

CPSC 425: Computer Vision

Lecture 5: Image Filtering (final)

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- —Linear Filtering recap
- Efficient convolution, Fourier aside

— Non-linear Filters:

Median, ReLU, Bilateral Filter

Readings:

- Today's Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 29th
- Quiz 1: Due tomorrow (opens up after class), 15 min, 4 Questions

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$\int_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
- 4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Lecture 4: Re-cap

Linear filtering (one interpretation):

- new pixels are a weighted sum of original pixel values
- "filter" defines weights

Linear filtering (another interpretation):

- each pixel creates a scaled copy of point spread function in its location
- "filter" specifies the point spread function

Low-pass Filtering = "Smoothing"

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Example: Separable Filter

Gaussian Blur

2D Gaussian filter can be thought of as an **outer product** or **convolution** of row and column filters

Assignment 1: Low/High Pass Filtering

Original

I(x, y)

Low-Pass Filter

I(x,y) * g(x,y)

High-Pass Filter

$$I(x,y) - I(x,y) * g(x,y)$$

Point Spread Function

Optional subtitle

0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0					0	9	8	7	0	0	0	0
0	0	1	0	0	0	0	0			7	2	0	6	5	4	0	0	0	0
0	0	0	0	0	0	0	0	*	1		3	0	3	2		0	0	0	0
0	0	0	0	0	0	0	0		4	8	6	0	0	0	0	9	8	7	0
0	0	0	0	0		0	0			ð	9	0	0	0	0	6	5	4	0
0	0	0	0	0	0	0	0					0	0	0	0	3	2	T	0
0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0

Point Spread Function

Optional subtitle

I	1	1	2	3	0	0	0					0	0	0	0	0	0	0	0
ı	Τ	1	2	3	0	0	0					0	9	8	7	0	0	0	0
	1	T	2	3	0	0	0			7	2	0	6	5	4	0	0	0	0
4	4	4	5	6	0	0	0	*	1	–	3	0	3	2	_	0	0	0	0
7	7	7	8	9	0	0	0		7	0	9	0	0	0	0	9	8	7	0
0	0	0	0	0		0	0			O	7	0	0	0	0	6	5	4	0
0	0	0	0	0	0	0	0					0	0	0	0	3	2		0
0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0

Advanced Convolution Topics

- Multiple filters
- Fourier transforms

Linear Filters: Properties

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X,Y) be a digital image. Let F and G be digital filters

- Convolution is associative. That is,

$$G \otimes (F \otimes I(X,Y)) = (G \otimes F) \otimes I(X,Y)$$

— Convolution is **symmetric**. That is,

$$(G \otimes F) \otimes I(X,Y) = (F \otimes G) \otimes I(X,Y)$$

Convolving I(X,Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X,Y) with filter $G\otimes F=F\otimes G$

Note: Correlation, in general, is not associative. (think of subtraction)

Symmetricity Example

```
B=
A=
[[1 1 6] [[6 6 4]
[4 1 7] [1 9 5]
 [9 0 6]] [3 3 8]]
```

```
B conv A=
A conv B=
[[ 40 84 105] [[ 40 84 105]
[ 97 137 130] [ 97 137 130]
              [ 96 107 83]]
 [ 96 107 83]]
```

$$conv(A, B) = conv(B, A)$$

$$corr(A,B) \neq corr(B,A)$$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X,Y) be a digital image. Let F and G be digital filters

- Convolution is associative. That is,

$$G \otimes (F \otimes I(X,Y)) = (G \otimes F) \otimes I(X,Y)$$

— Convolution is **symmetric**. That is,

$$(G \otimes F) \otimes I(X,Y) = (F \otimes G) \otimes I(X,Y)$$

Convolving I(X,Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X,Y) with filter $G\otimes F=F\otimes G$

Note: Correlation, in general, is not associative. (think of subtraction)

filter = boxfilter(3) signal.correlate2d(filter, filter, full')

 \otimes

1	1	1
1	1	1
1	1	1

= -

1	2	ാ	2	1
2	4	60	4	2
3	6	တ	6	3
2	4	6	4	2
1	2	3	2	1

3x3 **Box**

3x3 **Box**

Treat one filter as padded "image"

Note, in this case you have to pad maximally until two filters no longer overlap

9	0	0	1	1	1	0	0	$\otimes \frac{1}{9}$	1 1 1 1 1 1	$=\frac{1}{81}$				
	0	0	0 3x	0 3 B	0 0	0	0		3x3 Box			utp		

Treat one filter as padded "image"

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0
$\frac{1}{9}$	0	0	1	1	1	0	0
9	0	0	1	1	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$$> \frac{1}{9}$$

$$\frac{1}{1}$$

$$\frac{1}{1}$$

$$\frac{1}{1}$$

$$\frac{1}{1}$$

3x3 **Box**

Treat one filter as padded "image"

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0
$\frac{1}{9}$	0	0	1	1	1	0	0
J	0	0	1	1	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

	1	1	1	1
\otimes	$\frac{1}{9}$	1	1	1
	9	1	1	1
	'			

3x3 **Box**

Treat one filter as padded "image"

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0
$\frac{1}{9}$	0	0	1	1	1	0	0
9	0	0	1	1	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	U	0	0	U	0	0	0

	1	1	1	1
\otimes	$\frac{1}{9}$	1	1	1
	$\boldsymbol{\vartheta}$	1	1	1
		Зх	3 B	Box

3x3 **Box**

Treat one filter as padded "image"

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0
$\frac{1}{9}$	0	0	1	1	1	0	0
9	0	0	1	1	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

	1	1	7	1
\bigotimes	$\frac{0}{1}$	1	~	1
	9	1	1	1

1	2	3	2	1	
2	4	6	4	2	
3	6	9	6	3	
2	4	6	4	2	
1	2	3	2	1	

3x3 **Box**

Treat one filter as padded "image"

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0
$\frac{1}{9}$	0	0	1	1	1	0	0
9	0	0	1	1	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$$\frac{1}{9} = \frac{1}{1} = \frac{1}$$

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

3x3 **Box**

3x3 **Box**

filter = boxfilter(3) temp = signal.correlate2d(filter, filter, full') signal.correlate2d(filter, temp, 'full')

3x3 **Box**

3x3 **Box**

1	3	6	7	6	3	1
3	9	18	21	18	9	3
6	18	36	42	36	18	6
7	21	42	49	42	21	7
6	18	36	42	36	18	6
3	9	18	21	18	9	3
1	3	6	7	6	3	1

	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0

$$> \frac{1}{16} > \frac{1}{6} = \frac{1}{256}$$

	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
,					

1	4	6	4	1
4	16			

	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0

$$\otimes \frac{1}{16} = \frac{1}{256}$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Example: Separable Gaussian Filter

	0	0	0	0	0
	0	0	0	0	0
$\frac{1}{16}$	0	0	0	0	0
	0	0	0	0	0
	1	4	6	4	1
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0

$$\otimes \frac{1}{16} = \frac{1}{256}$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$(n+m-1) \times (n+m-1)$$

More broadly for a set of K filters of sizes $m_k \times m_k$ the resulting filter will have size:

$$\left(m_1 + \sum_{k=2}^{K} (m_k - 1)\right) \times \left(m_1 + \sum_{k=2}^{K} (m_k - 1)\right)$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_1}(x)$ and $G_{\sigma_2}(x)$ be be two 1D Gaussians

$$G_{\sigma_1}(x) \otimes G_{\sigma_2}(x) = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2}\sigma}(x)$

What follows is for fun (you will **NOT** be tested on this)

Convolution using Fourier Transforms

Convolution Theorem:

Let
$$i'(x,y)=f(x,y)\otimes i(x,y)$$
 then $\mathcal{I}'(w_x,w_y)=\mathcal{F}(w_x,w_y)\;\mathcal{I}(w_x,w_y)$

where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y), f(x, y) and i(x, y)

At the expense of two **Fourier** transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

What are "frequencies" in an image?

Spatial frequency

What are "frequencies" in an image?

Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

What are "frequencies" in an image?

Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Observation: low frequencies close to the center

What are "frequencies" in an image?

Spatial frequency

What are "frequencies" in an image?

Spatial frequency

2D Fourier Transforms: Images

Image

Fourier Transform

2D Fourier Transforms: Images

Image

First (lowest) frequency, a.k.a. average

+ Second frequency

+ Third frequency

+ 50% of frequencies

2D Fourier Transforms: Kernels

Convolution using Fourier Transforms

Convolution Theorem:

$$i'(x,y) = f(x,y) \otimes i(x,y)$$

$$\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \, \mathcal{I}(w_x, w_y)$$

Image

Convolve

FFT

Multiply

Inverse FFT

What preceded was for fun (you will **NOT** be tested on it)

Assignment 1: Low/High Pass Filtering

Original

I(x, y)

Low-Pass Filter

I(x,y) * g(x,y)

High-Pass Filter

$$I(x,y) - I(x,y) * g(x,y)$$

Convolution using Fourier Transforms

General implementation of convolution:

At each pixel, (X,Y), there are $m \times m$ multiplications

There are

 $n \times n$ pixels in (X, Y)

Total:

 $m^2 \times n^2$ multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: $O(n^2 \log n)$

Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$

Worthwhile if image and kernel are both large

Non-linear Filters

We've seen that linear filters can perform a variety of image transformations

- shifting
- smoothing
- sharpening

In some applications, better performance can be obtained by using **non-linear filters**.

For example, the median filter selects the **median** value from each pixel's neighborhood.

Non-linear Filtering

"shot" noise

gaussian blurred

median filtered

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Output

Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and pepper' noise or 'shot' noise)

The median filter forces points with distinct values to be more like their neighbors

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Suppose we want to smooth a noisy step function

A Gaussian kernel performs a weighted average of points over a spatial neighbourhood..

But this averages points both at the top and bottom of the step — blurring

Bilateral Filter idea: look at distances in range (value) as well as space x,y

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

- The filter weights also depend on range distance from the center pixel
- Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

Gaussian filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^{2}+y^{2}}{2\sigma_{d}^{2}}} \exp^{-\frac{(I(X+x,Y+y)-I(X,Y))^{2}}{2\sigma_{r}^{2}}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}}$$

$$\exp^{-\frac{x^{2}+y^{2}}{2\sigma_{d}^{2}}} \exp^{-\frac{(I(X+x,Y+y)-I(X,Y))^{2}}{2\sigma_{r}^{2}}}$$

range

kernel

(with appropriate normalization)

Normalised

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Domain Kernel

$$\sigma_d = 1$$

			-
	0.08	0.12	0.08
	0.12	0.20	0.12
1	0.08	0.12	0.08

Normalised

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255

25 25 | 255 | 230 | 255 25 | 255 | 255 | 255 | image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Range Kernel

$$\sigma_r = 0.45$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

(differences based on centre pixel)

Domain Kernel

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Normalised

image I(X,Y)

						_
25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Domain Kernel

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel

 $\sigma_r = 0.45$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

Range * Domain Kernel

multiply	80.0	0.12	0.02
	0.12	0.20	0.01
	0.08	0.12	0.01

(differences based on centre pixel)

Normalised

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Domain Kernel

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel

$$\sigma_r = 0.45$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

multiply

Range * Domain Kernel

sum to 1

0.11 0.16 0.03 0.16 | 0.26 | 0.01 0.11 0.16 0.01

(differences based on centre pixel)

Normalised

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image	I	(X,	Y)
-------	---	-----	----

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Domain Kernel

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel

$$\sigma_r = 0.45$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

ply	0.08	0.12	0.02
———	0.12	0.20	0.01
	0.08	0.12	0.01

(differences based on centre pixel)

Range * Domain Kernel

Bilateral Filter

Normalised

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Domain Kernel

$$\sigma_d = 1$$

Gaussian Filter (only)

Range Kernel

$$\sigma_r = 0.45$$

0.98	0.98	0.2	
1	1	0.1	
0.98	1	0.1	

multiply	0.08	0.12	0.02
	0.12	0.20	0.01
	80.0	0.12	0.01

(differences based on centre pixel)

Range * Domain Kernel

0.9 0.1 | 0.1 | = 0.10 0.1

Bilateral Filter

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of Bilateral Filter

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive **noise** and **blur**

But there are problems with flash images:

- colour is often unnatural
- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

Bilateral Filter: "Modern" take

https://neuralbf.github.io/

Morphology

Optional subtitle

Threshold function in local structuring element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Aside: Linear Filter with ReLU

Result of: Linear Image Filtering

After Non-linear ReLU

Summary

We covered two three non-linear filters: Median, Bilateral, ReLU

The **median filter** is a non-linear filter that selects the median in the neighbourhood

The **bilateral filter** is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties

Speeding-up Convolution can be achieved using separable filters or Fourier Transforms if the filter and image are both large

Fourier Transforms give us a way to think about image processing operations in Frequency Space, e.g., low pass filter = removing high frequency components