
Lecture 4: Image Filtering (continued)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today
Topics:

— Recap L3, more examples
— Box, Gaussian, Pillbox filters

Readings:

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images

— Low/High Pass Filters
— Separability

2

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)3

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filters: Boundary Effects

4

1. Ignore these locations: Make the computation undefined for the top and
 bottom k rows and the leftmost and rightmost k columns

	2. Pad the image with zeros: Return zero whenever a value of I is required
 at some position outside the defined limits of X and Y

	3. Assume periodicity: The top row wraps around to the bottom row; the
 leftmost column wraps around to the rightmost column

	4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects
Four standard ways to deal with boundaries:

A short exercise …

6

Example 1: Warm up

00
0
0 0 0

0
0

1

Original Filter Result

?
7

Example 1: Warm up

00
0
0 0 0

0
0

1

Original Filter Result
(no change)

8

Example 2:

00
0
0 0 0

0
0 1

Original Filter Result

?
9

Example 2:

00
0
0 0 0

0
0 1

Original Filter Result
(sift left by 1 pixel)

10

1 1 1
1 1 1
1 1 1

1
9

Example 3:

Original Filter Result
(filter sums to 1)

?
11

1 1 1
1 1 1
1 1 1

1
9

Example 3:

Original Filter Result
(blur with a box filter)(filter sums to 1)

12

Example 4:

00
0
0 0 0

0
0 1 1 1

1 1 1
1 1 1

1
92

Original Filter
(filter sums to 1)

Result

?
13

Example 4:

00
0
0 0 0

0
0 1 1 1

1 1 1
1 1 1

1
92

Original Filter
(filter sums to 1)

Result
(sharpening)

14
Why?

Example 4: Sharpening

Before After

15

16

Example 4: Sharpening

Before After
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Linear Filters: Correlation vs. Convolution

Definition: Correlation

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

17

Linear Filters: Correlation vs. Convolution

Definition: Correlation

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

Definition: Convolution
I 0(X,Y) =

kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

18

Linear Filters: Correlation vs. Convolution

Definition: Correlation

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

19

a b c

d e f

g h i

1 2 3

4 5 6

7 8 9
Filter Image Output

= 1a + 2b + 3c
 + 4d + 5e + 6f
 + 7g + 8h + 9i

Linear Filters: Correlation vs. Convolution

Definition: Correlation

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

Definition: Convolution
I 0(X,Y) =

kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

20

a b c

d e f

g h i

1 2 3

4 5 6

7 8 9
Filter Image Output

= 9a + 8b + 7c
 + 6d + 5e + 4f
 + 3g + 2h + 1i

Linear Filters: Correlation vs. Convolution

Definition: Correlation

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

Definition: Convolution
I 0(X,Y) =

kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

21

a b c

d e f

g h i

1 2 3

4 5 6

7 8 9
Filter Image Output

= 9a + 8b + 7c
 + 6d + 5e + 4f
 + 3g + 2h + 1i

Filter
(rotated by 180)

Note: if then correlation = convolution.

Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

F (X,Y) = F (�X,�Y)
22

Preview: Why convolutions are important?

Basic operations in CNNs are convolutions (with learned linear filters) followed
by non-linear functions.

Note: This results in non-linear filters.

Who has heard of Convolutional Neural Networks (CNNs)?

23

Convolution as matrix multiplication

Linear Filters: Properties
3.3

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

25

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Y

X X

Y

Same linear operation is applied everywhere, no dependence on absolute position

26

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

27

— Visual interpretation: Superimpose the filter on the image at ,
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter rotated 180°

— The correlation of and is:

Up until now…

28

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

 if then correlation = convolution.F (X,Y) = F (�X,�Y)

28

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

Ways to handle boundaries
– Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
– Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
– Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to

rightmost column.

Simple examples of filtering:
— copy, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be
expressed as a convolution

29

Up until now…

Smoothing (or blurring) is an important operation in a lot of computer vision

— Captured images are naturally noisy, smoothing allows removal of noise

— It is important for re-scaling of images, to avoid sampling artifacts

— Fake image defocus (e.g., depth of field) for artistic effects

(many other uses as well)

Smoothing

Smoothing with a Box Filter

1 1 1
1 1 1
1 1 1

1
9

Filter has equal positive values that sum up to 1
Replaces each pixel with the average of itself and its local neighborhood

— Box filter is also referred to as average filter or mean filter

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

31

Why should the values sum to 1?

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

32

Smoothing with a Box Filter

33

Original 3x3

9x9

35x35

5x5

15x15

Gonzales & Woods (3rd ed.) Figure 3.3

Smoothing with a Box Filter

34

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— e.g., Image in which the center point is 1 and every other point is 0
— Point spread function is a box

Image
Filter

Result

Smoothing with a Box Filter

35

Smoothing: Circular Kernel

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

The scaling constant, , ensures that the area of the filter is one

36

Pillbox Filter

Let the radius (i.e., half diameter) of the filter be

In a contentious domain, a 2D (circular) pillbox filter, , is defined as:

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2 r2

0 otherwise

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2 r2

0 otherwise

1

⇡r2

r

= +

Original 11 x 11 Pillbox

Pillbox Filter

Pillbox Filter

38
Images: yehar.com

Hubble Deep View With Circular Blur

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

Smoothing

Gaussian Blur

40

Gaussian Blur
• Gaussian kernel

11

1D 2D

12.2

Gaussian Blur
• Gaussian kernel

11

1D 2D

12.2

1D 2D

⇤ =

Gaussian kernels are often used for smoothing and resizing images

Smoothing with a Gaussian

41

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.24.1

Standard Deviation

Example 6: Smoothing with a Gaussian

42

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

1. Define a continuous 2D function

2. Discretize it by evaluating this function on the
discrete pixel positions to obtain a filter

Smoothing with a Gaussian

44

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

45

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

With :

46

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

Example 6: Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

What happens if is larger?� = 1

— More blur

Example 6: Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

What happens if is smaller?� = 1

Example 6: Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

What happens if is larger?� = 1

What happens if is smaller?� = 1

— Less blur

Example 6: Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

51

Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

52

Smoothing with a Gaussian

Box vs. Gaussian Filter

53

7x7 Gaussian

7x7 box

original

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

54

University of
British

Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

55

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

University of
British

Columbia

With :

56

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

With :

57

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

truncated too much

does not sum to 1

58

σ σσσ σσσσ

68%

99.99%

99.7%

95%

Gaussian: Area Under the Curve

With :

59

Example 6: Smoothing with a Gaussian

� = 1 0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Better version of the Gaussian filter:

— sums to 1 (normalized)
— captures ±2�

A good guideline for the Gaussian filter is to capture , for => 7x7 filter ±3� � = 1

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Point spread function is a box

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies (avg of many independent rvs → normal dist)

60

Smoothing Summary

Lets talk about efficiency

61

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter
— Then, convolve each column with a 1D filter
— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

62

Separability: Box Filter Example

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

1
1
1

1

3

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

I 0(X,Y)output

F (X,Y) = F (X)F (Y) F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

Separability: Proof

4.2

F (X,Y) = F (X)F (Y)Convolution with can be performed as 2 x 1D convolutions

If a 2D filter can be expressed as an outer product of two 1D filters

Separability: How do you know if filter is separable?

1 1 1
1 1 1
1 1 1

1

9 1 1 11

3

1
1
1

1

3�=

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

function of x function of y

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

function of x function of y

Gaussian Blur
• 2D Gaussian filter can be thought of as an outer product or

convolution of row and column filters

71

=

⇤

Example: Separable Gaussian Filter

72

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

73

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

74

Efficient Implementation: Separability
4.3

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Total: multiplications2m⇥ n2

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

At each pixel, , there are multiplications
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Separable Filtering

2D Gaussian blur by horizontal/vertical blur

78

horizontal

vertical horizontal

vertical

Separable Filtering

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1
K2

1 1 · · · 1

1 1 · · · 1

...
... 1

...
1 1 · · · 1

1
16

1 2 1

2 4 2

1 2 1

1
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
8

�1 0 1

�2 0 2

�1 0 1

1
4

1 �2 1

�2 4 �2

1 �2 1

1
K

1 1 · · · 1
1
4 1 2 1

1
16 1 4 6 4 1

1
2 �1 0 1

1
2 1 �2 1

(a) box, K = 5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Several useful filters can be applied as independent row and column operations

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

A 2D pillbox is rotationally invariant but not separable → harder to implement
efficiently

80

Example 7: Smoothing with a Pillbox

81

Example 7: Smoothing with a Pillbox

Original 11 x 11 Pillbox

Low-pass Filtering = “Smoothing”

82

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the image, only low frequencies remain

??

83

How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

?

84

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

85

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

86

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

87

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

88

=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

89

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

90

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

91

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you
express this

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

92

=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Low-Pass Filtering in 1D

93

4.4

Assignment 1: Low/High Pass Filtering

94

Original Low-Pass Filter High-Pass Filter

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

95 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

96 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

97 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

