
Lecture 6: Sampling

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate


Menu for Today
Topics: 

— Sampling theory  
— Nyquist rate

Readings: 

— Today’s Lecture:  Szeliski 2.3, Forsyth & Ponce (2nd ed.) 4.5, 4.6  

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due January 29th 

— Color Filter Arrays 
— Image encoding
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Goal

1. Understand discrete =/= continuous 
2. How do we then deal with this?



What is Sampling?

A continuous function                   is presented at the image sensor at each 
time instant 

How do we convert this to a digital signal (array of numbers)? 

How can we manipulate, e.g., resample, this digital signal correctly?
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Resampling Images
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Resampling Images

How do we correctly generate samples to resample or warp an image? 
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What types of transformations can we do? 

changes range of image function

Filtering

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y ) I(X,Y )

changes domain of image function

Warping

I 0(X,Y )

I 0(X,Y )



What types of transformations can we do? 
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Resampling Images
Goal: Resample the image to get a lower resolution counterpart

What is the simplest way to do this (e.g., produce image 1/5 of original size)?



Resampling Images
Goal: Resample the image to get a lower resolution counterpart

Naive Method: Form new image by taking every n-th pixel of the original image 



Resampling Images
Sampling every 5-th pixel, while shifting rightwards one pixel at a time 

What’s wrong with this method?



Example: Audio Sampling

Question: What choice/parameters do we have when sampling audio signal? 

Sampling rate and bit depth, e.g., 44.1 kHz (samples/second), 16 bits/sample



Example: Audio Sampling

Quantization noise / error is the difference between black and red curves



Example: A Simple Sine Wave
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How do we discretize the signal? 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave
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How do we discretize the signal? 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Can I take as many samples as I want?
How many samples should I take?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



20

Example: A Simple Sine Wave

How do we discretize the signal? 

Can I take as few samples as I want?
How many samples should I take?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Signal can be confused with one at lower frequency  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Signal can be confused with one at lower frequency 
— This is called “Aliasing”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Audio Aliasing

• Aliasing causes undesirable artifacts in audio reproduction 
• e.g., if we take an audio signal and simply drop every second sample, the 

highest frequencies will be aliased… we hear robotic sounding distortion
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Audio Aliasing

• We can reduce the aliasing artifacts by pre-filtering with a low pass filter 

• e.g., if we apply smoothing with a Gaussian filter standard deviation 2.0 for 
each octave (factor 2) of downsampling we get a better result:

24

ꜜ8 ꜜ8 with pre-filtering

• Note we have still lost some of the high frequency content, but the crunchy 
sounding distortion due to aliasing has now gone
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Any signal can be written as a sum of sinusoidal functions

? ?

Recall: Fourier Representation

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



To avoid aliasing a signal must be sampled at twice the maximum frequency:
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Nyquist Sampling Theorem

fs > 2⇥ fmax

1

where       is the sampling frequency, and            is the maximum frequency 
present in the signal 

fs > 2⇥ fmax

1

fs > 2⇥ fmax

1

Futhermore, Nyquist’s theorem states that a signal is exactly recoverable 
from its samples if sampled at the Nyquist rate (or higher)

Note: that a signal must be bandlimited for this to apply (i.e., it has a 
maximum frequency)

6.1
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Nyquist Sampling Theorem
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Question: When is              an exact characterization of           ? 

Question (modified): When can we reconstruct           exactly from             ? 

Intuition: Reconstruction involves some kind of interpolation 

Heuristic: When in doubt, consider simple cases  
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Exact Reconstruction from Samples

i(x, y)I(X,Y )

i(x, y) I(X,Y )
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Sampling Theory (informal)

x

k

i(x)

                   . Any standard interpolation function would give                  for non-
integer    and    (irrespective oh how coarse the sampling is)
I(X,Y ) = k i(x, y) = k

x y

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k



Case 0: Suppose           has a discontinuity not falling precisely at integer 

30

Sampling Theory (informal)

We cannot reconstruct           exactly because we can never know exactly where 
the discontinuity lies

x

i(x)

k0
k1

i(x, y) = k x, y

i(x, y) = k



Reconstruction with Bandlimited Signal
It can be shown that a bandlimited and correctly sampled signal can be 
reconstructed exactly via interpolation with a sinc function (sin(x)/x) 

(This is the Fourier Transform pair of a box filter, which in frequency domain is a 
pure low-pass filter)
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https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula

fs > 2⇥ fmax

fs < 2⇥ fmax

1

fs > 2⇥ fmax

fs < 2⇥ fmax

1

https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula


Exact reconstruction requires constraint on the rate at which i(x,y) can change 
between samples 
— “rate of change” means derivative 
— the formal concept is bandlimited signal  

— “bandlimit” and “constraint on derivative” are linked  

Think of music 
— bandlimited if it has some maximum temporal frequency  
— the upper limit of human hearing is about 20 kHz  

Think of imaging systems. Resolving power is measured in  
— “line pairs per mm” (for a bar test pattern) 
— “cycles per mm” (for a sine wave test pattern)  

An image is bandlimited if it has some maximum spatial frequency 
32

Sampling Theory (informal)



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 6.2



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 6.2



Resampling Images
Goal: Resample the image to get a lower resolution counterpart

Naive Method: Form new image by taking every n-th pixel of the original image 



Improved Method: First blur the image (with low-pass) then take n-th pixel

With correct sigma value for a Gaussian, no information is lost  

Resampling Images



Aliasing Example

No filtering Gaussian Blur � = 3.0

Sampling every 5th pixel with and without low-pass blur

𝜎=1/(2𝑠)



Resampling Images

•Note that selecting every 10th pixel ignores the intervening information, 
whereas the low-pass filter (blur) smoothly combines it 
• If we shifted the original image 1 pixel to the right, the aliased image would 
look completely different, but the low pass filtered image would look almost 
the same
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every 10th pixel low pass filtered
(aliased) (correct sampling)



Image Sampling and Aliasing
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fs > 2⇥ fmax
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fs < 2⇥ fmax



Another example of aliasing

Aliased Correctly sampled



Aliasing in Photographs
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This is also known as “moire”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Pyramids

Used in Graphics (Mip-map) and Vision 
(for multi-scale processing)
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Sampling with Pyramids

Find the level where the sample spacing is between 1 and 2 
pixels,  apply extra fraction of inter-octave blur as needed

÷2

÷2

÷2

Why are image pyramids important?



Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate)  

Answer: Nothing bad happens! Samples are redundant and there are wasted 
bits  

Question: For a bandlimited signal, what if you undersample (i.e., sample at 
less than the Nyquist rate)  

Answer: Two bad things happen! Things are missing (i.e., things that should be 
there aren’t). There are artifacts (i.e., things that shouldn’t be there are)  
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Oversampling and Undersampling



How to Prevent Aliasing?

1. Sample more frequently i.e., oversampling — sample more than you think 
you need and average (i.e., area sampling) 

2. Reduce the maximum frequency, by low pass filtering i.e., Smoothing 
before sampling.
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Aliasing 

aliasing artifacts anti-aliasing by oversampling

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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“Color” is not an objective physical property of light (electromagnetic radiation). 
Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very small 

range of these wavelengths.

electromagnetic 
spectrum

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Color is an Artifact of Human Perception



E(λ)

S(λ)

Colour Perception

Cone 
responses

Cone excitation (multiply and add):

Rred(�)

⇢red =

Z
Rred(�)E(�)S(�) d�



Digital Sensor
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•Analogue image is sampled by a CMOS (or CCD) sensor 
•RGB colour filters arranged in a “Bayer” pattern 
•Spectral response of R,G,B filters = Quantum Efficiency 
•Counts from this sensor are camera RAW

Silicon

Colour Filter Array

Canon 50D



Demosaicing

Each colour channel has different information:

How can we fill in the missing information? 



Demosaicing by Bilinear Interpolation
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Bilinear interpolation: Simply average your 4 neighbors.

G?G1

G4

G3

G2

G? =
G1 + G2 + G3 + G4

4

Neighborhood changes for different channels:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Demosaicing

Bilinear interpolation Bennet et al 2006 
(local 2 colour prior)

•Many techniques use edge information from the densely 
sampled green channel, and some form of image prior 
• It can also been tackled via a data-driven approach, e.g., 
[Gharbi et al. 2016]

•Simple interpolation causes colour errors



The Digital Image

[ ... ] [ ... ] [ ... ]

{

Pixel [ ]Row

Many other possibilities, e.g., BGR, RGBA pixels, row/column major 
ordering, and rows or columns aligned to power of 2 boundaries

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.1: Rasters are used to represent digital images. Modern displays use a rectangular
raster, comprised of W × H pixels. The raster illustrated here contains a greyscale image;
its contents are represented in memory by a greyscale frame buffer. The values stored in the
frame buffer record the intensities of the pixels on a discrete scale (0=black, 255=white).

formly — its single colour representing a discrete sample of light e.g. from a captured image.
In most implementations, rasters take the form of a rectilinear grid often containing many
thousands of pixels (Figure 2.1). The raster provides an orthogonal two-dimensional basis
with which to specify pixel coordinates. By convention, pixels coordinates are zero-indexed
and so the origin is located at the top-left of the image. Therefore pixel (W − 1, H − 1) is
located at the bottom-right corner of a raster of width W pixels and height H pixels. As
a note, some Graphics applications make use of hexagonal pixels instead 1, however we will
not consider these on the course.

The number of pixels in an image is referred to as the image’s resolution. Modern desktop
displays are capable of visualising images with resolutions around 1024 × 768 pixels (i.e. a
million pixels or one mega-pixel). Even inexpensive modern cameras and scanners are now
capable of capturing images at resolutions of several mega-pixels. In general, the greater the
resolution, the greater the level of spatial detail an image can represent.

2.2.2 Hardware Frame Buffers

We represent an image by storing values for the colour of each pixel in a structured way.
Since the earliest computer Visual Display Units (VDUs) of the 1960s, it has become com-
mon practice to reserve a large, contiguous block of memory specifically to manipulate the
image currently shown on the computer’s display. This piece of memory is referred to as a
frame buffer. By reading or writing to this region of memory, we can read or write the
colour values of pixels at particular positions on the display2.

Note that the term ‘frame buffer’ as originally defined, strictly refers to the area of mem-
ory reserved for direct manipulation of the currently displayed image. In the early days of

1Hexagonal displays are interesting because all pixels are equidistant, whereas on a rectilinear raster neigh-
bouring pixels on the diagonal are

p

(2) times further apart than neighbours on the horizontal or vertical.
2Usually the frame buffer is not located on the same physical chip as the main system memory, but on

separate graphics hardware. The buffer ‘shadows’ (overlaps) a portion of the logical address space of the
machine, to enable fast and easy access to the display through the same mechanism that one might access any
‘standard’ memory location.
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e.g., arranged in memory with RGB pixels stored in rows:



Digital Camera Processing

Main stages in a digital camera
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74 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as typical
digital post-processing steps.

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed in a fraction of
a second, e.g., 1

125 , 1
60 , 1

30 ), and then passed to a set of sense amplifiers . The two main kinds
of sensor used in digital still and video cameras today are charge-coupled device (CCD) and
complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass it to
an analog-to-digital converter (ADC).10 Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated to control exposure duration, and locally am-
plified before being read out using a multiplexing scheme. Traditionally, CCD sensors
outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video
is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.

[ Szeliski 2.3 ]
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(in camera) White balance

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

R: 200 
G: 255 
B: 190

R-correction: + 55 
G-correction: + 0 
B-correction: + 65



White Balance

•Humans are good at adapting to global illumination conditions: you would still 
describe a white object as white whether under blue sky or candle light. 
•However, when the picture is viewed later, the viewer is no longer correcting 
for the environment and the illuminant colour typically appears too strong.  
•White balancing is the process of correcting for the illuminant 

•A simple white balance algorithm is to assume the scene is grey on average 
“greyworld”,  state of the art methods use learning, e.g., Barron ICCV 2015
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7.1



Gamma Correction

•Equal steps in luminance ≠ equal in perceived brightness 

•Equal steps in human perceived brightness are achieved by increasingly large 
steps in luminance (sensor counts) 
•So we encode pixel values V using a power law: 

•Using raw sensor counts wastes bits as we can’t differentiate the large values 
→ use gamma corrected encoding (V) that allocates more bits to smaller 

63

linear luminance (raw)

equal brightness steps

L = V �7.2



Contrast Sensitivity

Human visual system is most sensitive to mid-frequencies
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Discrete Cosine Transform
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•Energy is concentrated in 
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•Efficient algorithm to 
compute (similar to FFT)

•Basis functions used in JPEG



Summary

In the continuous case, images are functions of two spatial variables, x and y.  

The discrete case is obtained from the continuous case via sampling (i.e. 
tessellation, quantization).  

If a signal is bandlimited then it is possible to design a sampling strategy such 
that the sampled signal captures the underlying continuous signal exactly 
(Nyquist Sampling).  

Human trichromatic colour perception, and other perceptual sensitivities 
such as contrast sensitivity influence the image coding pipeline.   
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