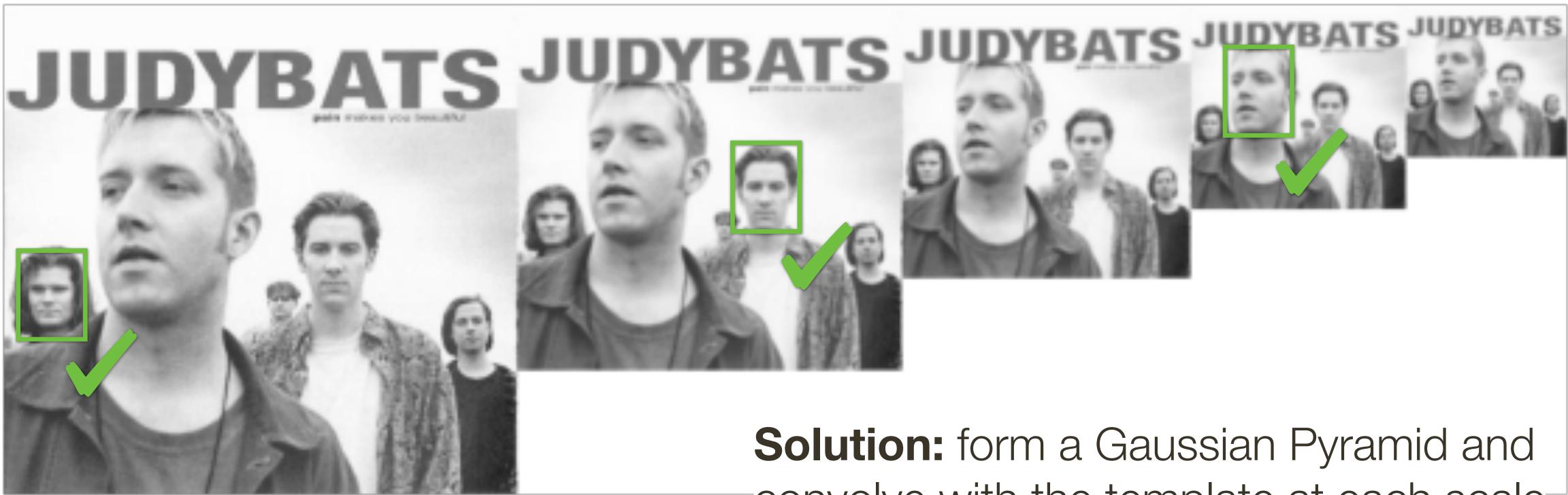


Recap: Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales



Q. Why scale the image and not the template?

convolve with the template at each scale

= Template

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 9: Edge Detection

Menu for Today

Topics:

– Edge Detection — Canny Edge Detector

Readings:

- Today's Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2

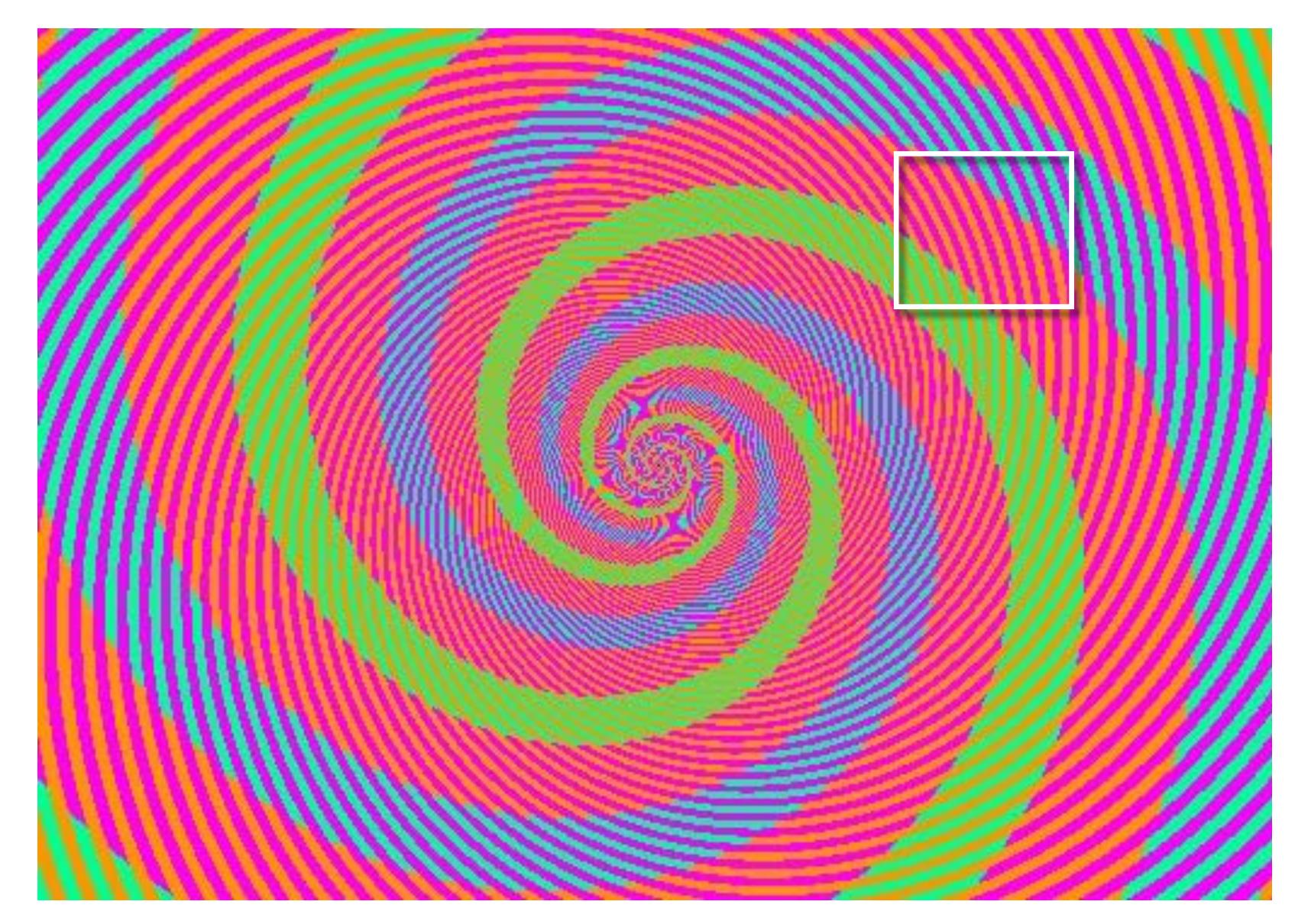
Reminders:

- Midterm: Feb 24th 12:30 pm in class

– Image **Boundaries**

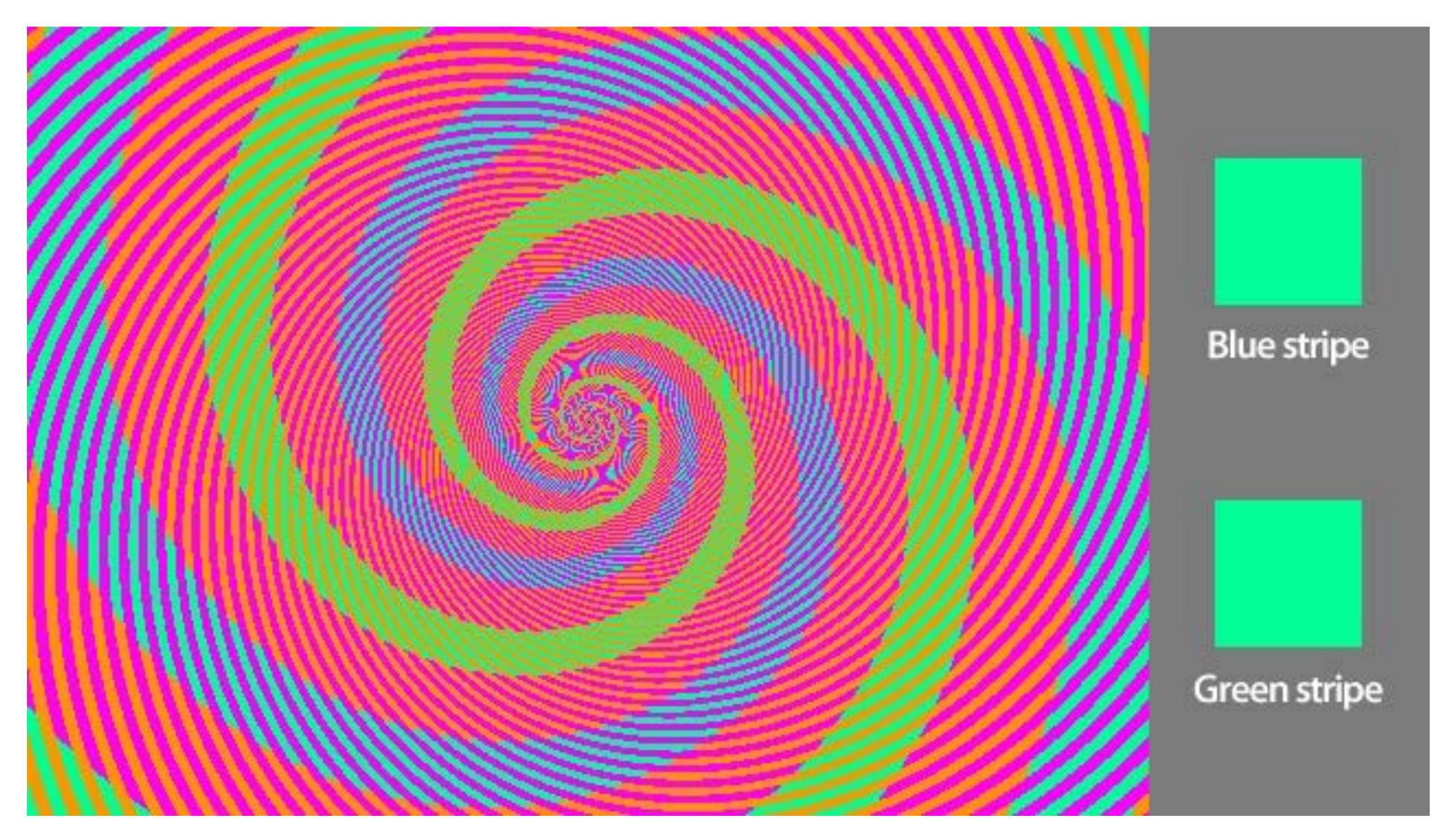
- Assignment 2: Scaled Representations, Face Detection and Image Blending

Today's "fun" Example:



Today's "fun" Example:

Today's "fun" Example:

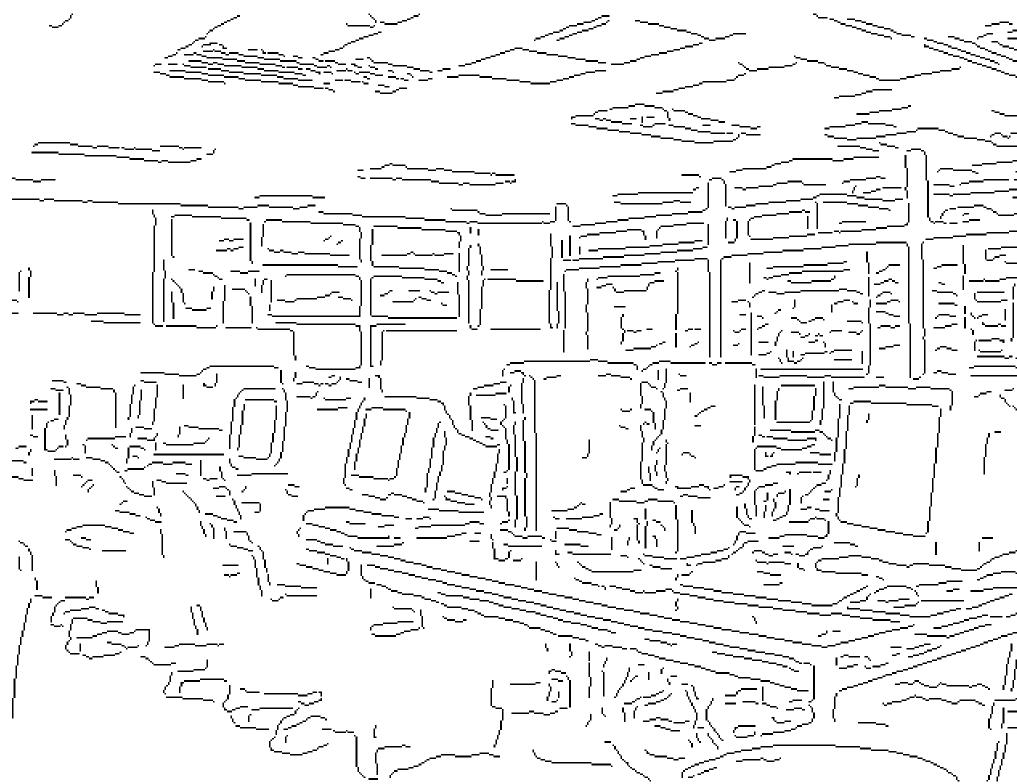


Learning Goal

Understand that gradients are useful Gradient —> Edges

Edge Detection

One of the first algorithms in Computer Vision



.

-

) > _

Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

What Causes Edges?

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)



Slide Credit: Christopher Rasmussen

Derivative Definition

12

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

A (discrete) approximation is

$$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Delta X}$$

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

A (discrete) approximation is

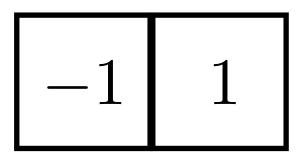
$$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Delta X} \qquad \qquad \boxed{-1}$$

A (discrete) approximation is

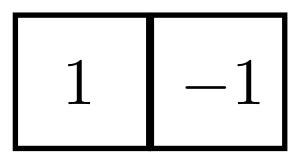
"forward difference" implemented as

correlation

convolution



from left



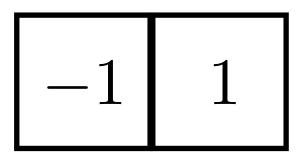
$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Lambda X}$

A (discrete) approximation is

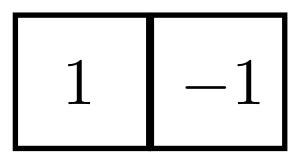
"forward difference" implemented as

correlation

convolution



from left

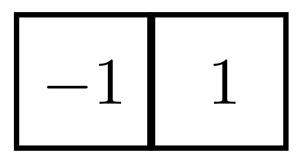


$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Lambda X}$

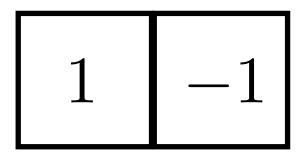
"backward difference" implemented as

correlation

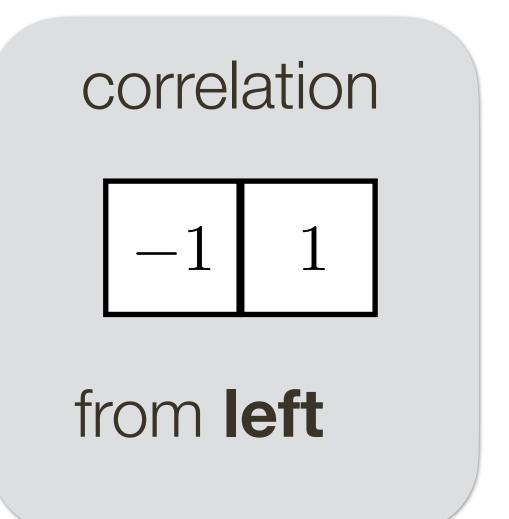
convolution



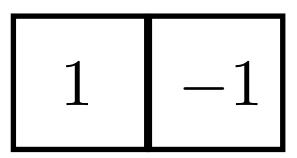
from **right**



A (discrete) approximation is



convolution

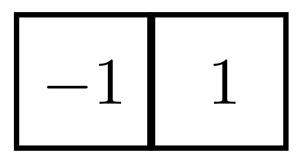


$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Lambda X}$

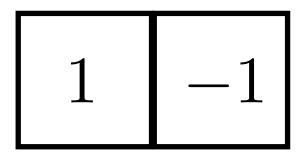
"backward difference" implemented as

correlation

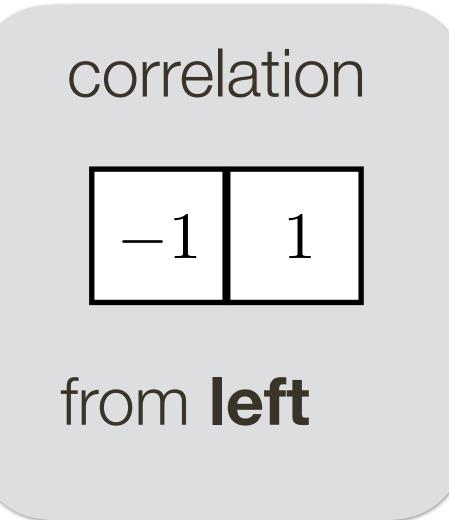
convolution

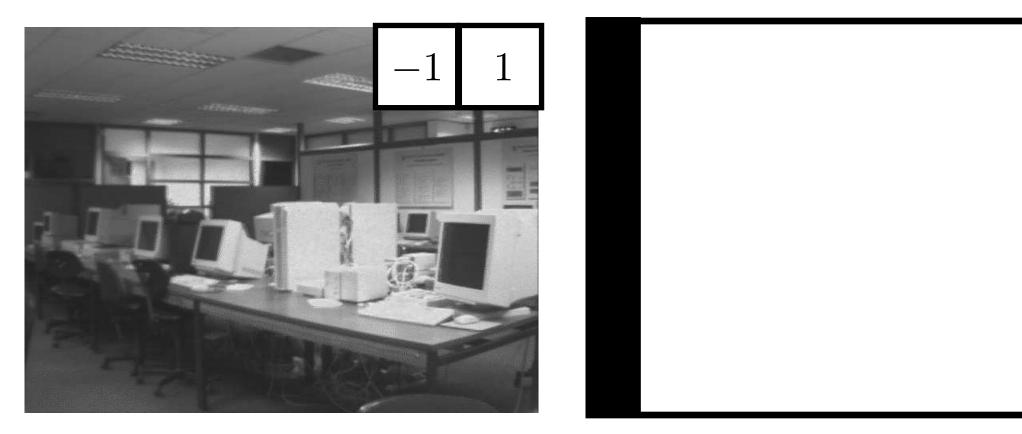


from right



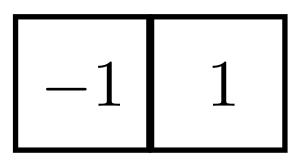
"forward difference" implemented as





"backward difference" implemented as

correlation

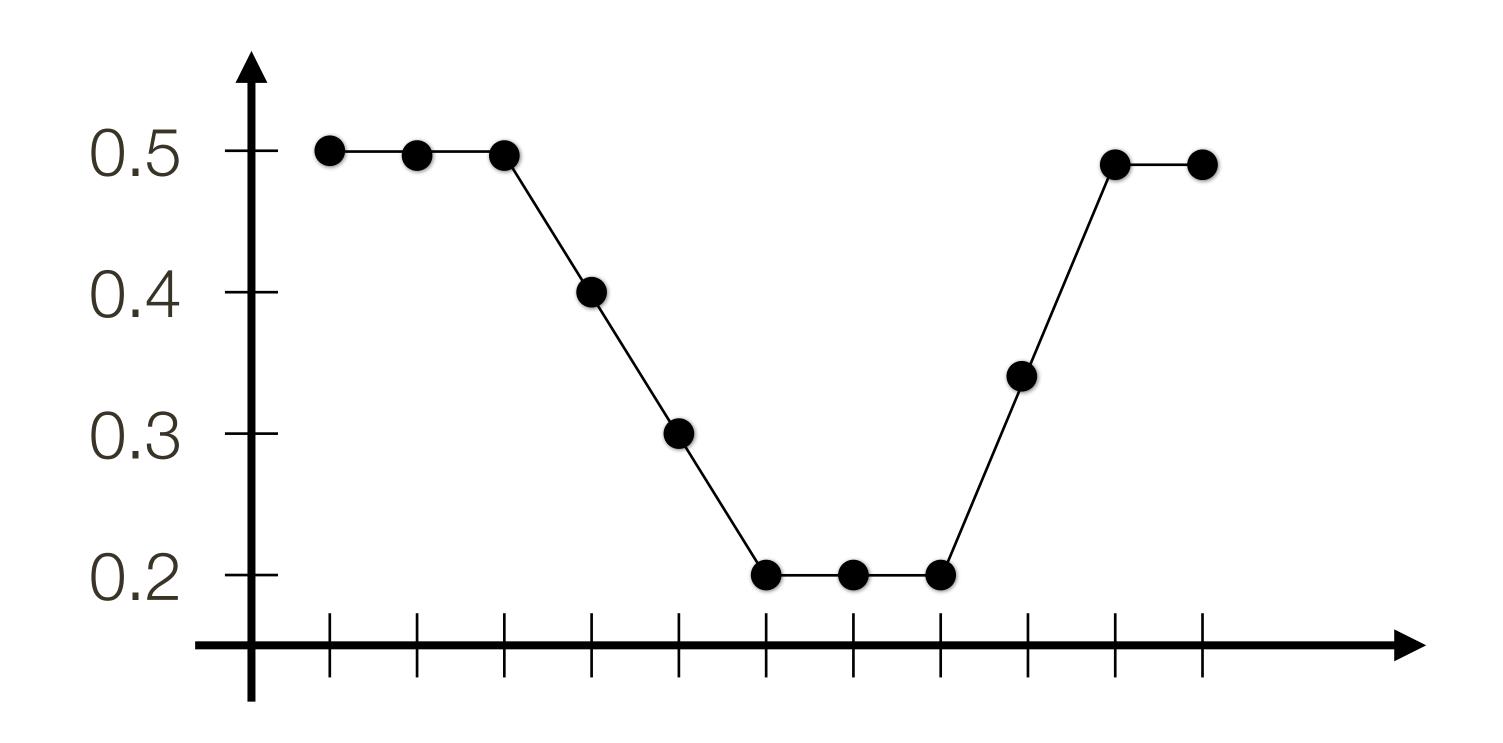


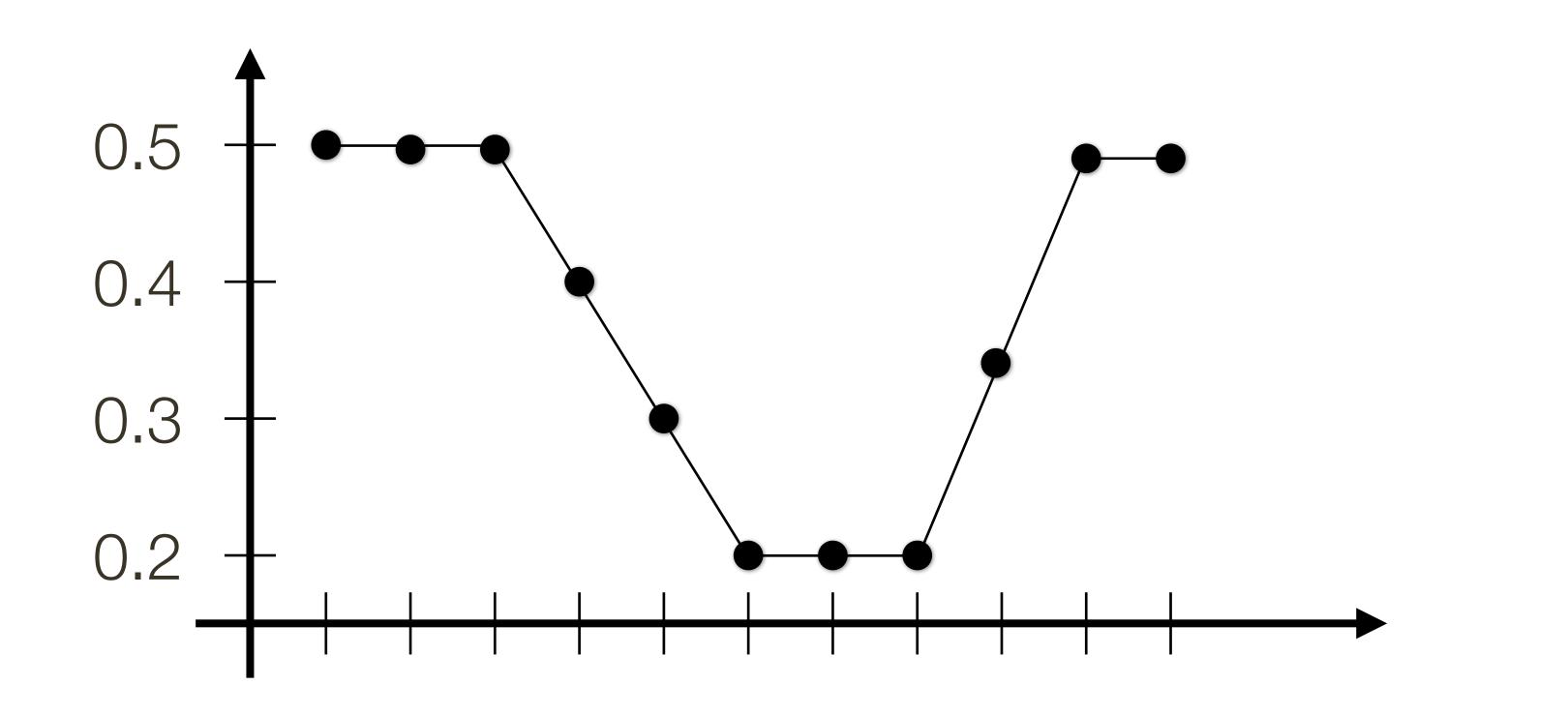
from right

A similar definition (and approximation) holds for $\frac{\partial f}{\partial y}$

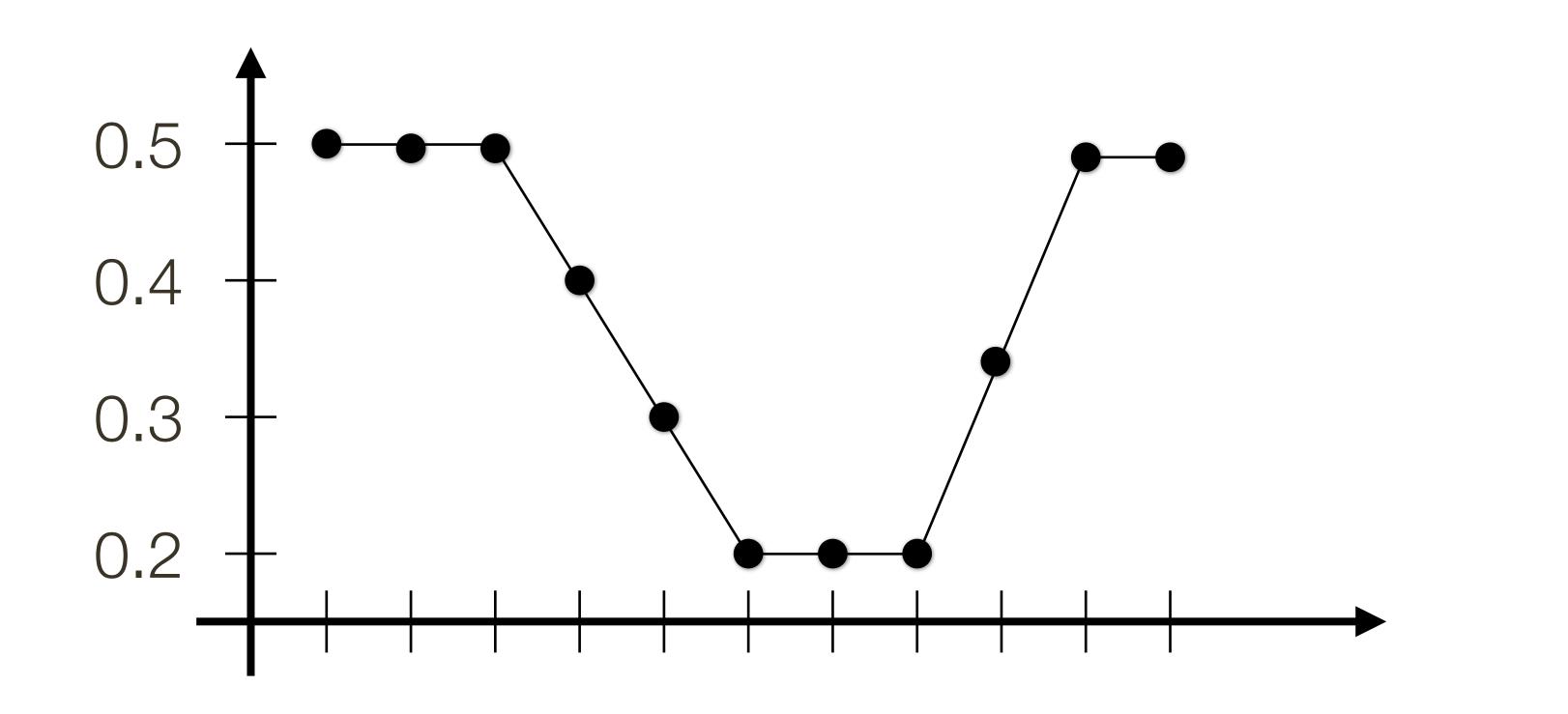
Image **noise** tends to result in pixels not looking exactly like their neighbours, so simple "finite differences" are sensitive to noise.

The usual way to deal with this problem is to **smooth** the image prior to derivative estimation.

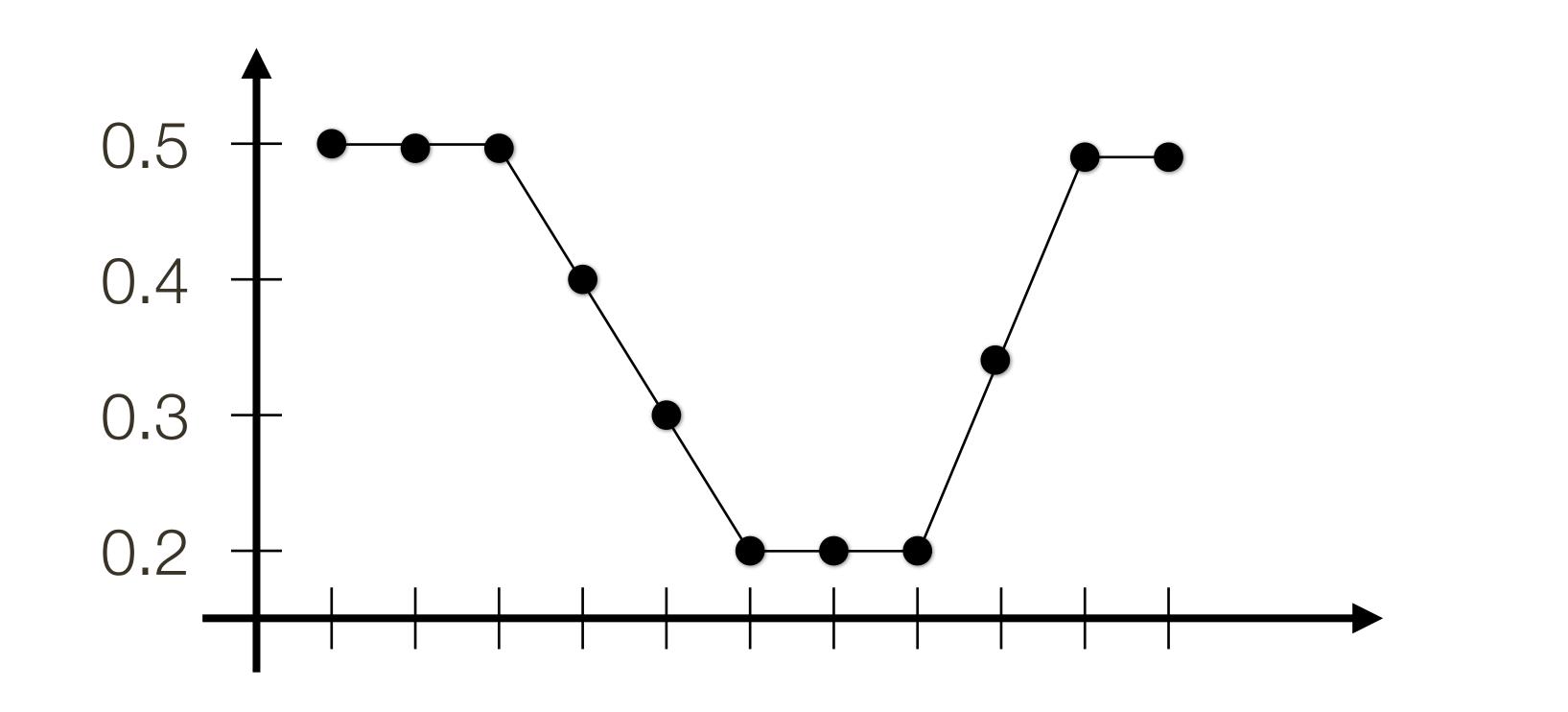


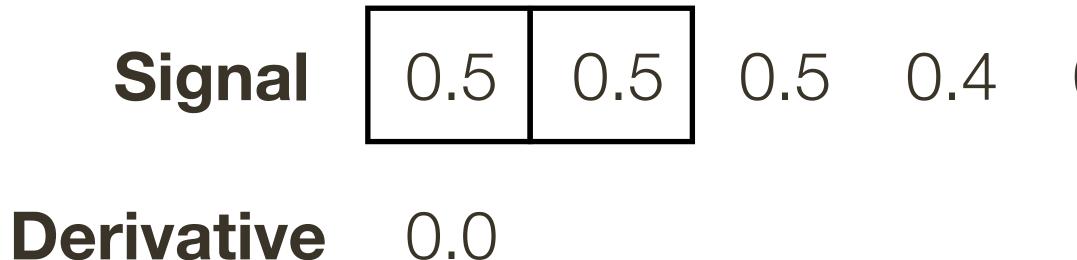


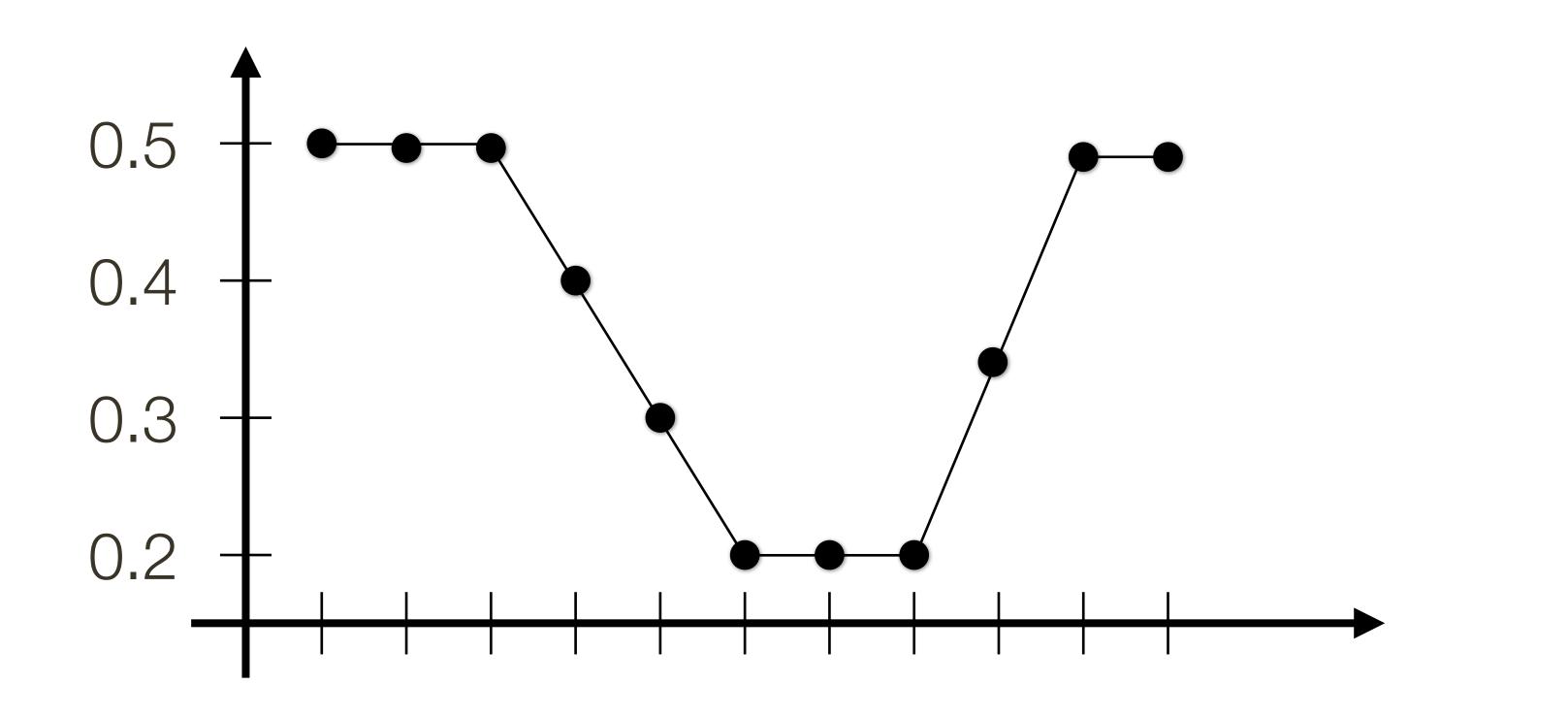
0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5



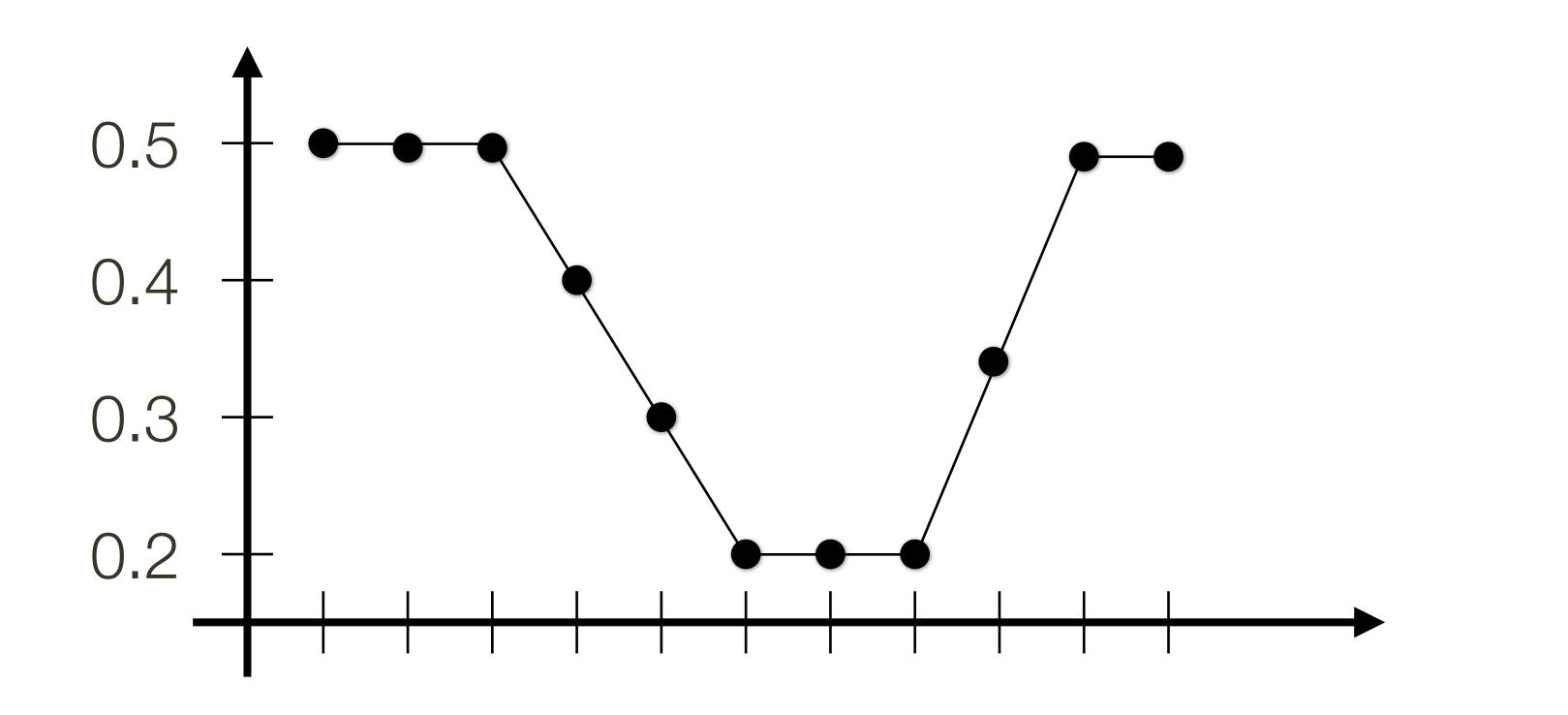
Derivative



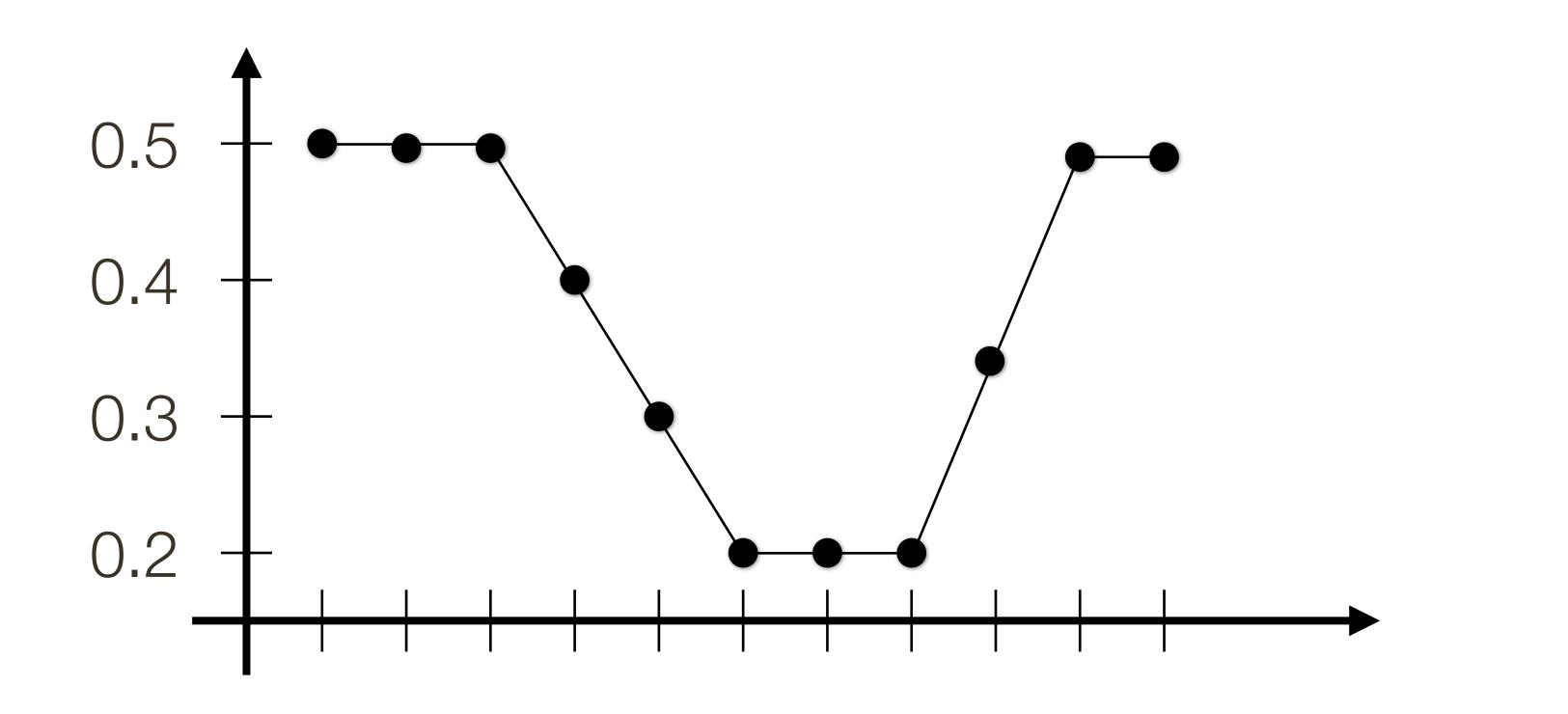


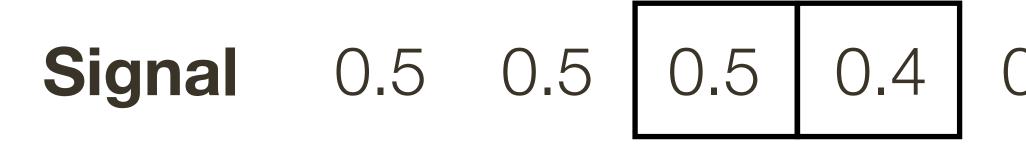


Derivative 0.0

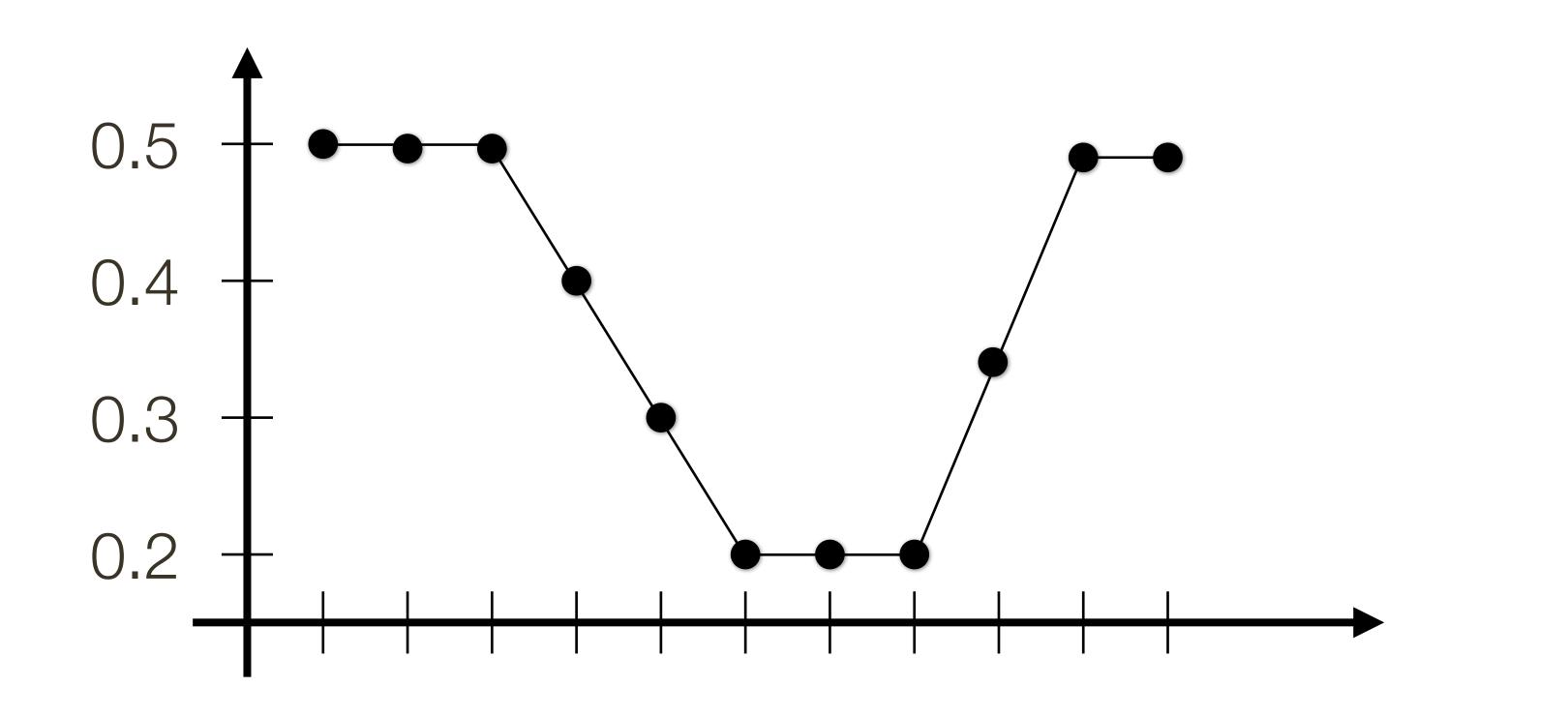


Derivative 0.0 0.0

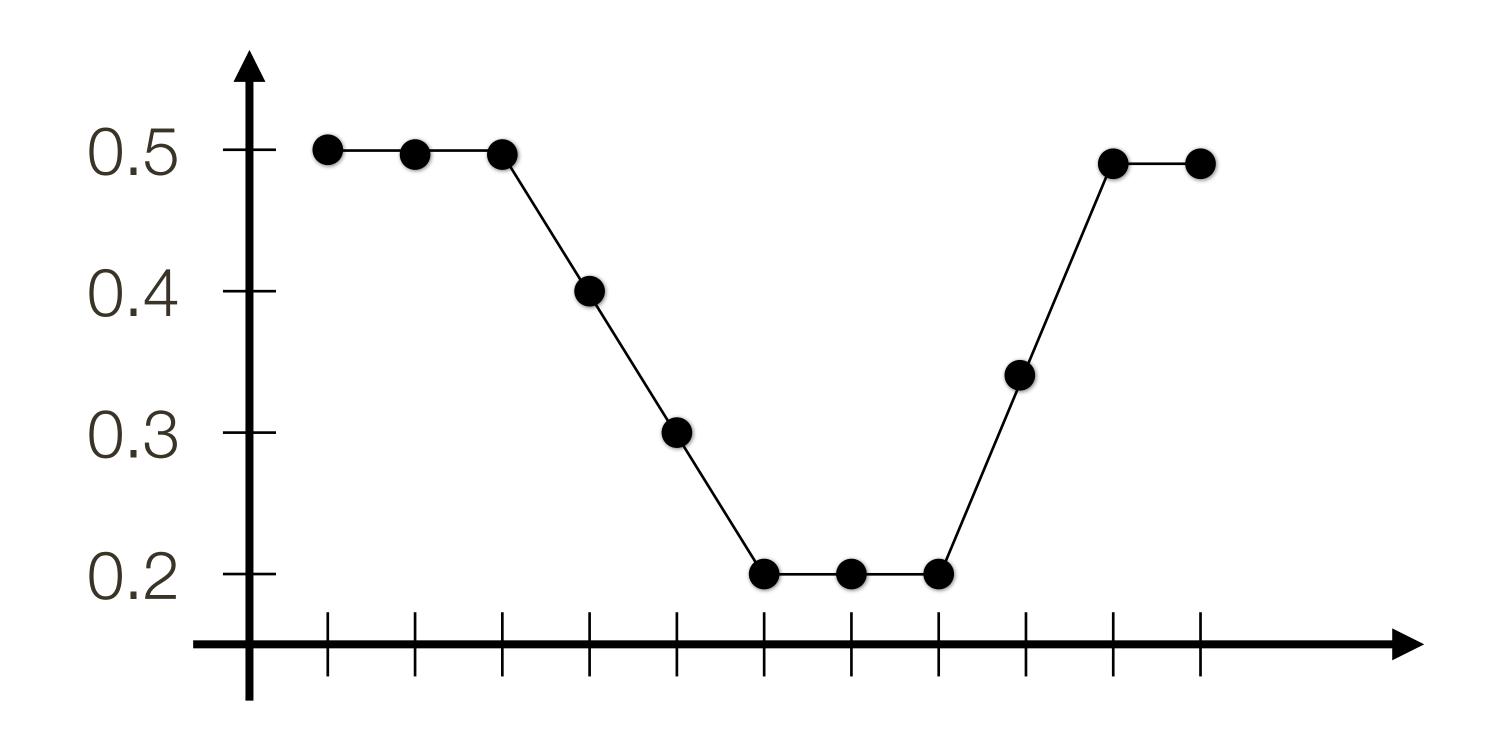




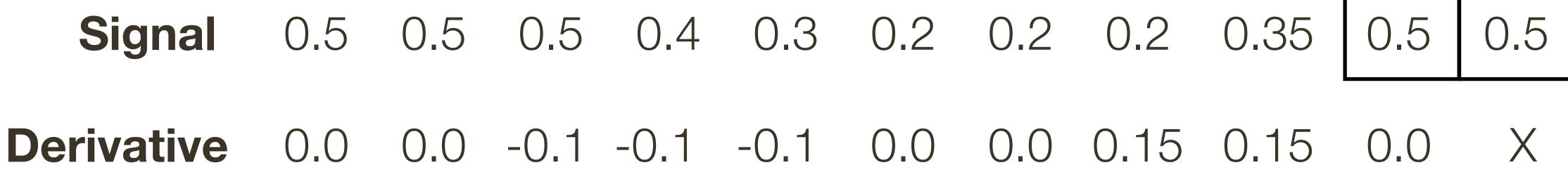
Derivative 0.0 0.0



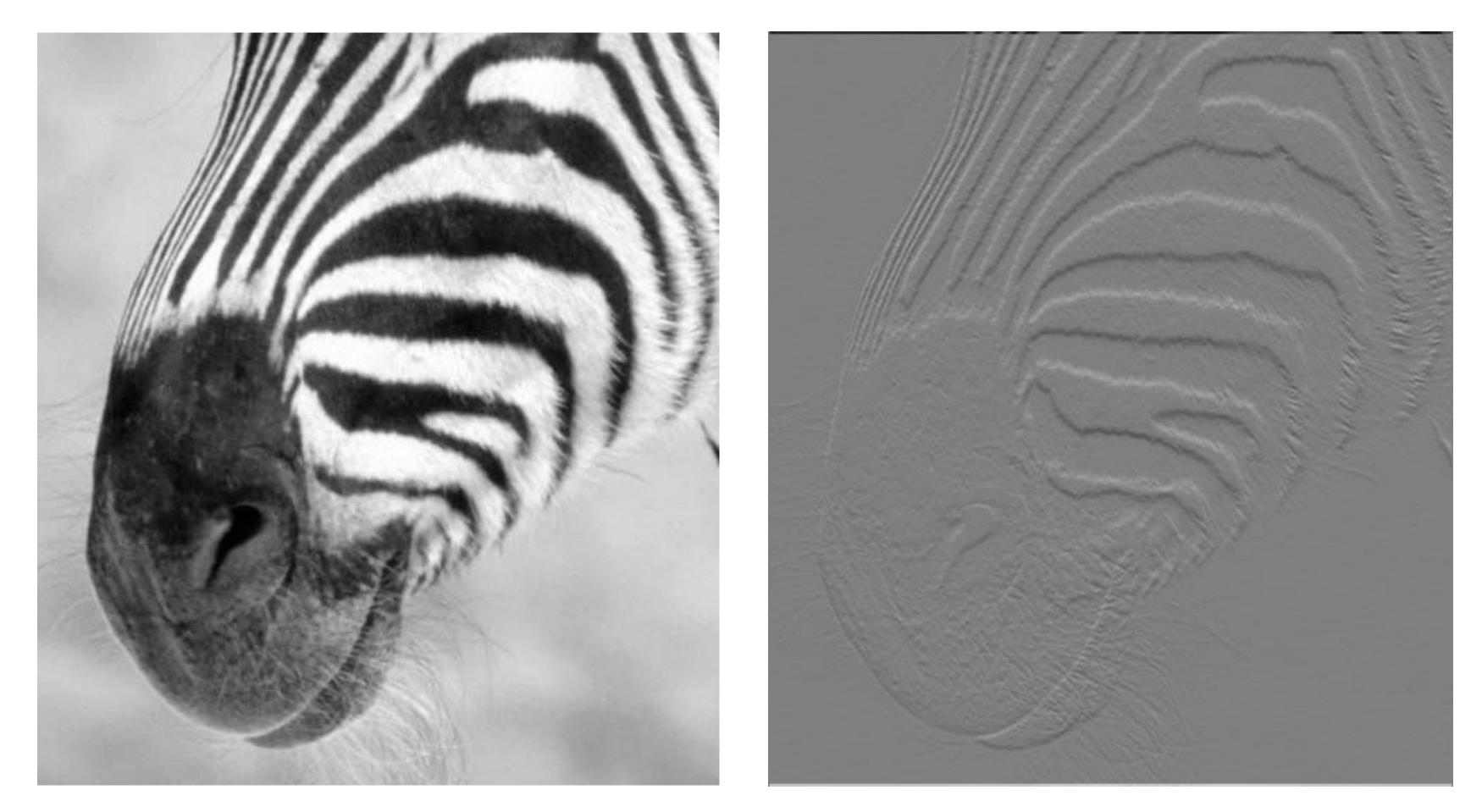
Derivative 0.0 0.0 -0.1



0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 Signal



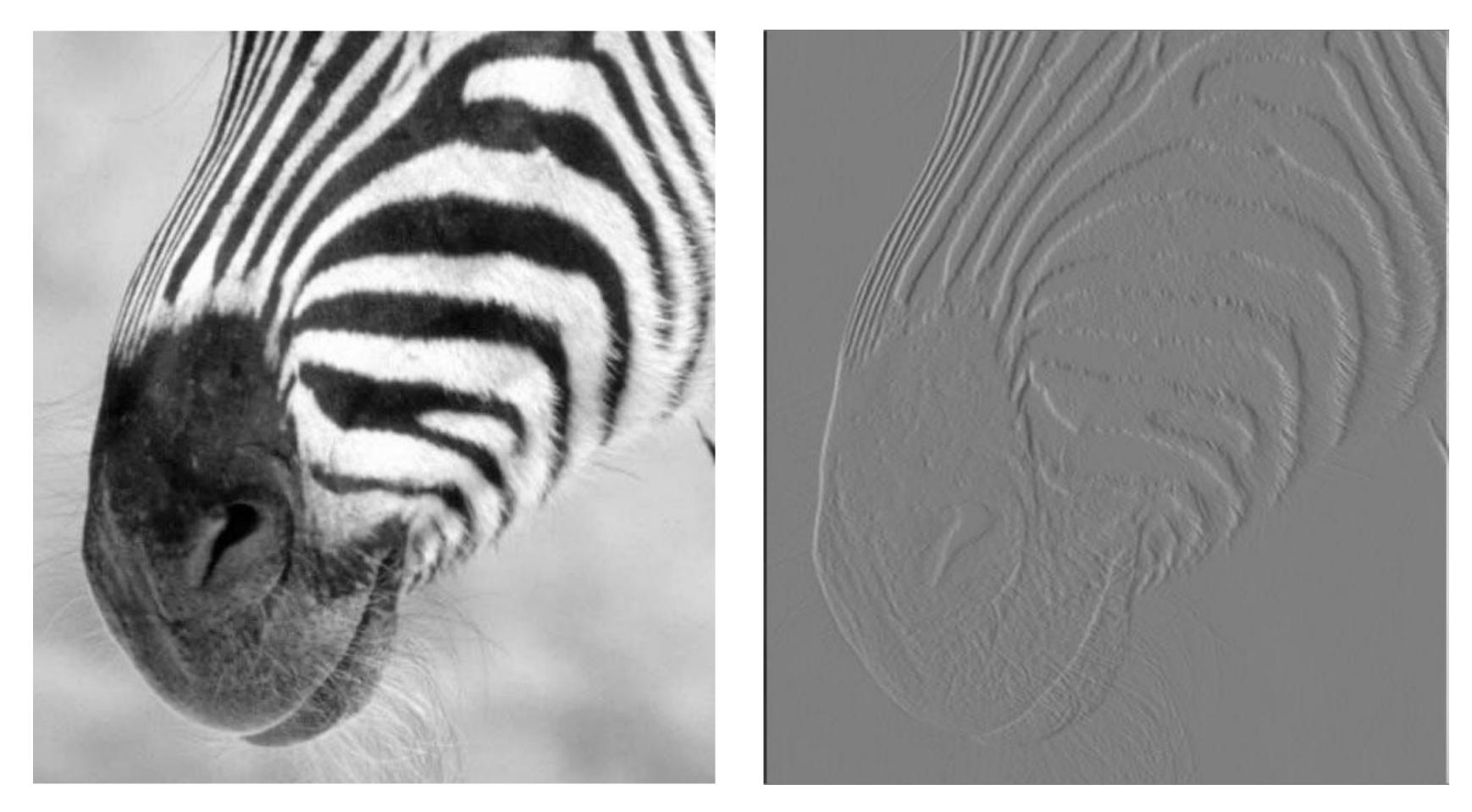
Estimating **Derivatives Derivative** in Y (i.e., vertical) direction



Forsyth & Ponce (1st ed.) Figure 7.4

(Note: visualized by adding 0.5/128)

Estimating **Derivatives Derivative** in X (i.e., horizontal) direction (**Note:** visualized by adding 0.5/128)

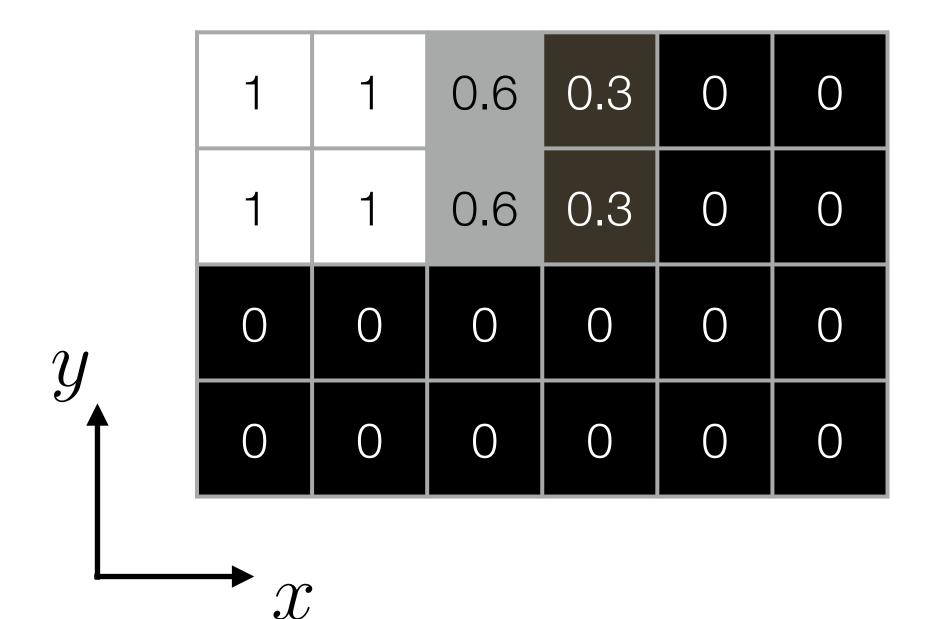


Forsyth & Ponce (1st ed.) Figure 7.4

Example: 2D Derivatives

Use the "first forward difference" to compute the image derivatives in X and Y

9.2



Compute two arrays, one of $\frac{\partial f}{\partial x}$ values and one of $\frac{\partial f}{\partial y}$ values

Q: Why should the weights of a filter used for differentiation sum to 0?

Q: Why should the weights of a filter used for differentiation sum to 0?

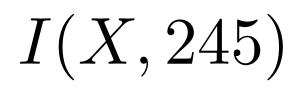
e.g. a constant image, I(X, Y) = k has derivative = 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

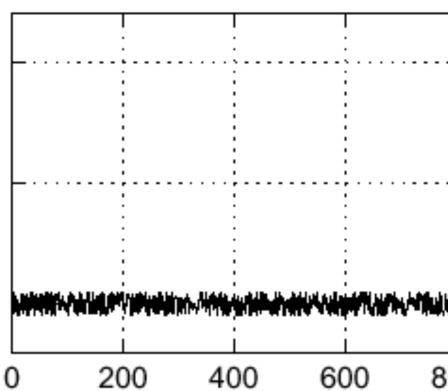
 $\sum_{i=1}^{N} f_i \cdot k = k \sum_{i=1}^{N} f_i$

$$f_i = 0 \implies \sum_{i=1}^N f_i = 0$$

Edge Detection: 1D **Example**

Lets consider a row of pixels in an image:

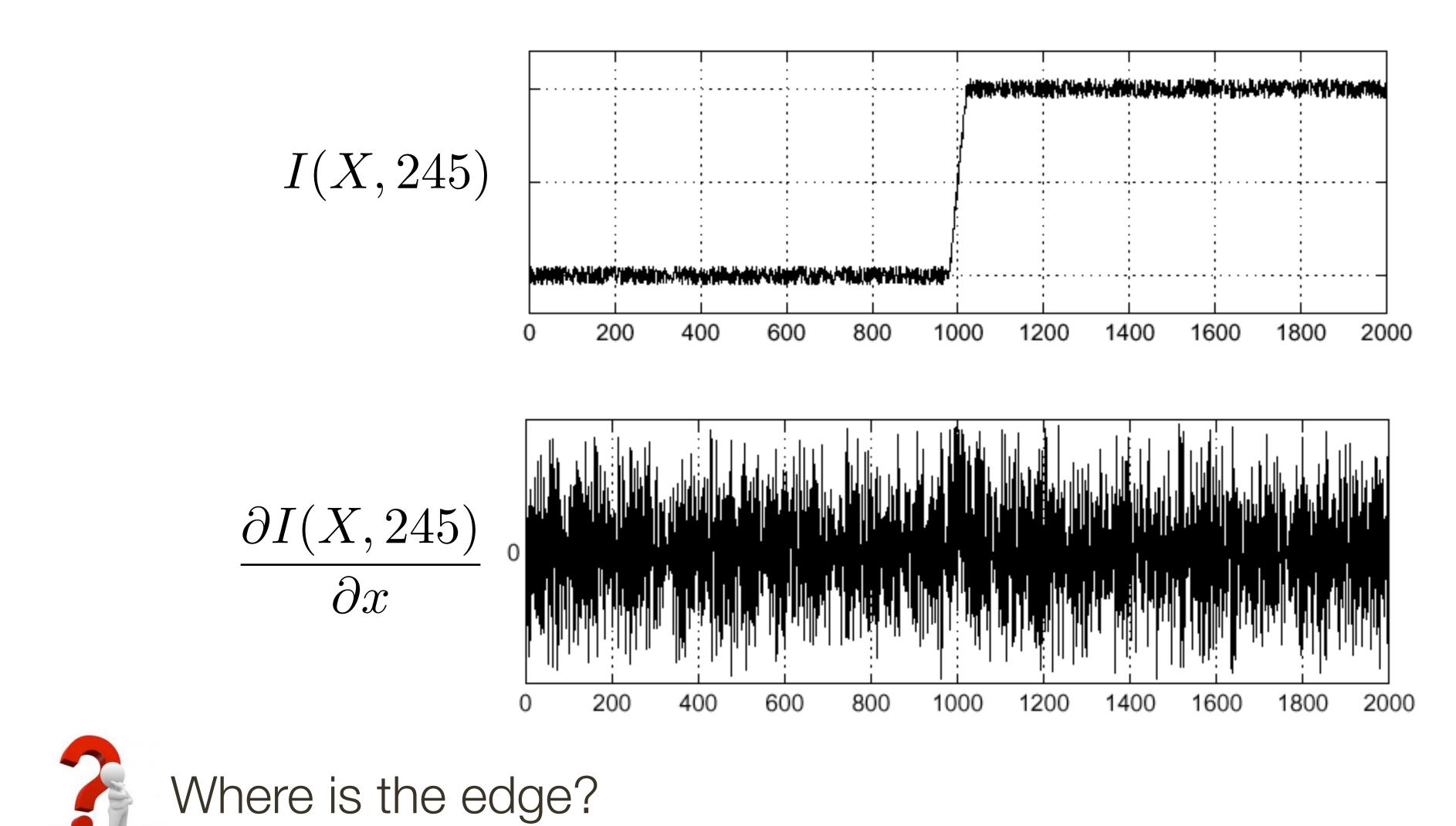




		 - 10010101010101010101010101010101010101	 - 	A li ⁿi a kal a		
			a a la se fair da la se	, 1977 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 197 	al an	
	1					
	Į.	-			-	
800	1000	1200	1400	1600	1800	2000

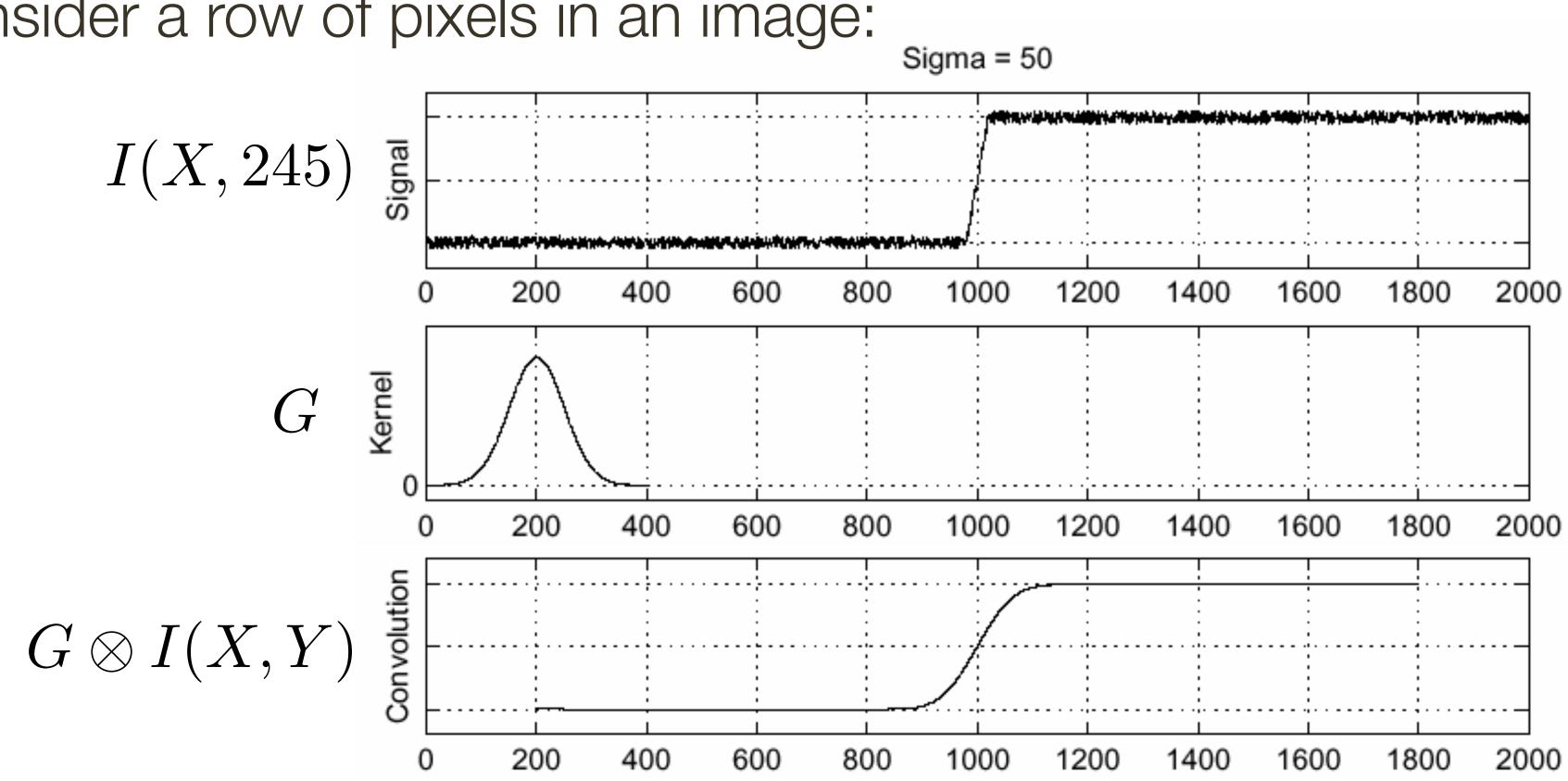
Edge Detection: 1D **Example**

Lets consider a row of pixels in an image:



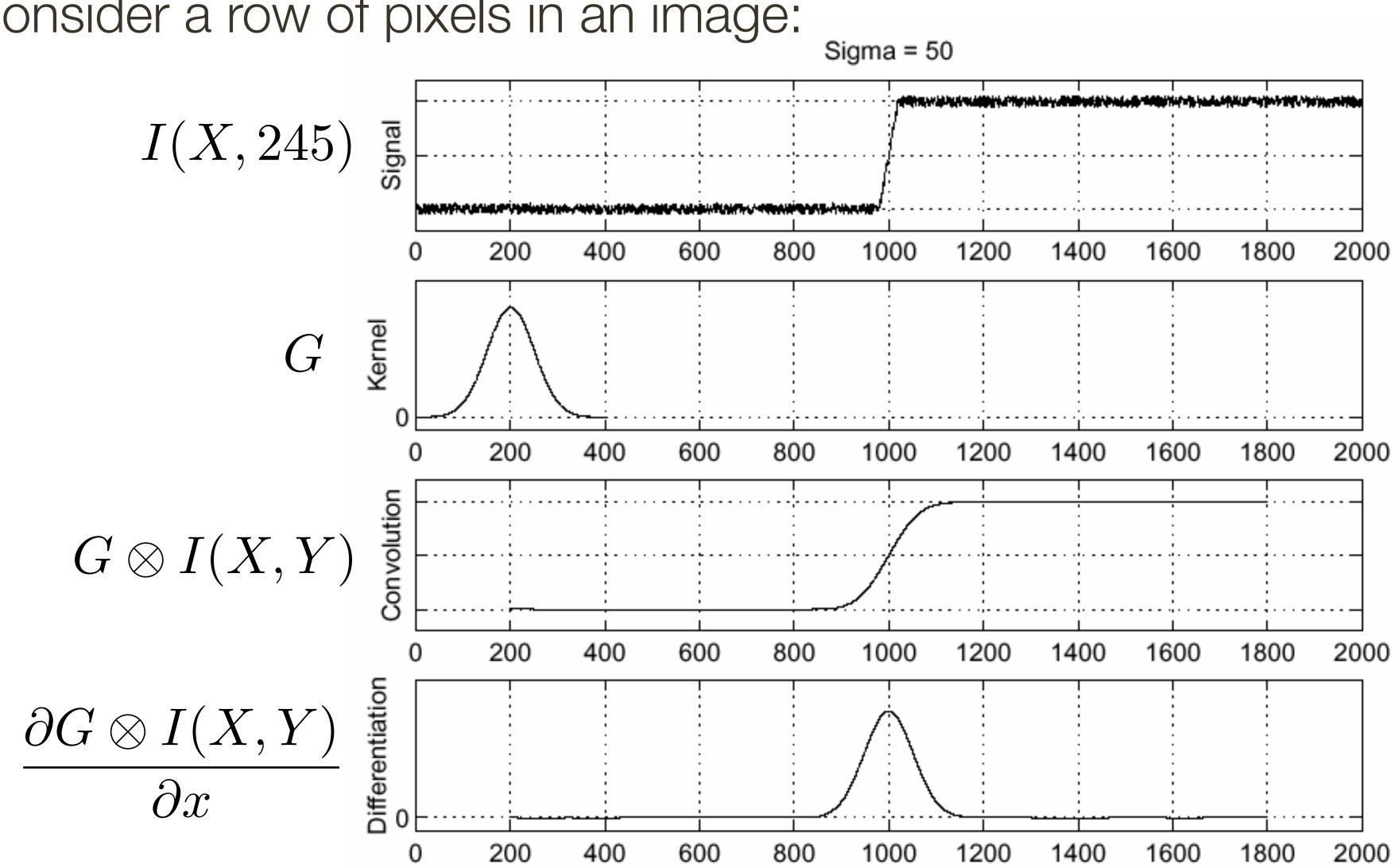
1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:



1D Example: Smoothing + Derivative

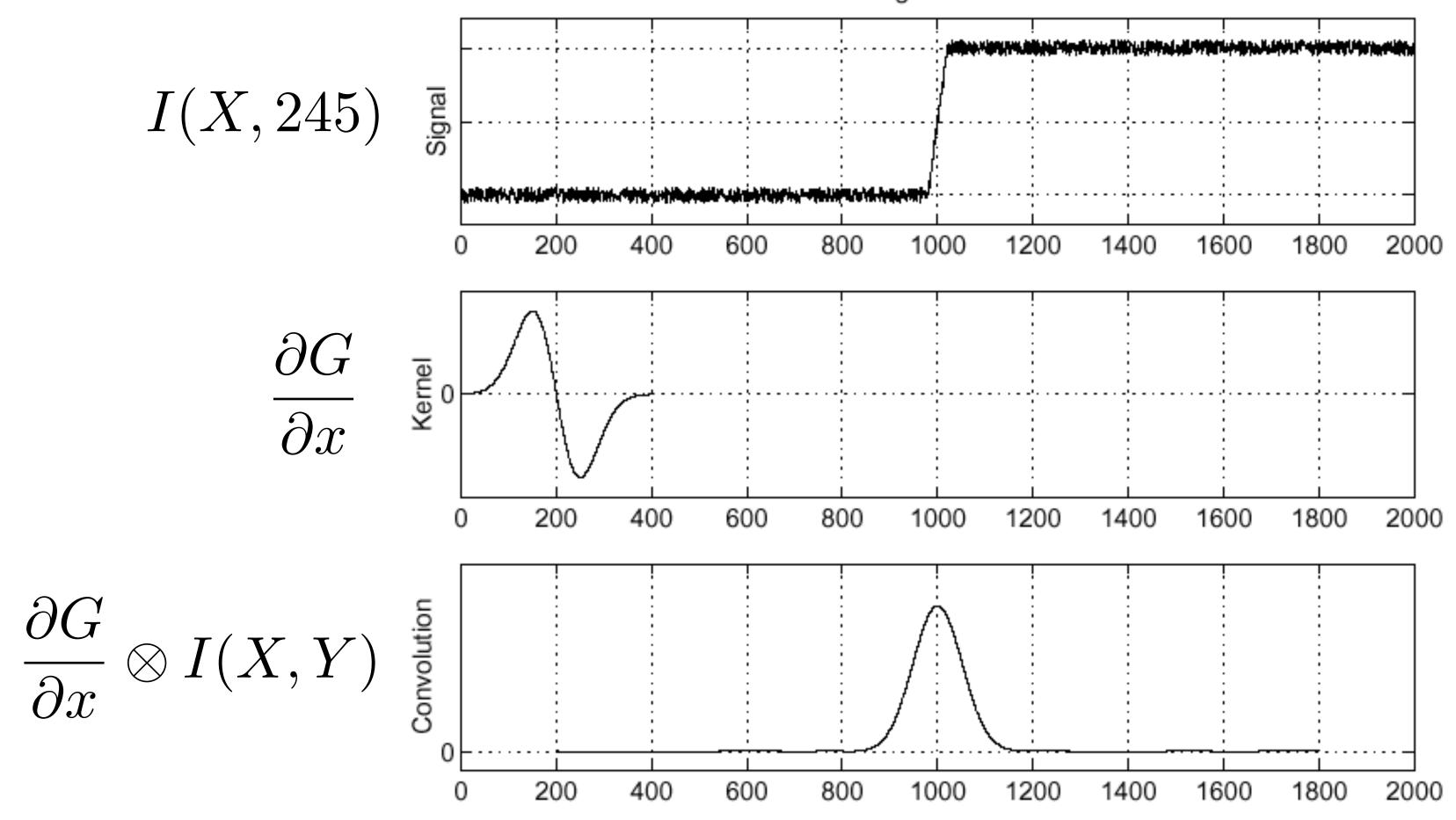
Lets consider a row of pixels in an image:



38

1D Example: Smoothing + Derivative

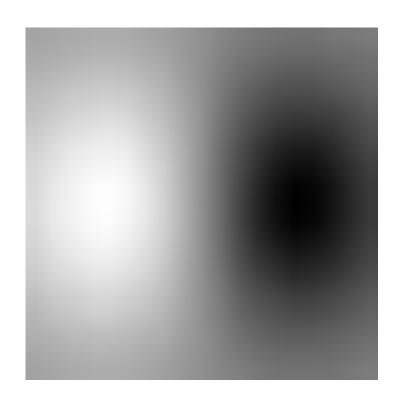
Lets consider a row of pixels in an image:

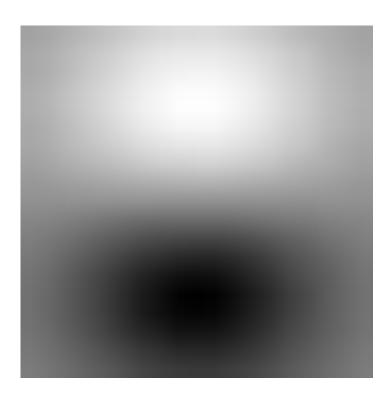


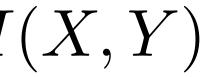
Sigma = 50

Smoothing and Differentiation

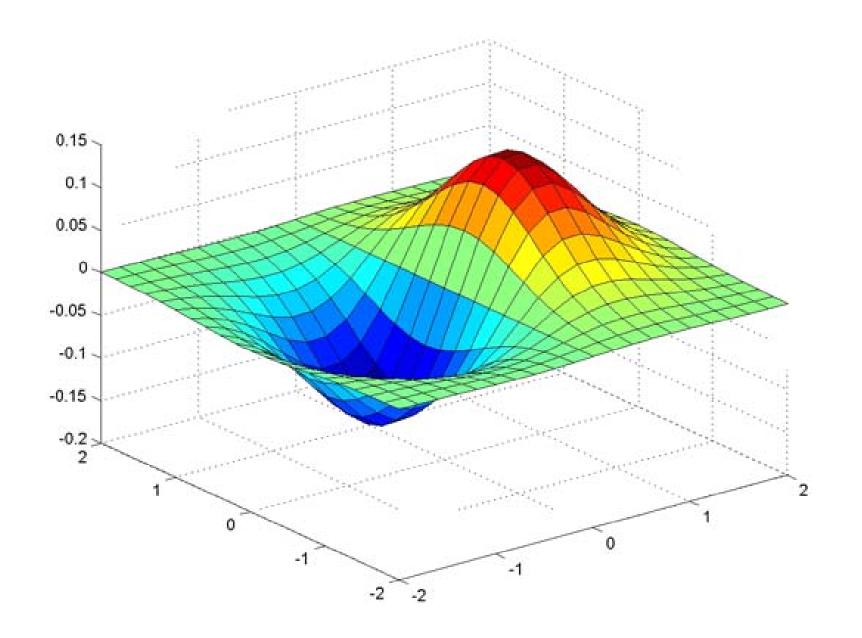
- **Edge:** a location with high gradient (derivative) Need smoothing to reduce noise prior to taking derivative Need two derivatives, in x and y direction We can use **derivative of Gaussian** filters because differentiation is convolution, and – convolution is associative
- Let \otimes denote convolution
 - $D \otimes (G \otimes I(X,Y)) = (D \otimes G) \otimes I(X,Y)$

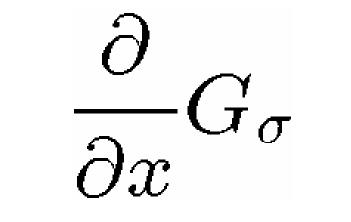


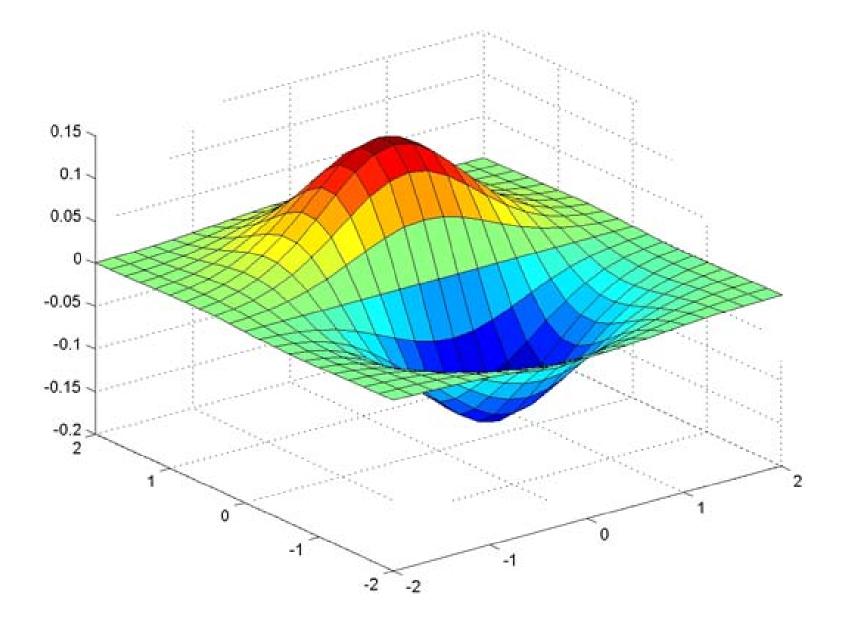


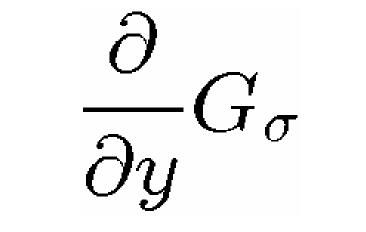


Partial Derivatives of Gaussian





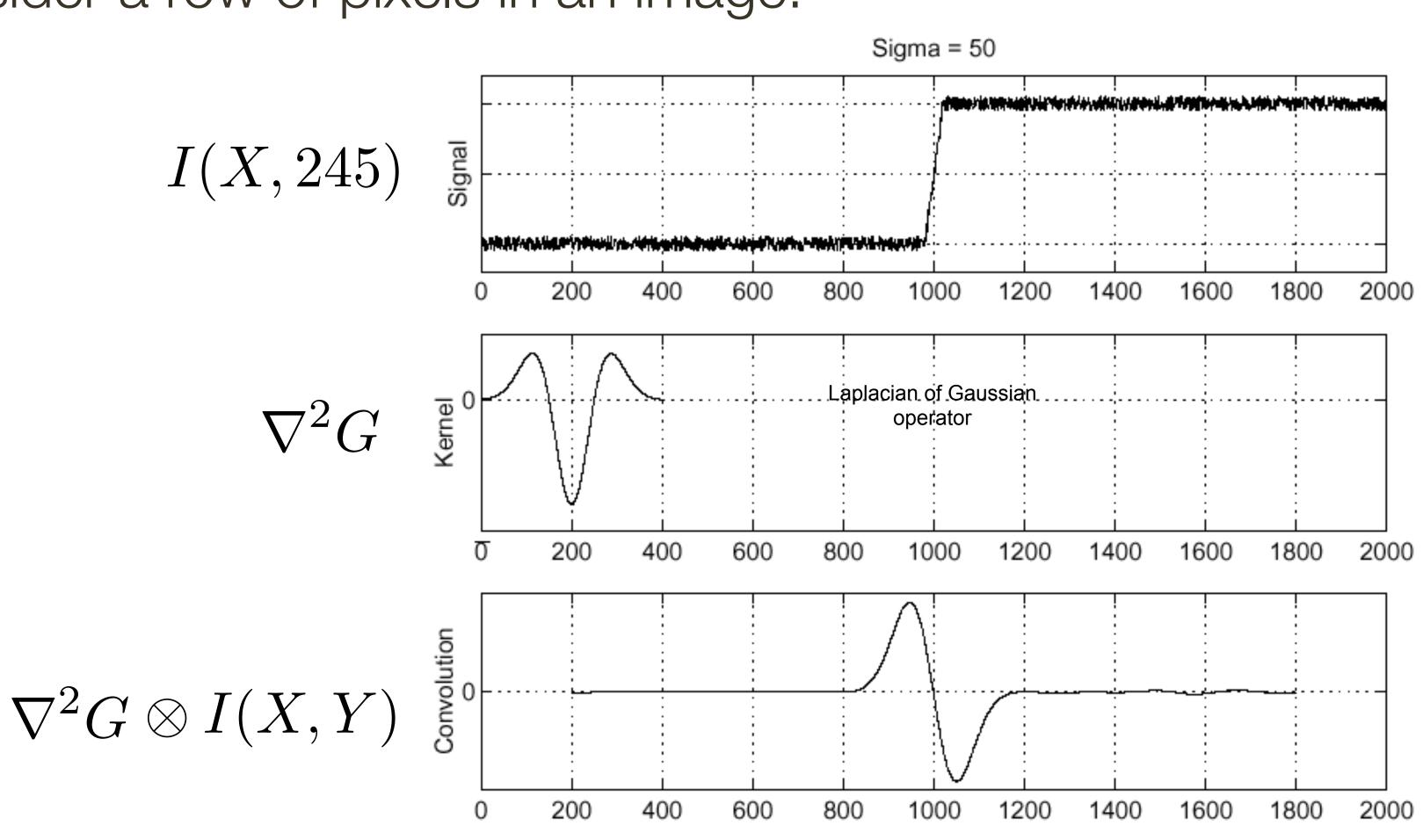




Slide Credit: Christopher Rasmussen

1D Example: Continued

Lets consider a row of pixels in an image:



Zero-crossings of bottom graph

42

Derivative Approximations: Forward, Backward, Centred

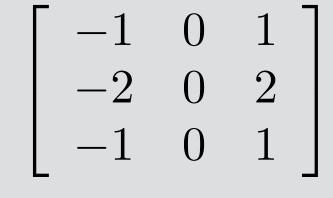
Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

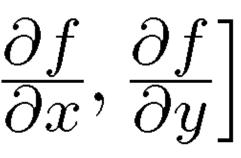
Sobel Gradient



20.

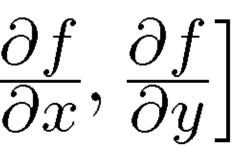
Sobel Edges

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$



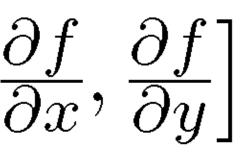
The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$



The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$



$\nabla f = \left[0, \frac{\partial f}{\partial u}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[0, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$ $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$ $\nabla f =$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

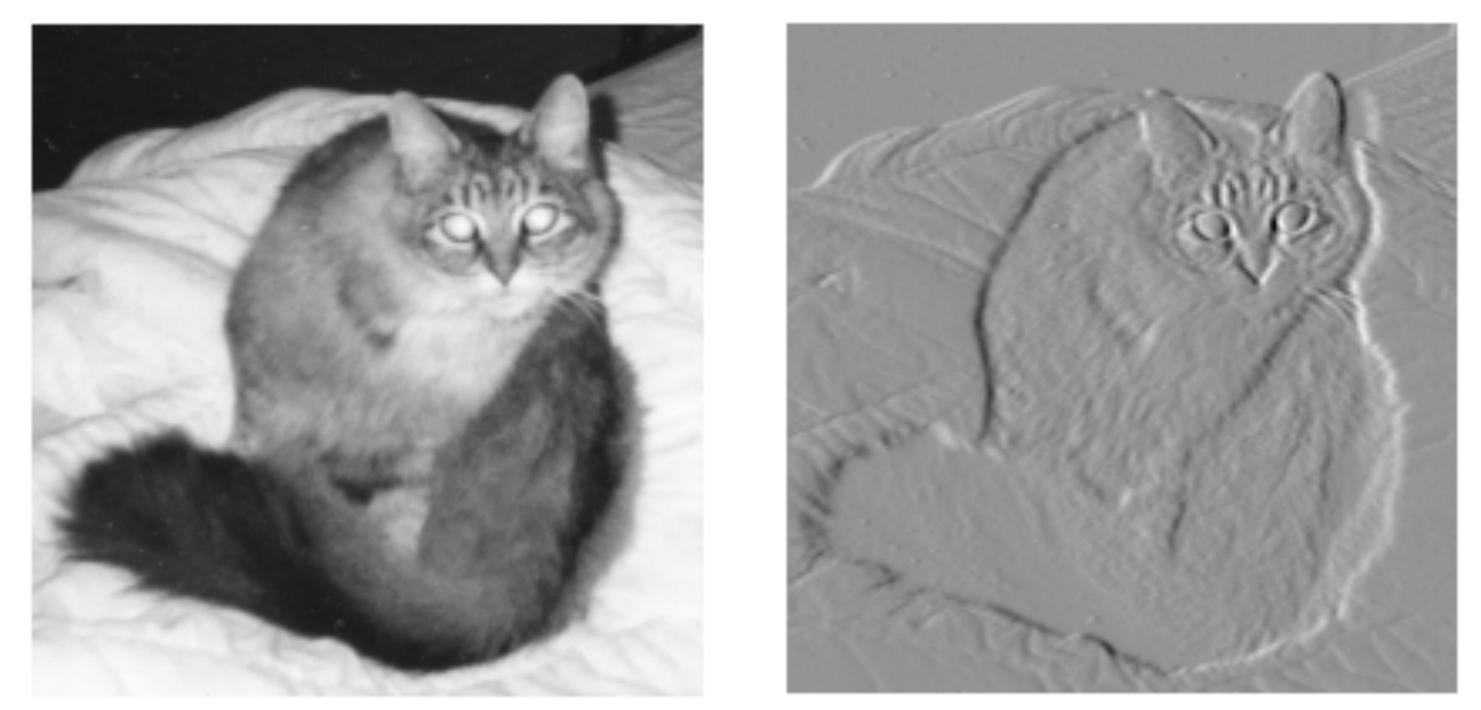
(how is this related to the direction of the edge?)

The edge strength is given by the **gradient magnitude**: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

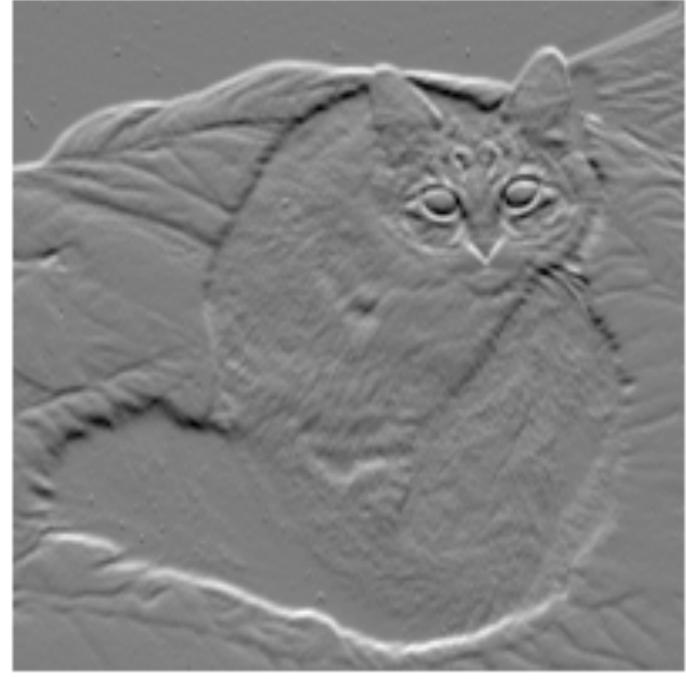
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

cipicateaach chericialia and chericialia and chericialia and chericial a

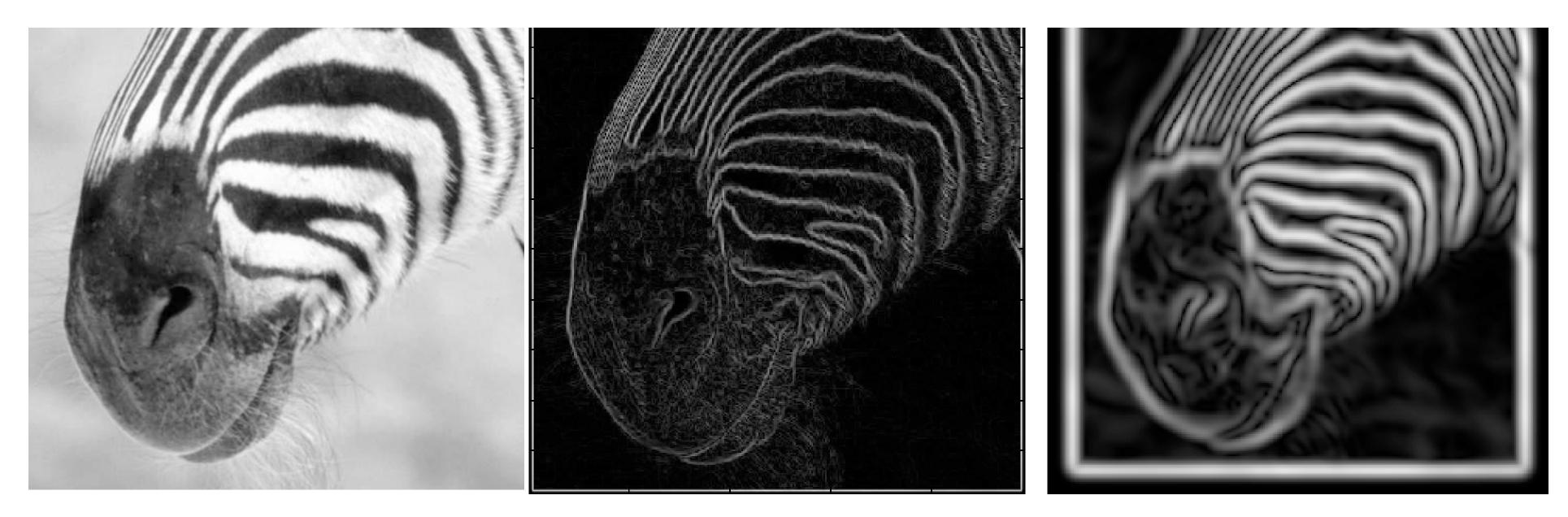


2D gradient: $\nabla I = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$



 g_x

Gradient Magnitude



$\sigma = 2$ $\sigma = 1$ Forsyth & Ponce (2nd ed.) Figure 5.4

Increased **smoothing**:

- eliminates noise edges
- makes edges smoother and thicker
- removes fine detail

Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

Sobel Gradient

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

20.

Sobel Edges

Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

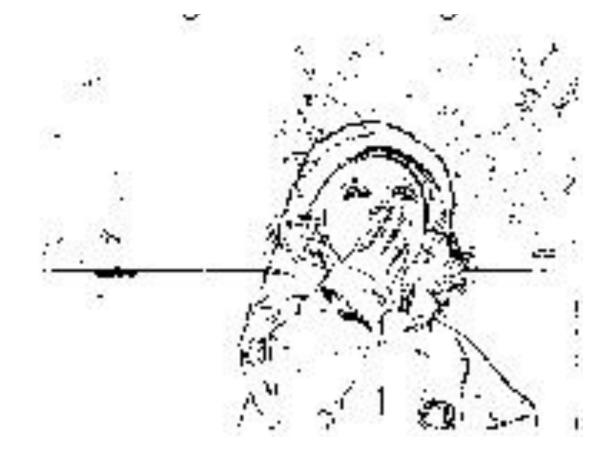
2. Threshold to obtain edges

Original Image

Sobel Gradient

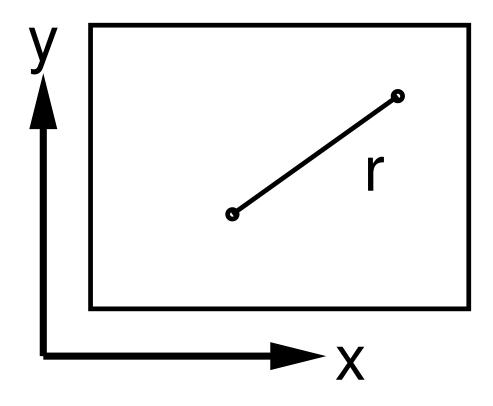
Thresholds are brittle, we can do better!

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$



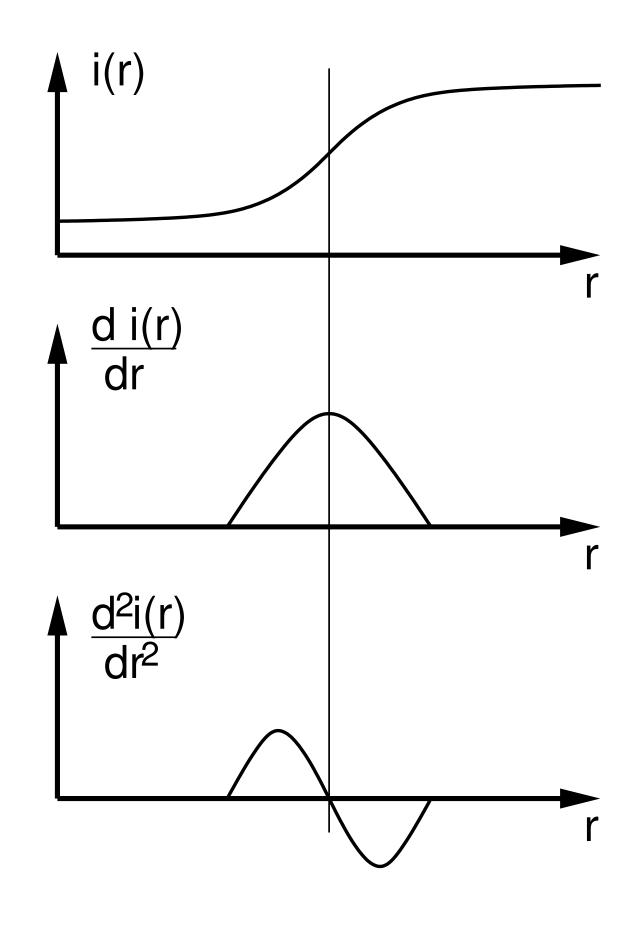
Sobel Edges

Two Generic Approaches for **Edge** Detection



Two generic approaches to edge point detection:

- (significant) local extrema of a first derivative operator
- zero crossings of a second derivative operator



Marr / Hildreth Laplacian of Gaussian

A "zero crossings of a second derivative operator" approach

Steps:

1. Gaussian for smoothing

2. Laplacian (∇^2) for differentiation where

 $\nabla^2 f(x,y) = \frac{\partial^2}{\partial y}$

3. Locate zero-crossings in the Laplacian of the Gaussian ($abla^2 G$) where

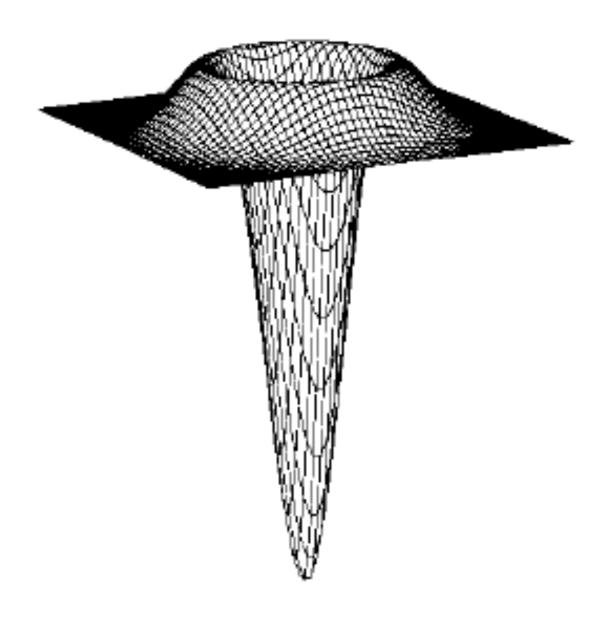
$$\nabla^2 G(x,y) = \frac{-1}{2\pi\sigma^4}$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

$$\left[2 - \frac{x^2 + y^2}{\sigma^2}\right] \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Marr / Hildreth Laplacian of Gaussian

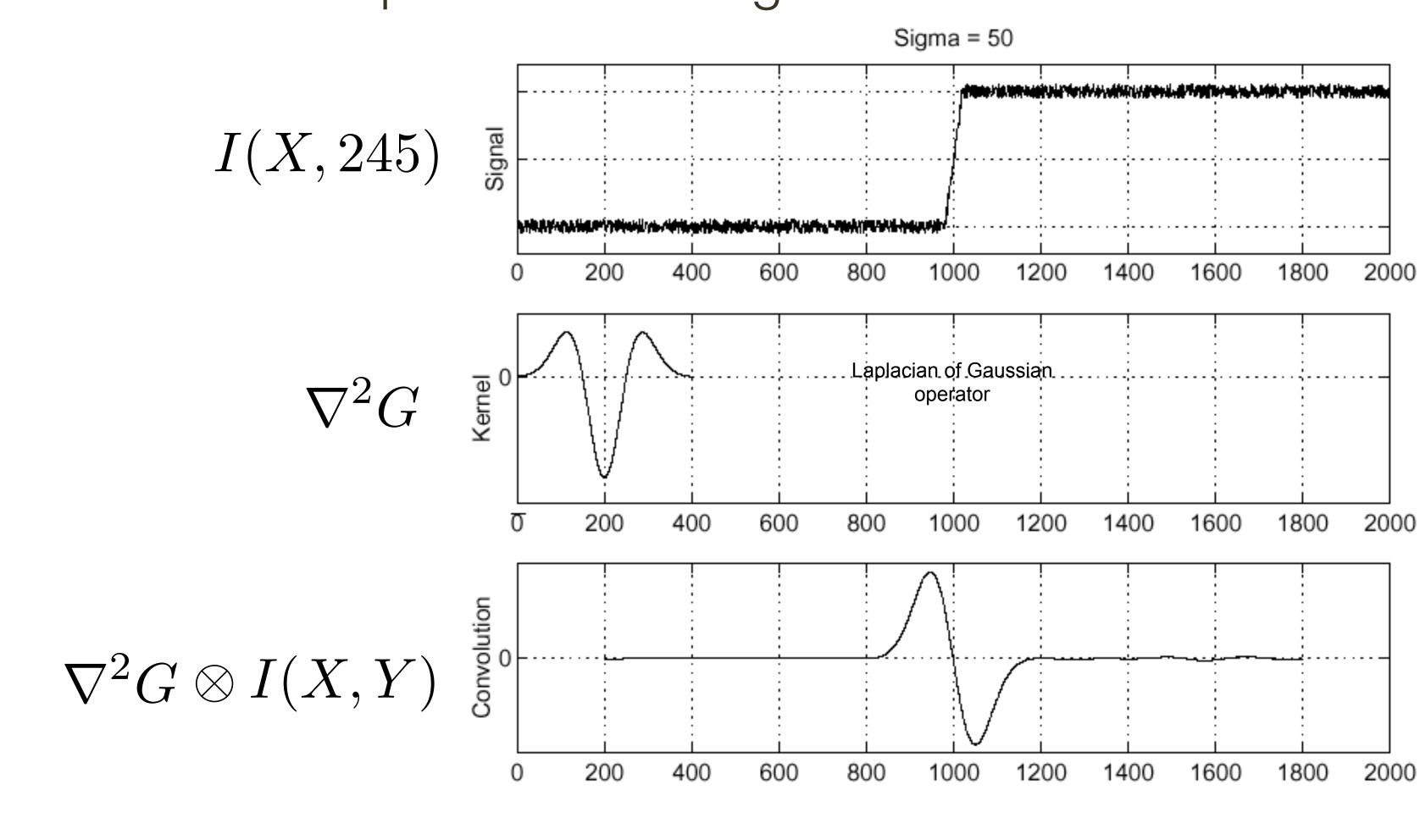
Here's a 3D plot of the Laplacian of the Gaussian ($\nabla^2 G$)



... with its characteristic "Mexican hat" shape

1D Example: Continued

Lets consider a row of pixels in an image:



Where is the edge?

Zero-crossings of bottom graph

Marr / Hildreth Laplacian of Gaussian

5	x	5	Lo	G	fil	lter

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

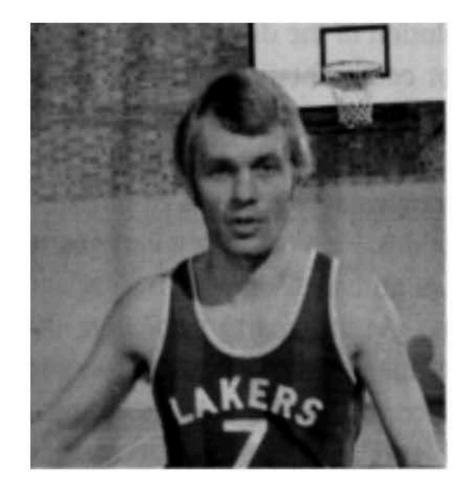
0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0

17 x 17 LoG filter

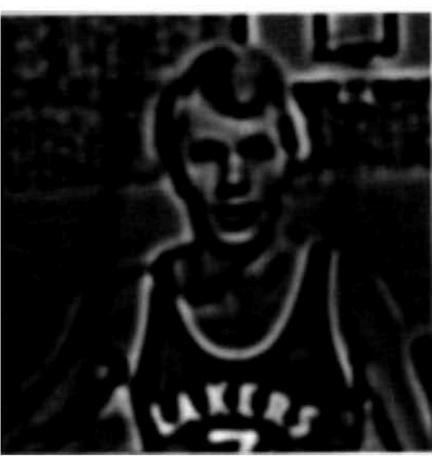
Scale (o)

Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian



Original Image



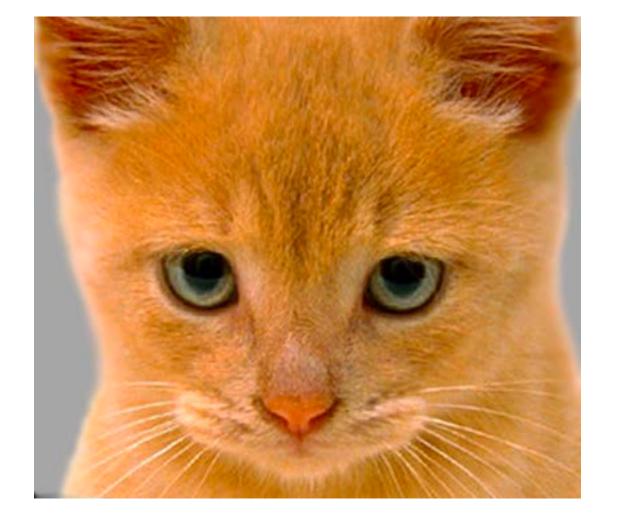
LoG Filter

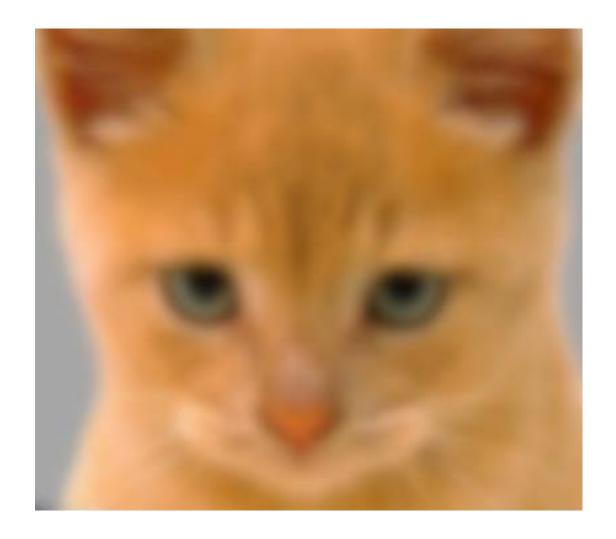
Zero Crossings

Scale (o)

Image From: A. Campilho

Assignment 1: High Frequency Image



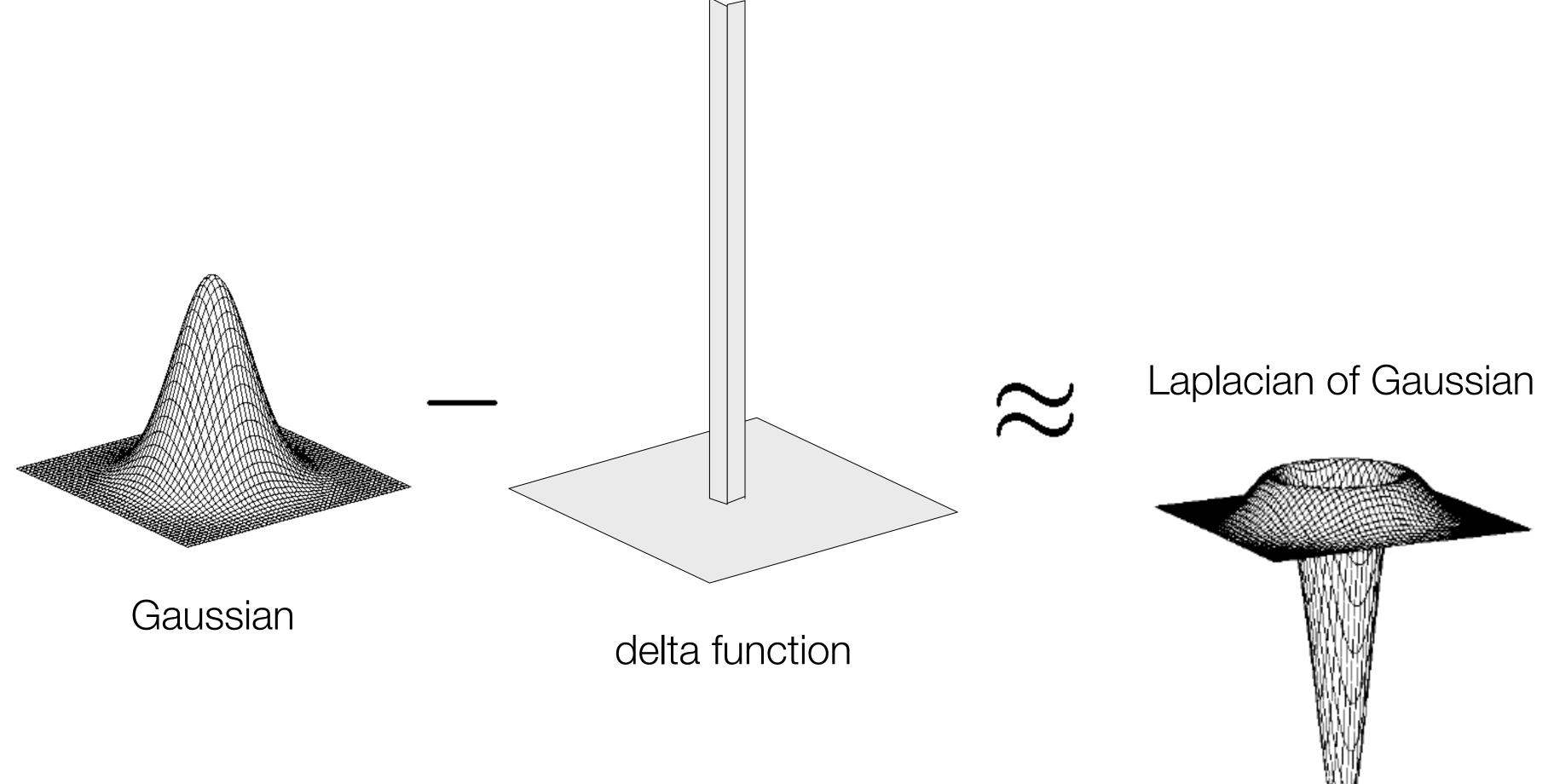


original

smoothed Gaussian)

original - smoothed (scaled by 4, offset +128)

Assignment 1: High Frequency Image



Comparing Edge Detectors

Comparing Edge Detectors

Good localization: found edges should be as close to true image edge as possible **Single response:** minimize the number of edge pixels around a single edge

- **Good detection**: minimize probability of false positives/negatives (spurious/missing) edges

Comparing **Edge** Detectors

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

	Approach	Detection	Localization	Single Resp	Limitations
Sobel	Gradient Magnitude Threshold	Good	Poor	Poor	Results in Thick Edges
Marr / Hildreth	Zero-crossings of 2nd Derivative (LoG)	Good	Good	Good	Smooths Corners
Canny	Local extrema of 1st Derivative	Best	Good	Good	

- **Good detection**: minimize probability of false positives/negatives (spurious/missing) edges

Canny Edge Detector

A "local extrema of a first derivative operator" approach

Design Criteria:

1. good detection
— low error rate for omissions (missed edges)
— low error rate for commissions (false positive)

2. good localization

3. one (single) response to a given edge
— (i.e., eliminate multiple responses to a single edge)

Canny Edge Detector

Steps:

- 1. Apply directional derivatives of Gaussian
- 2. Compute gradient magnitude and gradient direction
- 3. Non-maximum suppression — thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding
 - Low, high edge-strength thresholds
 - threshold

Accept all edges over low threshold that are connected to edge over high

2D Edge Detection

Look at the magnitude of the smoothed gradient $|\nabla I|$

Non-maximal suppression (keep points where | abla I| is a maximum in directions $\pm abla I$)

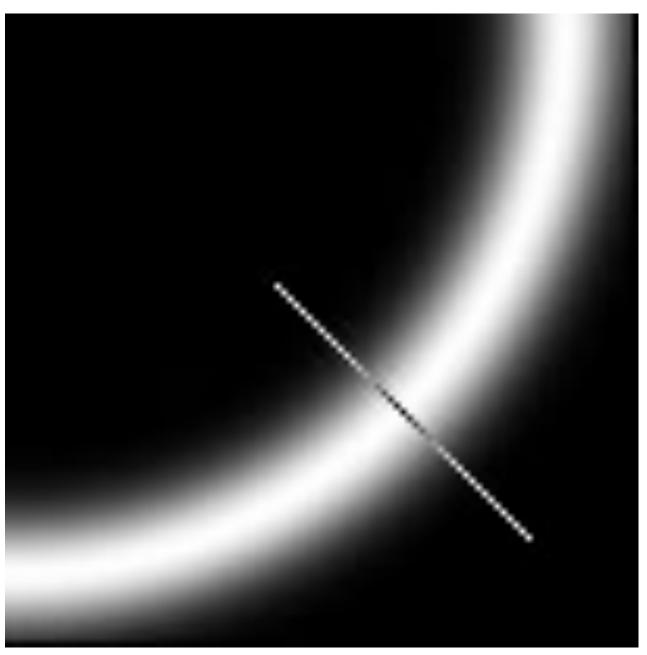
$$\nabla I| = \sqrt{g_x^2 + g_y^2}$$

Non-maxima Suppression

Idea: suppress near-by similar detections to obtain one "true" result

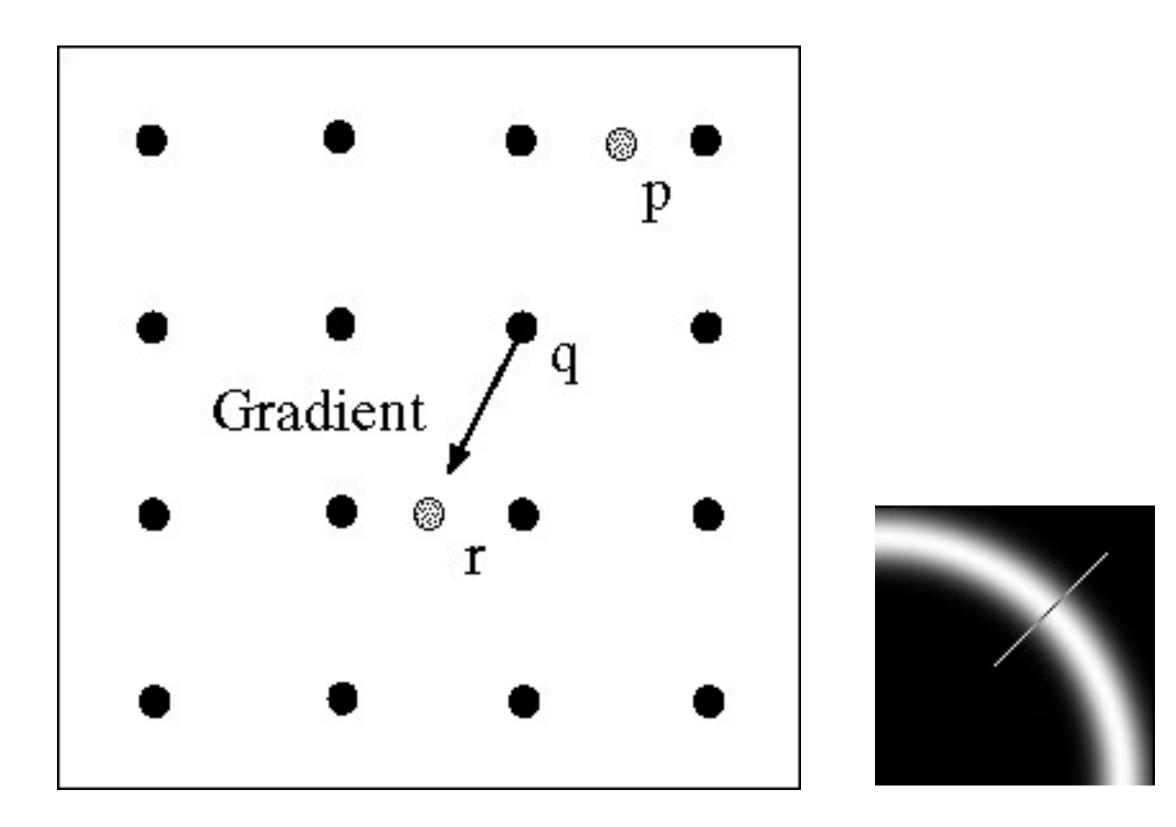
Non-maximal suppression (keep points where | abla I| is a maximum in directions $\pm abla I$)

Select the image **maximum point** across the width of the edge



Non-maxima Suppression

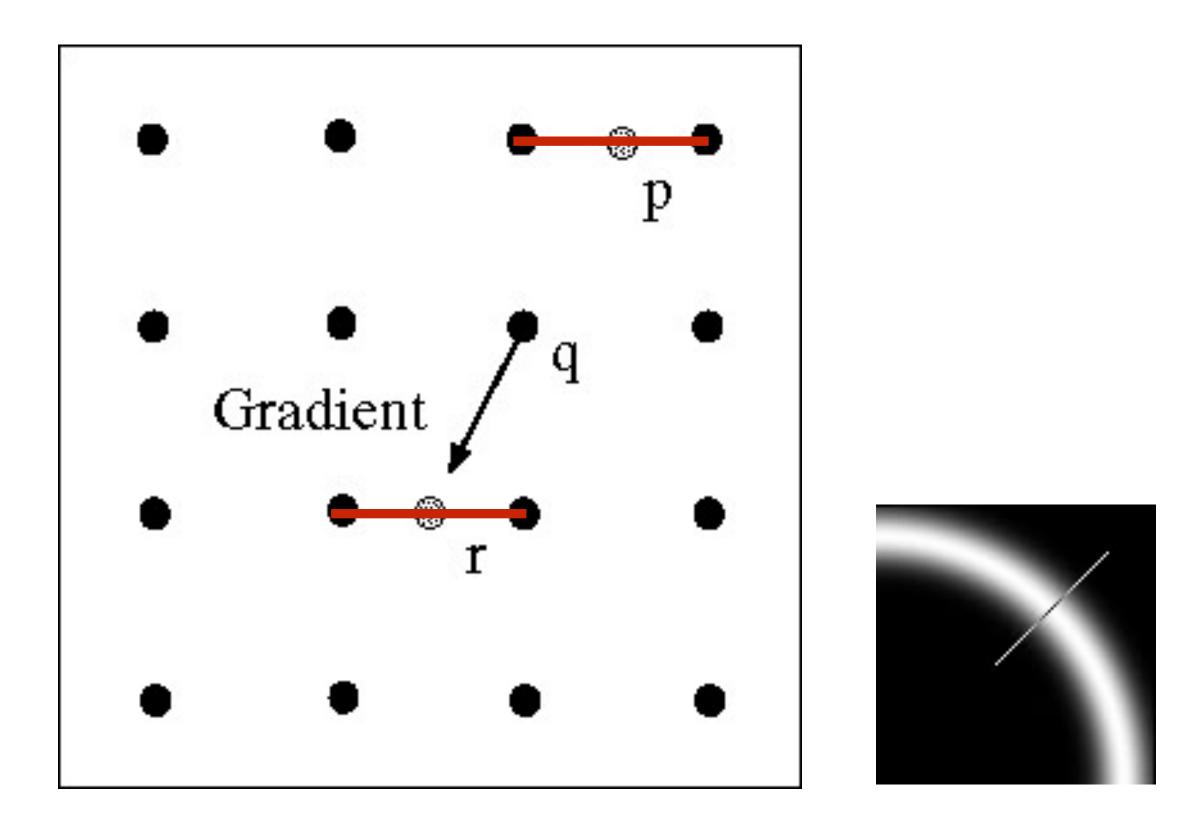
Value at q must be larger than interpolated values at p and r



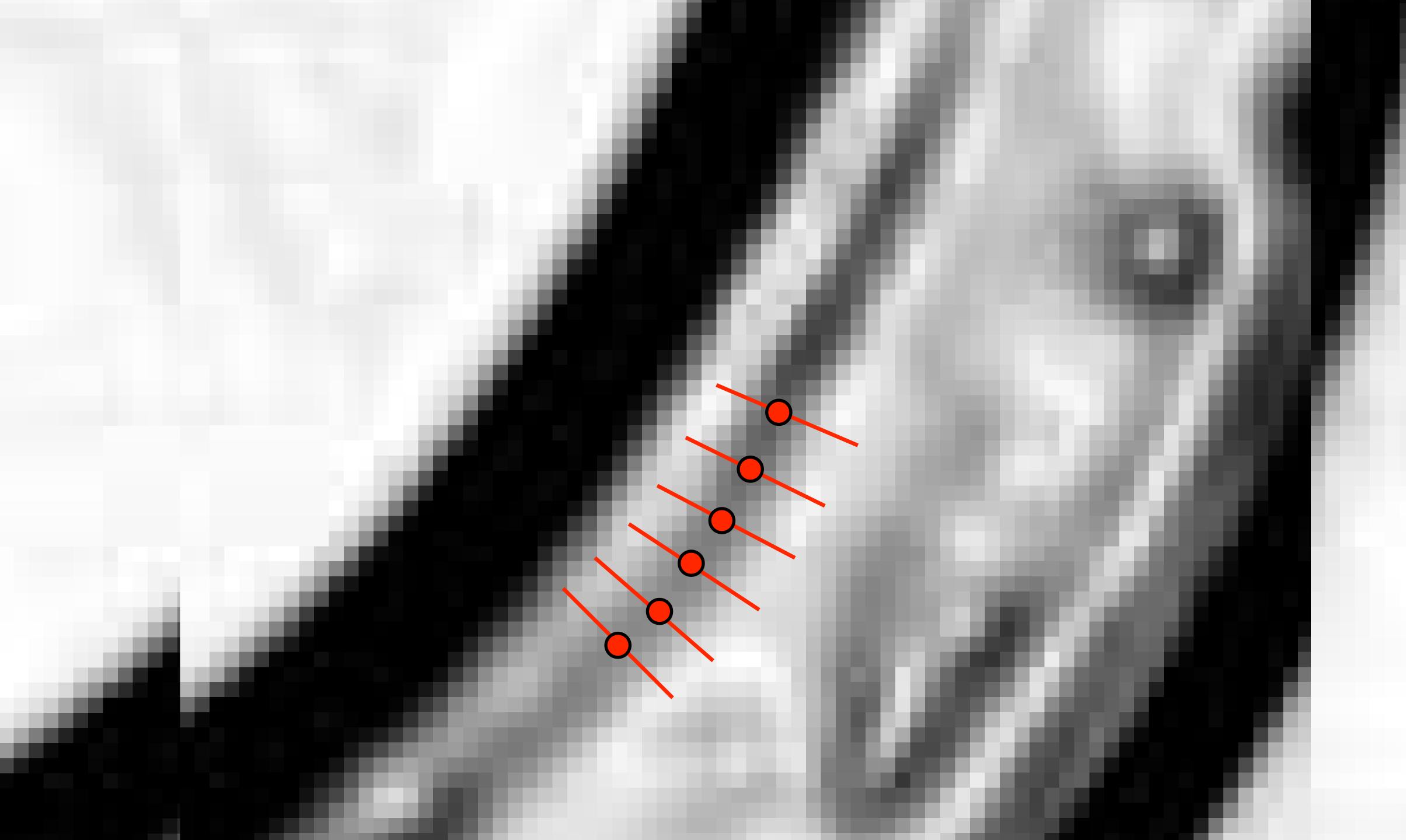
Forsyth & Ponce (2nd ed.) Figure 5.5 left

Non-maxima Suppression

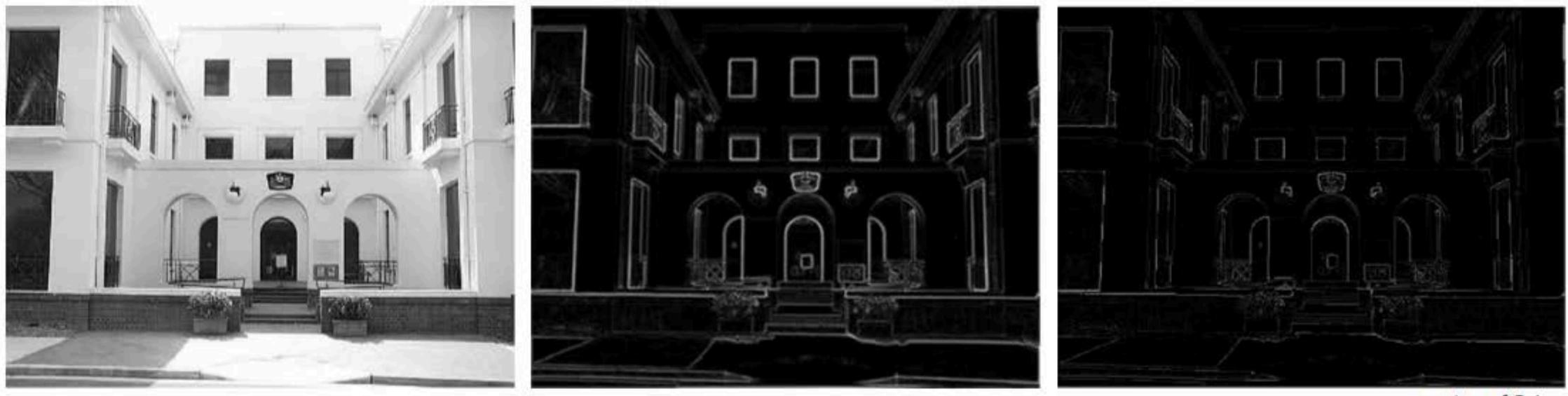
Value at q must be larger than interpolated values at p and r



Forsyth & Ponce (2nd ed.) Figure 5.5 left



Example: Non-maxima Suppression



Original Image

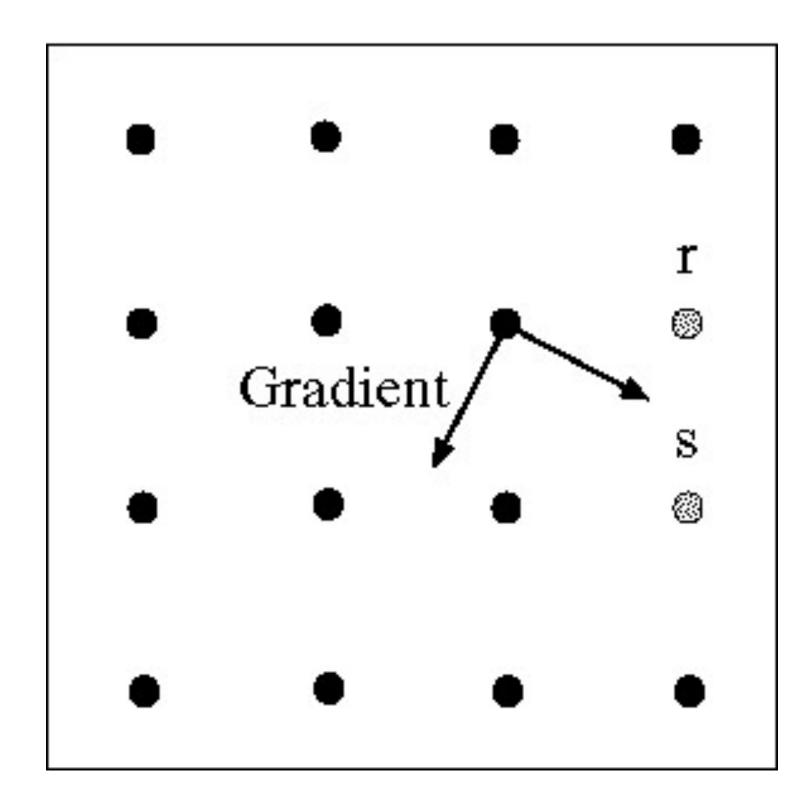
courtesy of G. Loy

Gradient Magnitude

Non-maxima Suppression

Slide Credit: Christopher Rasmussen

Linking Edge Points



Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point is an **edge point**. Take the normal to the gradient at that point and use this to predict continuation points (either *r* or *s*)

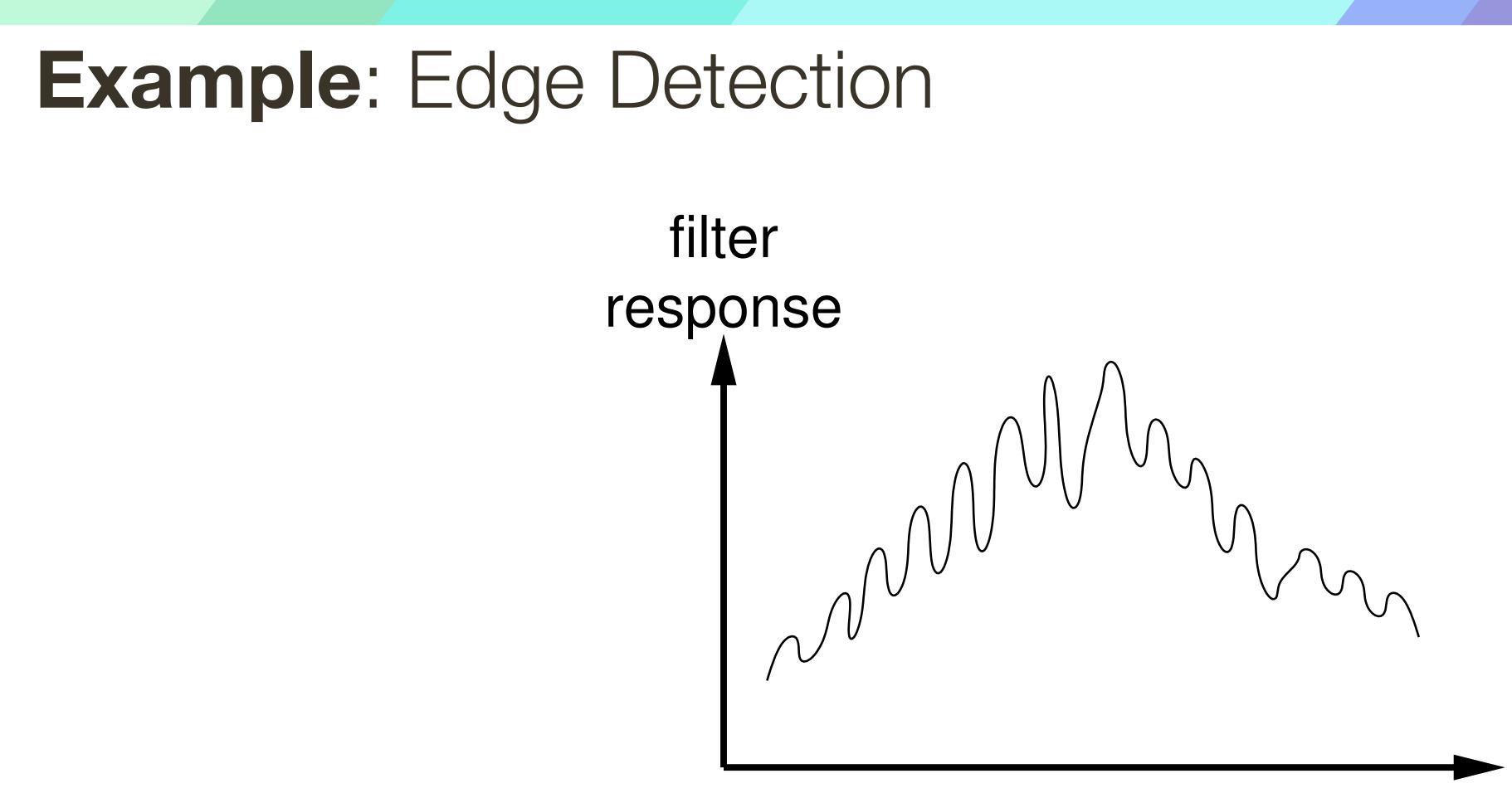
Edge Hysteresis

- One way to deal with broken edge chains is to use hysteresis
- Hysteresis: A lag or momentum factor
- Idea: Maintain two thresholds \mathbf{k}_{high} and \mathbf{k}_{low} Use k_{high} to find strong edges to start edge chain
- Use k_{low} to find weak edges which continue edge chain
- Typical ratio of thresholds is (roughly):

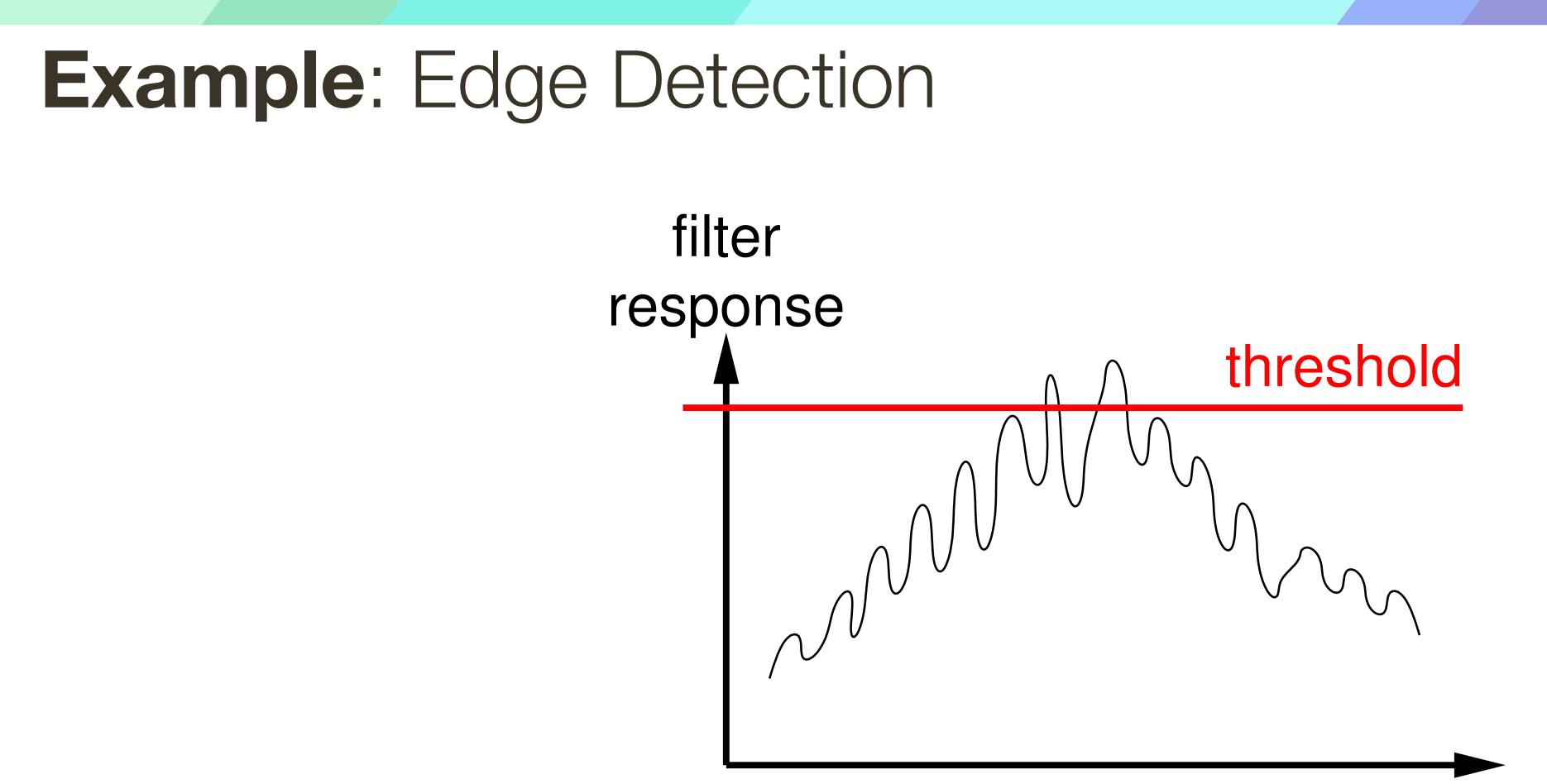
 \mathbf{k}_{h}

$$\frac{nigh}{2} = 2$$

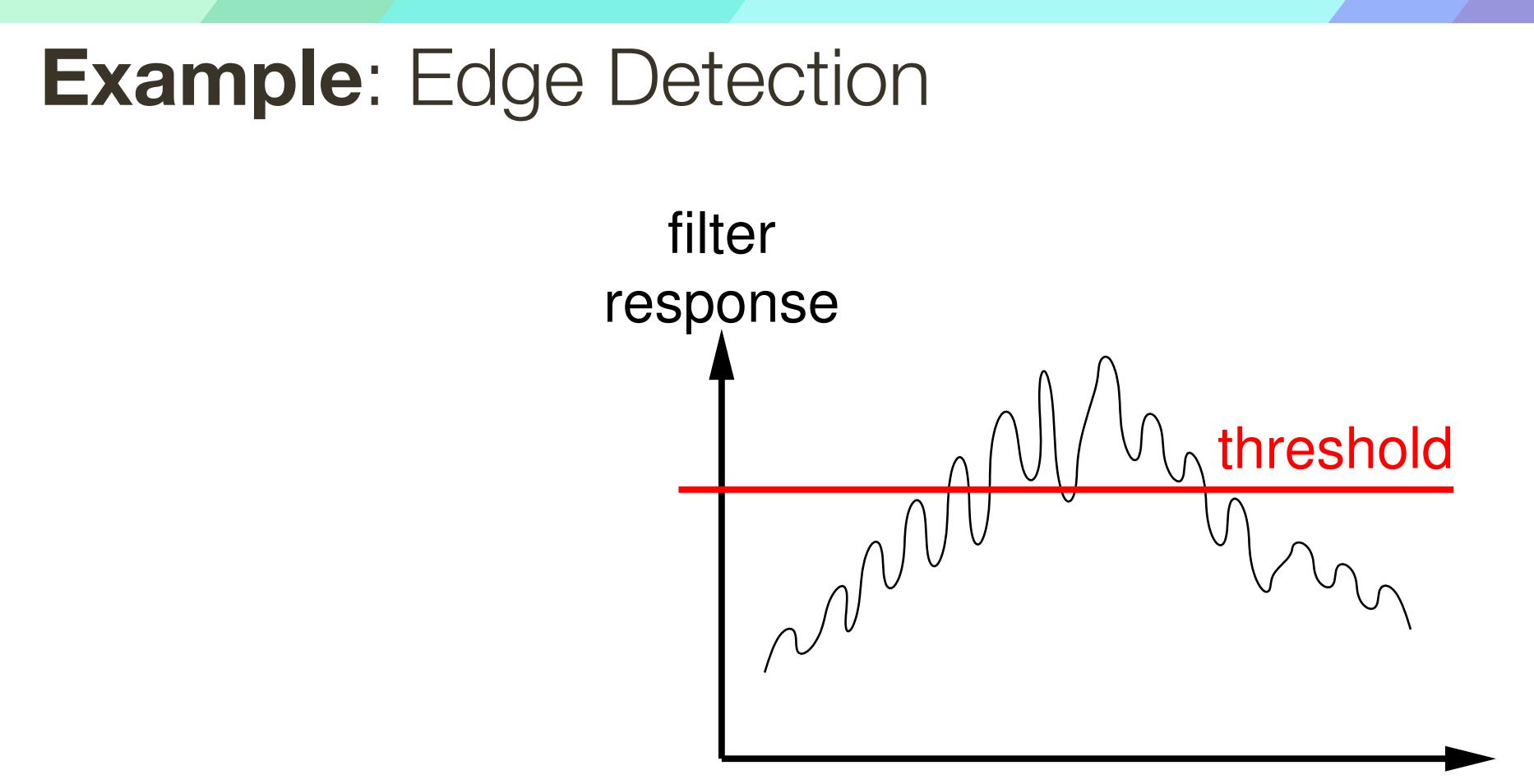
hlow



Question: How many edges are there? **Question**: What is the position of each edge?



Question: How many edges are there?Question: What is the position of each edge?



Question: How many edges are there?Question: What is the position of each edge?

Canny Edge Detector

Original Image

courtesy of G. Loy

Strong + connected Weak Edges

Weak Edges

2D Edge Detection Optional subtitle

Threshold the gradient magnitude with two thresholds: T_{high} and T_{low} Edges start at edge locations with gradient magnitude $> T_{high}$ Continue tracing edge until gradient magnitude falls below Tlow



Non-MS

Thresholded

Forsyth & Ponce (1st ed.) Figure 8.13 top

Forsyth & Ponce (1st ed.) Figure 8.13 top

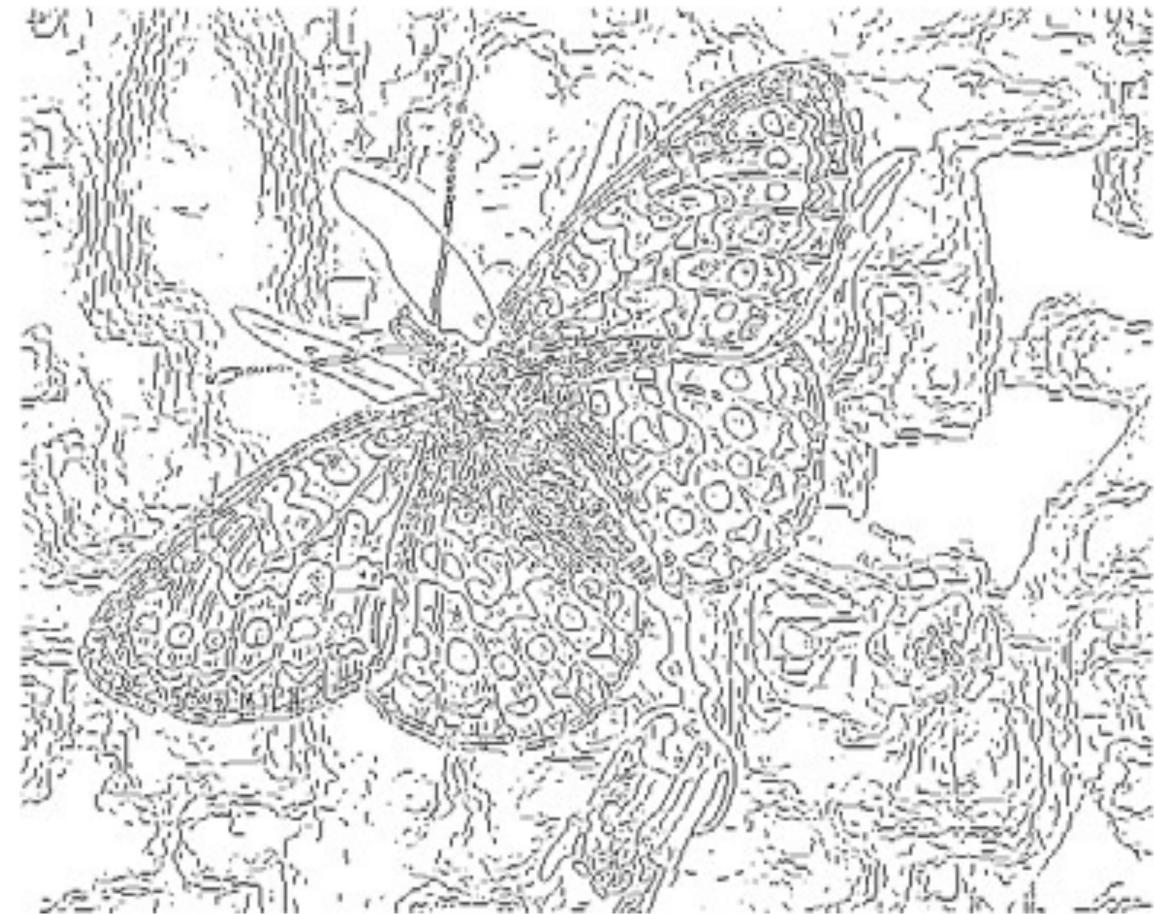


Figure 8.13 bottom left Fine scale ($\sigma = 1$), high threshold

Forsyth & Ponce (1st ed.) Figure 8.13 top

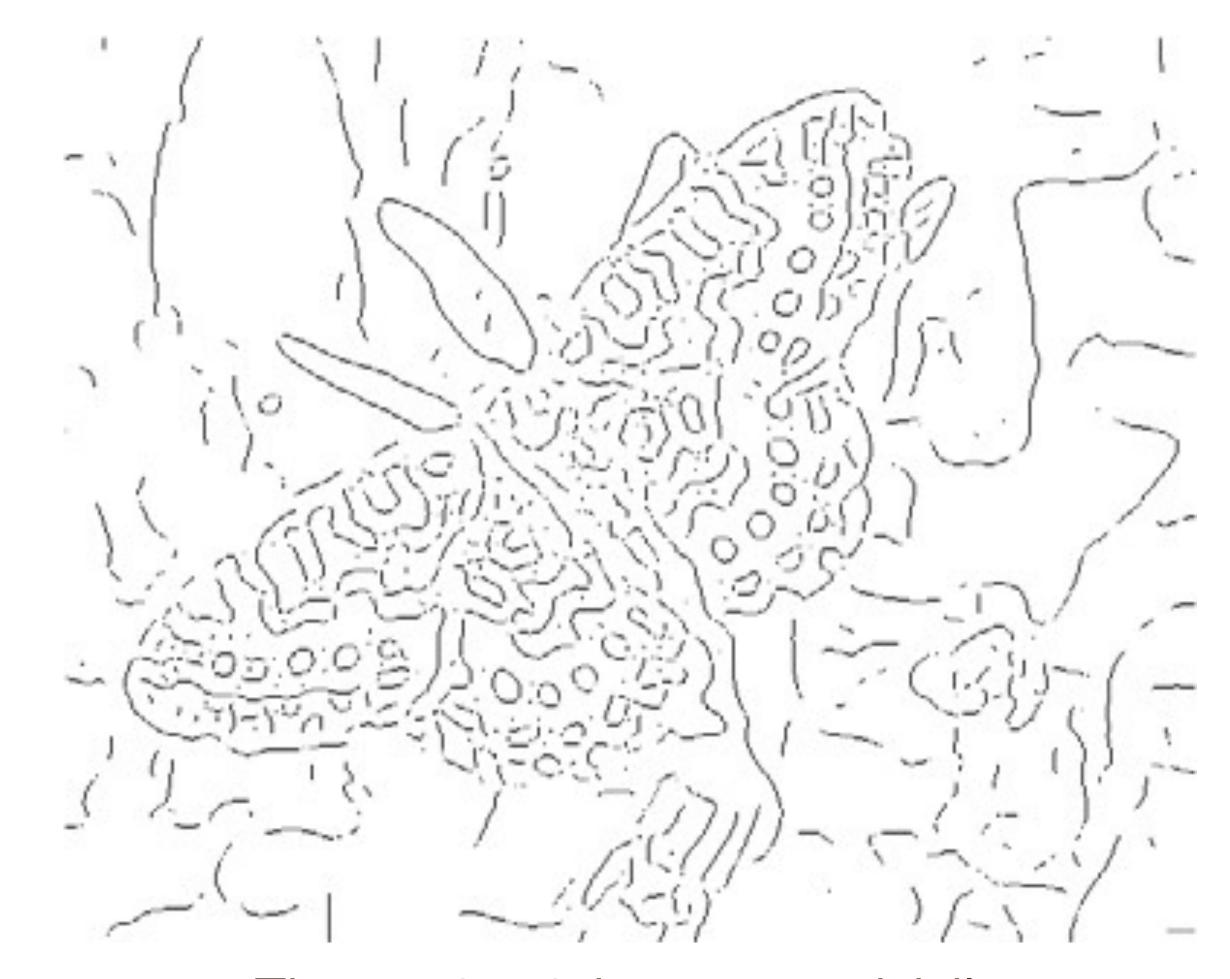


Figure 8.13 bottom middle Fine scale ($\sigma = 4$), high threshold

Forsyth & Ponce (1st ed.) Figure 8.13 top

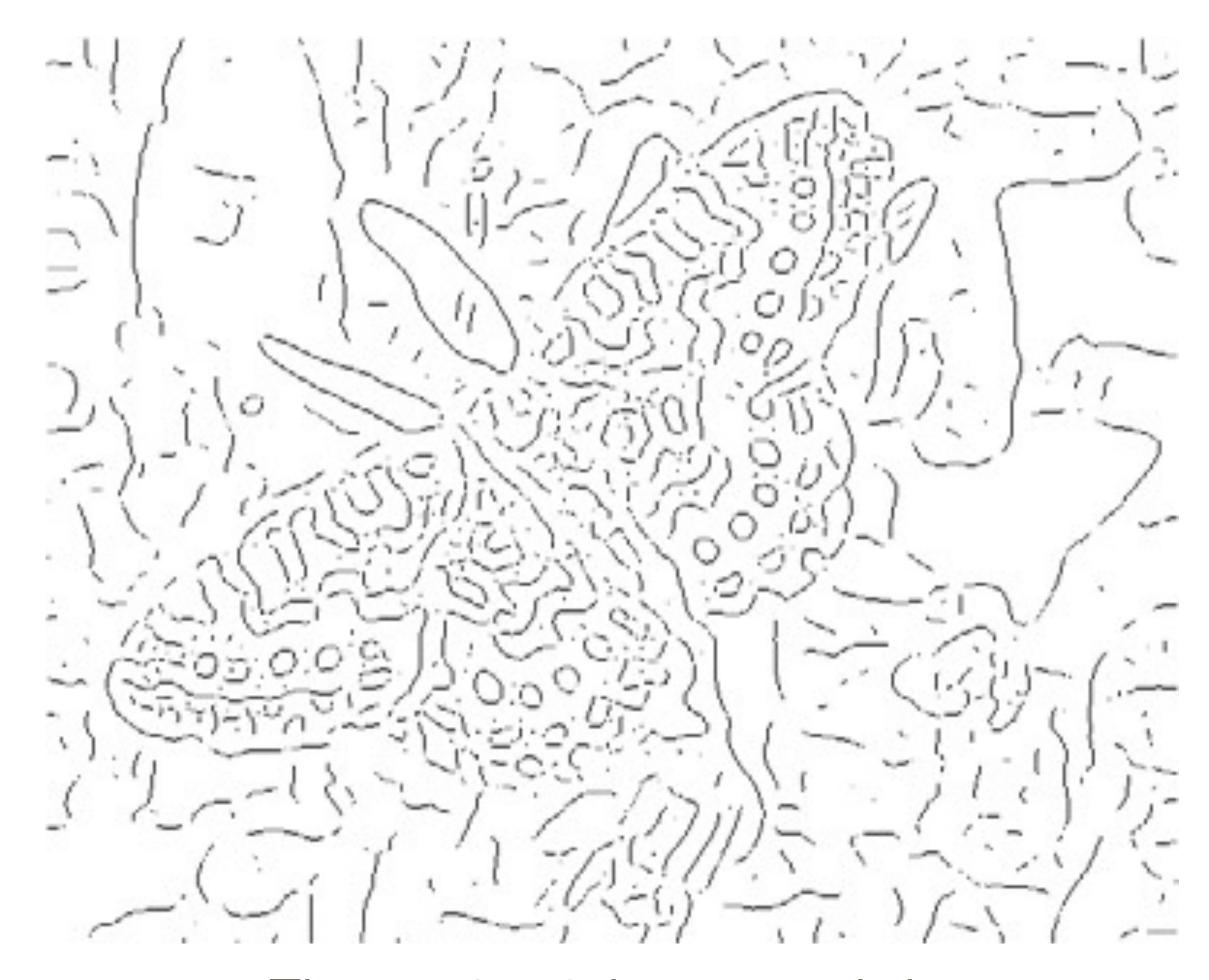
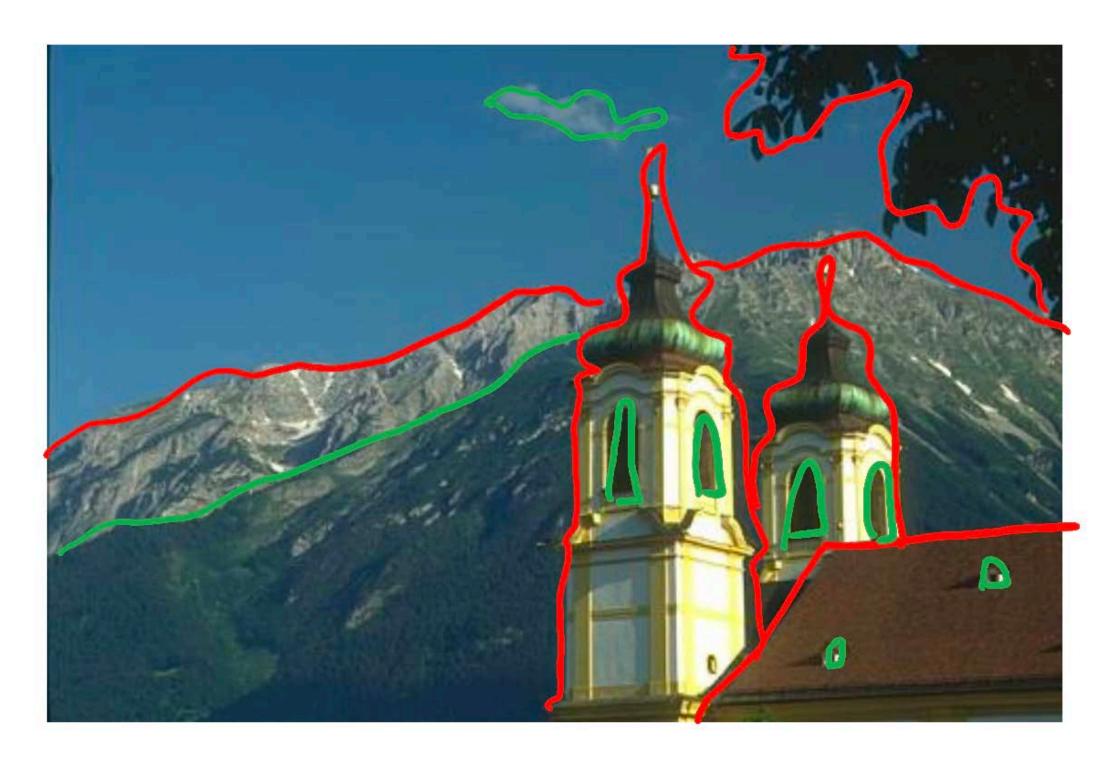


Figure 8.13 bottom right Fine scale ($\sigma = 4$), low threshold

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to boundaries that humans perceive to be salient or significant?



"Divide the image into some number of segments, where the segments represent 'things' or 'parts of things' in the scene. The number of segments is up to you, as it depends on the image. Something between 2 and 30 is likely to be appropriate. It is important that all of the segments have approximately equal importance."

(Martin et al. 2004)

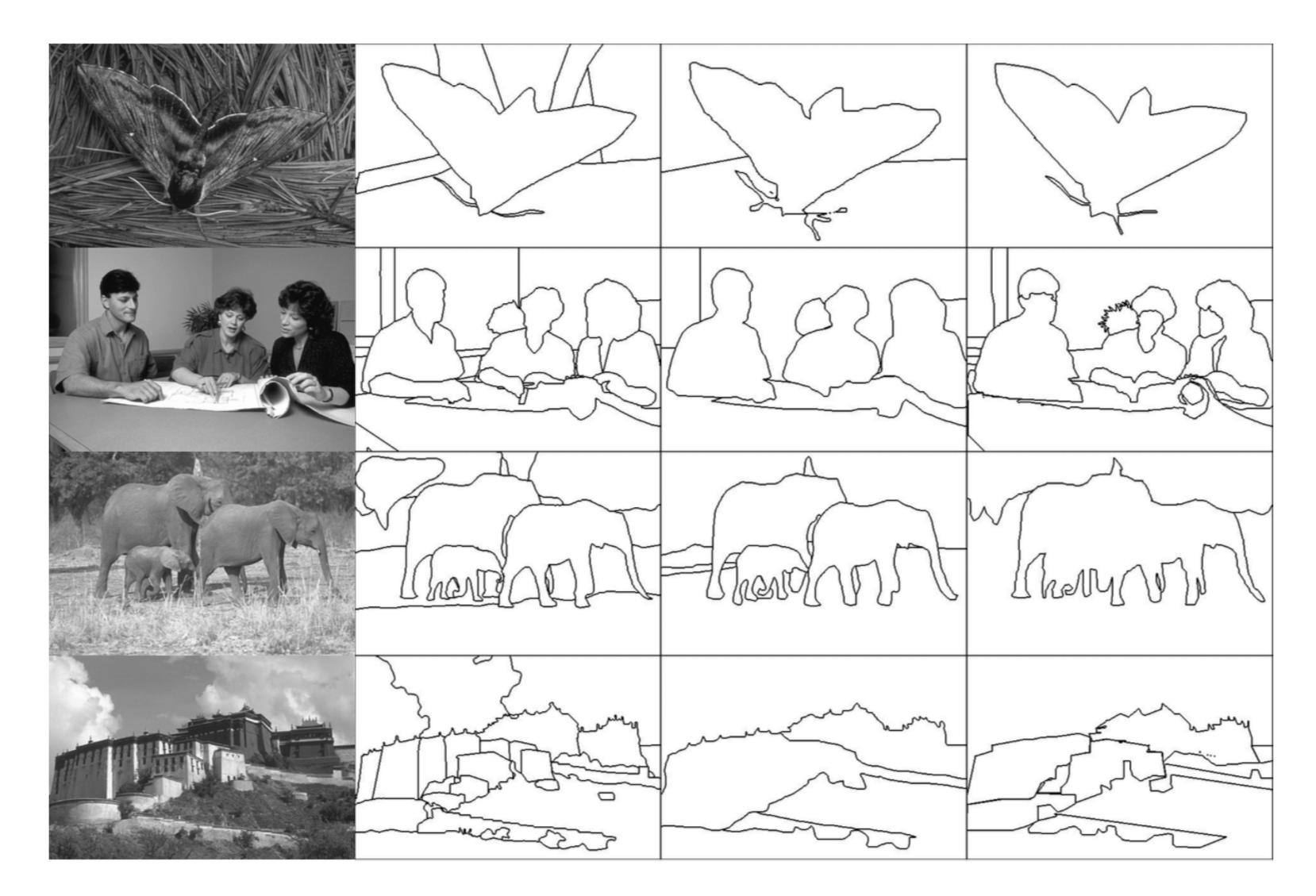


Figure Credit: Martin et al. 2001

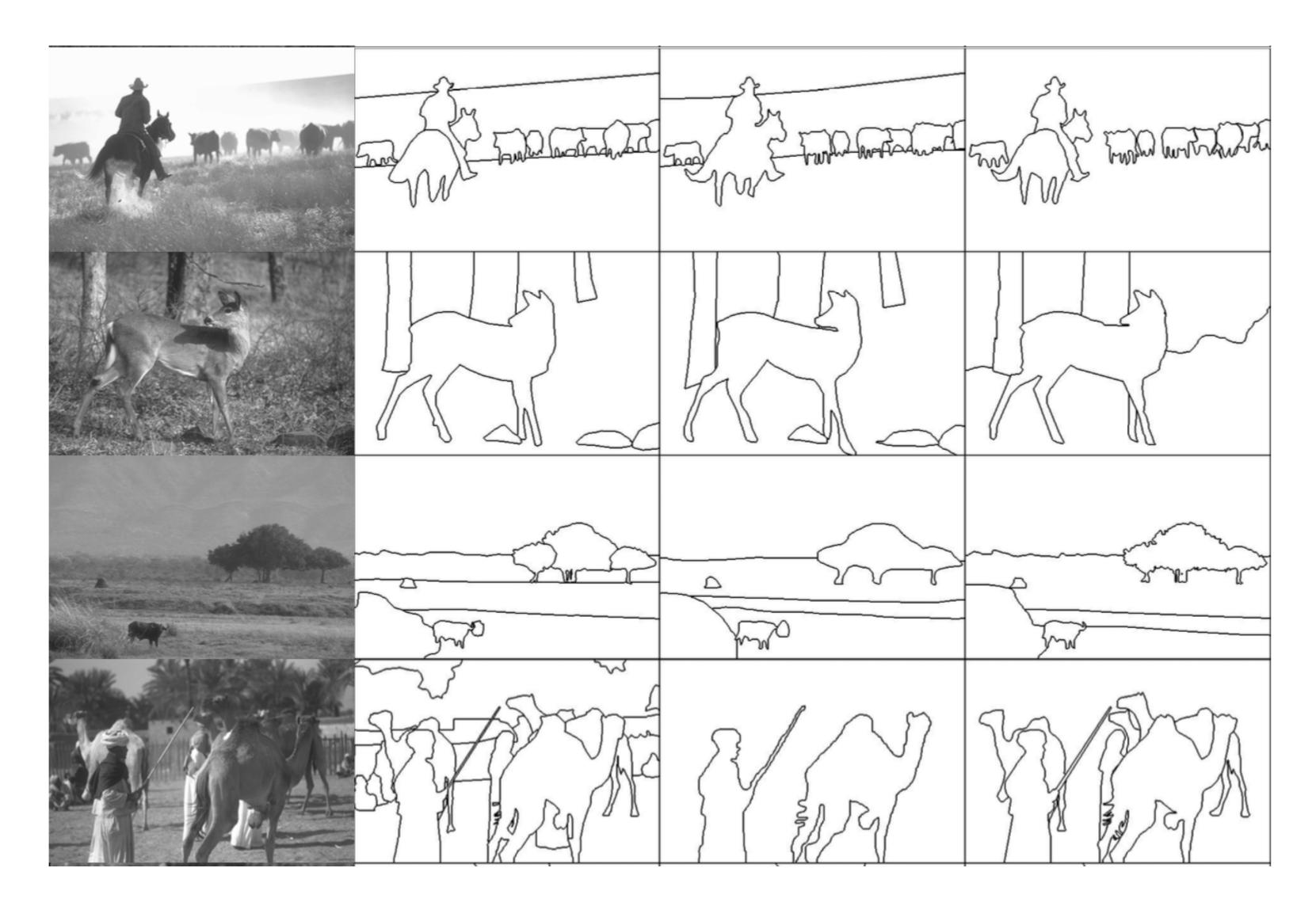
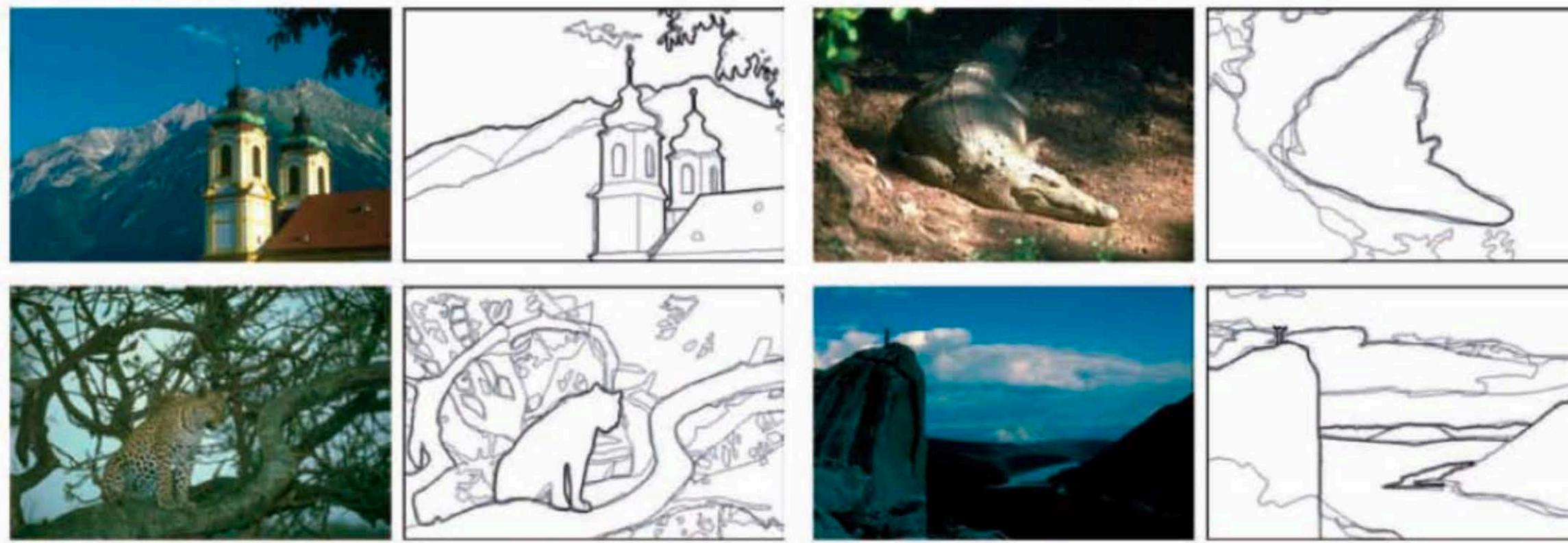


Figure Credit: Martin et al. 2001



Each image shows multiple (4-8) human-marked boundaries. Pixels are darker where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Boundary Detection

We can formulate **boundary detection** as a high-level recognition task - Try to learn, from sample human-annotated images, which visual features or cues are predictive of a salient/significant boundary

on a boundary

Many boundary detectors output a **probability or confidence** that a pixel is

Summary

Physical properties of a 3D scene cause "edges" in an image:

- depth discontinuity
- surface orientation discontinuity
- reflectance discontinuity
- illumination boundaries

Basic approaches to **edge detection**:

- -Smooth image to a desired scale and extract image gradients -local extrema of a first derivative operator \rightarrow **Canny**

Many algorithms consider "**boundary detection**" as a high-level recognition task and output a probability or confidence that a pixel is on a human-perceived boundary