CPSC 425: Computer Vision

Lecture 5: Image Filtering (final)
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

-Linear Filtering recap
-Efficient convolution, Fourier aside

\author{

- Non-linear Filters:
 Median, ReLU, Bilateral Filter
}

Readings:

- Today’s Lecture: Szeliski 3.3-3.4, Forsyth \& Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 29th
- Quiz 1: Due tomorrow (opens up after class), 15 min, 4 Questions

Linear Filter Example

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Lecture 4: Re-cap

Linear filtering (one interpretation):

- new pixels are a weighted sum of original pixel values
- "filter" defines weights

Linear filtering (another interpretation):

- each pixel creates a scaled copy of point spread function in its location
- "filter" specifies the point spread function

Low-pass Filtering = "Smoothing"

Box Filter

Pillbox Filter

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Example: Separable Filter

$$
\frac{1}{16} \begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array} \otimes \frac{1}{16} \begin{array}{|c|}
\hline 1 \\
\hline 4 \\
\hline 6 \\
\hline 4 \\
\hline 1 \\
\hline
\end{array}=\frac{1}{256} \begin{array}{|c|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
$$

Gaussian Blur

2D Gaussian filter can be thought of as an outer product or convolution of row and column filters

Assignment 1: Low/High Pass Filtering

Original
$I(x, y)$

Low-Pass Filter
$I(x, y) * g(x, y)$

High-Pass Filter

$$
I(x, y)-I(x, y) * g(x, y)
$$

Point Spread Function

Optional subtitle

0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	1	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	1	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	$*$	0	2	3					
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---						
4	5	6														
7	8	9														
0	9	8	7	0	0	0	0									
0	6	5	4	0	0	0	0									
0	3	2	1	0	0	0	0									
0	0	0	0	9	8	7	0									
0	0	0	0	6	5	4	0									
0	0	0	0	3	2	1	0									
0	0	0	0	0	0	0	0									

Point Spread Function

Optional subtitle

Advanced Convolution Topics

- Multiple filters
- Fourier transforms

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)
An operation is linear if it satisfies both superposition and scaling

Linear Filters: Additional Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image. Let F and G be digital filters

- Convolution is associative. That is,

$$
G \otimes(F \otimes I(X, Y))=(G \otimes F) \otimes I(X, Y)
$$

- Convolution is symmetric. That is,

$$
(G \otimes F) \otimes I(X, Y)=(F \otimes G) \otimes I(X, Y)
$$

Convolving $I(X, Y)$ with filter F and then convolving the result with filter G can be achieved in single step, namely convolving $I(X, Y)$ with filter $G \otimes F=F \otimes G$

Note: Correlation, in general, is not associative. (think of subtraction)

Symmetricity Example

$\left.\begin{array}{ll}\mathrm{A}= & \mathrm{B}= \\ {\left[\begin{array}{lll}1 & 1 & 6\end{array}\right]} & {\left[\begin{array}{lll}6 & 6 & 4\end{array}\right]} \\ {\left[\begin{array}{lll}4 & 1 & 7\end{array}\right]} & {\left[\begin{array}{lll}1 & 9 & 5\end{array}\right]} \\ {\left[\begin{array}{lll}9 & 0 & 6\end{array}\right]} & {\left[\begin{array}{lll}3 & 3 & 8\end{array}\right]}\end{array}\right]$
A conv $\mathrm{B}=$
$\left[\begin{array}{lll}{[40} & 84 & 105\end{array}\right]$
$\left[\begin{array}{ccc}97 & 137 & 130\end{array}\right]$
$\left[\begin{array}{ccc}96 & 107 & 83\end{array}\right]$

B conv A=
$A \operatorname{corr} B=$
$\left[\begin{array}{lll}{[34} & 111 & 79\end{array}\right]$
$\left[\begin{array}{lrl}78 & 159 & 124\end{array}\right]$
$\left[\begin{array}{lrr}109 & 97 & 102\end{array}\right]$
B $\operatorname{corr} A=$
[$\left.\begin{array}{lll}102 & 97 & 109\end{array}\right]$
$\left[\begin{array}{lll}{[124} & 159 & 78\end{array}\right]$
[79 111 124$]$]

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
40 & 84 & 105
\end{array}\right]} \\
97 & 137 & 130
\end{array}\right] \quad \operatorname{conv}(A, B)=\operatorname{conv}(B, A)} \\
& \operatorname{conv}(A, B)=\operatorname{conv}(B, A) \\
& \operatorname{corr}(A, B) \neq \operatorname{corr}(B, A)
\end{aligned}
$$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image. Let F and G be digital filters

- Convolution is associative. That is,

$$
G \otimes(F \otimes I(X, Y))=(G \otimes F) \otimes I(X, Y)
$$

- Convolution is symmetric. That is,

$$
(G \otimes F) \otimes I(X, Y)=(F \otimes G) \otimes I(X, Y)
$$

Convolving $I(X, Y)$ with filter F and then convolving the result with filter G can be achieved in single step, namely convolving $I(X, Y)$ with filter $G \otimes F=F \otimes G$

Note: Correlation, in general, is not associative. (think of subtraction)

Example: Two Box Filters

filter = boxfilter(3)

```
signal.correlate2d(filter, filter,' full')
```


3×3 Box
3x3 Box

Example: Two Box Filters

Treat one filter as padded "image"
Note, in this case you have to pad maximally until two filters no longer overlap

Output

Example: Two Box Filters

Treat one filter as padded "image"

Output

Example: Two Box Filters

Treat one filter as padded "image"

Output

Example: Two Box Filters

Treat one filter as padded "image"

	1	2	3	2	1	
	2	4	6			

Output

Example: Two Box Filters

Treat one filter as padded "image"

	1	2	3	2	1	
	2	4	6	4	2	
	3	6	9	6	3	
	2	4	6	4	2	
	1	2	3	2	1	

Output

Example: Two Box Filters

Treat one filter as padded "image"

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Output

Example: Two Box Filters

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter,' full')
signal.correlate2d(filter, temp,' full')

Example: Separable Gaussian Filter

$$
\frac{1}{16} \begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 1 \\
\hline 16 \\
\hline 4 \\
\hline 6 \\
\hline 4 \\
\hline 1 \\
\hline
\end{array}=\frac{1}{256} \begin{array}{|c|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
$$

Example: Separable Gaussian Filter

Example: Separable Gaussian Filter

$\frac{1}{16}$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 6 | 4 | 1 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$\otimes \frac{1}{16}$| $\frac{1}{\|n\|}$ |
| :---: |
| 4
 1$=\frac{1}{256}, ~$ |

1	4	6	4	1
4	16			

Example: Separable Gaussian Filter

	0	0	0	0		0	$\otimes \frac{1}{16}$		$=\frac{1}{256}$							
	0	0	0	0		0										
	0	0	0	0		0			1	4		6	4		1	
	0	0	0	0		0			4	16		24	16		4	
$\frac{1}{16}$	1	4	6	4		1			6	2		36	2		6	
	0	0	0	0		0			4	16		24	16		4	
	0	0	0	0		0			1	4		6	4		1	
	0	0	0	0		0										
	0	0	0	0		0										

Example: Separable Gaussian Filter

$\frac{1}{16}$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 6 | 4 | 1 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$\otimes \frac{1}{16}$| 1 |
| :---: |
| 4 |
| 1 4 6 4 1
 4 1
 4 16 24 16 4
 1
 6 24 36 24 6
 4 16 24 16 4
 1 4 6 4 1 |

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$
(n+m-1) \times(n+m-1)
$$

More broadly for a set of K filters of sizes $m_{k} \times m_{k}$ the resulting filter will have size:

$$
\left(m_{1}+\sum_{k=2}^{K}\left(m_{k}-1\right)\right) \times\left(m_{1}+\sum_{k=2}^{K}\left(m_{k}-1\right)\right)
$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_{1}}(x)$ and $G_{\sigma_{2}}(x)$ be be two 1D Gaussians

$$
G_{\sigma_{1}}(x) \otimes G_{\sigma_{2}}(x)=G_{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}(x)
$$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2} \sigma}(x)$

What follows is for fun (you will NOT be tested on this)

Convolution using Fourier Transforms

Convolution Theorem:

$$
\begin{aligned}
& \text { Let } \quad i^{\prime}(x, y)=f(x, y) \otimes i(x, y) \\
& \text { then } \mathcal{I}^{\prime}\left(w_{x}, w_{y}\right)=\mathcal{F}\left(w_{x}, w_{y}\right) \mathcal{I}\left(w_{x}, w_{y}\right)
\end{aligned}
$$

where $\mathcal{I}^{\prime}\left(w_{x}, w_{y}\right), \mathcal{F}\left(w_{x}, w_{y}\right)$, and $\mathcal{I}\left(w_{x}, w_{y}\right)$ are Fourier transforms of $i^{\prime}(x, y)$, $f(x, y)$ and $i(x, y)$

At the expense of two Fourier transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

$f=4$

$f=5$

$f=6$

$f=7$

$f=8$

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

$f=4$

$f=6$

$f=7$

$f=8$

$f=9$

$$
f=10
$$

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Fourier Transform (you will NOT be tested on this)
What are "frequencies" in an image?
Spatial frequency

$\Theta=30^{\circ}$

$\Theta=150^{\circ}$

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

2D Fourier Transforms: Images

$$
f(x, y)
$$

Image

$$
F\left(\omega_{x}, \omega_{y}\right)
$$

Fourier Transform

2D Fourier Transforms: Images

Aside: You will not be tested on this ...

Image
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410\#40410

Aside: You will not be tested on this ...

First (lowest) frequency, a.k.a. average

Aside: You will not be tested on this ...

+ Second frequency

Aside: You will not be tested on this ...

+ Third frequency

Aside: You will not be tested on this ...

$+50 \%$ of frequencies
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410\#40410

Aside: You will not be tested on this ...

2D Fourier Transforms: Kernels

Convolution using Fourier Transforms

Convolution Theorem: $\quad i^{\prime}(x, y)=f(x, y) \otimes i(x, y)$

$$
\mathcal{I}^{\prime}\left(w_{x}, w_{y}\right)=\mathcal{F}\left(w_{x}, w_{y}\right) \mathcal{I}\left(w_{x}, w_{y}\right)
$$

What preceded was for fun
 (you will NOT be tested on it)

Assignment 1: Low/High Pass Filtering

Original
$I(x, y)$

Low-Pass Filter
$I(x, y) * g(x, y)$

High-Pass Filter

$$
I(x, y)-I(x, y) * g(x, y)
$$

Aside: You will not be tested on this ...

Convolution using Fourier Transforms

General implementation of convolution:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $\quad n \times n$ pixels in (X, Y)
Total: $\quad m^{2} \times n^{2}$ multiplications

Convolution if FFT space:
Cost of FFT/IFFT for image: $\mathcal{O}\left(n^{2} \log n\right)$
Cost of FFT/IFFT for filter: $\mathcal{O}\left(m^{2} \log m\right)$

Worthwhile if image and kernel are both large

Non-linear Filters

We've seen that linear filters can perform a variety of image transformations

- shifting
- smoothing
- sharpening

In some applications, better performance can be obtained by using non-linear filters.

For example, the median filter selects the median value from each pixel's neighborhood.

Non-linear Filtering

"shot" noise

gaussian blurred
median filtered

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Output

Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and pepper' noise or 'shot' noise)

The median filter forces points with distinct values to be more like their neighbors

Image credit: https://en.wikipedia.org/wiki/Median filter\#/media/File:Medianfilterp.png

Bilateral Filter

Suppose we want to smooth a noisy step function
A Gaussian kernel performs a weighted average of points over a spatial neighbourhood..
But this averages points both at the top and bottom of the step - blurring Bilateral Filter idea: look at distances in range (value) as well as space x, y

Bilateral Filter

An edge-preserving non-linear filter
Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

- The filter weights also depend on range distance from the center pixel
- Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)
Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by a product:

$$
\exp ^{-\frac{x^{2}+y^{2}}{2 \sigma_{d}^{2}}} \exp ^{-\frac{(I(X+x, Y+y)-I(X, Y))^{2}}{2 \sigma_{r}^{2}}}
$$

(with appropriate normalization)

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)
Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by a product:
domain
kernel

$$
\exp ^{-\frac{x^{2}+y^{2}}{2 \sigma_{d}^{2}}} \exp ^{-\frac{(I(X+x, Y+y)-I(X, Y))^{2}}{2 \sigma_{r}^{2}}}
$$

range
kernel
(with appropriate normalization)

Bilateral Filter

Normalised

image $I(X, Y) \quad$\begin{tabular}{c|c|c|c|c|c|}
\hline 25 \& 0 \& 25 \& 255 \& 255 \& 255

\hline 0 \& 0 \& 0 \& 230 \& 255 \& 255

\hline 0 \& 25 \& 25 \& 255 \& 230 \& 255

\hline 0 \& 0 \& 25 \& 255 \& 255 \& 255

\hline 0

$\quad \rightarrow$

\hline 0.1 \& 0 \& 0.1 \& 1 \& 1 \& 1

\hline 0 \& 0 \& 0 \& 0.9 \& 1 \& 1

\hline 0 \& 0.1 \& 0.1 \& 1 \& 0.9 \& 1

\hline
\end{tabular}

Bilateral Filter

Normalised
image $I(X, Y)$
image $I(X, Y)$

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

\longrightarrow| 0.1 | 0 | 0.1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.9 | 1 | 1 |
| 0 | 0.1 | 0.1 | 1 | 0.9 | 1 |
| 0 | 0 | 0.1 | 1 | 1 | 1 |

Range Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

(differences based on centre pixel)

Domain Kernel
$\sigma_{d}=1$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Bilateral Filter

Normalised
image $I(X, Y)$

\longrightarrow| 0.1 | 0 | 0.1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.9 | 1 | 1 |
| 0 | 0.1 | 0.1 | 1 | 0.9 | 1 |
| 0 | 0 | 0.1 | 1 | 1 | 1 |

Domain Kernel
$\sigma_{d}=1$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel$\sigma_{r}=0.45$			multiply	Range * Domain K		
0.98	0.98	0.2		0.08	0.12	0.02
1	1	0.1		0.12	0.20	0.01
0.98	1	0.1		0.08	0.12	0.01

(differences based on centre pixel)

Bilateral Filter

Normalised

Domain Kernel
$\sigma_{d}=1$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

$$
\begin{aligned}
& \text { Range Kernel } \text { Range }^{*} \text { Domain Kernel } \\
& \sigma_{r}=0.45 \\
& \begin{array}{|c|c|c|}
\hline 0.98 & 0.98 & 0.2 \\
\hline 1 & 1 & 0.1 \\
\hline 0.98 & 1 & 0.1 \\
\hline
\end{array} \xrightarrow{\text { multiply }} \begin{array}{|c|c|c|c|}
\hline 0.08 & 0.12 & 0.02 \\
\hline 0.12 & 0.20 & 0.01 \\
\hline 0.08 & 0.12 & 0.01 \\
\hline
\end{array} \xrightarrow{\text { sum to } 1} \begin{array}{|c|c|c|c|}
\hline 0.11 & 0.16 & 0.03 \\
\hline 0.16 & 0.26 & 0.01 \\
\hline 0.11 & 0.16 & 0.01 \\
\hline
\end{array}
\end{aligned}
$$

(differences based on
centre pixel)

Bilateral Filter

Normalised

Domain Kernel
$\sigma_{d}=1$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range * Domain Kernel
Range Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2				
1	1	0.1				
0.98	1	0.1	$\quad \longrightarrow$	0.08	0.12	0.02
:---:	:---:	:---:				
0.12	0.20	0.01				
0.08	0.12	0.01				

(differences based on centre pixel)

Bilateral Filter

Bilateral Filter

Normalised

image $I(X, Y)$

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Range Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2				
1	1	0.1				
0.98	1	0.1	\quad	0.08	0.12	0.02
:---:	:---:	:---:	:---:			
0.12	0.20	0.01				
0.08	0.12	0.01				

(differences based on centre pixel)
image $I(X, Y)$

Domain Kernel

$$
\sigma_{d}=1
$$

\longrightarrow| 0.1 | 0 | 0.1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.9 | 1 | 1 |
| 0 | 0.1 | 0.1 | 1 | 0.9 | 1 |
| 0 | 0 | 0.1 | 1 | 1 | 1 |

Gaussian Filter (only)

Bilateral Filter

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of Bilateral Filter

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive noise and blur

But there are problems with flash images:

- colour is often unnatural
- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

‘Joint’ or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

Bilateral Filter: "Modern" take

https://neurallbf.github.io/

Morphology

Optional subtitle

j
 original
 dilate
 erode

 majority open

 close

Threshold function in local structuring element
close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Aside: Linear Filter with ReLU

Feature Extraction from Image
Classification

$$
\begin{array}{|l|l|l|l|}
\hline 9 & 3 & 5 & 0 \\
\hline 0 & 2 & 0 & 1 \\
\hline 1 & 3 & 4 & 1 \\
\hline 3 & 0 & 5 & 1 \\
\hline
\end{array}
$$

Result of: Linear Image Filtering

After Non-linear ReLU

Summary

We covered two three non-linear filters: Median, Bilateral, ReLU
The median filter is a non-linear filter that selects the median in the neighbourhood

The bilateral filter is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties

Speeding-up Convolution can be achieved using separable filters or Fourier Transforms if the filter and image are both large

Fourier Transforms give us a way to think about image processing operations in Frequency Space, e.g., low pass filter = removing high frequency components

