CPSC 425: Computer Vision

Lecture 4: Image Filtering (continued)
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

- Recap L3, more examples
- Box, Gaussian, Pillbox filters
- Low/High Pass Filters
- Separability

Readings:

- Today's Lecture: none
- Next Lecture: Forsyth \& Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images

Linear Filter Example

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

A short exercise ...

Example 1: Warm up

0	0	0
0	1	0
0	0	0

Filter

Result

Example 1: Warm up

Original

0	0	0
0	1	0
0	0	0

Filter

Result
(no change)

Example 2:

0	0	0
0	0	1
0	0	0

Filter

Result

Example 2:

Original

0	0	0
0	0	1
0	0	0

Filter

Result
(sift left by 1 pixel)

Example 3:

Original

Filter
(filter sums to 1)

Example 3:

Original

Filter
(filter sums to 1)

Result
(blur with a box filter)

Example 4:

Original

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Result

Example 4:

Original

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Result
(sharpening)

Example 4: Sharpening

Before

After

Example 4: Sharpening

Before

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3	
4	5	6	
7	8	9	
Image			

Image

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3
4	5	6
7	8	9

Image

20

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

Filter
(rotated by 180)

$!$	4	6
f	$ə$	p
0	q	e

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3	
4	5	6	
7	8	9	
Image			

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
\begin{aligned}
I^{\prime}(X, Y) & =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j) \\
& =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j) I(X+i, Y+j)
\end{aligned}
$$

Note: if $F(X, Y)=F(-X,-Y)$ then correlation $=$ convolution.

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

Basic operations in CNNs are convolutions (with learned linear filters) followed by non-linear functions.

Note: This results in non-linear filters.

Linear Filters: Properties

2. (3.3) Convolution as matrix multiplication

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Same linear operation is applied everywhere, no dependence on absolute position

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Up until now...

- The correlation of $F(X, Y)$ and $I(X, Y)$ is:

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { output }}}{F(i, j) I(X+i, Y+j)} \underset{\text { filter }}{\text { image (signal) }}
$$

- Visual interpretation: Superimpose the filter F on the image I at (X, Y), perform an element-wise multiply, and sum up the values
- Convolution is like correlation except filter rotated 180°
if $F(X, Y)=F(-X,-Y)$ then correlation $=$ convolution.

Up until now...

Ways to handle boundaries

- Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
- Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
- Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to rightmost column.

Simple examples of filtering:

- copy, shift, smoothing, sharpening

Linear filter properties:

- superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be expressed as a convolution

Smoothing

Smoothing (or blurring) is an important operation in a lot of computer vision

- Captured images are naturally noisy, smoothing allows removal of noise
- It is important for re-scaling of images, to avoid sampling artifacts
- Fake image defocus (e.g., depth of field) for artistic effects
(many other uses as well)

Smoothing with a Box Filter

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Filter has equal positive values that sum up to 1
Replaces each pixel with the average of itself and its local neighborhood

- Box filter is also referred to as average filter or mean filter

Why should the values sum to 1 ?

Smoothing with a Box Filter

Forsyth \& Ponce (2nd ed.) Figure 4.1 (left and middle)

Smoothing with a Box Filter

Gonzales \& Woods (3rd ed.) Figure 3.3

Smoothing with a Box Filter

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- e.g., Image in which the center point is 1 and every other point is 0
- Point spread function is a box

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Filter

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

0	0	0	0	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	0	0	0	0

Result

Smoothing: Circular Kernel

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Pillbox Filter

Let the radius (i.e., half diameter) of the filter be r
In a contentious domain, a 2D (circular) pillbox filter, $f(x, y)$, is defined as:

$$
f(x, y)=\frac{1}{\pi r^{2}} \begin{cases}1 & \text { if } x^{2}+y^{2} \leq r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

The scaling constant, $\frac{1}{\pi r^{2}}$, ensures that the area of the filter is one

Pillbox Filter

Original

11×11 Pillbox

Pillbox Filter

Hubble Deep View

With Circular Blur

Smoothing

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model

- for phenomena (that are the sum of other small effects)
- whenever the Central Limit Theorem applies

Gaussian Blur

Gaussian kernels are often used for smoothing and resizing images

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Forsyth \& Ponce (2nd ed.) Figure 4.2

Example 6: Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
\begin{gathered}
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
\text { Standard Deviation }
\end{gathered}
$$

Forsyth \& Ponce (2nd ed.) Figure 4.2

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

1. Define a continuous 2D function
2. Discretize it by evaluating this function on the discrete pixel positions to obtain a filter

Forsyth \& Ponce (2nd ed.) Figure 4.2

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)$	$G_{\sigma}(0,1)$	$G_{\sigma}(1,1)$
$G_{\sigma}(-1,0)$	$G_{\sigma}(0,0)$	$G_{\sigma}(1,0)$
$G_{\sigma}(-1,-1)$	$G_{\sigma}(0,-1)$	$G_{\sigma}(1,-1)$

Example 6: Smoothing with a Gaussian

Quantized an truncated $\mathbf{3 \times 3}$ Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

\uparrow	\uparrow	\uparrow
\uparrow	\downarrow	\uparrow
\uparrow	\uparrow	\uparrow

What happens if σ is larger?

- More blur

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?
What happens if σ is smaller?

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

What happens if σ is larger?
What happens if σ is smaller?

- Less blur

Smoothing with a Box Filter

Forsyth \& Ponce (2nd ed.) Figure 4.1 (left and middle)

Smoothing with a Gaussian

Forsyth \& Ponce (2nd ed.) Figure 4.1 (left and right)

Box vs. Gaussian Filter

original

7×7 Gaussian

7×7 box

Fun: How to get shadow effect?

University of British Columbia

Fun: How to get shadow effect?

University of British Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original (with some offset)

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Gaussian: Area Under the Curve

Example 6: Smoothing with a Gaussian

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Better version of the Gaussian filter:

- sums to 1 (normalized)
- captures $\pm 2 \sigma$

$\frac{1}{273}$| 1 | 4 | 7 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 26 | 16 | 4 |
| 7 | 26 | 41 | 26 | 7 |
| 4 | 16 | 26 | 16 | 4 |
| 1 | 4 | 7 | 4 | 1 |

A good guideline for the Gaussian filter is to capture $\pm 3 \sigma$, for $\sigma=1=>7 \times 7$ filter

Smoothing Summary

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Point spread function is a box

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model

- for phenomena (that are the sum of other small effects)
- whenever the Central Limit Theorem applies (avg of many independent rvs \rightarrow normal dist)

Lets talk about efficiency

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Separability: Box Filter Example

$\begin{aligned} & \text { O} \\ & \times \end{aligned}$	0	0	0	0	0	0		0	0	0		0
	0	0	0	0	0	0		0	0	0		0
	0	0	0	90	90	90	0	90	90	0		0
	0	0	0	90	90	90		90	90	0		0
	0	0	0	90	0	90		90	90	0		0
T	0	0	0	90	90	90		90	90	0		0
	0	0	0	0	0	0		0	0	0		0
¢	0	0	0	0	0		0	0	0	0		0
\boldsymbol{O}	0	0	90	0	0	0	0	0	0	0		0
	0	0	0	0	0	0		0	0	0		0

$$
F(X, Y)=F(X) F(Y)
$$

filter

1	1	1
1	1	1
1	1	1

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
10	30	10	10	0	0	0	0		

Separability: Box Filter Example

$\begin{aligned} & \text { o } \\ & \times \\ & \end{aligned}$	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	0	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		
	0	0	90	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		

$$
F(X, Y)=F(X) F(Y)
$$

filter
$\begin{array}{\|l\|l\|l\|} \hline 1 & 1 \\ \hline 1 & 1 \\ \hline \end{array}$
1

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

$$
I(X, Y)
$$

image

	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	30	60	90	90	90	60	30	
	0	30	60	90	90	90	60	30	
	0	30	30	60	60	90	60	30	
	0	30	60	90	90	90	60	30	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	30	30	30	30	0	0	0	0	
	0	0	0	0	0	0	0	0	

Separability: Box Filter Example

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

filter

$$
I(X, Y)
$$

image

$$
F(X, Y)=F(X) F(Y)
$$

1	1	1
	1	1
	1	1
	1	1

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

output $I^{\prime}(X, Y)$

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

Separability: Proof

Convolution with $F(X, Y)=F(X) F(Y)$ can be performed as $2 \times 1 \mathrm{D}$ convolutions 6 4.2

Separability: How do you know if filter is separable?

If a 2D filter can be expressed as an outer product of two 1D filters

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
\begin{aligned}
G_{\sigma}(x, y)= & \frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac { 1 } { (\frac { 1 } { \sqrt { 2 \pi } \sigma } \operatorname { e x p } ^ { - \frac { x ^ { 2 } } { 2 \sigma ^ { 2 } } }) } \left(\begin{array}{c}
\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right) \\
\\
\text { function of } \mathrm{x} \\
\text { function of } \mathrm{y}
\end{array}\right.\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
\begin{aligned}
G_{\sigma}(x, y)= & \frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
= & \left(\begin{array}{cc}
\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right) & \left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right) \\
& \text { function of } \mathrm{x} \\
\text { function of } \mathrm{y}
\end{array}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

Gaussian Blur

- 2D Gaussian filter can be thought of as an outer product or convolution of row and column filters

Example: Separable Gaussian Filter

$$
\frac{1}{16} \begin{array}{|c|c|c|c|}
\hline 1 & 4 & 6 & 4 \\
\hline
\end{array} \quad \otimes \frac{1}{16} \begin{array}{|c|}
\hline 1 \\
\hline 4 \\
\hline 6 \\
\hline 4 \\
\hline 1 \\
\hline
\end{array}=\frac{1}{256} \begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
$$

Example: Separable Gaussian Filter

$\frac{1}{16}$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 6 | 4 | 1 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$\otimes \frac{1}{16}$| 1 |
| :---: |
| 4 |
| 1 4 6 4 1
 4 1
 4 16 24 16 4
 1
 6 24 36 24 6
 4 16 24 16 4
 1 4 6 4 1 |

Efficient Implementation: Separability

2 (13)

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $\quad m^{2} \times n^{2}$ multiplications

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $m^{2} \times n^{2}$ multiplications

Separable 2D Gaussian:

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $\quad n \times n$ pixels in (X, Y)
Total: $\quad m^{2} \times n^{2}$ multiplications

Separable 2D Gaussian:

$$
\begin{aligned}
& \text { At each pixel, }(X, Y) \text {, there are } \\
& \text { There are } \\
& \hline \text { Total: } \\
& n \times n
\end{aligned} \begin{aligned}
& \text { multiplications } \\
& \text { pixels in }(X, Y)
\end{aligned}
$$

Separable Filtering

2D Gaussian blur by horizontal/vertical blur

horizontal
vertical

vertical
horizontal

Separable Filtering

Several useful filters can be applied as independent row and column operations

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

(b) bilinear

$\frac{1}{256}$| 1 | 4 | 6 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 24 | 16 | 4 |
| 6 | 24 | 36 | 24 | 6 |
| 4 | 16 | 24 | 16 | 4 |
| 1 | 4 | 6 | 4 | 1 |

(c) "Gaussian"

$\frac{1}{4}$| 1 | -2 | 1 |
| :---: | :---: | :---: |
| -2 | 4 | -2 |
| 1 | -2 | 1 |

$$
\begin{array}{|l|l|l|}
\hline \frac{1}{2} & \hline 1 & -2 \\
\hline
\end{array}
$$

(e) corner

Example 7: Smoothing with a Pillbox

The 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable \rightarrow harder to implement efficiently

Example 7: Smoothing with a Pillbox

Original

11×11 Pillbox

Low-pass Filtering = "Smoothing"

Box Filter

Pillbox Filter

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Low-Pass Filtering in 1D
$\ell(4)$

Assignment 1: Low/High Pass Filtering

Original
$I(x, y)$

Low-Pass Filter
$I(x, y) * g(x, y)$

High-Pass Filter

$$
I(x, y)-I(x, y) * g(x, y)
$$

Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

Low-pass filtered version

High-pass filtered version

