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Lecture 6: Sampling

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

Menu for Today
Topics:
— Sampling theory — Color Filter Arrays
— Nyquist rate — Image encoding

— Today’s Lecture: Szeliski 2.3, Forsyth & Ponce (2nd ed.) 4.5, 4.6

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th




Goal

1. Understand discrete =/= continuous
2. How do we then deal with this®



What is Sampling”

A continuous function I(x,y, \) is presented at the image sensor at each
time instant

How do we convert this to a digital signal (array of numbers)”

How can we manipulate, e.g., resample, this digital signal correctly?
A
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Resampling Images

How do we correctly generate samples to resample or warp an image”?



What types of transformations can we do?

I(X,Y)

Filtering l Warping
7(x, )
changes range of image function changes domain of image function

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of transformations can we do”

I(X,Y)

Warping

7(x, )

changes domain of image function

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Resampling Images

Goal: Resample the image to get a lower resolution counterpart
O O 0O U @

What is the simplest way to do this (e.g., produce image 1/5 of original size)?



Resampling Images

Goal: Resample the image to get a lower resolution counterpart
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Naive Method: Form new image by taking every n-th pixel of the original image



Resampling Images

Sampling every 5-th pixel, while shifting rightwards one pixel at a time

What’s wrong with this method?



Example: Audio Sampling
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Question: \What choice/parameters do we have when sampling audio signal”

Sampling rate and bit depth, e.qg., 44.1 kHz (samples/second), 16 bits/sample



Example: Audio Sampling
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Quantization noise / error is the difference between black and red curves



Example: A Simple Sine Wave

How do we discretize the signal”

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

i Al

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as many samples as | want”

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as few samples as | want?

20 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency

21 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency
— This is called “Aliasing”

22 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Audio Aliasing

e Aliasing causes undesirable artifacts in audio reproduction

®* c.(., If we take an audio signal and simply drop every second sample, the
highest frequencies will be aliased... we hear robotic sounding distortion

import scipy.io.wavfile as wavfile

Original

rate, signal = wavfile.read("stevie.wav")
data=signal[@: (ratex10),:] # 10 seconds of audio

data_2=datal[0:-1:2,:] # select every 2nd sample
data_4=datal0:-1:4,:] # select every 4th sample
data_8=datal[0:-1:8,:] # select every 8th sample

wavfile.write('test2.wav', int(rate/2), data 2)
wavfile.write('test4.wav', int(rate/4), data_4)
wavfile.write('test8.wav', int(rate/8), data 8)

l2 l4 l8

23



Audio Aliasing

e \\e can reduce the aliasing artitacts by pre-filtering with a low pass filter

* c.0., If we apply smoothing with a Gaussian filter standard deviation 2.0 for
each octave (factor 2) of downsampling we get a better result:

‘8 +8 with pre-filtering

e Note we have still lost some of the high frequency content, but the crunchy
sounding distortion due to aliasing has now gone

24



Recall: Fourier Representation

Any signal can be written as a sum of sinusoidal functions
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Nyquist Sampling Theorem

To avoid aliasing a signal must be sampled at twice the maximum frequency:

where fs is the sampling frequency, and f,,,, is the maximum frequency
present in the signal

Futhermore, Nyquist’s theorem states that a signal is exactly recoverable
from its samples if sampled at the Nyquist rate (or higher)

Note: that a signal must be bandlimited for this to apply (i.e., it has a
maximum frequency)

40

20



Nyquist Sampling Theorem



Exact Reconstruction from Samples

Question: When is I( X, Y) an exact characterization of i(x,y)?
Question (modified): When can we reconstruct i(x, y) exactly from I(X,Y)?
Intuition: Reconstruction involves some kind of interpolation

Heuristic: \When Iin doubt, consider simple cases

23



Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k being one of our gray levels)

I(X,Y) = k. Any standard interpolation function would give i(x, y) = k for non-
integer x and y (irrespective oh how coarse the sampling is)
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Sampling Theory (informal)

Case 0: Supposei(x,y) has a discontinuity not falling precisely at integer x, y

We cannot reconstruct ¢(x, y) exactly because we can never know exactly where
the discontinuity lies

30



Reconstruction with Bandlimited Signal

't can be shown that a bandlimited and correctly sampled signal can be
reconstructed exactly via interpolation with a sinc function (sin(x)/x)

(This Is the Fourier Transform pair of a box filter, which in frequency domain is a
oure low-pass filter)
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https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula

Sampling Theory (informal)

Exact reconstruction requires constraint on the rate at which i(x,y) can change
between samples

— “rate of change” means derivative
— the formal concept is bandlimited signal

— “pandlimit” and “constraint on derivative” are linked

Think of music

— pbandlimited if it has some maximum temporal frequency
— the upper limit of human hearing is about 20 kHz

Think of Imaging systems. Resolving power is measured in

— “line pairs per mm” (for a bar test pattern)

— “cycles per mm” (for a sine wave test pattern)

An image Is bandlimited If it has some maximum spatial frequency

32



Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.




Sampling

/@



Resampling Images

Goal: Resample the image to get a lower resolution counterpart
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Naive Method: Form new image by taking every n-th pixel of the original image



Resampling Images

With correct sigma value for a Gaussian, no information is lost
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Improved Method: First blur the image (with low-pass) then take n-th pixel



Aliasing Example

Sampling every 5th pixel with and without low-pass blur

No filtering Gaussian Blur 0 = 3.0

o=1/(2s)



Resampling Images
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every 10th pixel Ilow pass filtered
(aliased) (correct sampling)

*Note that selecting every 10th pixel ignores the intervening information,
whereas the low-pass filter (blur) smoothly combines it

*|f we shifted the original image 1 pixel to the right, the aliased image would
look completely different, but the low pass filtered image would look almost
the same
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fs <2 X frmaz

iasing

HH

1

M

fs > 2 X frmaz

e o -

=

Image Sampling and Al



Another example of aliasing

Correctly sampled

Aliased



Aliasing in Photographs

This is also known as “moire” BE =

41 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Pyramids

Used in Graphics (Mip-map) andVision -
(for multi=-scale processing)



Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)

Often approximations
to the Gaussian kernel
are used, e.g.,

1
E[l 4 6 4 1]

G4

B
—— Gaussian Pyramid [ Assignment 2 ]



Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)

Often approximations
to the Gaussian kernel

7 are used, e.g.,
1

Clur 1—6[1 4 6 4 1]
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Gaussian Pyramid [ Assignment 2 ]



Sampling with Pyramids

Why are image pyramids important®
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Oversampling and Undersampling

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS
Question: For a bandlimited signal, what if you undersample (i.e., sample at

less than the Nyquist rate)

Answer: Two bad things happen! Things are missing (i.e., things that should be
there aren’t). There are artifacts (i.e., things that shouldn’t be there are)
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How to Prevent Aliasing?

1. Sample more frequently i.e., oversampling — sample more than you think
you need and average (i.e., area sampling)

2. Reduce the maximum frequency, by low pass filtering i.e., Smoothing
before sampling.

47



Aliasing

aliasing artifacts anti-aliasing by oversampling

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

effect

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color is an Artifact of Human Perception

“Color” is not an objective physical property of light (electromagnetic radiation).
Instead, light is characterized by its wavelength.
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What we call “color” Is how we
subjectively perceive a very small
range of these wavelengths.

] ] )
400 500 600 700

[ncreasing Wavelength (A) in nm —

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Colour Perception
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Digital Sensor

Canon 50D

: Canon 50D

0.4

Colour Filter Array
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* Analogue image I1s sampled by a CMOS (or CCD) sensor
*RGB colour filters arranged in a "“Bayer” patterm
* Spectral response of R,G,B filters = Quantum Efficiency

e Counts from this sensor are camera RAW
53




Demosaicing

Each colour channel has different information:

?_i How can we fill in the missing information??



Demosaicing by Bilinear Interpolation

Bilinear interpolation: Simply average your 4 neighbors.

. HE
A

Neighborhood changes for different channels:

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Demosaicing

*Simple interpolation causes colour errors

B
*
-
f
l

Silinear interpolation Sennet et al 2000
(local 2 colour prior)

*Many technigues use edge information from the densely
sampled green channel, and some form of Image prior

o[t can also been tackled via a data-driven approach, e.q.,
Gharbi et al. 2016]




The Digital Image

(1.0) (2.0) ete. yram (w)
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Image Raster represented by

e.g., arranged in memory with RGB pixels stored in rows:
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Many other possibilities, e.g., BGR, RGBA pixels, row/column major
ordering, and rows or columns aligned to power of 2 boundaries



Digital Camera Processing

Main stages in a digital camera

Lamcra »  Optics —» Aperture ——»= Shutter
[rradiance
Camera Body
. Sensor Gain A/D RAW )
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(iIn camera) White balance rzw  r-correction: + 55

G: 2655 — G-correction: + 0O

B: 190 B-correction: + 65

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



White Balance

*Humans are good at adapting to global illumination conditions: you would still
describe a white object as white whether under blue sky or candle light.

*However, when the picture is viewed later, the viewer is no longer correcting
for the environment and the illuminant colour typically appears too strong.

*White balancing is the process of correcting for the illuminant

4D

* A simple white balance algorithm is to assume the scene Is grey on average
‘greyworld”, state of the art methods use learning, e.g., Barron [CCV 2015

62



Gamma Correction

*Equal steps In luminance = equal In perceived brightness

linear luminance (raw) [JJilf*10.0.4J0.5/0.6/0.7]0.8/0.9[1.0

equal brightness steps [XRREIEL 2T 10.6/0.7(0.8/0.9(1.0

*Equal steps in human perceived brightness are achieved by increasingly large
steps in luminance (sensor counts)

*SO we encode pixel values V using a power law:
4 L=V"

*Using raw sensor counts wastes bits as we can’t differentiate the large values
— use gamma corrected encoding (V) that allocates more bits to smaller

03



Contrast Sensitivity

Human visual system Is most sensitive to mid-frequencies

Amplitude —

Frequency —



Discrete Cosine Transform

*Basis functions used in JPEG
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Summary

INn the continuous case, Images are functions of two spatial variables, x and .

The discrete case Is obtained from the continuous case via sampling (i.e.
tessellation, quantization).

f a signal is bandlimited then it Is possible to design a sampling strategy such

that the sampled signal captures the underlying continuous signal exactly
(Nyquist Sampling).

Human trichromatic colour perception, and other perceptual sensitivities
such as contrast sensitivity influence the image coding pipeline.
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