
1

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Bilateral Filter
Normalised

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

domain
kernel

�d = 0.451

2

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

Range Kernel
�r = 0.45

Bilateral Filter

(differences based on
 centre pixel)

Normalised

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

range
kernel

�d = 0.451

3

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

Bilateral Filter

multiply0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

4

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

multiply sum to 10.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

5

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1
multiply

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

6

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥ = 0.3

X

multiply

Gaussian Filter (only)

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

Template Matching

Slide Credit: Kristen Grauman

cos ✓ =
a · b
|a||b| =

a · bp
(a · a)(b · b)

=
a

|a|
b

|b| =?

Assuming template is all positive, what does this tell us about correlation map?

We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.
— Consider the filter and image patch as vectors.
— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.

Template Matching

0 0

0 0 0

0

1

1 1
0 0

0 0 0

0

1

1 1

0 0

0 0 0

0

1

1 1

0 0

0

0

00

1

1 1

TemplateImage
Patch 1

Image
Patch 2

element

multiply

0 0

0 0 0

0

1

0 0

= 3

= 1 ⇥255⇥255

Template Matching
Let and be vectors. Let be the angle between them. We know

where · is dot product and | | is vector magnitude

cos ✓ =
a · b
|a||b| =

a · bp
(a · a)(b · b)

=
a

|a|
b

|b|

a b ✓

1. Normalize the template / filter () in the beginning
2. Compute norm of | | by convolving squared image with a filter of all 1’s of

equal size to the the template and square-rooting the response
3. We can compute the dot product by correlation of image () with normalized

filter ()
4. We can finally compute the normalized correlation by dividing element-wise

result in Step 3 by result in Step 2

a

b

a
b

ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get
100% false positives as well!)

It is a tradeoff between true positive rate (TP) and false positive rate (FP)

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve

Classify as FaceClassify
as Non-Face

red = actual faces, blue = actual non-faces

Lecture 8: Scaled Representations

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for Today
Topics:

— Scaled Representations
— Image Pyramid

Readings:

— Today’s Lecture: Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders:

— Quiz 2 is up. (Open until tomorrow midnight)
— Assignment 2: Scaled Representations, Face Detection and Image Blending
available now

— Multi-scale Template Matching

Goal

1. Understand the idea behind image pyramids

2. Understand laplacian pyramids

Multi-Scale Template Matching

Problem: Make template matching robust to changes in 2D (spatial) scale.

Key Idea(s): Build a scaled representation: the Gaussian image pyramid

Alternatives:
— use multiple sizes for each given template
— ignore the issue of 2D (spatial) scale

Theory: Sampling theory allows us to build image pyramids in a principled way

“Gotchas:”
— template matching remains sensitive to 2D orientation, 3D pose and
illumination

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale

Shrinking the Image

We can’t shrink an image simply by taking every second pixel

Why?

Aliasing Example

No filtering Gaussian Blur � = 3.0

Any signal can be written as a sum of sinusoidal functions

? ?

Recall: Fourier Representation

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recall: Aliasing

Signal has been sampled too infrequently — result = Aliasing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

To avoid aliasing a signal must be sampled at twice the maximum frequency:

Nyquist Sampling

fs > 2⇥ fmax

1

For Images: We need to sample the underlying continuous signal at least once
per pixel to avoid aliasing (assuming a correctly sampled image)

undersampling = aliasing

Template Matching: Sub-sample with Gaussian Pre-filtering

Gaussian filter
delete even rows

delete even
columns

1/2

1/4

1/8

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows

delete even
columns

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image
is band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by � = 1

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Template Matching: Sub-sample with Gaussian Pre-filtering

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Template Matching: Sub-sample with NO Pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Pyramid

An image pyramid is an efficient way to represent an image at multiple scales

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer, taking advantage of the fact that

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)

Gaussian vs Laplacian Pyramid
Shown in opposite

order for space

Which one takes
more space to

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

G1
blur

blur

G3

÷2

blur

G4

÷2

÷2

G2

Blur with a Gaussian
kernel, then select

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Gaussian Pyramid

G1

G2

G3

G4

blur

÷2

blur

÷2

blur

÷2

Blur with a Gaussian
kernel, then select

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Gaussian Pyramid

G1
blur

blur

G3

÷2

blur

G4

÷2

÷2

G2

Gaussian Pyramid

G1

G3

G4

L1⊖blur

÷2

L2⊖blur

÷2

L3⊖blur

÷2

Gaussian Pyramid

L4

Laplacian Pyramid

G2

G1

G3

G4

L1⊖blur

÷2

L2⊖blur

÷2

L3⊖blur

÷2

G2

L4

What happens to the details?
— They get smoothed out as we move
 to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the
 original image

How would you reconstruct the original
image from the image at the upper
level?
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid

Laplacian Pyramid
At each level, retain the residuals
instead of the blurred images
themselves.

Can we reconstruct the original image
using the pyramid?
— Yes we can!

What do we need to store to be able
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why Laplacian Pyramid?

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

• Laplacian/DoG = centre-surround filter

=⇤

Why Laplacian Pyramid?

8.1

Derivatives of a Gaussian filter & Laplacian

Images from https://hannibunny.github.io/orbook/preprocessing/04gaussianDerivatives.html

8.1

Why Laplacian Pyramid?

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

• Laplacian/DoG = centre-surround filter

=⇤

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

larger sigma

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

lower sigma

- -

Laplacian is a Bandpass Filter

image

Low passFFT (Mag)

complex
element-wise
multiplication

larger sigma

Low passFFT (Mag)

complex
element-wise
multiplication

lower sigma

-

Laplacian is a Bandpass Filter

image

Laplacian Pyramid

Building a Laplacian pyramid:
— Create a Gaussian pyramid
— Take the difference between one Gaussian pyramid level and the next

Properties
— Computes a Laplacian / Difference-of-Gaussian (DoG) function of the image
at multiple scales
— It is a band pass filter – each level represents a different band of spatial
frequencies

Constructing a Laplacian Pyramid

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Reconstructing the Original Image

repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

G1

G2

G3

G4

L1⊖

L2⊖

L3⊖

L4

Gaussian Pyramid

" 2

1

Laplacian Pyramid

" 2

1

" 2

1

G1

G2

G3

G4

L1

L2

L3

L4

⊕

⊕

⊕

↑2

↑2

↑2

Gaussian Pyramid Laplacian Pyramid

G1

G2

G3

G4

L1

L2

L3

L4

⊕

⊕

⊕

↑2

↑2

↑2

G1

G2

L1⊖blur

÷2

G1

G2

L1⊖
" 2

1

Subtle point: Need to downsample + upsample to guarantee
perfect reconstruction of Gaussian from Laplacian Pyramid

These images are theoretically the same (Nyquist) but in practice
slightly different due to imperfect filtering/interpolation and edge effects

graphics / vision

graphics

Application: Image Blending

Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM
Transactions on Graphics, 1983, Vol.2, pp.217-236.

Pyramid Blending
160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) c� 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then

[Burt Adelson 1983]

Smooth low frequencies, whilst preserving high frequency detail

Pyramid Blending

Pyramid Blending

⇤ ⇤+ =

Step 1: Specify an Image Mask

52

=⇤ ⇤+ =

⇤ ⇤+ =

+

⇤ ⇤+ =

+

⇤ ⇤+ =

+

=
Step 2: blend lower frequency bands over
larger spatial ranges, high frequency bands

over small spatial ranges

Application: Image Blending

Algorithm:

1. Build Laplacian pyramid LA and LB from images A and B

2. Build a Gaussian pyramid GR from mask image R (the mask defines which
image pixels should be coming from A or B)

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j)

4. Reconstruct the final blended image from LS

54

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

Polar Bear
Laplacian
Pyramid

Mask
Gaussian
Pyramid

Penguin
Laplacian
Pyramid

1 - Mask
Gaussian
Pyramid

Result
Pyramid

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

⇤ ⇤+ =

Reconstruct
Result

=

+

+

+

=⇤ ⇤+ =

⇤ ⇤+ =

+

⇤ ⇤+ =

+

⇤ ⇤+ =

+

=
Reconstruct

Result

57

58[Jim Kajiya, Andries van Dam]

59[Jim Kajiya, Andries van Dam]

60

61Alpha blend with sharp fall-off

62Alpha blend with gradual fall-off

63Pyramid Blend

Summary: Scaled Representations

Gaussian Pyramid

—Each level represents a low-pass filtered image at a different scale

—Generated by successive Gaussian blurring and downsampling
—Useful for image resizing, sampling

Laplacian Pyramid

—Each level is a band-pass image at a different scale

—Generated by differences between successive levels of a Gaussian Pyramid
—Used for pyramid blending, feature extraction etc.

Recap: Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales

Solution: form a Gaussian Pyramid and
convolve with the template at each scale

Recap: Multi-Scale Template Matching

= TemplateQ. Why scale the image and not the template?

Correlation with a fixed-sized image only detects faces at specific scales

Improving Template Matching

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints
— from above (as in an aerial photograph or satellite image)
— head on
— sideways (i.e., in profile)
— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants?

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching

Improving Template Matching

Improved detection algorithms make use of image features

These can be hand coded or learned

Template Matching with HOG

Template matching can be improved by using better features, e.g., Histograms
of Gradients (HOG) [Dalal Triggs 2005]

The authors use a Learning-based approach (Support Vector Machine) to find
an optimally weighted template666 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f) (g)

Figure 14.8 Pedestrian detection using histograms of oriented gradients (Dalal and Triggs
2005) c� 2005 IEEE: (a) the average gradient image over the training examples; (b) each
“pixel” shows the maximum positive SVM weight in the block centered on the pixel; (c) like-
wise, for the negative SVM weights; (d) a test image; (e) the computed R-HOG (rectangular
histogram of gradients) descriptor; (f) the R-HOG descriptor weighted by the positive SVM
weights; (g) the R-HOG descriptor weighted by the negative SVM weights.

14.1.2 Pedestrian detection

While a lot of the research on object detection has focused on faces, the detection of other
objects, such as pedestrians and cars, has also received widespread attention (Gavrila and
Philomin 1999; Gavrila 1999; Papageorgiou and Poggio 2000; Mohan, Papageorgiou, and
Poggio 2001; Schneiderman and Kanade 2004). Some of these techniques maintain the same
focus as face detection on speed and efficiency. Others, however, focus instead on accuracy,
viewing detection as a more challenging variant of generic class recognition (Section 14.4)
in which the locations and extents of objects are to be determined as accurately as possible.
(See, for example, the PASCAL VOC detection challenge, http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.)

An example of a well-known pedestrian detector is the algorithm developed by Dalal
and Triggs (2005), who use a set of overlapping histogram of oriented gradients (HOG) de-
scriptors fed into a support vector machine (Figure 14.8). Each HOG has cells to accumulate
magnitude-weighted votes for gradients at particular orientations, just as in the scale invariant
feature transform (SIFT) developed by Lowe (2004), which we discussed in Section 4.1.2 and
Figure 4.18. Unlike SIFT, however, which is only evaluated at interest point locations, HOGs
are evaluated on a regular overlapping grid and their descriptor magnitudes are normalized
using an even coarser grid; they are only computed at a single scale and a fixed orientation. In
order to capture the subtle variations in orientation around a person’s outline, a large number
of orientation bins is used and no smoothing is performed in the central difference gradi-
ent computation—see the work of Dalal and Triggs (2005) for more implementation details.

SVM weightsavg grad
+ �

HOG weighted HOG

Convnet Object Detection
Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Receptive Field

V

[Images: Jonathan Huang]

— Convnet based object detectors resemble sliding
window template matching in feature space

— Architectures typically involve multiple scales and
aspect ratios, and regress to a 2D offset in addition to
category scores

Solution: use multiple Wloc and Wcls (one for each
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...

Summary
Template matching as (normalized) correlation. Template matching is not
robust to changes in:
— 2D spatial scale and 2D orientation
— 3D pose and viewing direction
— illumination

Scaled representations facilitate
— template matching at multiple scales
— efficient search for image–to–image correspondences
— image analysis at multiple levels of detail

A Gaussian pyramid reduces artifacts introduced when sub-sampling to
coarser scales

