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Template Matching

Slide Credit: Kristen Grauman

cos ✓ =
a · b
|a||b| =

a · bp
(a · a)(b · b)

=
a

|a|
b

|b| =?

Assuming template is all positive, what does this tell us about correlation map? 



We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  

Template Matching
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Template Matching
Let    and    be vectors. Let    be the angle between them. We know  

where · is dot product and | | is vector magnitude  

cos ✓ =
a · b
|a||b| =

a · bp
(a · a)(b · b)

=
a

|a|
b

|b|

a b ✓

1. Normalize the template / filter (  ) in the beginning  
2. Compute norm of |  | by convolving squared image with a filter of all 1’s of 

equal size to the the template and square-rooting the response 
3. We can compute the dot product by correlation of image (  ) with normalized 

filter (  ) 
4. We can finally compute the normalized correlation by dividing element-wise 

result in Step 3 by result in Step 2

a

b

a
b



ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get 
100% false positives as well!) 

It is a tradeoff between true positive rate (TP) and false positive rate (FP) 

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold 

This is a Receiver Operating Characteristic (ROC) curve

Classify as FaceClassify 
as Non-Face

red = actual faces, blue = actual non-faces



Lecture 8: Scaled Representations

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html


Menu for Today
Topics: 

— Scaled Representations   
— Image Pyramid

Readings: 

— Today’s Lecture:  Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders: 

— Quiz 2 is up. (Open until tomorrow midnight) 
— Assignment 2: Scaled Representations, Face Detection and Image Blending 
available now

— Multi-scale Template Matching 



Goal

1. Understand the idea behind image pyramids 

2. Understand laplacian pyramids



Multi-Scale Template Matching

Problem: Make template matching robust to changes in 2D (spatial) scale.  

Key Idea(s): Build a scaled representation: the Gaussian image pyramid  

Alternatives:  
— use multiple sizes for each given template  
— ignore the issue of 2D (spatial) scale  

Theory: Sampling theory allows us to build image pyramids in a principled way  

“Gotchas:”  
— template matching remains sensitive to 2D orientation, 3D pose and 
illumination 



Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales 



Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale



Shrinking the Image

We can’t shrink an image simply by taking every second pixel  

Why? 



Aliasing Example

No filtering Gaussian Blur � = 3.0



Any signal can be written as a sum of sinusoidal functions

? ?

Recall: Fourier Representation

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Recall: Aliasing

Signal has been sampled too infrequently — result = Aliasing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



To avoid aliasing a signal must be sampled at twice the maximum frequency:

Nyquist Sampling

fs > 2⇥ fmax

1

For Images: We need to sample the underlying continuous signal at least once 
per pixel to avoid aliasing (assuming a correctly sampled image)

undersampling = aliasing



Template Matching: Sub-sample with Gaussian Pre-filtering

Gaussian filter 
delete even rows 

delete even 
columns

1/2

1/4

1/8

Apply a smoothing filter first, then throw away half the 
rows and columns

Gaussian filter 
delete even rows 

delete even 
columns

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering 

Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image 
is band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by � = 1



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Template Matching: Sub-sample with Gaussian Pre-filtering

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with NO Pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Pyramid

An image pyramid is an efficient way to represent an image at multiple scales 

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and 
resampled to get the next layer, taking advantage of the fact that 

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)



Gaussian vs Laplacian Pyramid
Shown in opposite 

order for space

Which one takes  
more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



G1
blur

blur

G3

÷2

blur

G4

÷2

÷2

G2

Blur with a Gaussian 
kernel, then select 

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Gaussian Pyramid



G1

G2

G3

G4

blur

÷2

blur

÷2

blur

÷2

Blur with a Gaussian 
kernel, then select 

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Gaussian Pyramid



G1
blur

blur

G3

÷2

blur

G4

÷2

÷2

G2

Gaussian Pyramid



G1

G3

G4

L1⊖blur

÷2

L2⊖blur

÷2

L3⊖blur

÷2

Gaussian Pyramid

L4

Laplacian Pyramid

G2



G1

G3

G4

L1⊖blur
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L2⊖blur

÷2

L3⊖blur

÷2

G2

L4



What happens to the details? 
— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 
— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid 



Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

What do we need to store to be able 
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid?

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

• Laplacian/DoG = centre-surround filter

=⇤



Why Laplacian Pyramid?

8.1



Derivatives of a Gaussian filter & Laplacian

Images from https://hannibunny.github.io/orbook/preprocessing/04gaussianDerivatives.html

8.1



Why Laplacian Pyramid?

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

• Laplacian/DoG = centre-surround filter
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Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

larger sigma

Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

lower sigma

- -

Laplacian is a Bandpass Filter

image



Low passFFT (Mag) 

complex  
element-wise 
multiplication 

larger sigma

Low passFFT (Mag) 

complex  
element-wise 
multiplication 

lower sigma

-

Laplacian is a Bandpass Filter

image



Laplacian Pyramid

Building a Laplacian pyramid:  
— Create a Gaussian pyramid 
— Take the difference between one Gaussian pyramid level and the next  

Properties  
— Computes a Laplacian / Difference-of-Gaussian (DoG) function of the image 
at multiple scales 
— It is a band pass filter – each level represents a different band of spatial 
frequencies  



Constructing a Laplacian Pyramid 

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Reconstructing the Original Image 

repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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⊕

⊕

⊕
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Gaussian Pyramid Laplacian Pyramid
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G1

G2

L1⊖blur

÷2

G1

G2

L1⊖
" 2

1

Subtle point: Need to downsample + upsample to guarantee 
perfect reconstruction of Gaussian from Laplacian Pyramid

These images are theoretically the same (Nyquist) but in practice 
slightly different due to imperfect filtering/interpolation and edge effects

graphics / vision

graphics



Application: Image Blending

Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM 
Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Pyramid Blending
160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) c� 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then

[ Burt Adelson 1983 ]

Smooth low frequencies, whilst preserving high frequency detail



Pyramid Blending



Pyramid Blending

⇤ ⇤+ =

Step 1: Specify an Image Mask
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=⇤ ⇤+ =

⇤ ⇤+ =

+

⇤ ⇤+ =

+

⇤ ⇤+ =

+

=
Step 2: blend lower frequency bands over 
larger spatial ranges, high frequency bands 

over small spatial ranges



Application: Image Blending

Algorithm: 

1. Build Laplacian pyramid LA and LB from images A and B 

2. Build a Gaussian pyramid GR from mask image R (the mask defines which 
image pixels should be coming from A or B) 

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as 
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j) 

4. Reconstruct the final blended image from LS
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⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

Polar Bear
Laplacian 
Pyramid

Mask
Gaussian 
Pyramid

Penguin 
Laplacian 
Pyramid

1 - Mask
Gaussian 
Pyramid

Result 
Pyramid



⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

Reconstruct 
Result

=

+

+

+



=⇤ ⇤+ =

⇤ ⇤+ =

+

⇤ ⇤+ =

+

⇤ ⇤+ =

+

=
Reconstruct 

Result
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58[ Jim Kajiya, Andries van Dam]



59[ Jim Kajiya, Andries van Dam]
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61Alpha blend with sharp fall-off



62Alpha blend with gradual fall-off



63Pyramid Blend



Summary: Scaled Representations

Gaussian Pyramid 

—Each level represents a low-pass filtered image at a different scale 

—Generated by successive Gaussian blurring and downsampling 
—Useful for image resizing, sampling 

Laplacian Pyramid  

—Each level is a band-pass image at a different scale 

—Generated by differences between successive levels of a Gaussian Pyramid 
—Used for pyramid blending, feature extraction etc.



Recap: Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales



Solution: form a Gaussian Pyramid and 
convolve with the template at each scale

Recap: Multi-Scale Template Matching

= TemplateQ. Why scale the image and not the template?

Correlation with a fixed-sized image only detects faces at specific scales



Improving Template Matching

Consider the problem of finding images of an elephant using a template 

An elephant looks different from different viewpoints 
— from above (as in an aerial photograph or satellite image)  
— head on 
— sideways (i.e., in profile) 
— rear on  

What happens if parts of an elephant are obscured from view by trees, rocks, 
other elephants? 



Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching



Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching



Improving Template Matching

Improved detection algorithms make use of image features 

These can be hand coded or learned



Template Matching with HOG

Template matching can be improved by using better features, e.g., Histograms 
of Gradients (HOG)  [ Dalal Triggs 2005 ]  

The authors use a Learning-based approach (Support Vector Machine) to find 
an optimally weighted template666 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f) (g)

Figure 14.8 Pedestrian detection using histograms of oriented gradients (Dalal and Triggs
2005) c� 2005 IEEE: (a) the average gradient image over the training examples; (b) each
“pixel” shows the maximum positive SVM weight in the block centered on the pixel; (c) like-
wise, for the negative SVM weights; (d) a test image; (e) the computed R-HOG (rectangular
histogram of gradients) descriptor; (f) the R-HOG descriptor weighted by the positive SVM
weights; (g) the R-HOG descriptor weighted by the negative SVM weights.

14.1.2 Pedestrian detection

While a lot of the research on object detection has focused on faces, the detection of other
objects, such as pedestrians and cars, has also received widespread attention (Gavrila and
Philomin 1999; Gavrila 1999; Papageorgiou and Poggio 2000; Mohan, Papageorgiou, and
Poggio 2001; Schneiderman and Kanade 2004). Some of these techniques maintain the same
focus as face detection on speed and efficiency. Others, however, focus instead on accuracy,
viewing detection as a more challenging variant of generic class recognition (Section 14.4)
in which the locations and extents of objects are to be determined as accurately as possible.
(See, for example, the PASCAL VOC detection challenge, http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.)

An example of a well-known pedestrian detector is the algorithm developed by Dalal
and Triggs (2005), who use a set of overlapping histogram of oriented gradients (HOG) de-
scriptors fed into a support vector machine (Figure 14.8). Each HOG has cells to accumulate
magnitude-weighted votes for gradients at particular orientations, just as in the scale invariant
feature transform (SIFT) developed by Lowe (2004), which we discussed in Section 4.1.2 and
Figure 4.18. Unlike SIFT, however, which is only evaluated at interest point locations, HOGs
are evaluated on a regular overlapping grid and their descriptor magnitudes are normalized
using an even coarser grid; they are only computed at a single scale and a fixed orientation. In
order to capture the subtle variations in orientation around a person’s outline, a large number
of orientation bins is used and no smoothing is performed in the central difference gradi-
ent computation—see the work of Dalal and Triggs (2005) for more implementation details.

SVM weightsavg grad
+ �

HOG weighted HOG



Convnet Object Detection
Think of each feature vector vij  as 
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Receptive Field

V

[ Images: Jonathan Huang ]

— Convnet based object detectors resemble sliding 
window template matching in feature space 

— Architectures typically involve multiple scales and 
aspect ratios, and regress to a 2D offset in addition to 
category scores

Solution: use multiple Wloc and Wcls (one for each 
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...



Summary 
Template matching as (normalized) correlation. Template matching is not 
robust to changes in:  
— 2D spatial scale and 2D orientation 
— 3D pose and viewing direction 
— illumination  

Scaled representations facilitate 
— template matching at multiple scales 
— efficient search for image–to–image correspondences  
— image analysis at multiple levels of detail  

A Gaussian pyramid reduces artifacts introduced when sub-sampling to 
coarser scales 


