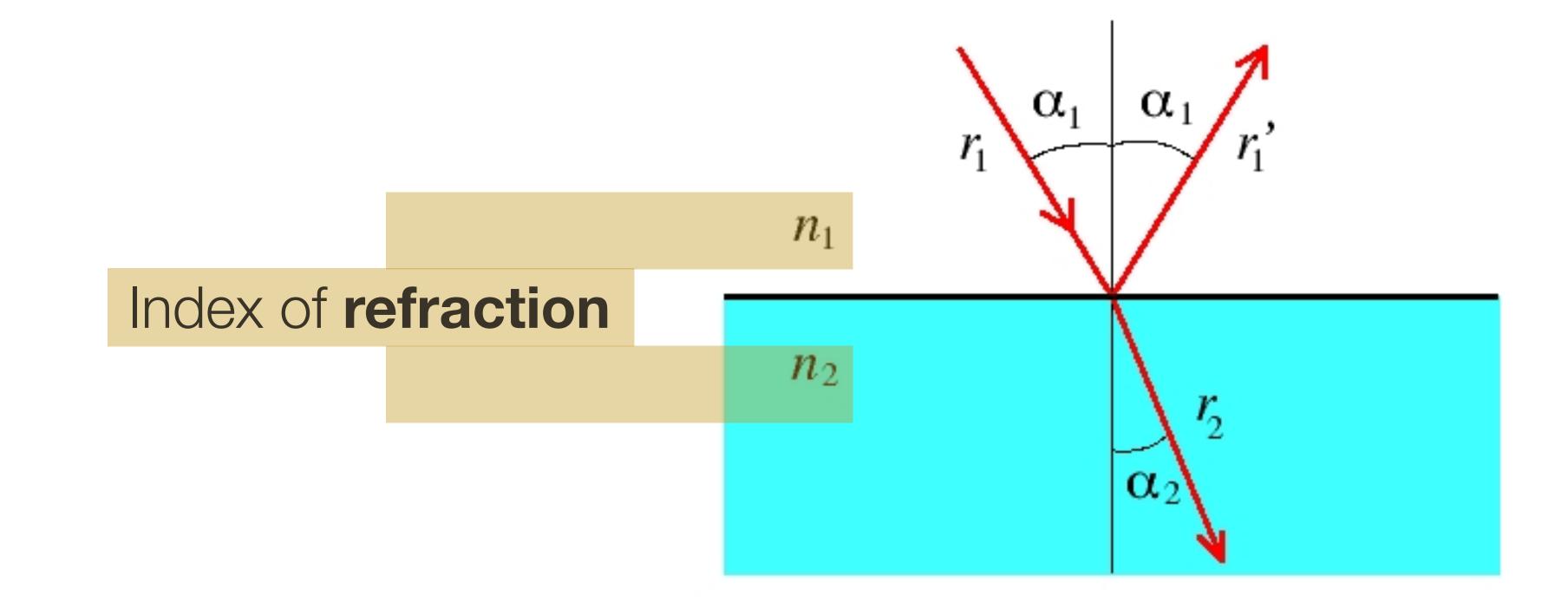
Snell's Law



$$n_1 = n_2 \sin \alpha_2$$

9

Snell's Law

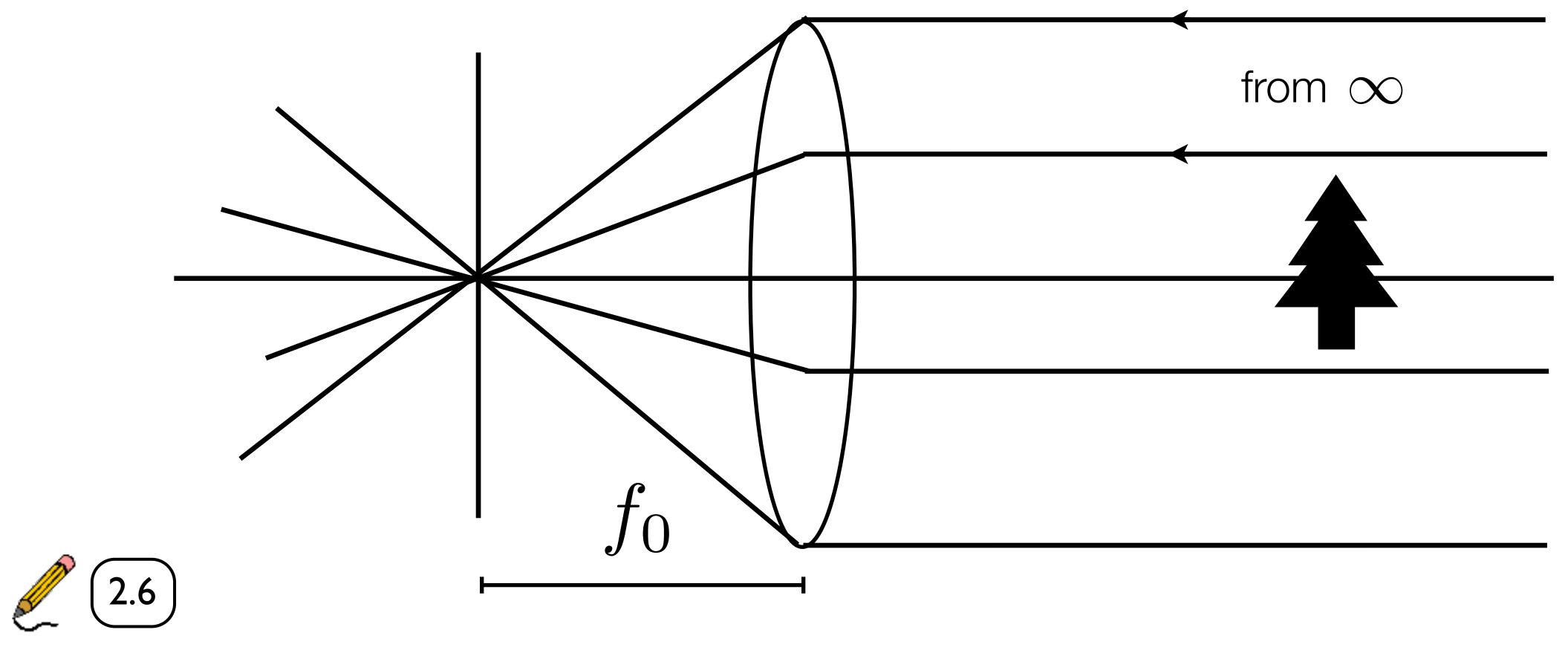


 $n_1 \sin \alpha_1$

$$n_1 = n_2 \sin \alpha_2$$

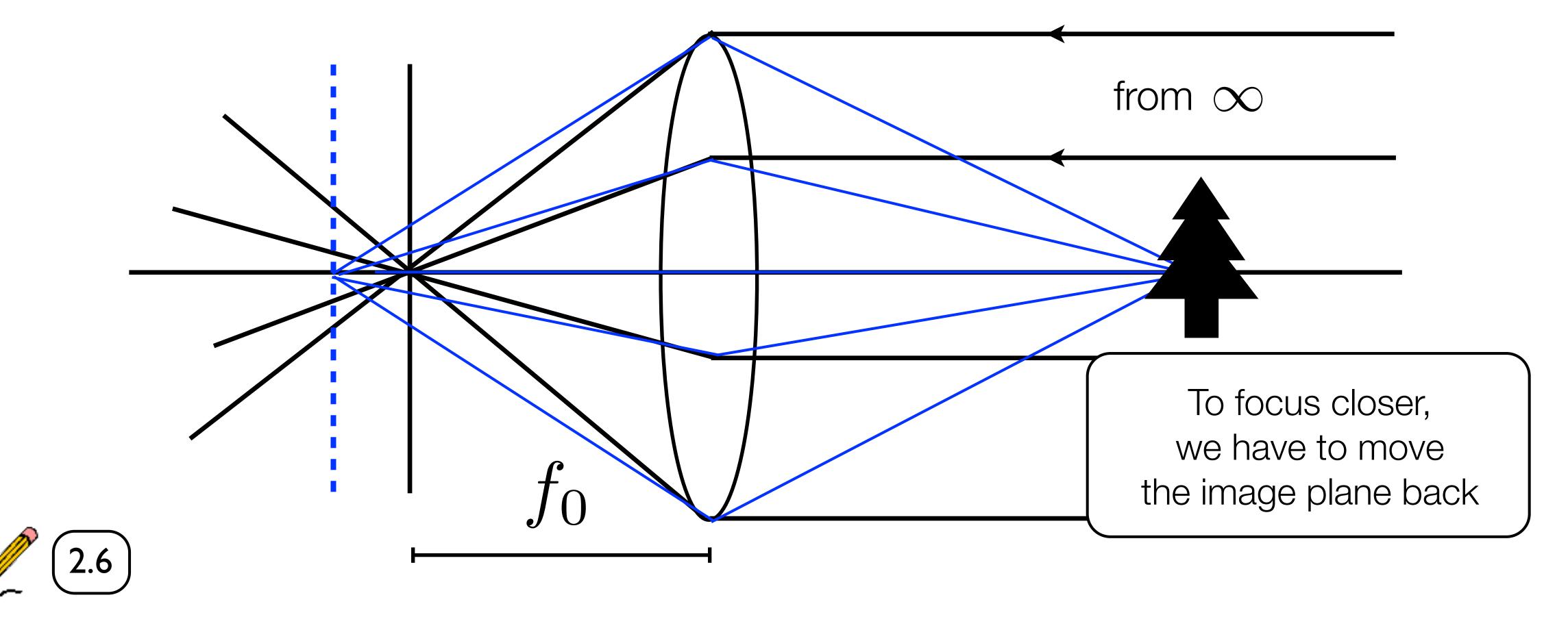
10

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent



• We can use these 2 properties to find the **thin** lens equation

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent



• We can use these 2 properties to find the **thin** lens equation

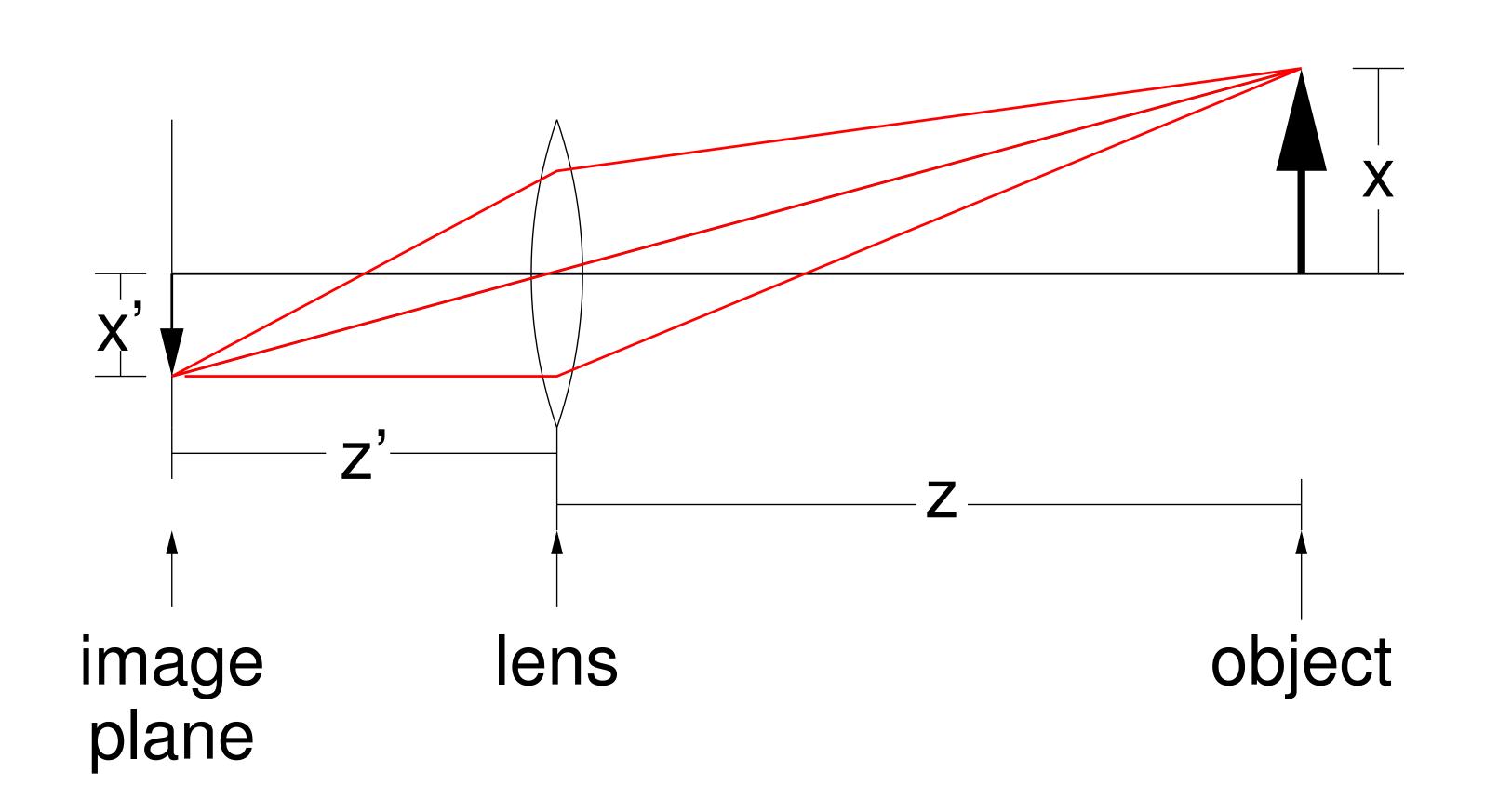
- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

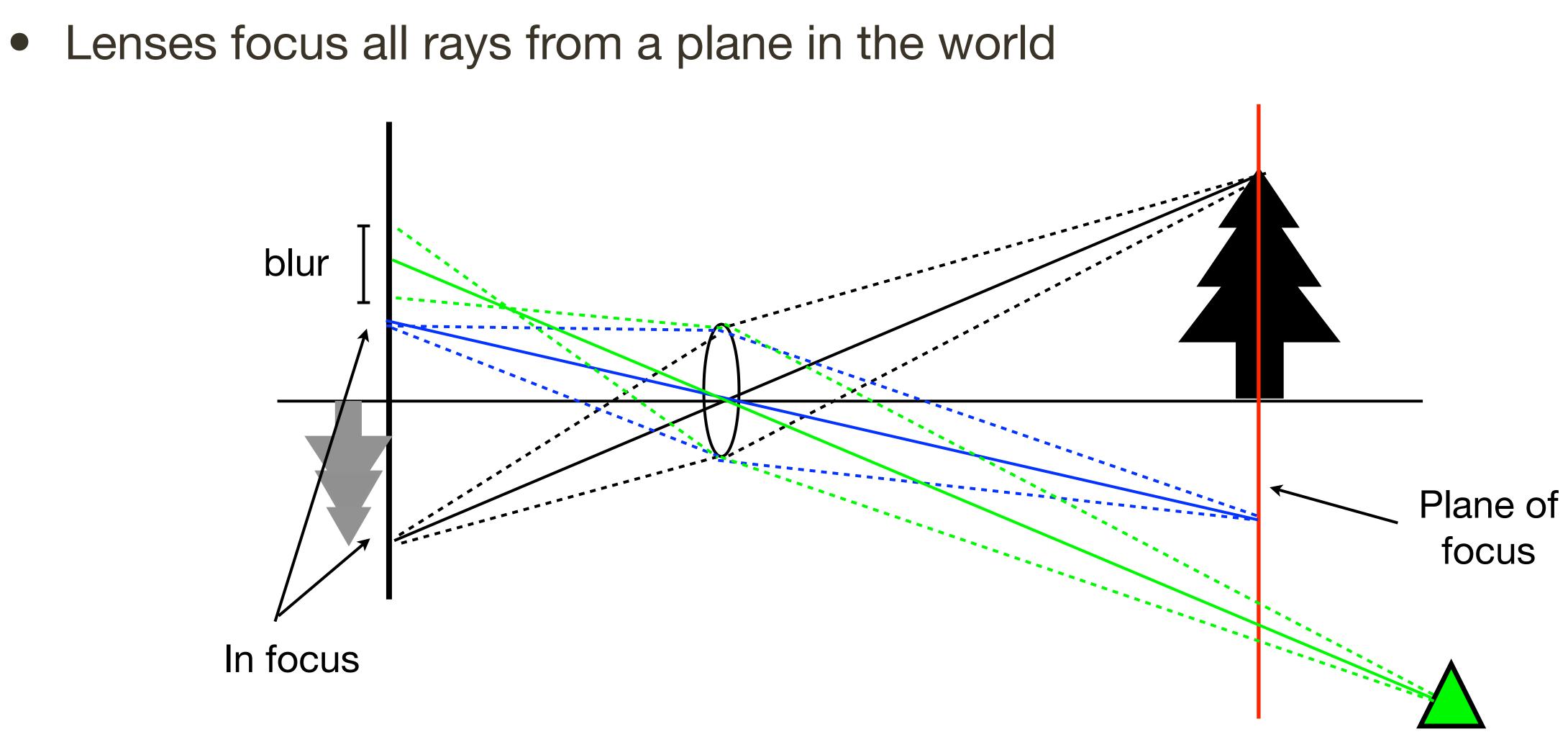
• We can use these 2 properties to find the **thin** lens equation

away. How far does the lens move?

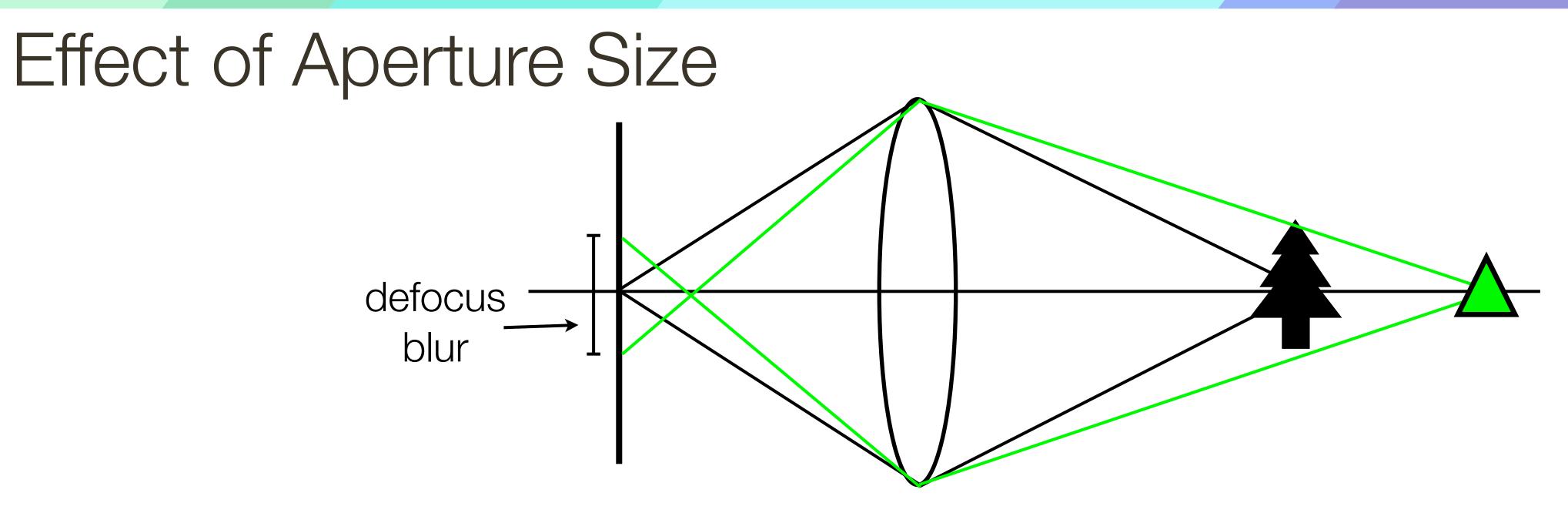
• A 50mm lens is focussed at infinity. It now moves to focus on something 5m

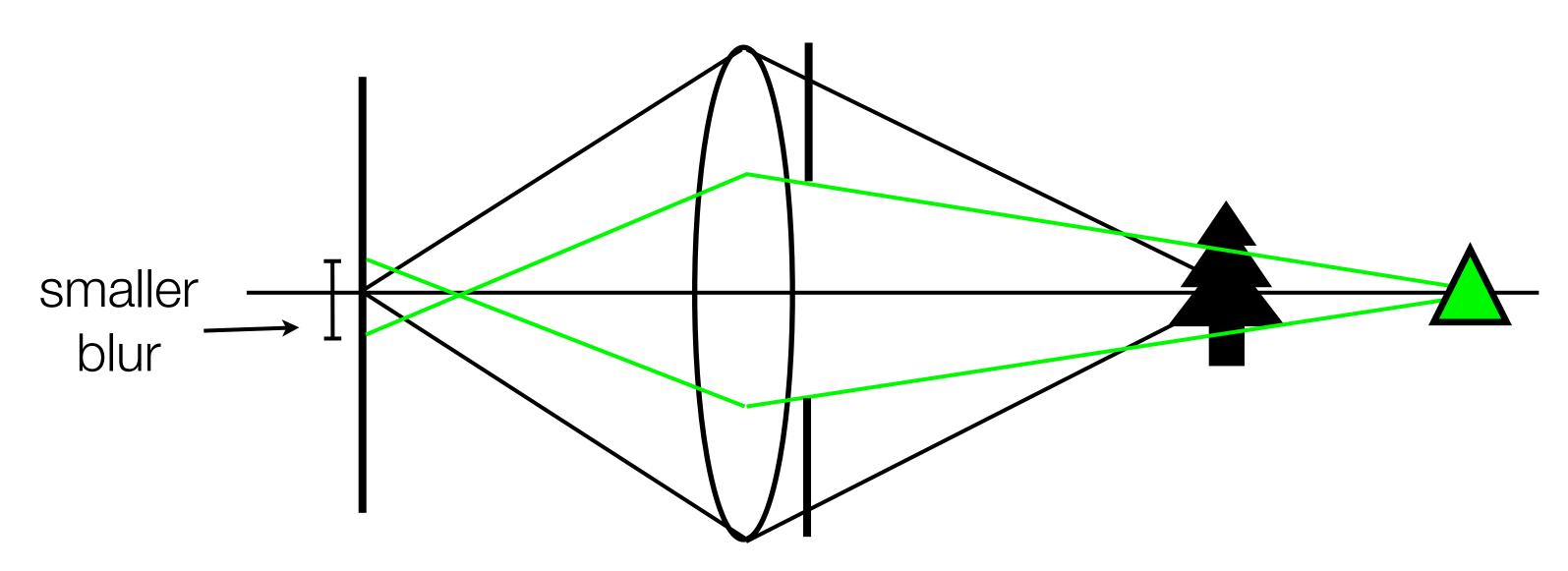
Pinhole Model with Lens





• Objects off the plane are blurred depending on distance





Smaller aperture \Rightarrow smaller blur, larger **depth of field**

Depth of Field

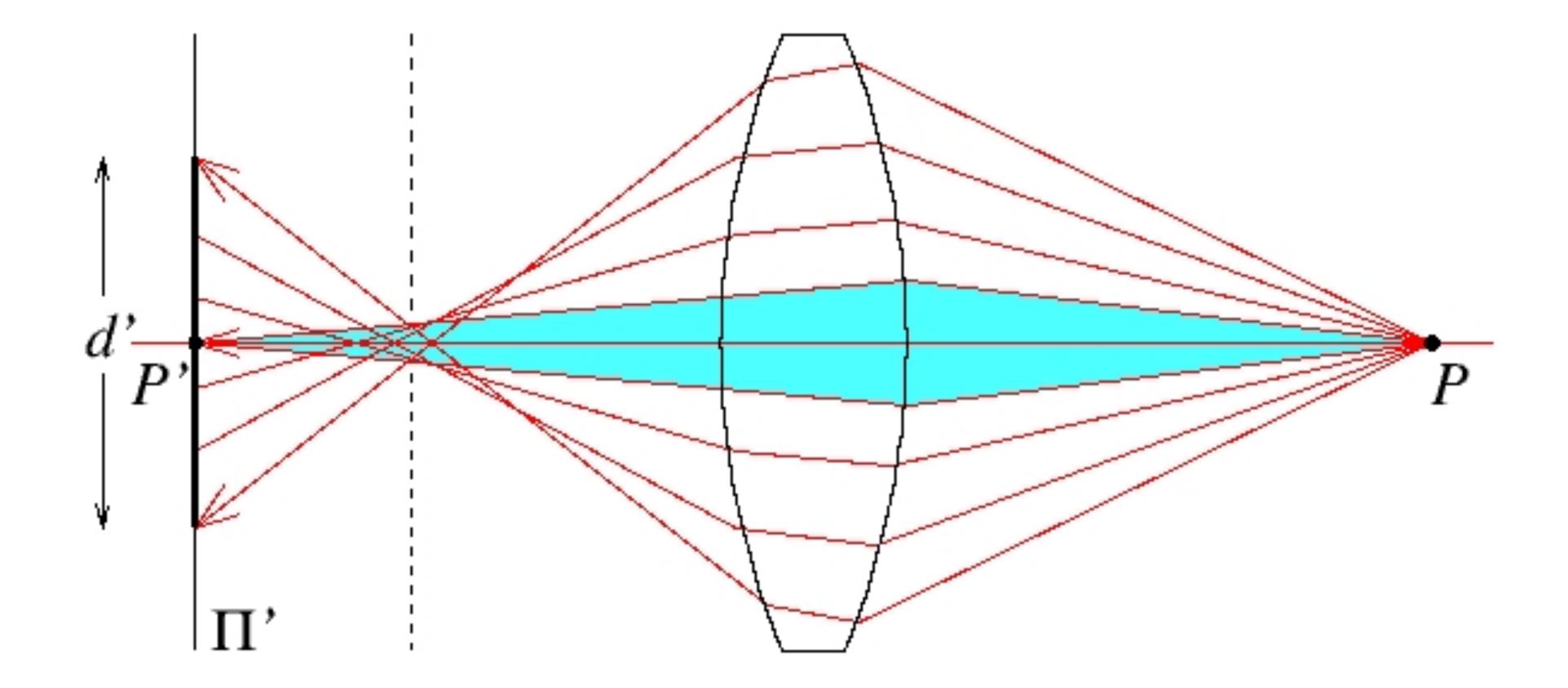
• Photographers use large apertures to give small depth of field

Aperture size = f/N, \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration



Forsyth & Ponce (1st ed.) Figure 1.12a

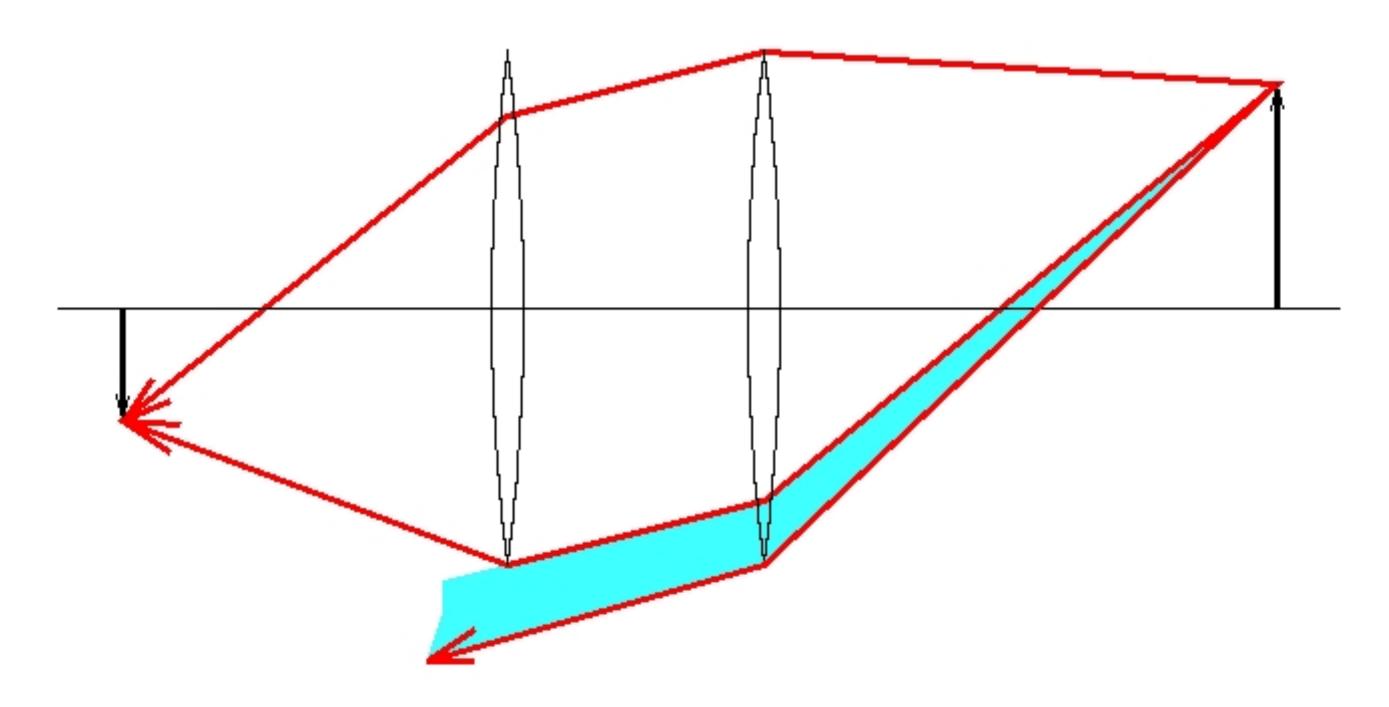
Spherical Aberration

Un-aberrated image

Image from lens with Spherical Aberration

Vignetting

Vignetting in a two-lens system



Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Image Credit: Cambridge in Colour

Chromatic Aberration

- Index of **refraction depends on wavelength**, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

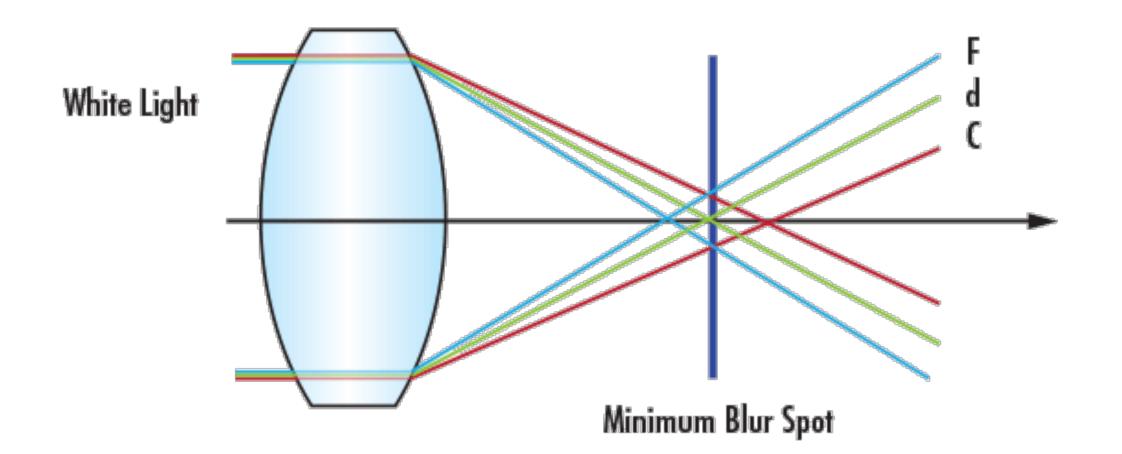
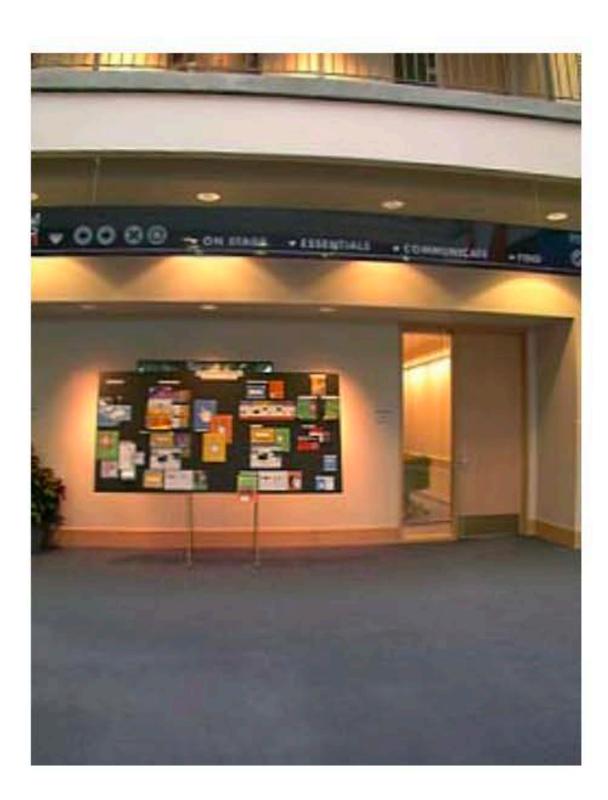


Image Credit: Trevor Darrell

Lens **Distortion**



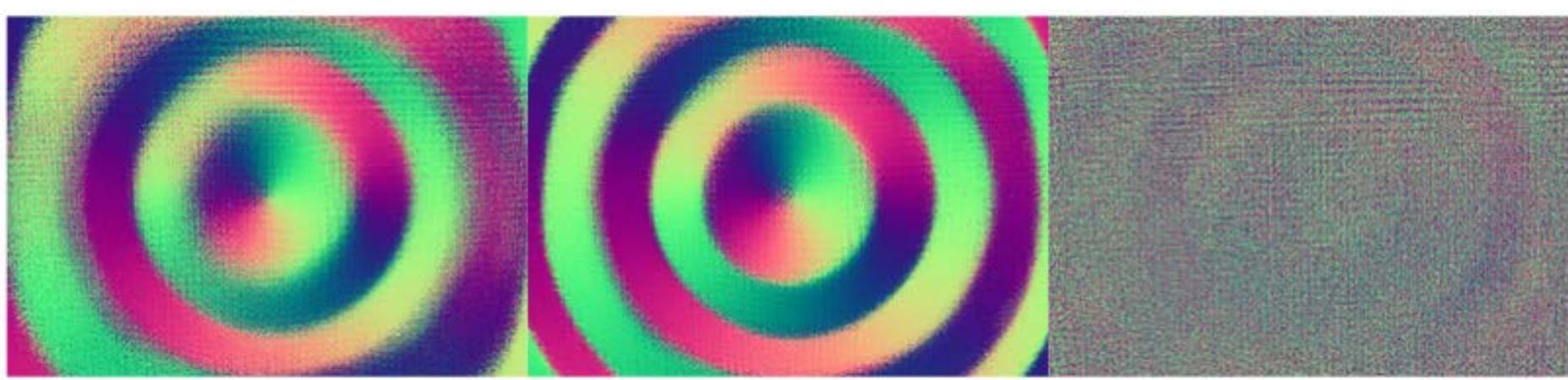
Lines in the world are no longer lines on the image, they are curves! 25

Fish-eye Lens

Szeliski (1st ed.) Figure 2.13

Other (Possibly Significant) Lens Effects Scattering at the lens surface — Some light is reflected at each lens surface There are other geometric phenomena/distor — pincushion distortion

- harrel distortion



Parametric calibration errors

Image from [Schöps et al., 2019]. Reproduced for educational purposes.

[Schöps et al., 2020]

<u>nragsdale/3192314056/</u>

Lecture Summary

— We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.

 Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

- Projection equations: **perspective**, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and **distortions**" persist (e.g. spherical aberration, vignetting)

Course logistics

Times: Mon, Wed 3:30-5:00pm

Instructor: Kwang



Fri. (ICCS 115) 1 — 2 pm

Fred

Mon. (Zoom) 5 — 6 pm

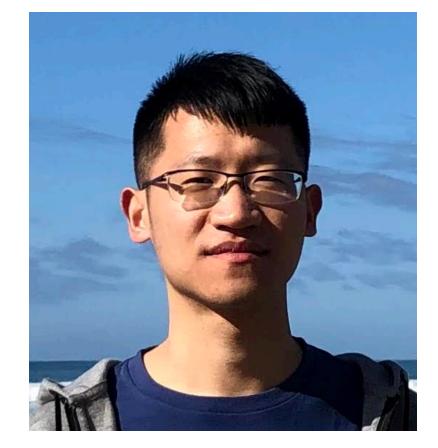
Locations: Friedman (FRDM), Room 153

Teaching Assistants

Ramin

Tues. (Room TBA) 5 — 6 pm

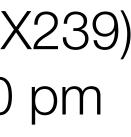
Bicheng



Wed. (Zoom) 5 — 6 pm

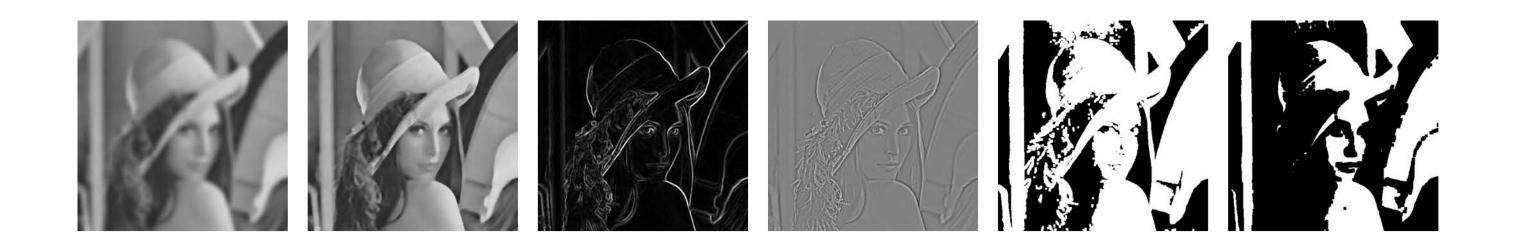
Rayat

Thurs. (ICCS X239) 2:30 — 3:30 pm



THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Lecture 3: Image Filtering

This Lecture

Topics: Image Filtering

- Image as a function
- Linear filters

Readings:

- Today's Lecture: Szeliski 3.1-3.3, Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete **Assignment 1** is out! Due 29th

— Correlation / Convolution

30

Goal

Learn how to mathematically describe image processing Basic building blocks

Image as a **2D Function** A (grayscale) image is a 2D function

grayscale image

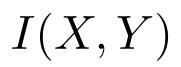
What is the **range** of the image function? $I(X,Y) \in [0,255] \in \mathbb{Z}$

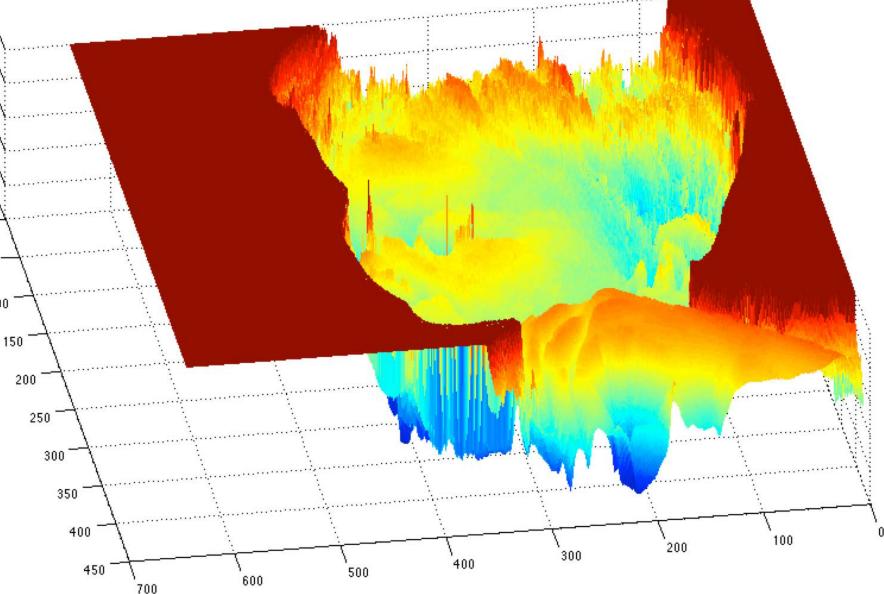
0.2 50 100

0.8

0.6

0.4





domain: $(X, Y) \in ([1, width], [1, hight])$

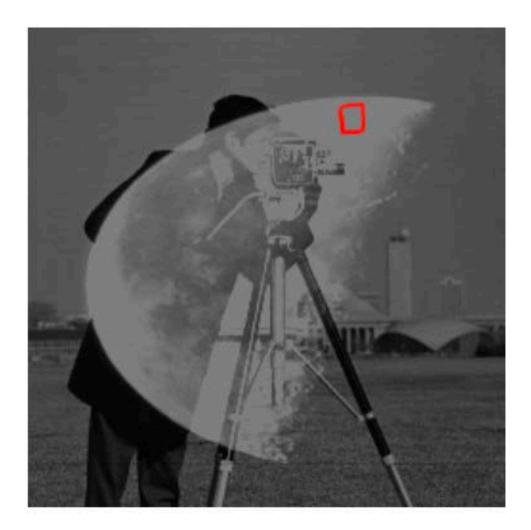
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X, Y)

Since images are functions, we can perform operations on them, e.g., average

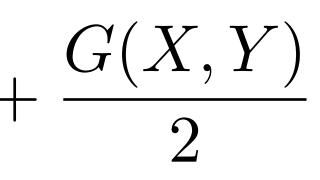
G(X,Y)





 $a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$

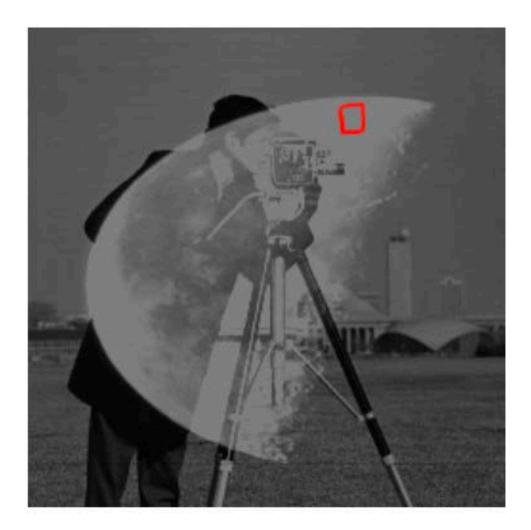
$b = \frac{I(X,Y) + G(X,Y)}{1 + G(X,Y)}$



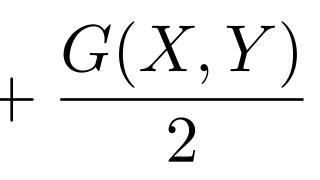
2

34

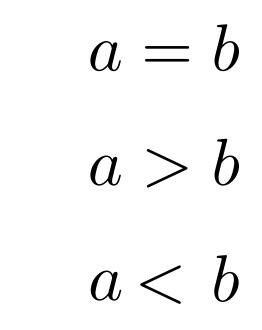


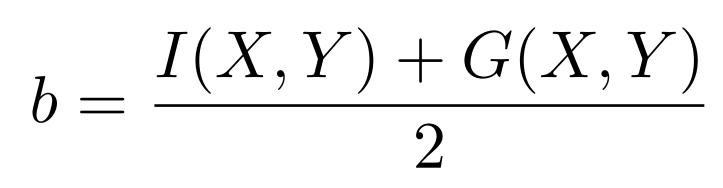


 $a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$



Question:

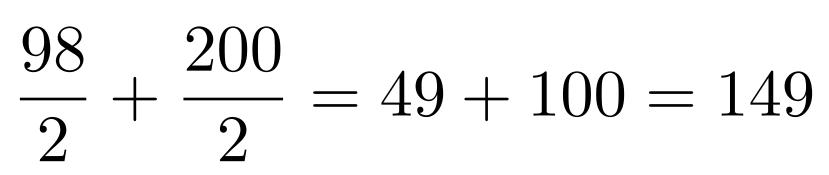




35

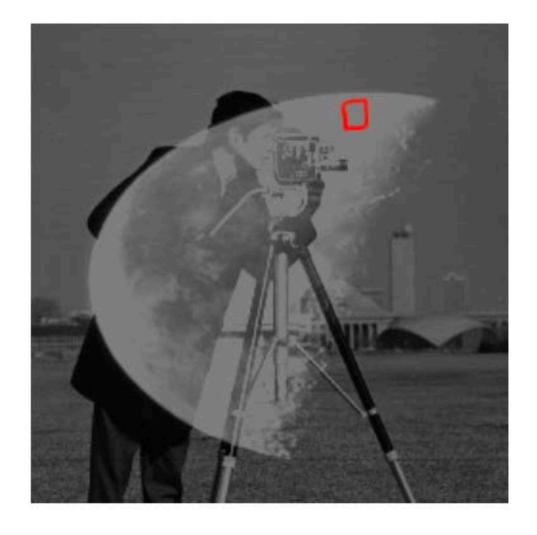


Red pixel in camera man image = 98Red pixel in moon image = 200

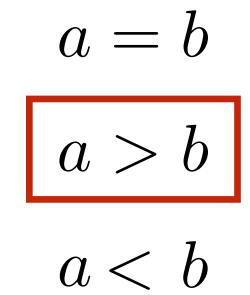


98 + 200

2



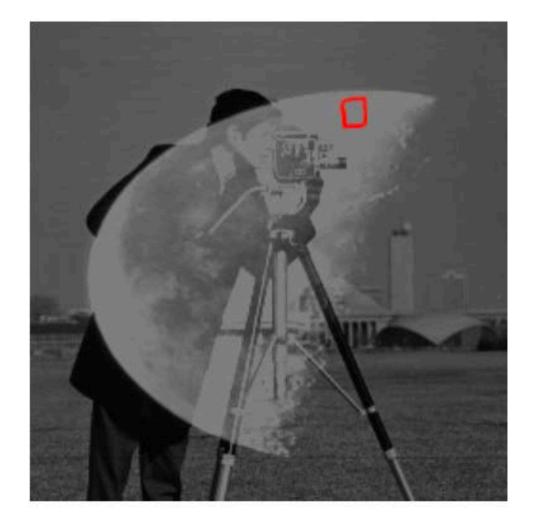
Question:



$$\frac{298 \rfloor}{2} = \frac{255}{2} = 127$$

Adding two Images





In Python

- from PIL import Image
- img = Image.open('cameraman.png')

- Or do this #

It is often convenient to convert images to doubles when doing processing

- import numpy as np
- imgArr = np.asfarray(img)

or "imgArr=np.array(img).astype(np.float32)/255.0"

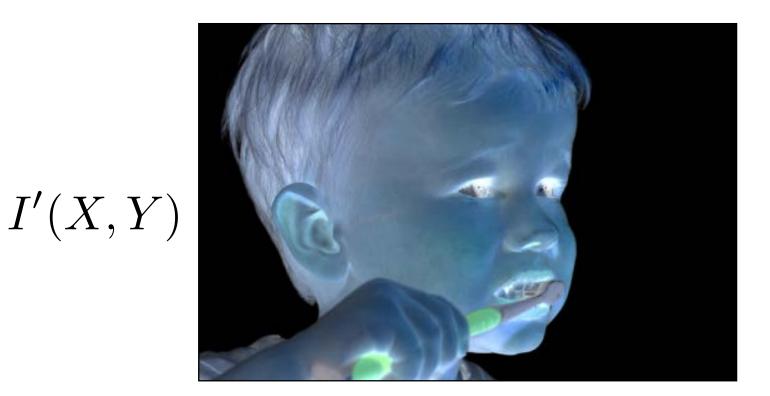
import matplotlib.pyplot as plt

camera = plt.(imread) 'cameraman.png');

What types of transformations can we do?

I(X, Y)

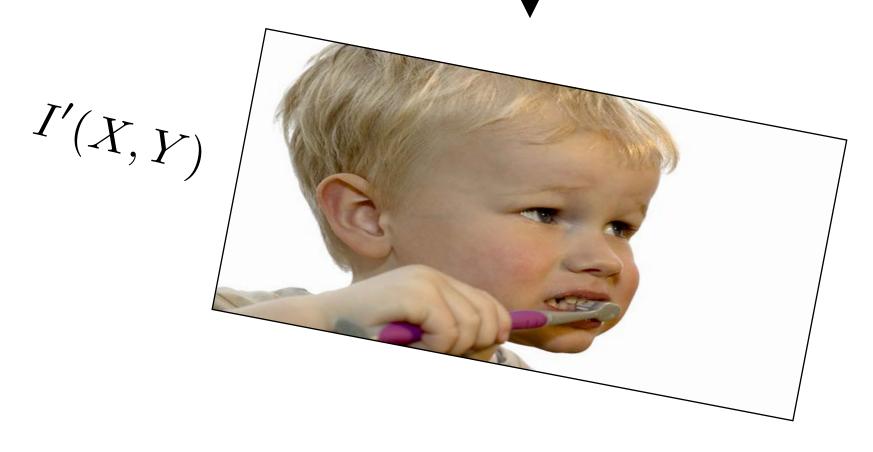
Filtering



changes range of image function

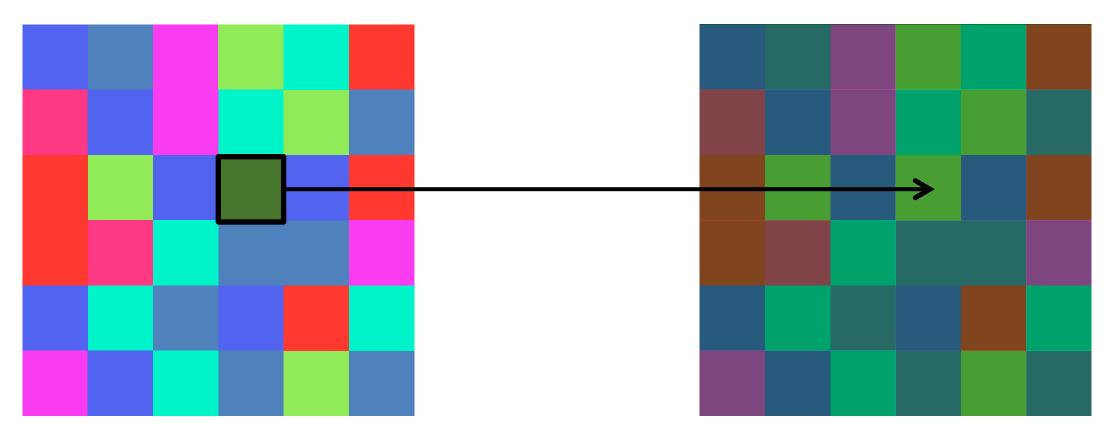
I(X, Y)

Warping



changes domain of image function

What types of **filtering** can we do?



Point Operation

point processing

Examples of **Point Processing**

original

darken

I(X, Y)

I(X,Y) - 128

invert

lighten

lower contrast

I(X, Y)

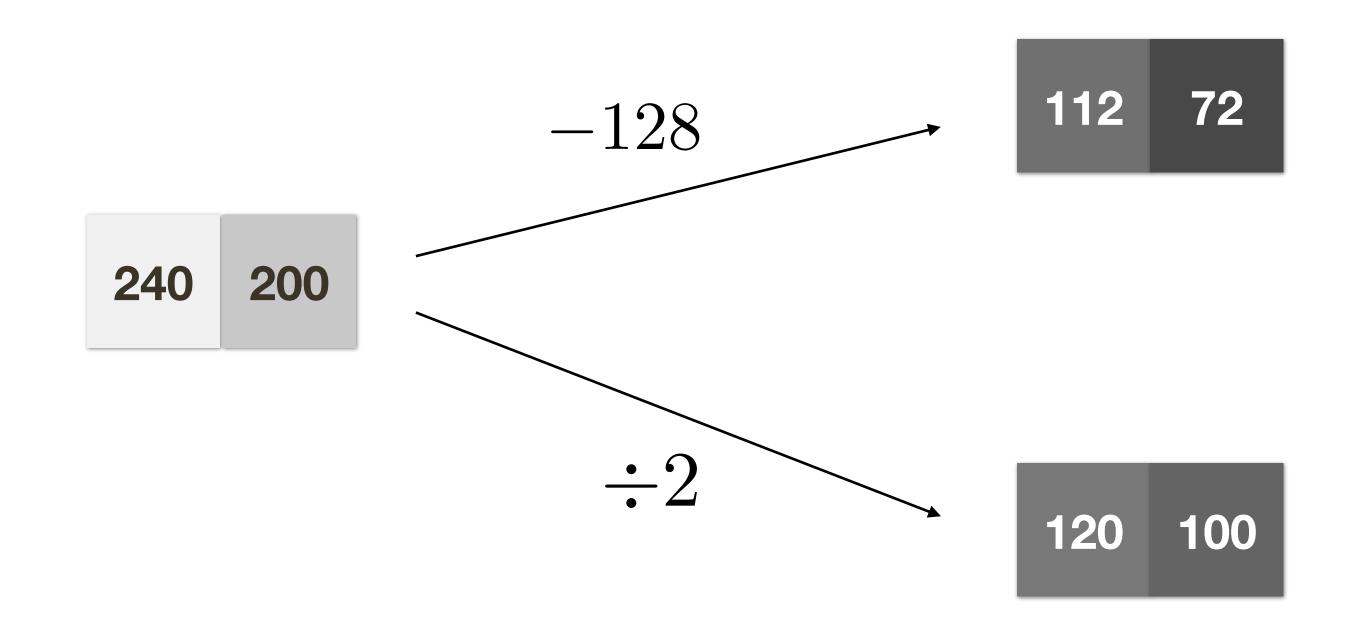
non-linear lower contrast

non-linear raise contrast

Brightness v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel values stays the same

Contrast: relative difference between pixel values becomes higher / lower



Examples of **Point Processing**

original

darken

I(X, Y)

I(X, Y) - 128

invert

lighten

255 - I(X, Y)

I(X, Y) + 128

lower contrast

I(X,Y)raise contrast

 $I(X,Y) \times 2$

non-linear lower contrast

1/3I(X, Y) $\times 255$ 255

non-linear raise contrast

 2 imes 255I(X,Y)

Examples of **Point Processing**

original

darken

I(X, Y)

invert

I(X, Y) - 128

lighten

255 - I(X, Y)

I(X, Y) + 128

lower contrast

I(X,Y)raise contrast

 $I(X,Y) \times 2$

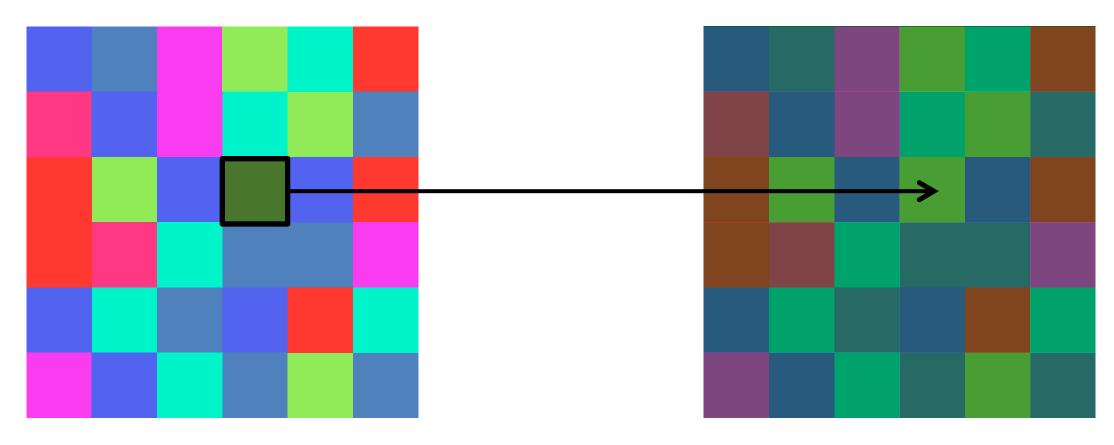
non-linear lower contrast

1/3I(X, Y) $\times 255$ 255

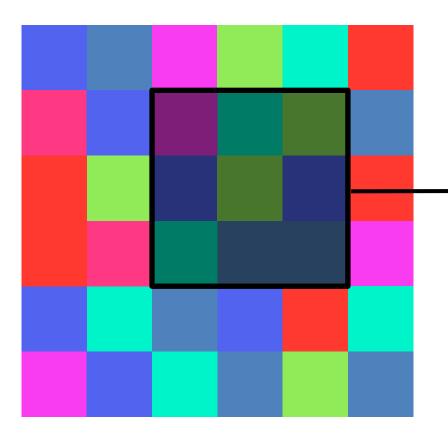
non-linear raise contrast

 2 $\times 255$ I(X,Y)

What types of **filtering** can we do?

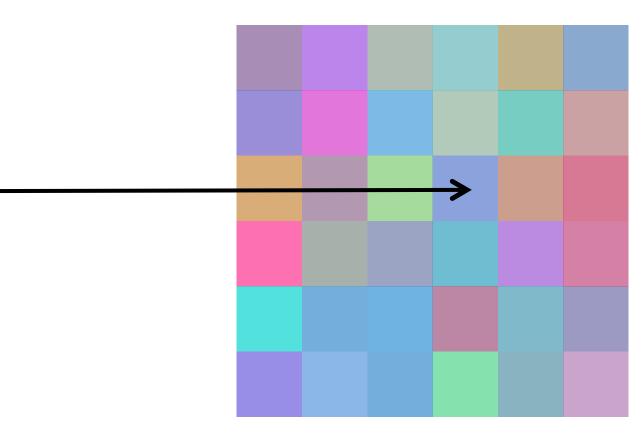


Neighborhood Operation



Point Operation

point processing



"filtering"

Linear Neighborhood Operators (Filtering)

blur

Original Image

sharpen

edge filter

Non-Linear Neighborhood Operators (Filtering)

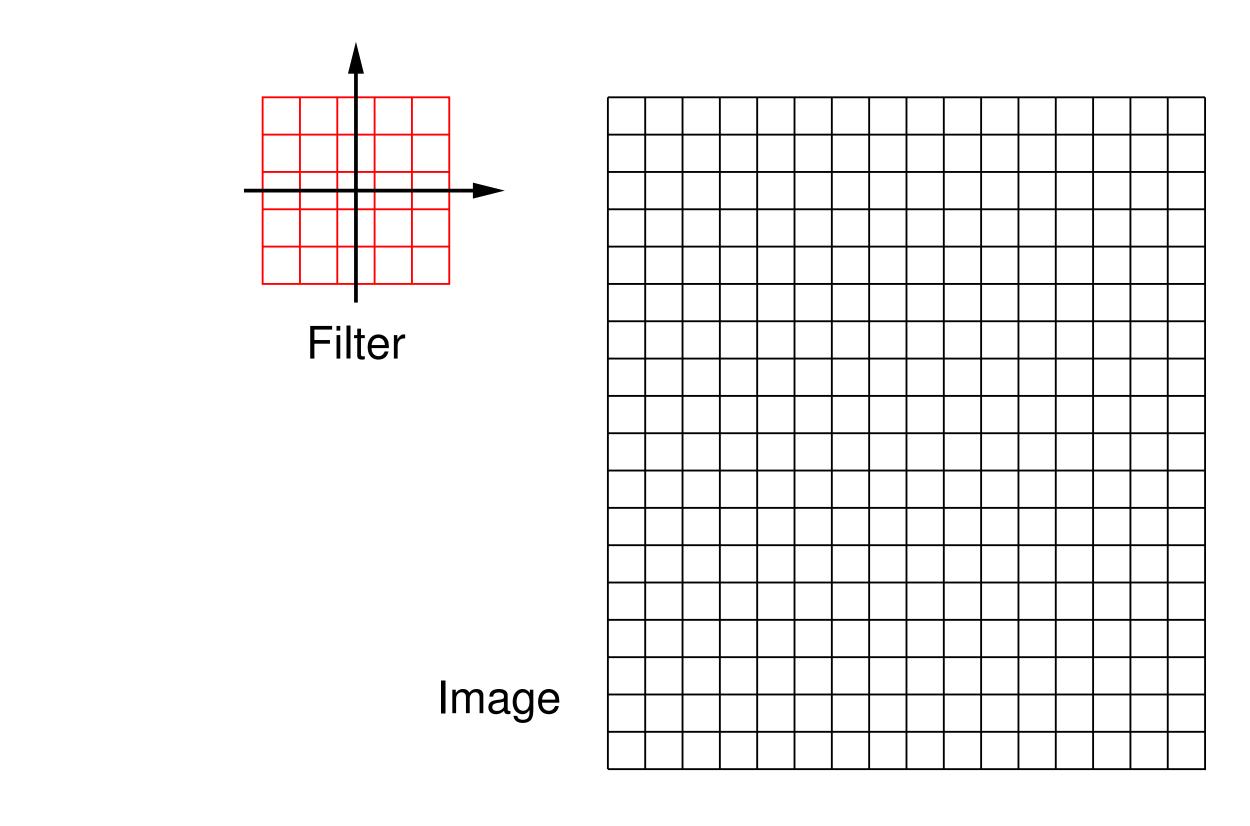
edge preserving smoothing

Original Image

median

canny edges

Let F(X, Y) be another $m \times m$ digital image (our "filter" or "kernel")

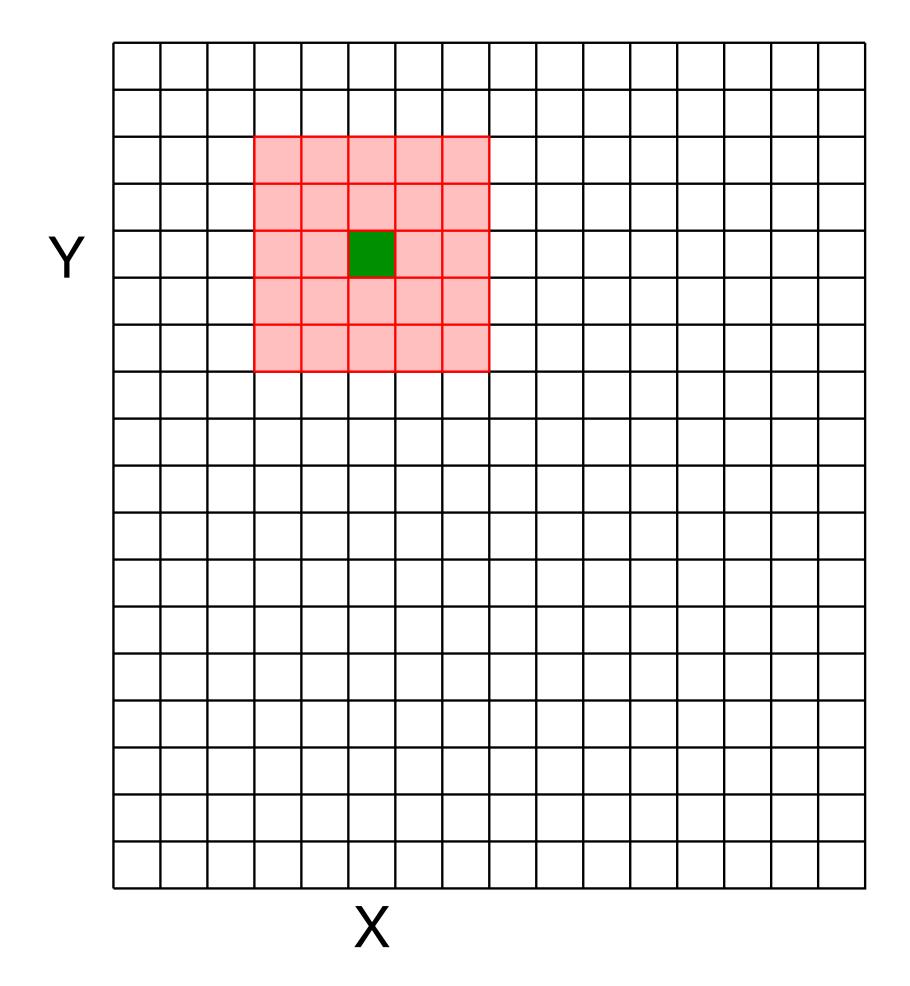


For convenience we will assume m is odd. (Here, m = 5)

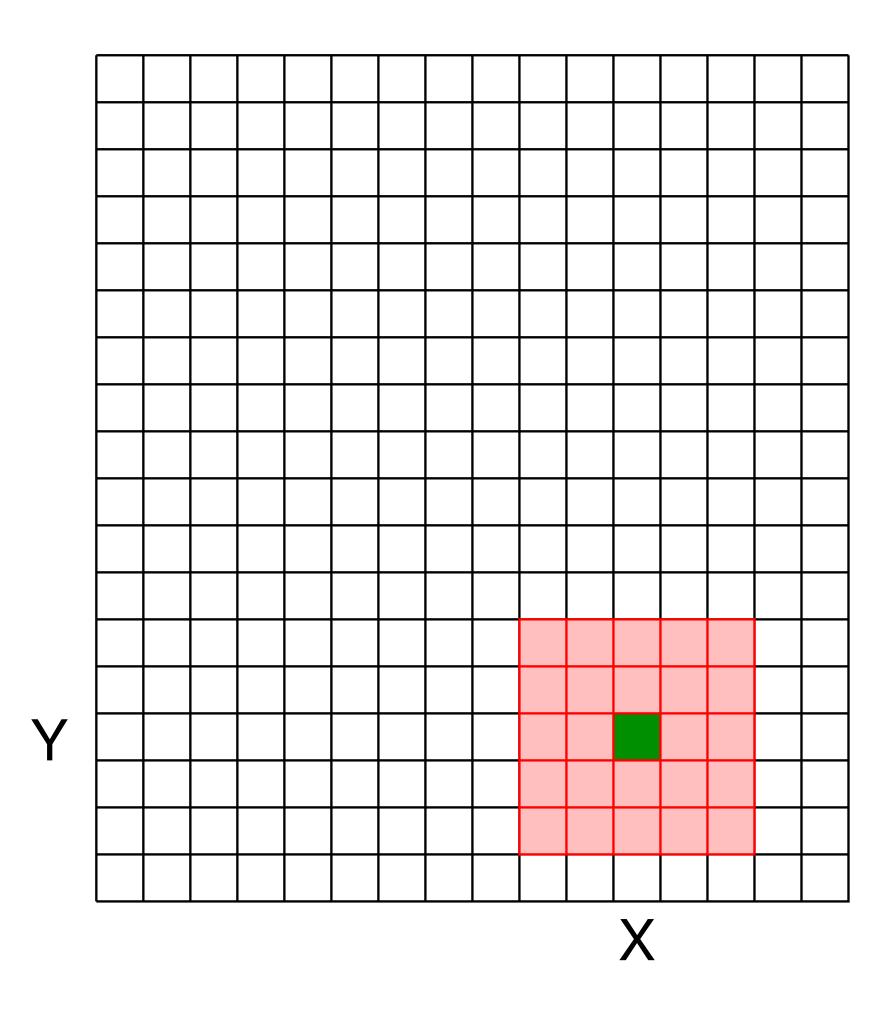
Let I(X, Y) be an $n \times n$ digital image (for convenience we let width = height)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

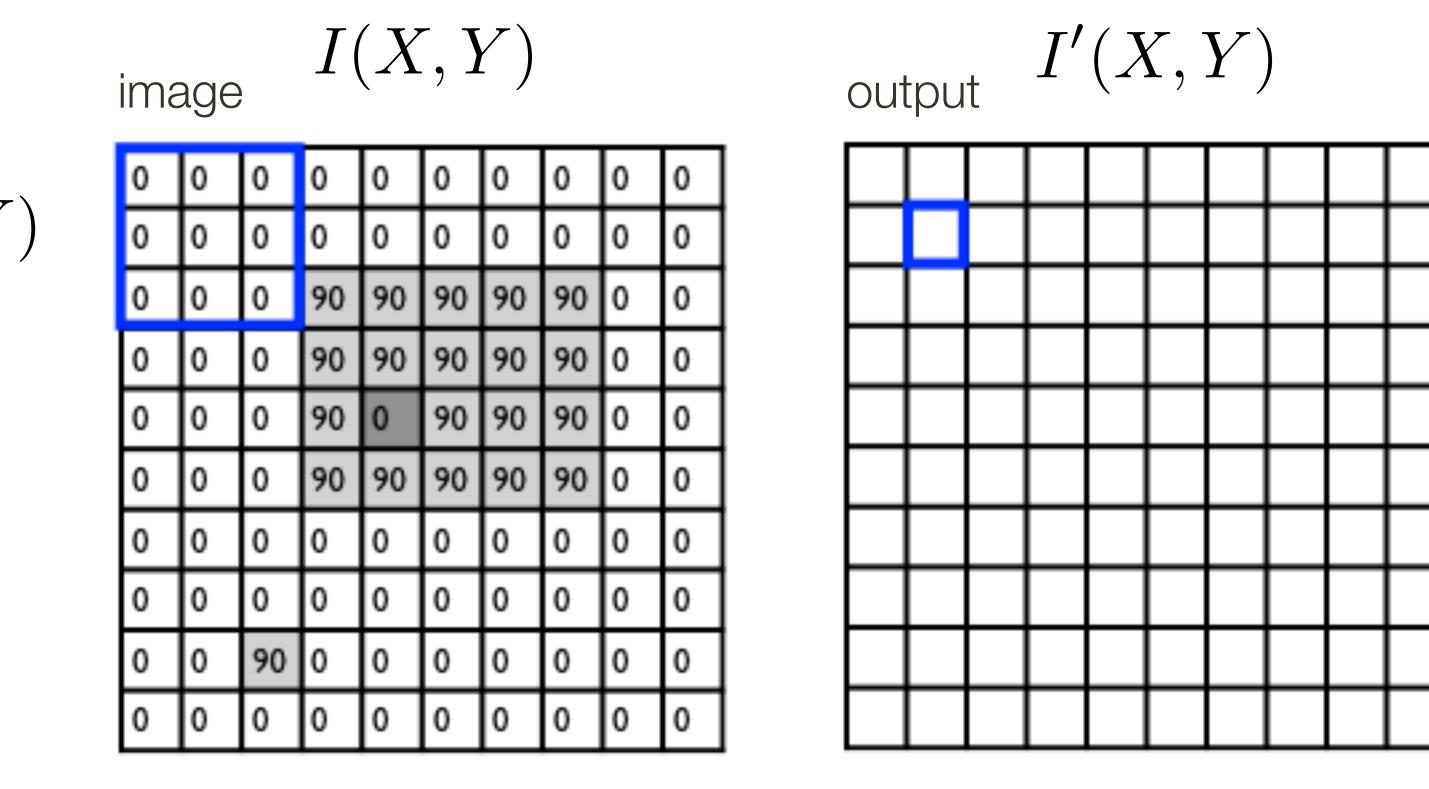
Compute the new pixel value, I'(X, Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X, Y) and the corresponding values in the filter

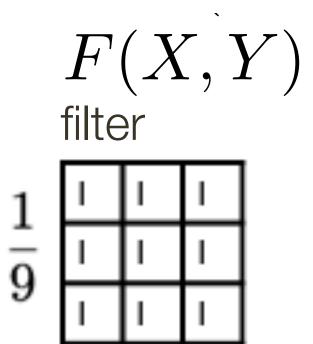


The computation is repeated for each (X, Y)



49



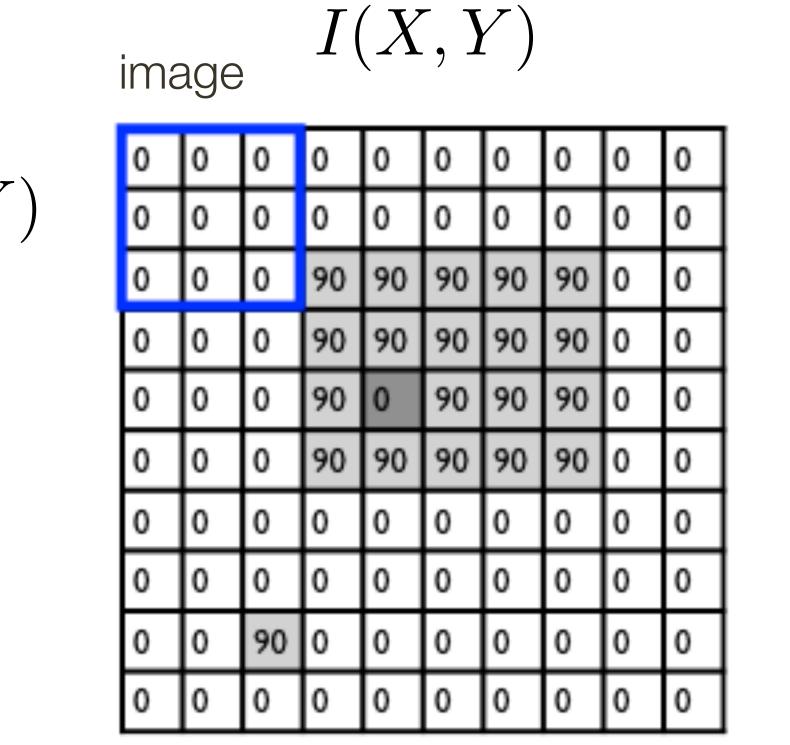


$$I'(X,Y)$$
 =

output

kkj = -k i = -

$$\sum_{i=1}^{k} F(i,j) \frac{I(X+i,Y+j)}{image (signal)}$$

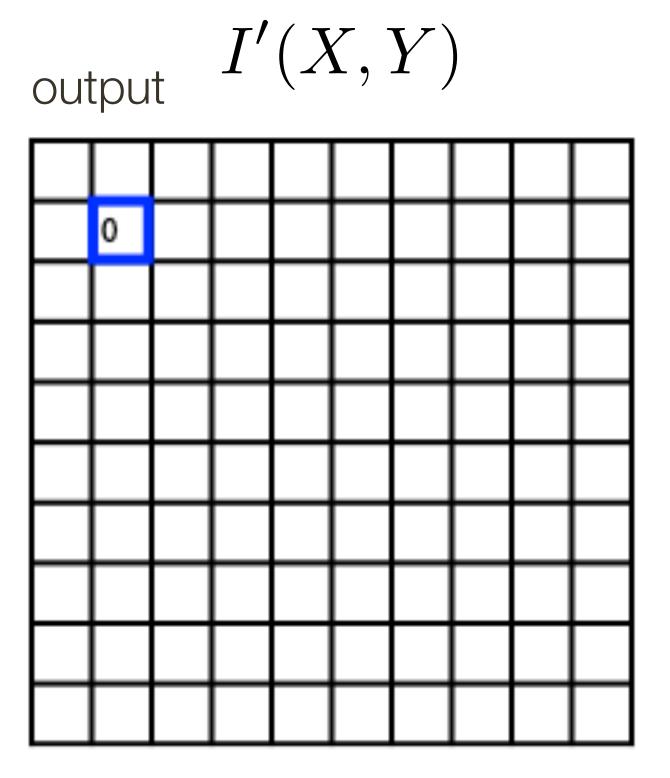


F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

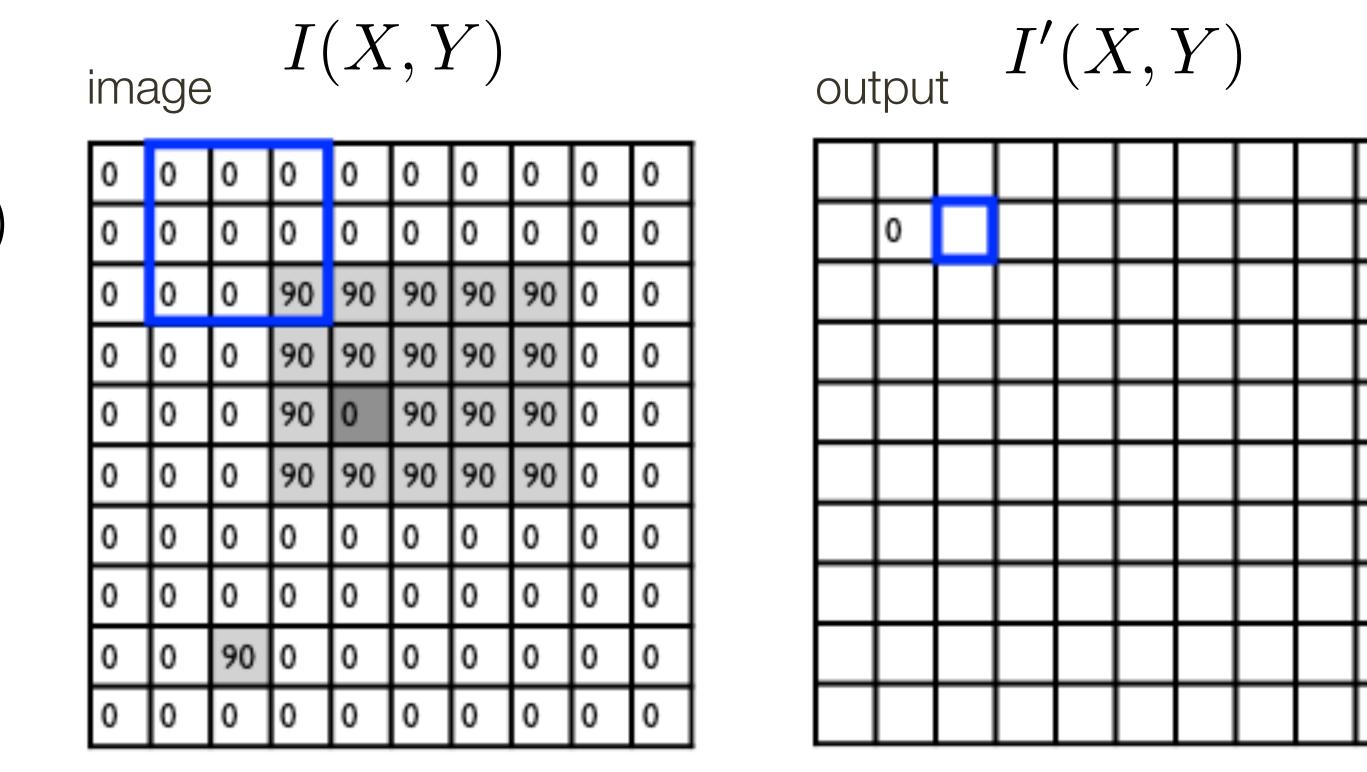
output

kkj = -k i = -



$$\sum_{k} F(i,j) I(X+i,Y+j)$$

$$filter \qquad image (signal)$$



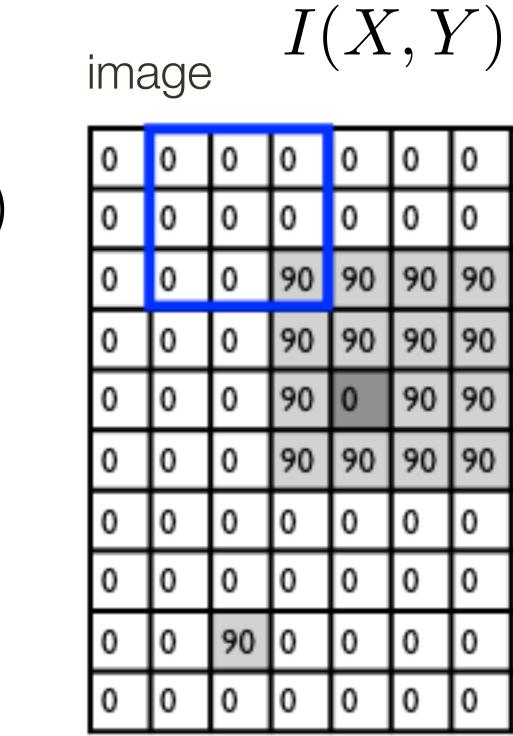
F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)



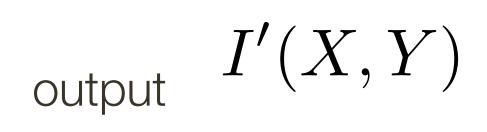
F(X, Y)filter $\frac{1}{9}$

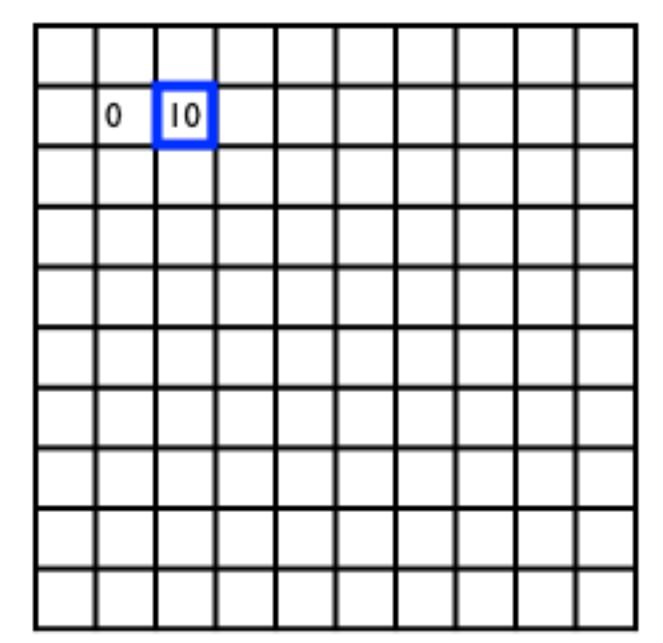
$$I'(X,Y) =$$

output

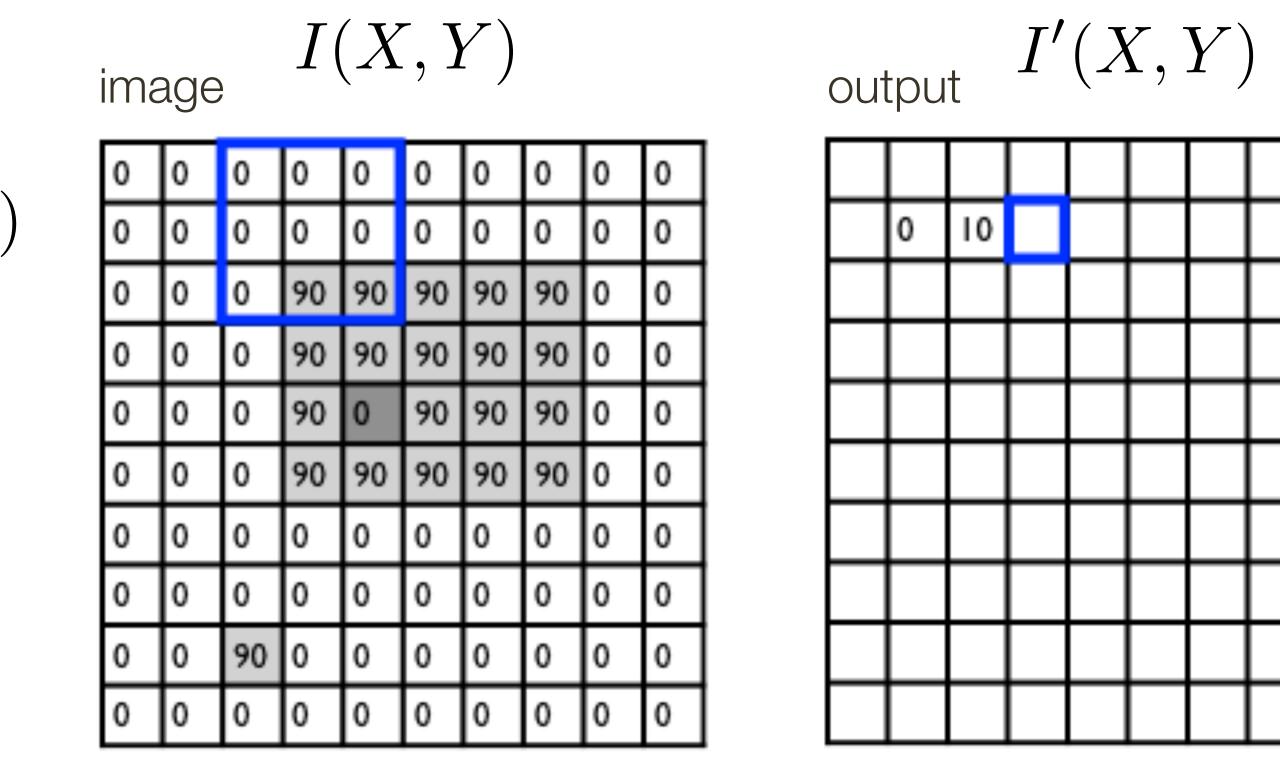
kkj = -k i = -

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0





$$\sum_{k \in K} F(i, j) \frac{F(i, j)}{F(X + i, Y + j)}$$
filter



F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

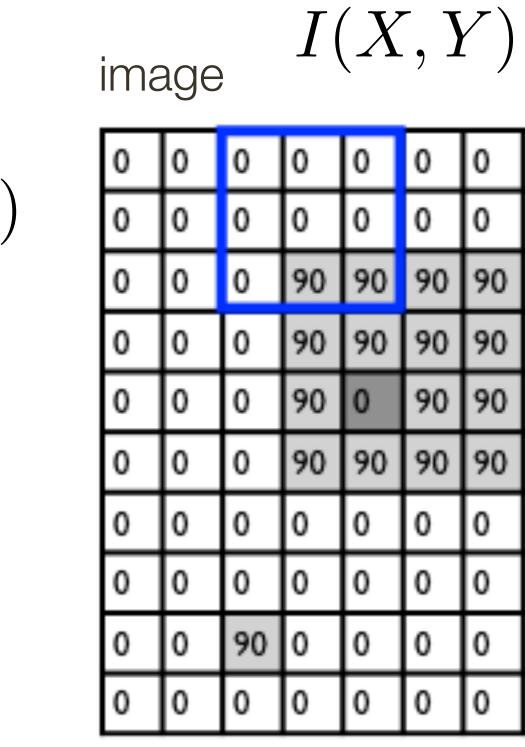
output

kkj = -k i = -

$$\begin{array}{c|c} F(i,j) & I(X+i,Y+j) \\ k & \text{filter} & \text{image (signal)} \end{array} \end{array}$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

54



F(X, Y)filter $\frac{1}{9}$

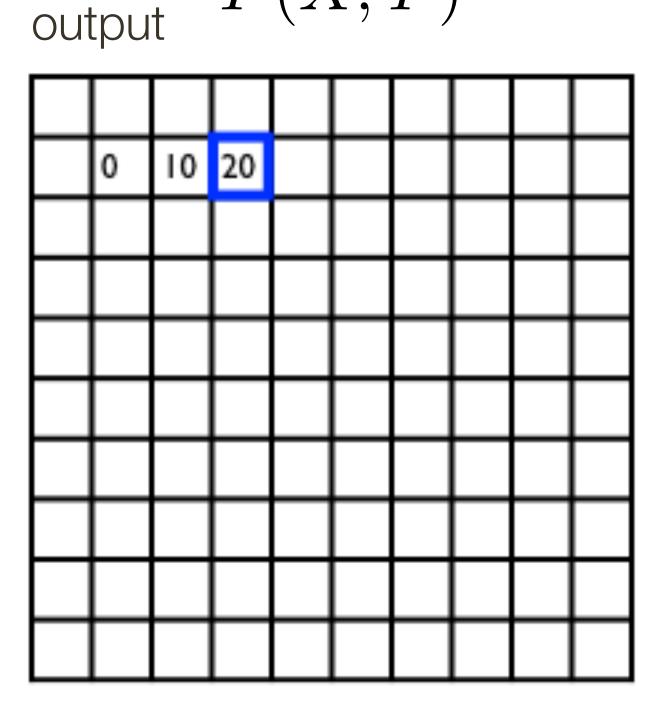
$$I'(X,Y) =$$

output

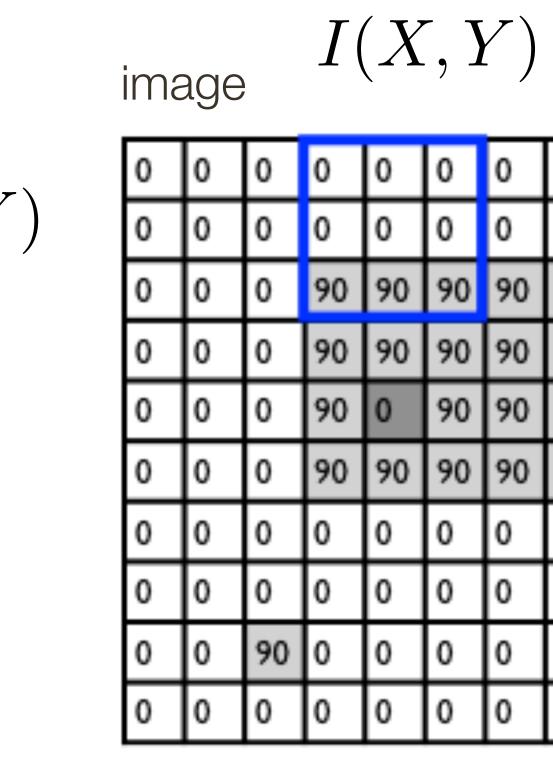
kkj = -k i = -

I'	(X,	Y)

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0



$$\sum_{i=k} F(i,j) I(X+i,Y+j)$$
image (signal)



F(X, Y)filter $\frac{1}{9}$

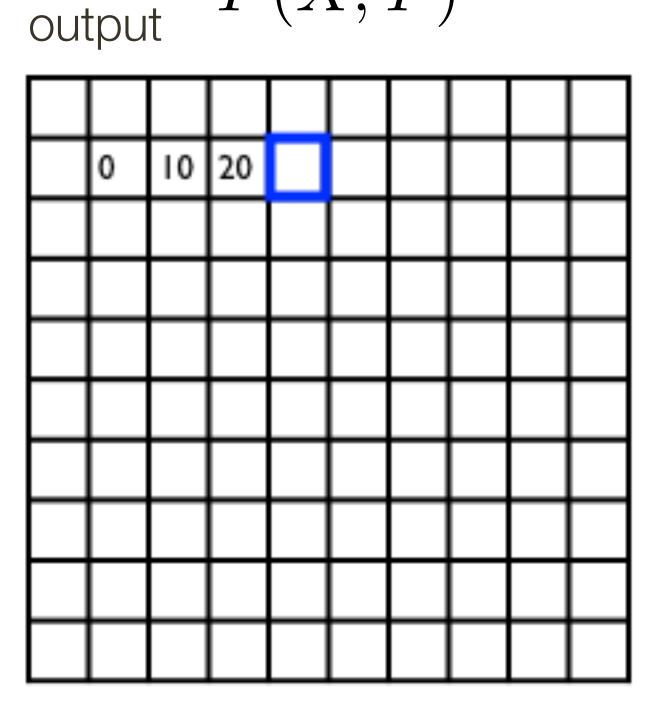
$$I'(X,Y) =$$

output

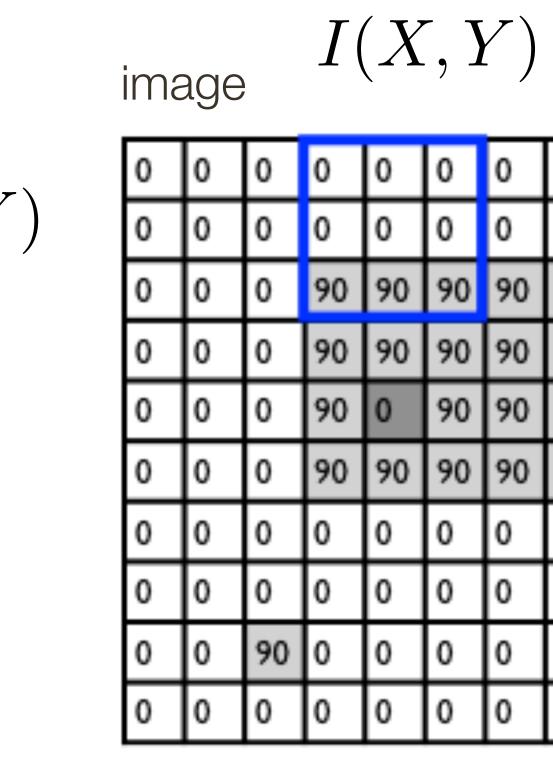
kkj = -k i = -

I'	(X,	Y)

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0



$$\sum_{k} F(i,j) I(X+i,Y+j)$$
integration of the second state of t



F(X, Y)filter $\frac{1}{9}$

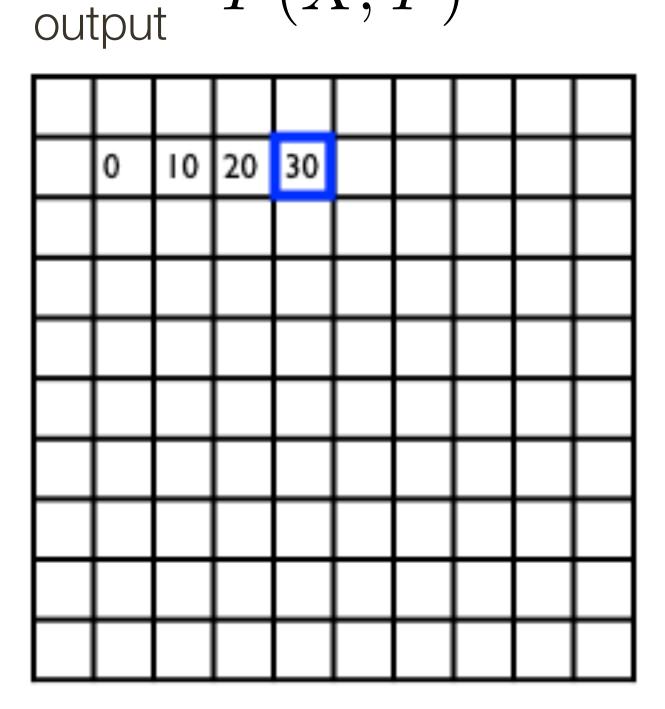
$$I'(X,Y) =$$

output

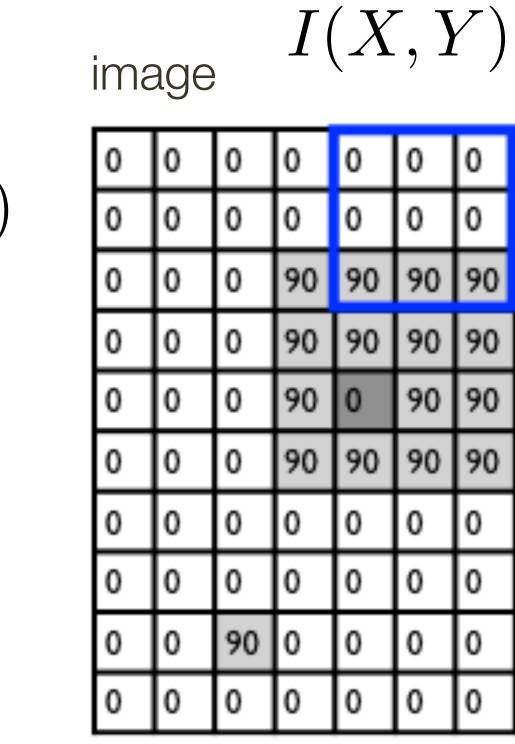
kkj = -k i = -

I'	(X,	Y)
		/

	0	0	0	
	0	0	0	
0	90	0	0	
0	90	0	0	
0	90	0	0	
0	90	0	0	
	0	0	0	
	0	0	0	
	0	0	0	
	0	0	0	



$$\sum_{k=k} F(i,j) I(X+i,Y+j)$$
filter image (signal)

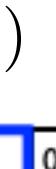


F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

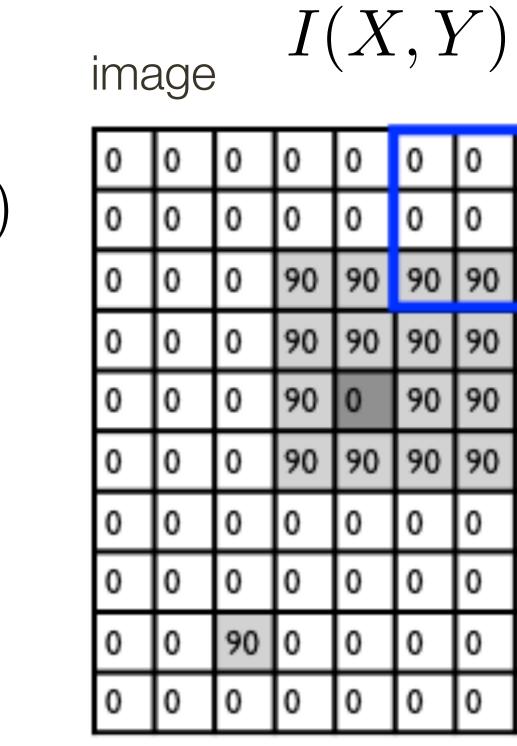
kkj = -k i = -



	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{i=1}^{k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$

output



F(X, Y)filter 1 $\overline{9}$

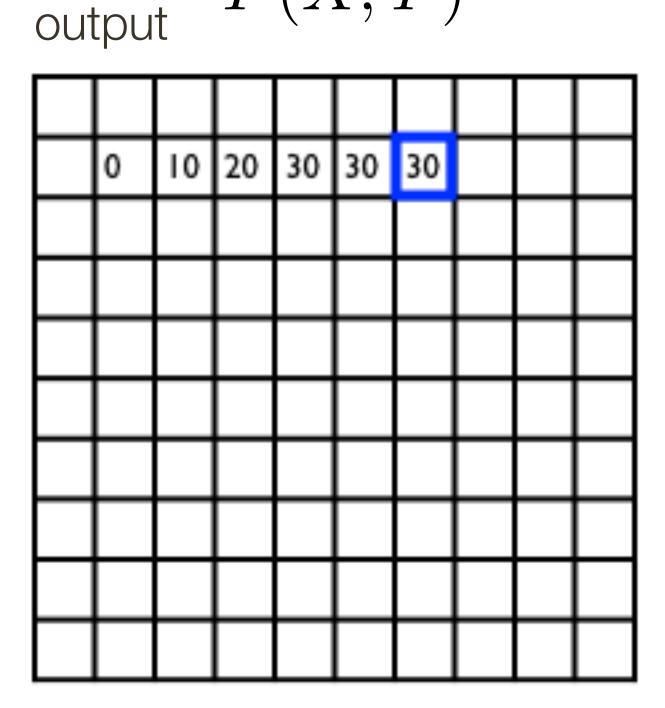
$$I'(X,Y) =$$

output

kkj = -k i = -

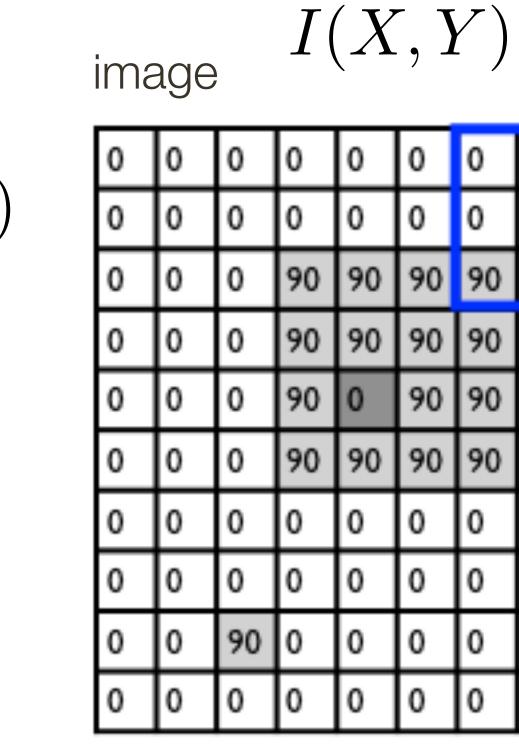
I'	(X,	Y)
	\ <i>j</i>	_ /

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0



$$\sum_{k} F(i,j) I(X+i,Y+j)$$

$$filter \qquad image (signal)$$



F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

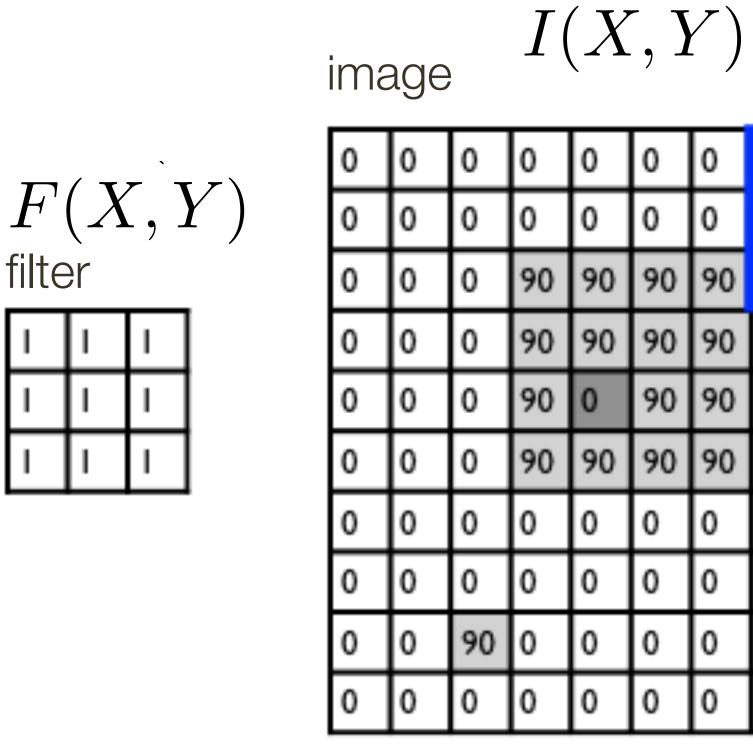
kkj = -k i = -

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

output I'(X,Y)

0	10	20	30	30	30	20	

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
intermage (signal)



filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

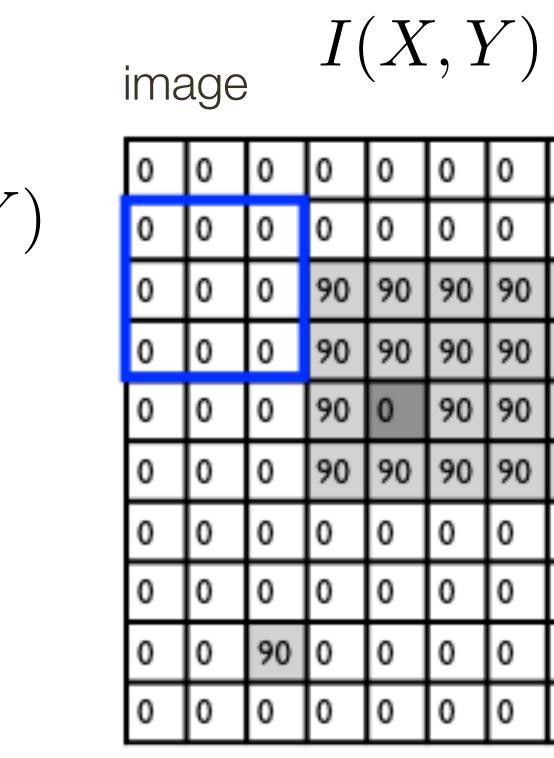
kkj = -k i = -

)	0	0	0
)	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
)	0	0	0
)	0	0	0
)	0	0	0
)	0	0	0

output

0	10	20	30	30	30	20	10	

$$\sum_{i=1}^{k} F(i,j) \frac{I(X+i,Y+j)}{\text{filter}}$$



F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

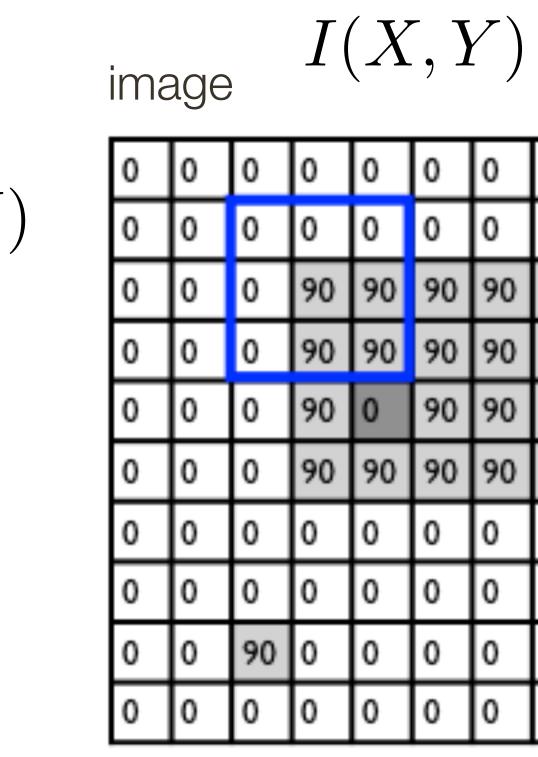
kkj = -k i = -

output I'(X,Y)

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

0	10	20	30	30	30	20	10	
0								

$$\sum_{k} F(i,j) \frac{F(i,j)}{I(X+i,Y+j)}$$
Filter
image (signal)



F(X, Y)filter 1 $\overline{9}$

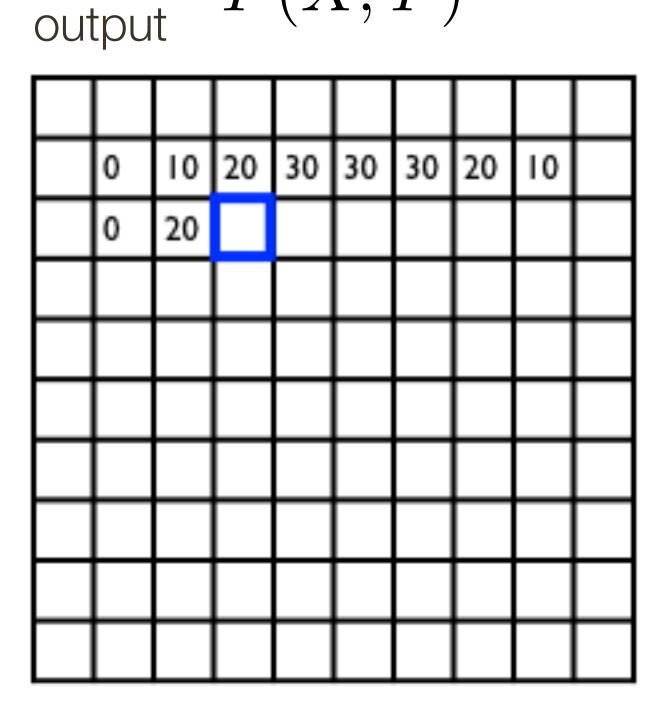
$$I'(X,Y) =$$

output

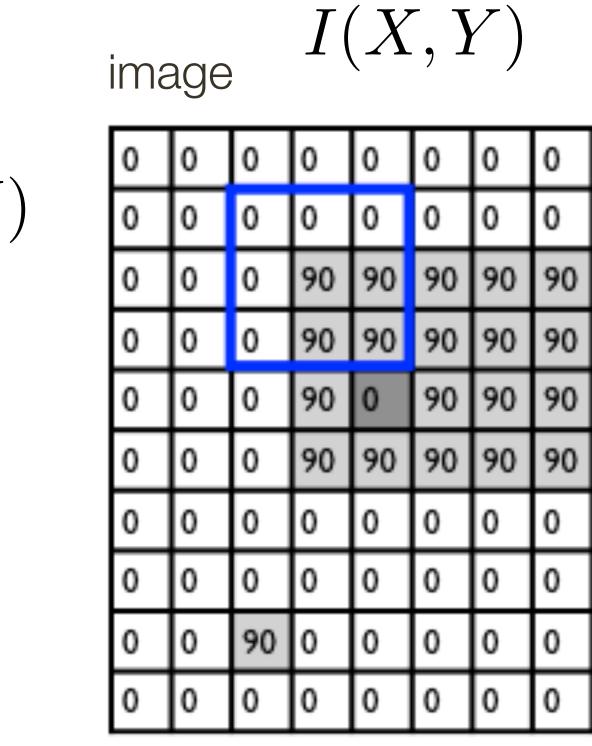
kkj = -k i = -

I'	(X,	Y)
1	$(\Lambda,$	I)

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0



$$\sum_{i=1}^{k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$

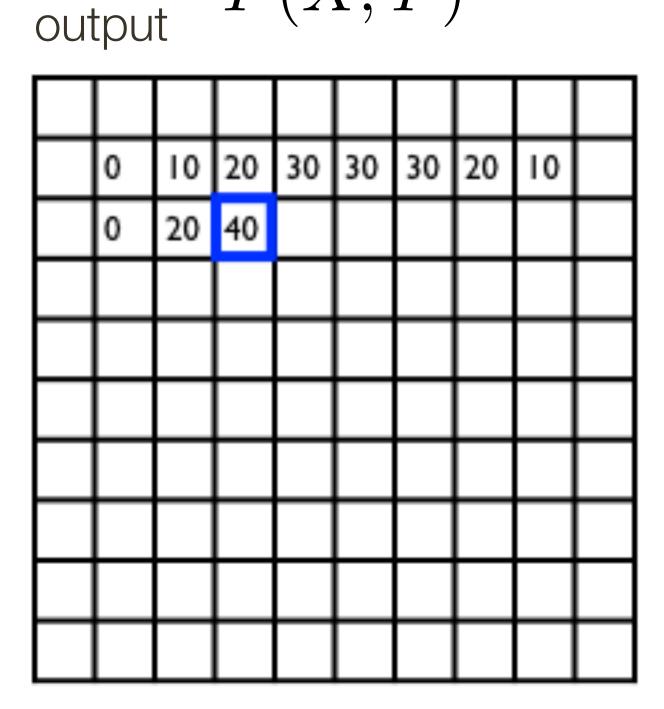


F(X, Y)filter T $\overline{9}$

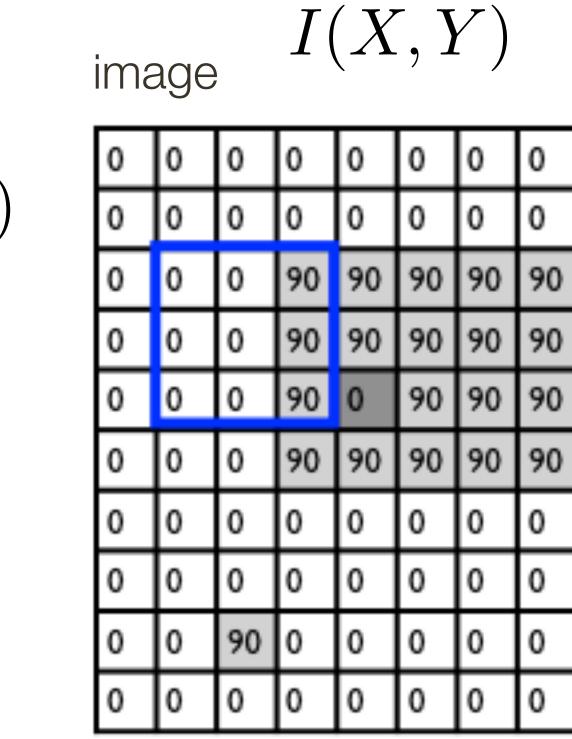
$$I'(X,Y) =$$

output

kkj = -k i = -



$$\sum_{i=1}^{k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$



F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

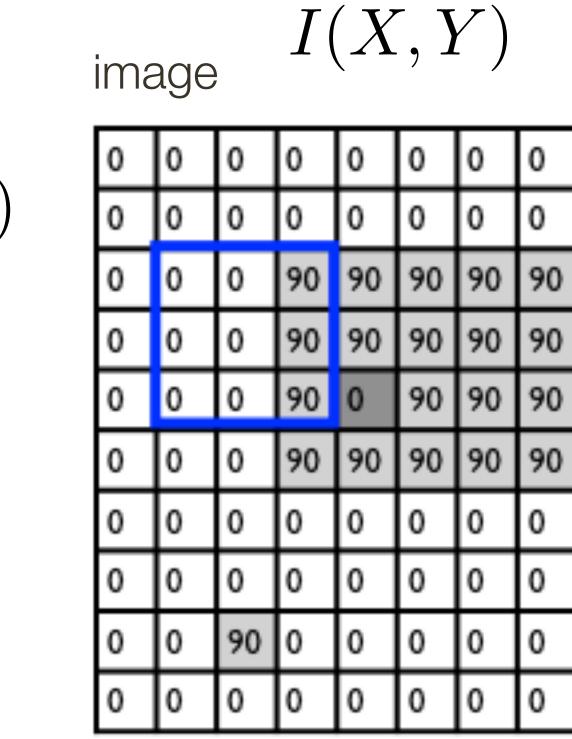
\	
J	

I'	(X,	Y)
----	-----	----

0				30				
0	20	40	60	60	60	40	20	
0								

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

output



F(X, Y)filter Τ $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

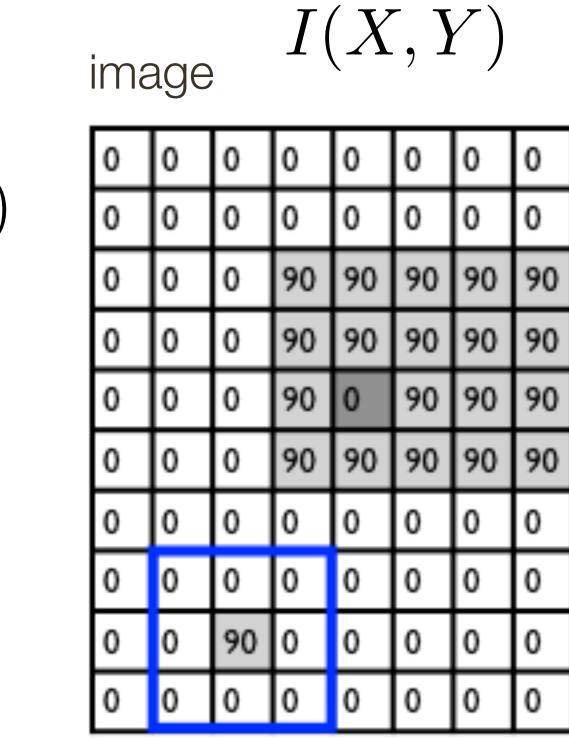
\	
J	

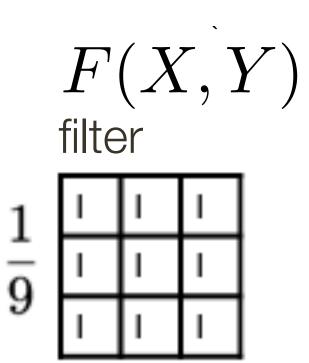
I'(X	,Y)
------	-----

0				30				
0	20	40	60	60	60	40	20	
0	30							

$$\sum_{k} F(i,j) \frac{I(X+i,Y+j)}{\text{filter}}$$

output





$$I'(X,Y) =$$

output

kkj = -k i = -

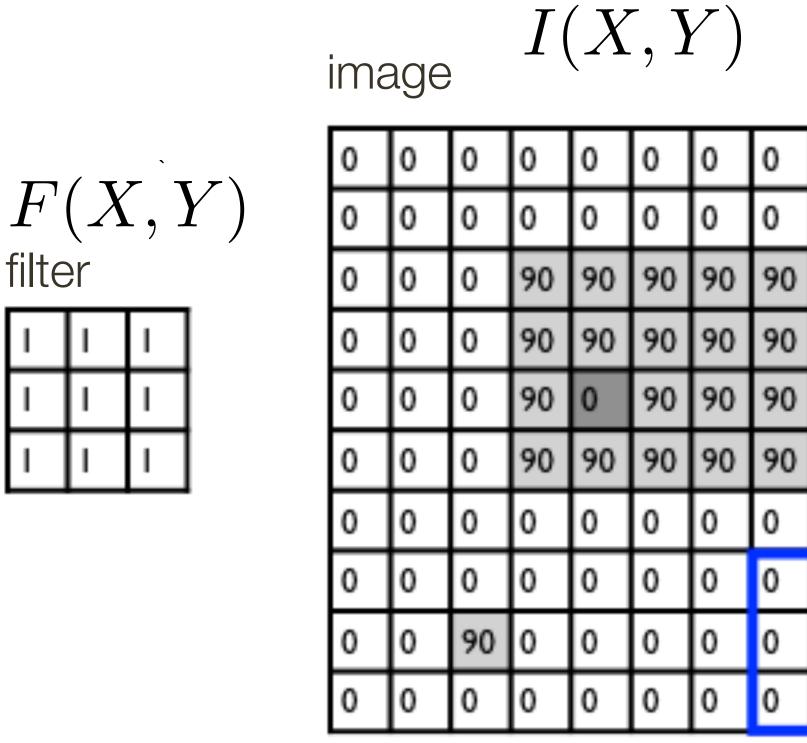
/	

I'(X	,Y)
------	-----

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
0	10	20	30	30	30	20	10	
10	10	10	10	0	0	0	0	
10								

$$\sum_{k} F(i,j) \frac{I(X+i,Y+j)}{\text{filter}}$$

output



filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

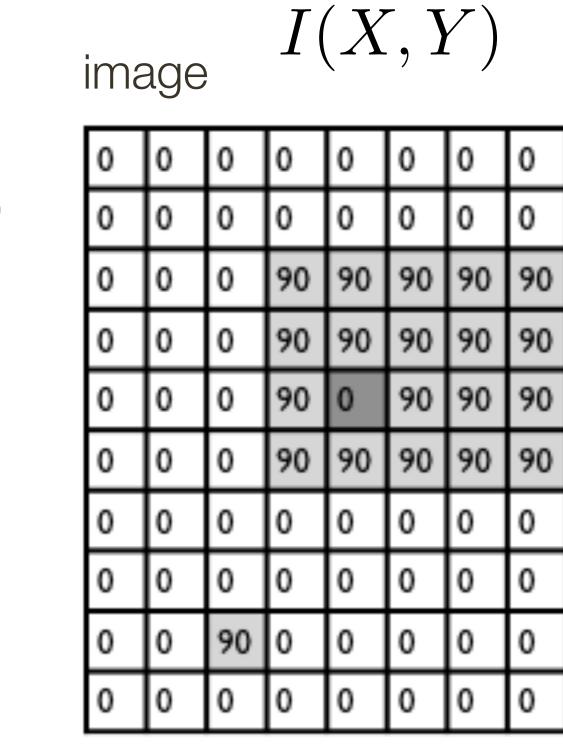
)	
Ϊ	

I'	(X	- , -	Y)

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
0	10	20	30	30	30	20	10	
10	10	10	10	0	0	0	0	
10	10	10	10	0	0	0	0	

$$\begin{array}{c|c} F(i,j) & I(X+i,Y+j) \\ \hline k & \text{filter} & \text{image (signal)} \end{array} \end{array}$$

output



F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

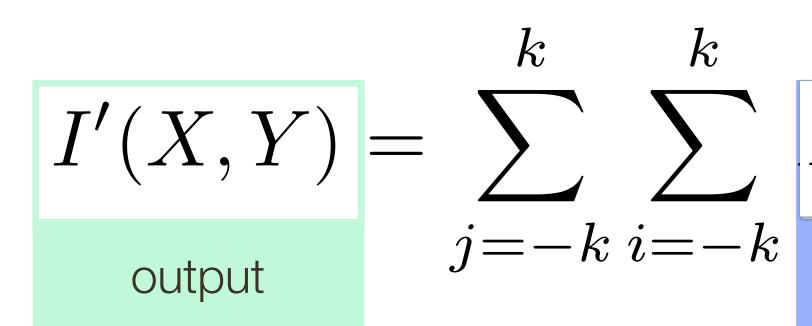
)	
J	

I'	(X,	Y	「)
)		

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
0	10	20	30	30	30	20	10	
10	10	10	10	0	0	0	0	
10	10	10	10	0	0	0	0	

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

output

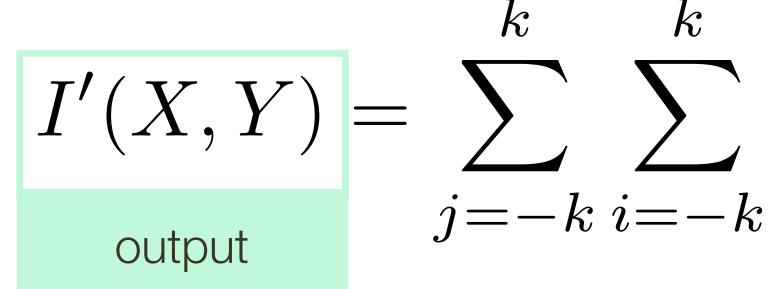


For a given X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I'(X, Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X, Y) and the corresponding values in the filter

$$\int F(i,j) \frac{F(i,j)}{I(X+i,Y+j)}$$
-k filter image (signal)

Let's do some accounting ...



There are

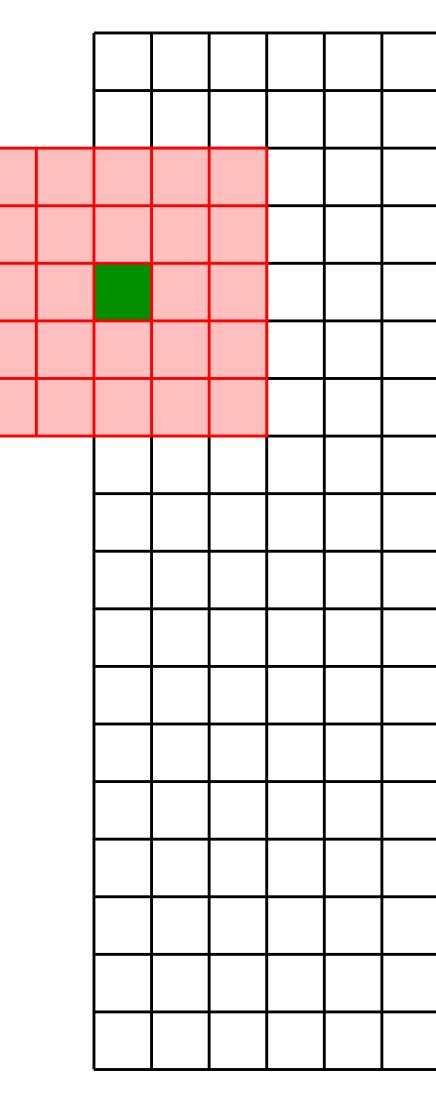
Total:

When m is fixed, small constant, this is $\mathcal{O}(n^2)$. But when $m \approx n$ this is $\mathcal{O}(m^4)$.

$$\sum_{k} F(i,j) \frac{F(i,j)}{I(X+i,Y+j)}$$
Filter

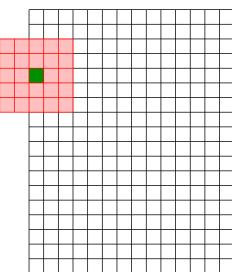
At each pixel, (X, Y), there are $m \times m$ multiplications $n \times n$ pixels in (X, Y)

 $m^2 \times n^2$ multiplications



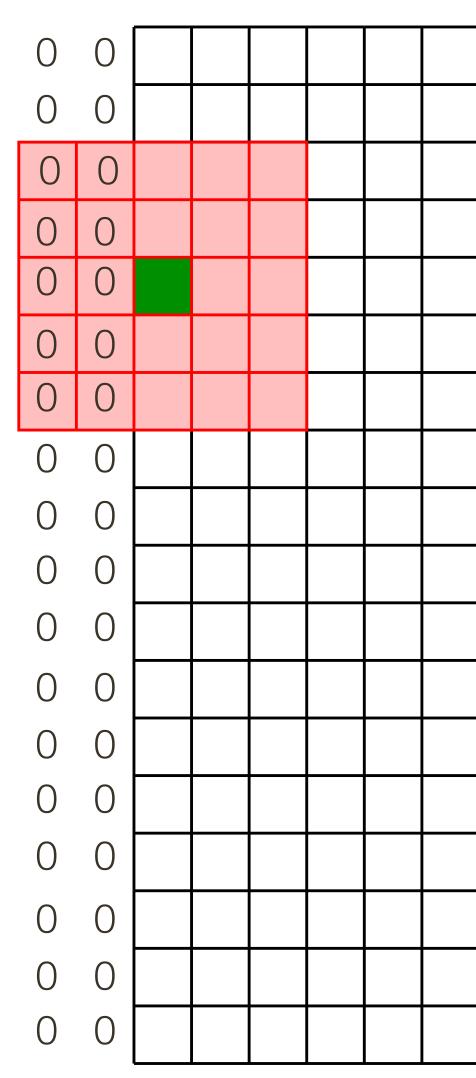
Three standard ways to deal with boundaries:

- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y

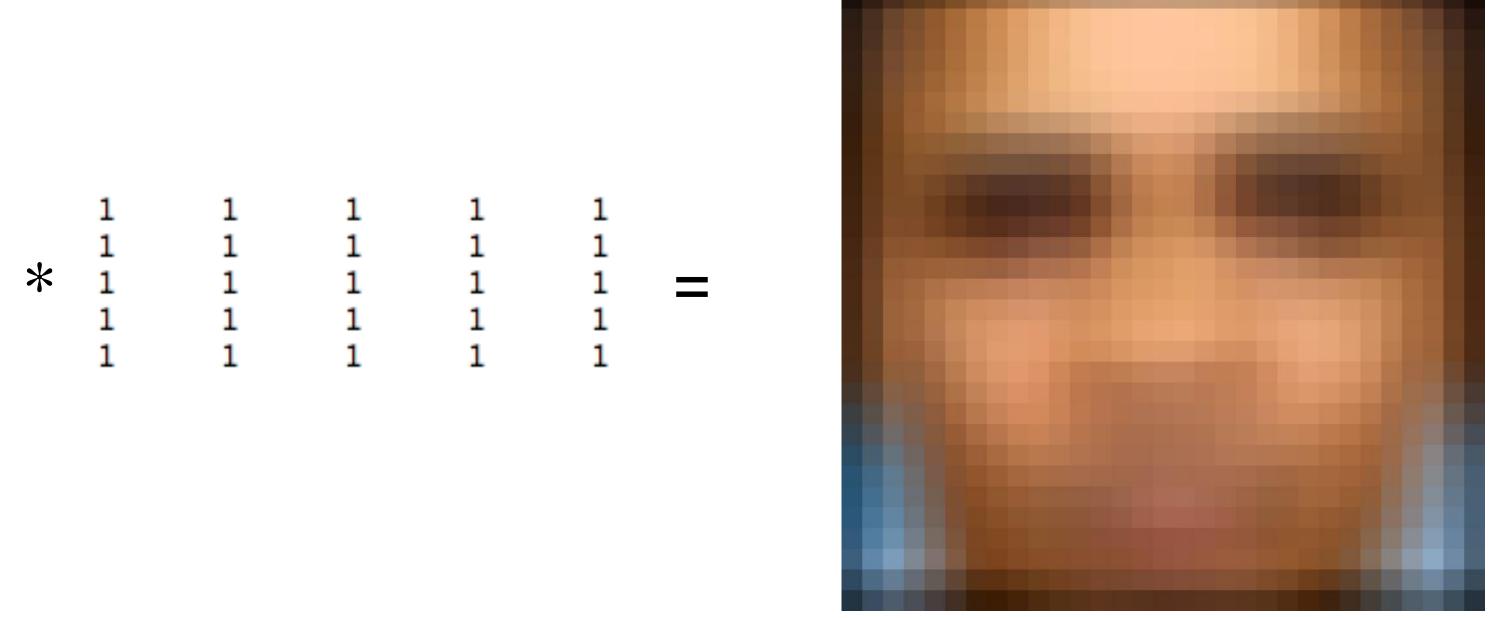


Ignore these locations: Make the computation undefined for the top and

2. Pad the image with zeros: Return zero whenever a value of I is required

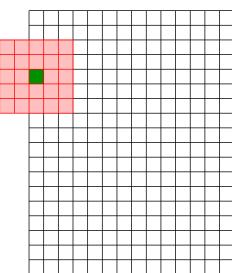


Notice **decrease** in brightness at edges



Three standard ways to deal with boundaries:

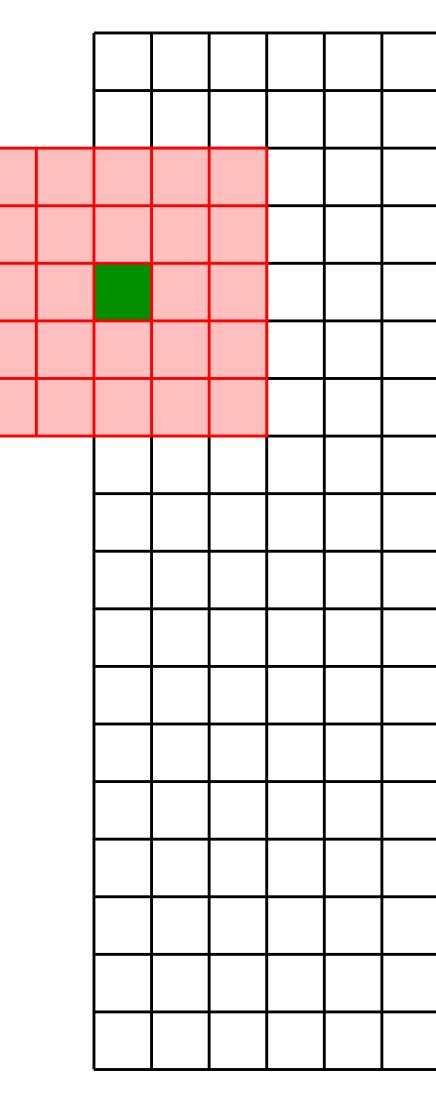
- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y
- leftmost column wraps around to the rightmost column

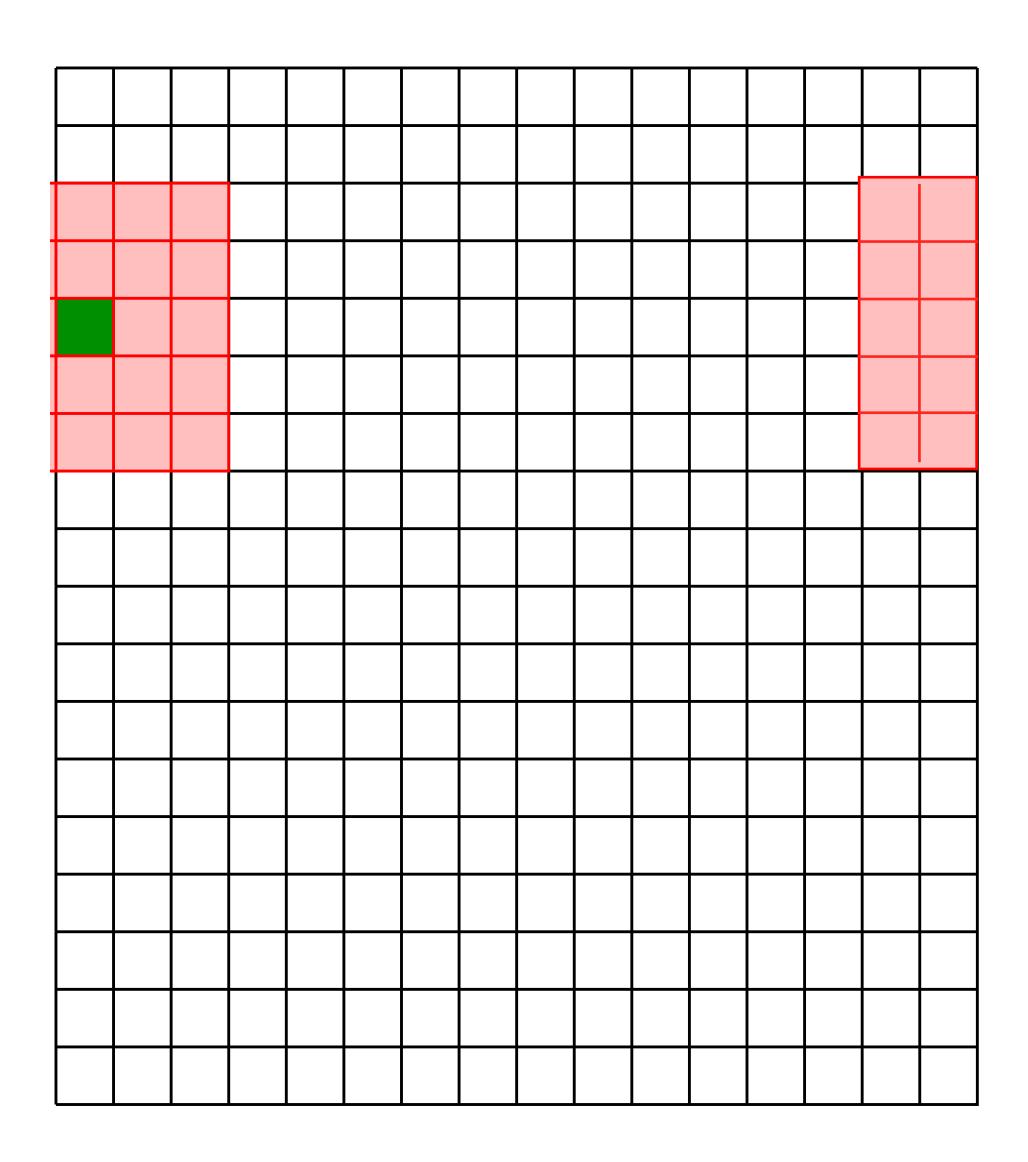


1. Ignore these locations: Make the computation undefined for the top and

2. Pad the image with zeros: Return zero whenever a value of I is required

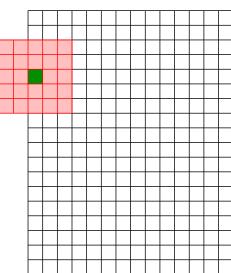
3. Assume periodicity: The top row wraps around to the bottom row; the





Four standard ways to deal with boundaries:

- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y
- leftmost column wraps around to the rightmost column

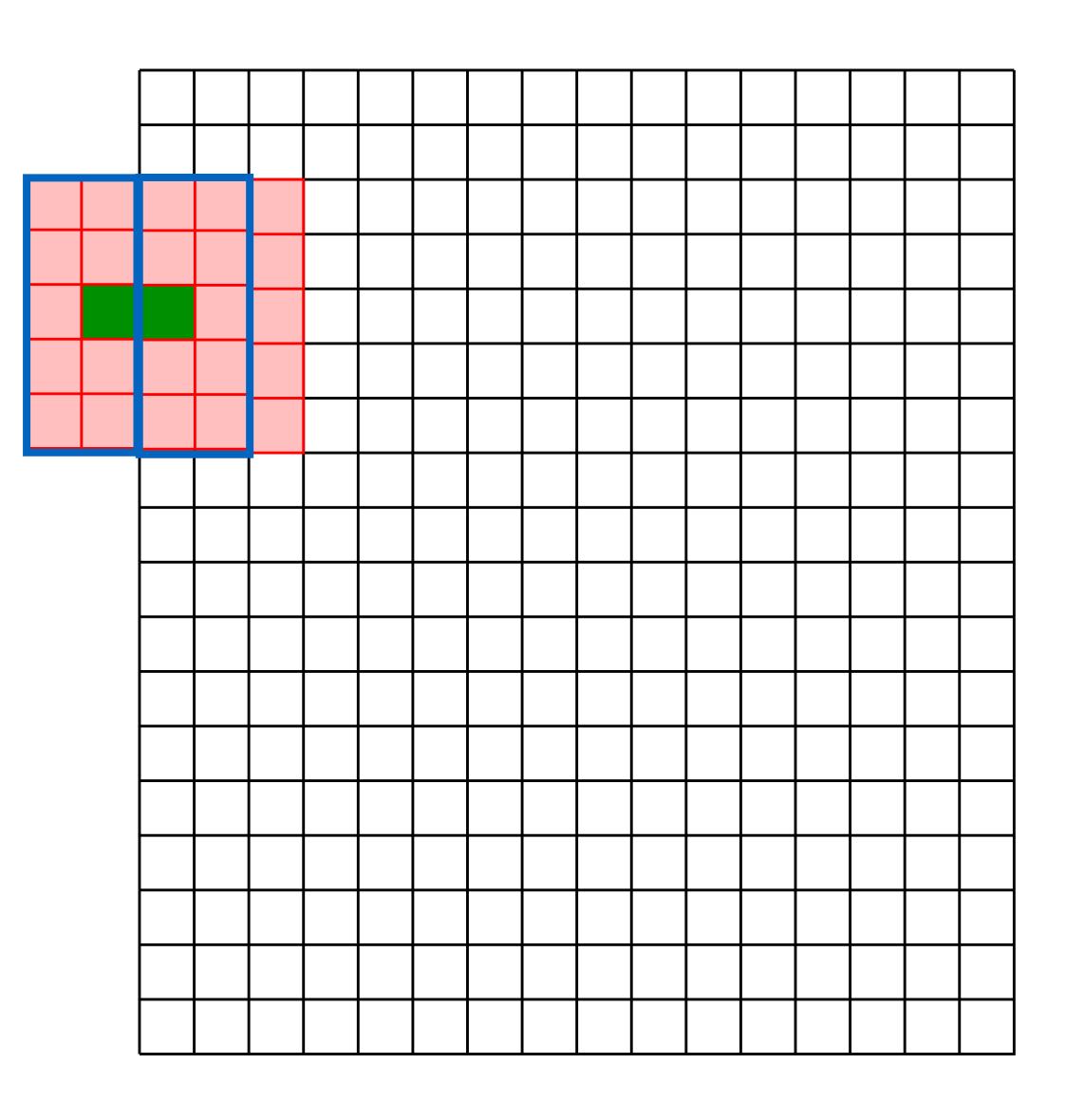


Ignore these locations: Make the computation undefined for the top and

2. Pad the image with zeros: Return zero whenever a value of I is required

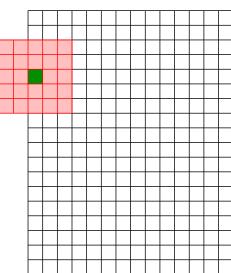
3. Assume periodicity: The top row wraps around to the bottom row; the

4. **Reflect boarder**: Copy rows/columns locally by reflecting over the edge



Four standard ways to deal with boundaries:

- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y
- leftmost column wraps around to the rightmost column



Ignore these locations: Make the computation undefined for the top and

2. Pad the image with zeros: Return zero whenever a value of I is required

3. Assume periodicity: The top row wraps around to the bottom row; the

4. **Reflect boarder**: Copy rows/columns locally by reflecting over the edge