Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

Derivative Approximations: Forward, Backward, Centred
9.3

1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:
Sigma $=50$

1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:
Sigma $=50$
$I(X, 245)$

$$
\frac{\partial G}{\partial x} \otimes I(X, Y)
$$

Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first forward differencing). This is more accurate.
2. Threshold to obtain edges

$$
\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

Original Image

Sobel Gradient

Sobel Edges

Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian
2. Compute gradient magnitude and gradient direction
3. Non-maximum suppression

- thin multi-pixel wide "ridges" down to single pixel width

4. Linking and thresholding

- Low, high edge-strength thresholds
- Accept all edges over low threshold that are connected to edge over high threshold

Non-maxima Suppression

Idea: suppress near-by similar detections to obtain one "true" result

Non-maximal suppression (keep points where $|\nabla I|$ is a maximum in directions $\pm \nabla I$)

Select the image maximum point across the width of the edge

Example: Edge Detection

filter
response

Question: How many edges are there?
Question: What is the position of each edge?

Canny Edge Detector

Original Image

courtesy of G. Loy

Strong + connected
Weak Edges

Weak
Edges

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 10: Corner Detection

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

- Corner Detection
- Harris Corner Detection
- Image Structure

Readings:

- Today’s Lecture: Szeliski 7.1-7.2, Forsyth \& Ponce 5.3.0-5.3.1

Reminders:

- Assignment 2: Scaled Representations, Face Detection and Image Blending (due Feb 14 23:59)
-Midterm: Feb 26th 3:30 pm in class, 75 minutes, closed book

Learning Goals

Why corners (blobs)?
What are corners (blobs)?

Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) between images

This has many applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...

Image Matching Workshop

Image Matching Challenge

Winning solution of 2023

Feature Detectors

Corners/Blobs

Edges

Regions

Straight Lines

Feature Descriptors

SIFT

Shape Context

Learned Descriptors

What is a Good Feature Detector?

Local: features are local, robust to occlusion and clutter
Accurate: precise localization
Robust: noise, blur, compression, etc. do not have a big impact on the feature.
Distinctive: individual features can be easily matched
Efficient: close to real-time performance

Corner Detection

e.g., Harris corners are peaks of a local similarity function

Why are corners distinct?

A corner can be localized reliably.
Thought experiment:

- Place a small window over a patch of constant image value.

"flat" region:

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the

"flat" region: no change in all directions window will not change.

Why are corners distinct?

A corner can be localized reliably.
Thought experiment:

- Place a small window over a patch of constant image value.

"edge":
If you slide the window in any direction, the image in the window will not change.
- Place a small window over an edge.

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

"edge":
no change along the edge direction If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
\rightarrow Cannot estimate location along an edge (a.k.a., aperture problem)

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

- Place a small window over a patch of constant image value.

"corner":

If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
\rightarrow Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner.

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the

"corner":
significant change in all directions window will not change.
- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
\rightarrow Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner. If you slide the window in any direction, the image in the window changes.

Image Structure

What kind of structures are present in the image locally?
OD Structure: not useful for matching

1D Structure: edge, can be localised in one direction, subject to the "aperture problem"

2D Structure: corner, or interest point, can be localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or Interest point detectors find points with 2D structure.

How do you find a corner?

Easily recognized by looking through a small window
Shifting the window should give large change in intensity

Autocorrelation

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

Local SSD Function

Consider the sum squared difference (SSD) of a patch with its local neighbourhood

$$
\mathrm{SSD}=\sum_{\mathcal{R}}|I(\mathbf{x})-I(\mathbf{x}+\Delta \mathbf{x})|^{2}
$$

Local SSD Function

Consider the local SSD function for different patches

High similarity locally

High similarity along the edge

Clear peak in similarity function

Harris Corners

Harris corners are peaks of a local similarity function

Harris Corners

We will use a first order approximation to the local SSD function

(®)

Harris Corners

We will use a first order approximation to the local SSD function

Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

$$
C=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$
\begin{align*}
& \mathrm{C}=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right] \\
& I_{x}=\frac{\partial I}{\partial x} \\
& I_{y}=\frac{\partial I}{\partial y} \\
& \sum_{p \in P} I_{x} I_{y}=\operatorname{sum}(
\end{align*}
$$

Harris Corners

SSD function must be large for all shifts $\Delta \mathbf{x}$ for a corner / 2D structure This implies that both eigenvalues of \mathbf{H} must be large Note that \mathbf{H} is a $\mathbf{2 \times 2}$ matrix

Recap: Computing Eigenvalues and Eigenvectors

$2(10.2$

Recap: Computing Eigenvalues and Eigenvectors

2 (10.2)

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Recap: Computing Eigenvalues and Eigenvectors

$2(10.2$

Distribution of Ix and ly

Distribution of Ix and ly

Distribution of Ix and ly

Interpreting Eigenvalues

Interpreting Eigenvalues

Interpreting Eigenvalues

Interpreting Eigenvalues

Harris Corner Detection

1.Compute image gradients over small region
2.Compute the covariance matrix
3.Compute eigenvectors and eigenvalues
4.Use threshold on eigenvalues to detect corners

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Interpreting Eigenvalues

Threshold on Eigenvalues to Detect Corners

$$
\begin{gathered}
\text { Harris \& Stephens (1988) } \\
\operatorname{det}(C)-\kappa \operatorname{trace}^{2}(C)
\end{gathered}
$$

Kanade \& Tomasi (1994)

```
min}(\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{}
```

Nobel (1998) $\operatorname{det}(C)$
$\operatorname{trace}(C)+\epsilon$

Example 1: Wagon Wheel (Harris Results)

$\sigma=1$ (219 points)

$\sigma=2(155$ points)

$\sigma=3$ (110 points)

$\sigma=4$ (87 points)

Example 2: Crash Test Dummy (Harris Result)

corner response image

$\sigma=1$ (175 points)

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
- Harris uses a Gaussian window
- Compute Harris corner strength function $\operatorname{det}(C)-\kappa \operatorname{trace}^{2}(C)$
- Threshold corner strength function, optionally apply non-maximal suppression

Example: Harris Corner Detection

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

$$
I_{x}=\frac{\partial I}{\partial x} \begin{array}{lllllll|l|}
\hline 0 & -1 & 0 & 0 & 1 & 0 \\
\hline
\end{array} \begin{array}{llllll}
& -1 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

$$
\sum\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right] \odot\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]=3
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]
$$

$$
I_{x}=\frac{\partial I}{\partial x}
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]=>\lambda_{1}=1.4384 ; \lambda_{2}=5.5616
$$

$$
I_{x}=\frac{\partial I}{\partial x}
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]=>\lambda_{1}=1.4384 ; \lambda_{2}=5.5616
$$

$$
\operatorname{det}(\mathbf{C})-0.04 \operatorname{trace}^{2}(\mathbf{C})=6.04
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1
1	1	0	0	0	1	1

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]=>\lambda_{1}=3 ; \lambda_{2}=0
$$

$$
\operatorname{det}(\mathbf{C})-0.04 \operatorname{trace}^{2}(\mathbf{C})=-0.36
$$

$$
I_{x}=\frac{\partial I}{\partial x} \xlongequal[\begin{array}{llllllll}
\hline 0 & -1 & 0 & 0 & 1 & 0 \\
\hline 0 & -1 & 0 & 0 & 1 & 0
\end{array}]{\begin{array}{lll}
\hline & \\
\hline
\end{array} I_{y}=\frac{\partial I}{\partial y}}
$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

Difference of Gaussian

DoG = centre-surround filter

- Find local-maxima of the centre surround response

Non-maximal suppression: These points are maxima in a 10 pixel radius

Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

Note: DOG \approx Laplacian of Gaussian red $=[1-21] * g(x ; 5.0)$ black $=g(x ; 5.0)-g(x ; 4.0)$

Scale Invariant Interest Point Detection

Find local maxima in both position and scale

Characteristic Scale

characteristic scale - the scale that produces peak filter response

Applying Laplacian Filter at Different Scales

Applying Laplacian Filter at Different Scales

6.0

15.5

Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

Difference of Gaussian blobs in 2020

Multi-Scale Harris Corners

For each level of the Gaussian pyramid
compute Harris feature response
For each level of the Gaussian pyramid if local maximum and cross-scale save scale and location of feature (x, y, s)

Multi-Scale Harris Corners

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps
Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function
DoG maxima can be reliably located in scale-space and are useful as interest points

