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Recap: Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales

JUDYBATS JURYBATS 2(oas:

BATS JUDYBATS

TS

- 5
R v

)

Solution: form a Gaussian Pyramid and
convolve with the template at each scale

= [emplate

Q. Why scale the image and not the template”?




Improving lemplate Matching

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

— from above (as in an aerial photograph or satellite image)
— head on

— sideways (i.e., in profile)

— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants”?



Improving lemplate Matching

Find the chair in this image Output of normalized correlation
J i N E B

Slide Credit: Li Fei-Fel, Rob Fergus, and Antonio Torralba



Improving lemplate Matching

Find the chair in this image

Pretty much garbage
Simple template matchingis not going to make it

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



Improving lemplate Matching

Improved detection algorithms make use of image features

These can be hand coded or learned



Template Matching with HOG

Template matching can be improved by using better features, e.qg., Histograms
of Gradients (HOG) [ Dalal Triggs 2005 ]

The authors use a Learning-based approach (Support Vector Machine) to find
an optimally weighted template

SVM weights
+ _

avg grad weighted HOG



Convnet ODbject Detection

Think of each feature vector v__ as
corresponding to a sliding window (anchor).

SoftMax (WSS -v. )

1]

’ Category score

Offset from anchor = W'°C v,

— Convnet based object detectors resemble sliding

LA A window template matching in feature space
/ /
yays /s — Architectures typically involve multiple scales and
Anchor aspect ratios, and regress to a 2D offset in addition to
Receptive Field CategOry scores

[ Images: Jonathan Huang |



THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 9: Edge Detection

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today

Topics:

— Edge Detection — Image Boundaries
— Canny Edge Detector

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2

Reminders:

— Assignment 2. Scaled Representations, Face Detection and Image Blending

— Midterm: Feb 26th 3:30 pm In class
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| earning Goal

Understand that gradients are useful
Gradient —> Edges

11



Edge Detection

One of the first algorithms in Computer Vision

12



Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)

13



What Causes Edges”’

e Depth discontinuity

e Surface orientation
discontinuity

e Reflectance
discontinuity (i.e.,
change in surface
material properties)

o Jllumination
discontinuity (e.qg.,
shadow)

Slide Credit: Christopher Rasmussen
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Derivative Definition

40

15



Estimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
Ox _e—>0 €

Differentiation Is linear and shift invariant, and therefore can be implemented as
a convolution



Estimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>0 €

Differentiation Is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

of F(X+1Y)-F(X,Y)
0x AX




Estimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>0 €

Differentiation Is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

of F(X+1Y)-F(X,Y)
0x AX




=stimating Derivatives

A (discrete) approximation is

of F(X+1,Y) - F(X,Y)

0xX AX

“forward difference” implemented as

correlation convolution

from left



=stimating Derivatives

A (discrete) approximation is

of F(X+1,Y) - F(X,Y)

0X AX
“forward difference” implemented as “‘backward difference” implemented as
correlation convolution correlation convolution

from left from right



=stimating Derivatives

A (discrete) approximation is

of F(X+1,Y) - F(X,Y)

0X AX
“forward difference” implemented as “‘backward difference” implemented as
correlation convolution correlation convolution

from left from right



Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right



Estimating Derivatives

A similar definition (and approximation) holds for ?
Y

Image noise tends to result In pixels not looking exactly like their neighbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.



Example 1D

0.5
0.4
0.3
0.2

24




Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 05 05 05 04 03 02 02 02 035 05 0.5
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 04 03 02 02 02 035 0.5 0.5

Derivative

20



Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 04 03 02 02 02 035 0.5 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 04 03 02 02 02 035 0.5 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 04 03 02 02 02 035 0.5 0.5

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 0.5 0.3 0.2 02 02 035 05 0.5

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 0.5 0.3 0.2 02 02 035 05 0.5

Derivative 0.0 0.0 -0.1
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Example 1D

0.5 oo
0.4
0.3

0.7 ®

Signal 0.5 05 05 04 03 02 02 02 0.35 0.5

Derivative 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.15 0.15 0.0 X

32



Estimating Derivatives

Derivative in Y (i.e., vertical) direction  (Note: visualized by adding 0.5/128)
{

J

Forsyth & Ponce (1st ed.) Figure 7.4
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction (Note: visualized by adding 0.5/128)

/)

L B8

Forsyth & Ponce (1st ed.) Figure 7.4
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Example: 2D Derivatives

Use the “first forward difference” to compute the image derivatives in X and Y

of

% @ Compute two arrays, one of g values and one of W values
X Y

- CIIE
.- DI

35



Estimating Derivatives

2 Q: Why should the weights of a filter used for differentiation sum to 07?

-
4 (
§
s —

360



Estimating Derivatives

? Q: Why should the weights of a filter used for differentiation sum to 07

e.g. a constant image, I(X,Y) =k has derivative = O. Therefore, the
weights of any filter used for differentiation need to sum to O.

N N N
Y firk=kY fi=0= ) f;=0
i=1 i=1 i=1

37



Edge Detection: 1D Example

Lets consider a row of pixels In an iImage:

1(X,245) |

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

? Where is the edge?

33



Edge Detection: 1D Example

Lets consider a row of pixels In an iImage:

T(X,245) Lot i

01(X,245) :
ox

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

? Where is the edge?
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

Sigma = 50
I(X,245) Bl .. A T N T —
Z | |
T d

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | |
600 800 1000 1200 1400 1600 1800 2000

GOIXY) 3 [ TS O
7 A SN S S TN S— J ST S—

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

Sigma = 50

I S S S M. L ' ' ! !

I[(X,245) &l .. . f L
] |- SERRRE Rt STt PP PPR SPPPR SERRRPPP L SETTTEELE ERRPRRE B SRR IEERRRR 5l

n : :
: 1 . 1 e 1""""" — s 8l
0 200 400 600 800 1000 1200 1400 1600 1800 2000
I | I | I | | I |

<3 el el e e - ' ' ! ' N
Qo f : :
- i 5 i
(Z; CED jf(E}(f)j}/i) g SR ? ........................................ B § .................. a
Sl . . — S S S S )
0 200 400 600 800 1000 1200 1400 1600 1800 2000
- 1 ! 1 ! 1 1 | 1 !
2 - z s s s
0G @ I(X,Y) & - /\ s
o 2 : : : :
@ : Z ; ;
Ox e T e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

[(X,245) Bl L N N _

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0G
Ox

Kernel
i

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

9G
— XX I(X.Y) 3 @
8&7@ ( ) )§ .

| 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Smoothing and Differentiation

Edge: a location with high gradient (derivative)
Need smoothing to reduce noise prior to taking derivative
Need two derivatives, in x and vy direction

We can use derivative of Gaussian filters
— because differentiation is convolution, and
— convolution Is associative -

Let ® denote convolution

DRGIX,Y)=(DoG)®I(X,Y)

43



Partial Derivatives of Gaussian

0.15 - . : ey i 0.15 -
0.4 -

0.05 -

Slide Credit: Christopher Rasmussen

44



1D Example: Continued

Lets consider a row of pixels In an iImage:

T(X,245) Bl o _

1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. ............ .. .1 i, a
v 2 G 2 operator
10_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) [T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

/ero-crossings of bottom graph

45



Derivative Approximations: Forward, Backward, Centred

e

46



Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. - 10 1
—2 0 2
2. Threshold to obtain edges -1 0L

Original Image Sobel Gradient Sobel Edges

47



2D Image Gradient

The gradient of an image:

V=

48




2D Image Gradient

The gradient of an image:

V=
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2D Image Gradient

The gradient of an image:

V=

50




2D Image Gradient

The gradient of animage: V f = Jf IOf

71 = [o.5

The gradient points in the direction of most rapid increase of intensity:

51



2D Image Gradient

The gradient of animage: V f = Jf IOf

vr=[o.4

The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

52



2D Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude: ||V f|| = \/ (a;’;) + (% )

53



2D Edge Detection

Smooth image and convolve with [-1 1]




Forsyth & Ponce (2nd ed.) Figure 5.4

Increased smoothing:

— eliminates noise edges

— makes edges smoother and thicker
— removes fine detall

0O



Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. - 10 1
—2 0 2
2. Threshold to obtain edges -1 0L

Original Image Sobel Gradient Sobel Edges



Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. 10 1
—2 0 2
2. Threshold to obtain edges -1 0L

Thresholds are brittle, we can do better!



Two Generic Approaches for Edge Detection

P

X

Two generic approaches to edge point detection:
— (significant) local extrema of a first derivative operator
— ZEero Ccrossings of a second derivative operator




Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach
Steps:
1. Gaussian for smoothing

2. Laplacian (Vv?) for differentiation where

02 (x,y) | &f(a
Vif(z,y) = 6,(;2 v) | 5,(;2 v)

3. Locate zero-crossings in the Laplacian of the Gaussian ( V2G' ) where

—1 [ z*4y* 22442
VQG(x,y) — 27_‘_0_4 2 5 exp 20 2

O



Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V*G )

... with 1ts characteristic “Mexican hat” shape



1D Example: Continued

Lets consider a row of pixels In an iImage:

T(X,245) Bl o _

1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. ............ .. .1 i, a
v 2 G 2 operator
10_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) [T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge” /ero-crossings of bottom graph



Marr / Hildreth Laplacian of Gaussian
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Marr / Hildreth Laplacian of Gaussian
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Assignment 1: High Frequency Image

original smoothed original - smoothed
Gaussian) (scaled by 4, offset +128)



Assignment 1: High Frequency Image

Laplacian of Gaussian

U

(Gaussian

delta function




Comparing Edge Detectors



Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges
Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge



Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Sobel

Marr / Hildreth

Canny

Approach

Gradient Magnitude

Detection

Good

Localization

Poor

Single Resp

Poor

Limitations

Results in Thick

Threshold Edges
Zero-crossings of 2nd Smooths
Derivative (LoG) Gooa Gooa Gooa Corners
Local extrema of 1st Best Good Good

Derivative




Canny Edge Detector

A “local extrema of a first derivative operator’ approach

Design Criteria:

1. good detection
— low error rate for omissions (missed edges)
— low error rate for commissions (false positive)

2. good localization

3. one (single) response to a given edge
— (I.e., eliminate multiple responses to a single edge)

09



Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds

— Accept all edges over low threshold that are connected to edge over high
threshold

70



2D Edge Detection

Optional subtitle

ook at the magnitude of the smoothed gradient |V

\i

V9

2
X

+ 93

Non-maximal suppression (keep points where |V1| is a maximum in directions =V I )

[ Canny,_ 1986 ]



Non-maxima Suppression

Idea: suppress near-by similar detections to obtain one “true” result

Non-maximal suppression (keep points where | V1| is a maximum in directions -

Select the iImage maximum point across the width of the edge

(2

-\ 1 )



Non-maxima Suppression

Value at g must be larger than interpolated values at p and r

& @ ® &
P
@ ® @
. |
Gradient /
® @ ® ®

I

Forsyth & Ponce (2nd ed.) Figure 5.5 left
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Non-maxima Suppression

Value at g must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left

4







Example: Non-maxima Suppression

courtesy of G. Loy

Non-maxima

Original Image Gradient Magnitude Suppression

Slide Credit: Christopher Rasmussen
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Linking Edge Points

® ® ] ]

T

® @
Gradien/\

S

a ® a

@ ® @ @

Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point iIs an edge point. [ake the normal to the gradient at
that point and use this to predict continuation points (either r or s)

[



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis
Hysteresis: A |lag or momentum factor

Idea: Maintain two thresholds knign and Kiow
— Use Kpign to find strong edges to start edge chain

— Use Kkiow to find weak edges which continue edge chain

Typical ratio of thresholds is (roughly):

/3



Example: Edge Detection

fllter
response

Question: How many edges are there?

Question: \What is the position of each edge”?

79



Example: Eadge Detection

filter

response
v threshold

/

Question: How many edges are there?

Question: \What is the position of each edge”?

30



Example: Eadge Detection

fllter
response

)
A h‘ threshold

Question: How many edges are there?

Question: \What is the position of each edge”?

31



Canny Edge Detector

Original
lmage

Strong
Edges

courtesy of G. Loy

32

Strong +
connected
Weak Edges

Weak
Edges



2D Edge Detection

Optional subtitle

Threshold the gradient magnitude with two thresholds: Thigh and Tiow
Edges start at edge locations with gradient magnitude > Thigh

Continue tracing edge until gradient magnitude falls below Tiow

Non-MS Thresholded

[ Canny 1986 ]



Forsyth & Ponce (1st ed.) Figure 8.13 top
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Fine scale (o = 1), high threshold
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Fine scale (o = 4), high threshold
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Forsyth & Ponce (1st ed.) Figure 8.13 top

87

Figure 8.13 bottom right
Fine scale (o = 4), low threshold
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How do humans perceive boundaries”?’

Edges are a property of the 2D image.

It Is Interesting to ask: How closely do image edges correspond to
boundaries that humans perceive to be salient or significant™

838



How do humans perceive boundaries”?’

‘Divide the image into some number of segments, where the segments
represent ‘things’ or ‘parts of things’ in the scene. The number of segments is
up to you, as it depends on the image. Something between 2 and 30 is likely to
be appropriate. It is important that all of the segments have approximately equal
Importance.’

89 (Martin et al. 2004)



How do humans perceive boundaries”?’
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Figure Credit: Martin et al. 2001



How do humans perceive boundaries”
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How do humans perceive boundaries”?’

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker
where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004
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Boundary Detection

We can formulate boundary detection as a high-level recognition task

— [ry to learn, from sample human-annotated images, which visual features or
cues are predictive of a salient/significant boundary

Many boundary detectors output a probability or confidence that a pixel is
on a boundary
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Summary

Physical properties of a 3D scene cause “edges” in an image:
— depth discontinuity

— surface orientation discontinuity

— reflectance discontinuity

— lllumination boundaries

Basic approaches to edge detection:
—Smooth image to a desired scale and extract image gradients
—local extrema of a first derivative operator = Canny

Many algorithms consider “boundary detection” as a high-level
recognition task and output a probability or confidence that a pixel iIs on a
human-perceived boundary
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