
Weighted Activity Selection

Problem

This problem is a generalization of the activity selection problem that we solvd with a greedy algorithm.
Given a set of activities A = {[l1, r1] , [l2, r2] , . . . , [ln, rn]} and a positive weight function w : A→ R+, �nd a
subset S ⊆ A of the activities such that

• s ∩ t = ∅, for s, t ∈ S, and

•
∑

s∈S w (s) is maximized.

We will solve this problem iteratively, re�ning our algorithm at each stage to get a more e�cient solution.

Example:

s

t

u

v

1

2

4

5

Greedy algorithm for unweighted activity selection
chooses {s, u}. Chosing the greatest weight �rst se-
lects {t}. The optimal solution is {u, v}.

Optimal Substructure:

The key to creating dynamic programming algorithms is observing some optimal substructure: How part of
an optimal solution (substructure) is an optimal solution to a subproblem. We did this with the unweighted
activity selection problem. Recall our proof of correctness of our greedy activity selection: We showed that
the choices made after the �rst selection were an optimal solution to a subproblem � the set of activities
that did not con�ict with with the �rst choice.

Our identi�cation of the optimal substructure will be di�erence because we do not have a greedy strategy
to choose a �rst activity. We notice that if the set of activities A is non-empty, an optimal solution S ⊆ A
must contain some activity because the weight function w is positive. So consider some s ∈ S (we do not
care which one). Then all of the activities in S \ {s} are either left of s or right of s because activities of S
do not overlap. Let

L (s) = {a ∈ A : a ∩ s = ∅ and a is left of s}
R (s) = {a ∈ A : a ∩ s = ∅ and a is right of s}

Then S ∩ L(s), S ∩R(s), and {s} partition S.

s

S ∩ L(s) S ∩R(s)

This problem is similar to the unweighted variant. So we guess that S ∩ L (s) is an optimal solution the
weighted activity selection problem restricted to L (s). Is this true? Yes! To see why, consider an optimal
selecton T of L (s). Recall, that this means that

• t ∩ u = ∅, for t, u ∈ T , and

•
∑

t∈T w (t) is maximum � in particular,
∑

t∈T w (t) ≥
∑

t∈S∩L(s) w (t).

1



To prove that S ∩L(s) is an optimal solution to the subprobem, we substitute T for S ∩L(s) in S. Then the
optimality of S will force the above inequality to be an equality. First, we must show that this substitution
is valid � that is, t ∩ u = ∅, for t, u ∈ (S \ L (s)) ∪ T . By construction, any two activities from S \ L(s) do
not overlap and any two activities from T do not overlap. So the last case to consider is when u ∈ S \ L(s)
and t ∈ T . When this happens, t is left of u because t is left of s and s is the leftmost element of S \ L(s).

Let us look at the weight of the selections of A.∑
t∈S

w (t) =
∑

t∈S\L(s)

w (t) +
∑

t∈S∩L(s)

w (t)

≤
∑

t∈S\L(s)

w (t) +
∑
t∈T

w (t) by optimality of T

=
∑

t∈(S\L(s))∪T

w (t)

But,
∑

t∈S w (t) ≥
∑

t∈(S\L(s))∪T w (t) by optimality of S. Therefore,
∑

t∈S w (t) =
∑

t∈(S\L(s))∪T w (t) and∑
t∈T w (t) =

∑
t∈S∩L(s) w (t). Thus, S ∩ L (s) is an optimal selection for L (s).

Notice that we have just proven that we can substitute any optimal solution T to L(s) for S ∩ L (s)
in S because

∑
t∈T w (t) =

∑
t∈S∩L(s) w (t)! This suggests a divide-and-conquer algorithm for solving this

problem:

• Choose an s;

• recursively solve for L(s) and R(s);

• combine them with s to see if we get an optimal solution.

We do not know which s to pick, so we try them all!

Algorithm DCMaxSelect(A)

S ← ∅
max←∞

for each [l, r] ∈ A do

L← {[p, q] ∈ A : q < l}
R← {[p, q] ∈ A : r < p}

T ←DCMaxSelect(L)
U ←DCMaxSelect(R)

δ = w ([l, r]) +
∑

s∈T w (s) +
∑

s∈U w (s)
if max < δ then

S ← T ∪ U ∪ {[l, r]}
max← δ

return S

We use caching to turn this into a dynamic programming solution. The input to DCMaxSelect is a sub-
set of A, which has n elements. Recall that there 2n possible subsets. So just initializing a table large enough
to be indexed by all possible inputs would take exponential time. Fortunately, not all 2n subsets of A occur
in recursive calls to DCMaxSelect.

2



L
R

l r

⇓

l r

L R

left subproblem

We can prove inductively (on the depth of recursion) that the input to every recursive call is a subset
of the form

{[l, r] ∈ A : α < l and r < ω}

for some α and ω. In fact, α will be −∞ or li and ω will be ∞ or rj , for some i and j. So there are only
O

(
n2

)
such inputs. But we cannot index a table (cache) with continuous α and ω. However, α and ω only

take on a �nite set of values. Let

X = {l1, l2, . . . , ln} ∪ {r1, r2, . . . , rn} ∪ {−∞,∞}
= {x1, x2 . . . , xk} , where k ≤ 2n + 2 and xi < xj , for i < j

Then we represent α and ω with an index from 1 . . . k. Let max[i, j] =the maximum weight activity selection
of all of the activities of A contained in the interval (xi, xj), where i < j.

Example:

1

2

3

4

5

6

7

81 4

5

2

1 41 6 84

xj

xi

−∞ 1 2 3 4 5 6 7 8 ∞
−∞ - 0 0 0 0 1 2
1 - - 0 0 0 0 2 2
2 - - - 0 0 0 0 0 5
3 - - - - 0 0 0 0 0 4
4 - - - - - 0 0 0 0 4
5 - - - - - - 0 0 0 4
6 - - - - - - - 0 0 0
7 - - - - - - - - 0 0
8 - - - - - - - - - 0
∞ - - - - - - - - - -

Before calling the following subroutine, we create max from the input and initialize every element of max to
−∞.

3



Algorithm DPMaxActivitySelect(xi, xj)

if xi ≥ xj then

return 0
if max[i, j] 6= −∞ then

return max[i, j]

for each [xs, xt] ∈ A do

if xi < xs and xt < xj then

max[i, j]←

 max [i, j] ,
DPMaxActivitySelect(xi, xs) + w ([xs, xt])+

DPMaxActivitySelect(xt, xj)


Runtime complexity: In the worst case, we �ll every cell in the table (O(n2) cells), where each cell could
make O(n) recursive calls (i.e. we must try every interval in the region corresponding to the cell). So the
total work done is O(n3).

Filling the table recursively with caching is a good option because many of the table cells are unused:
Certain cells are unused because α is in {−∞, l1, l2, . . . , ln} and ω is in {r1, r2, . . . rn,∞}.

Iterative Solution:

For the subproblems that result from calculating max[i, j], we need the values of max[i, s] and max[t, j] where
i < s < t < j (i.e. [xs, xt] is an activity in the range (xi, xj)). To satisfy this ordering dependency, we could
�ll in the table max one column at a time starting from the leftmost column and proceding to the rightmost.
Then within each column, we would �ll it from top to bottom.

← i, j

t, j

i, s

↑
i

jmax

1 2 k

1

2

k

...

· · ·

i

jmax

1 2 k

1

2

k

...

· · ·

⇒
left dependency

satisfied by right

ordering

Eliminating a Dimension:

The greedy solution to the unweighted activity selection problem iteratively added activities to the end of the
schedule, but our latest dynamic programming solution to the weighted variant inserts activities arbitrarily.
By changing our dynamic programming solution to be more like our greedy algorithm, we get a better
solution.

Let S be an optimal solution to the weighted variant. Then it contains a rightmost activity s. As before,
let L(s) be all the activities in A that are strictly to the left of s. Then S ∩ L(s) is an optimal solution to
the problem restricted to L(s) by the same reasoning as before. Similarly if T is an optimal solution to L(s),
then T ∪ {s} is an optimal solution to A. This leads directly to a divide-and-conquer algorithm similar to
our previous version, except that it makes one recursive call inside its main loop instead of two.

A major improvement of this approach is that all of the subproblems are of the form{[l, r] ∈ A : r < ω},
where ω = ri or ∞. So there are only O(n) of these subsets and we can reduce the dimension of our cache
by one. Let

Y = {l : [l, r] ∈ A} ∪ {∞}
= {y1, y2, . . . , yk} , where k ≤ n + 1 and yi < yj , for i < j

4



Let max [i] =maximum weight solution to the subproblem {[l, r] ∈ A : r < yi}. Then by maximizing over all
choices of last activity

max[i] =

{
0 if i = 1
max {max[j] + w ([yj,r]) : [yj , r] ∈ A and r < yi} otherwise

Example:

1

2

3

4

5

6

7

81 4

5

2

1 41 6 84

i 1 2 3 4 5
yi 1 2 3 6 ∞

max 0 0 0

This gives us a much better iterative algorithm (O
(
n2

)
). Digging deeper by expanding max recursively, we

see that successive values of max have quite a bit of computation redundancy. In the example above

max[4] = max
{

max[1] + w ([y1, 4]) ,
max[2] + w ([y2, 5])

}

max[5] = max


max[1] + w ([y1, 4]) ,
max[2] + w ([y2, 5]) ,
max[3] + w ([y3, 7]) ,
max[4] + w ([y4, 8])

 = max

 max[4],
max[3] + w ([y3, 7]) ,
max[4] + w ([y4, 8])


Just what is the precise overlap between max[i] and max [i + 1]?

yi+1yi

a

b c d

e f

When evaluating the maximization,
max[i + 1] considers all the ending ac-
tivities that max[i] does, plus activi-
ties like c and e, whose right endpoint
lies in the range [yi, yi+1).

So

max[i] =


0 if i = 1

max

{
max[i− 1],
max {max[j] + w ([yi, r]) : [yj , r] ∈ A and r ∈ [yi−1, yi]}

}
otherwise

In particular, each activity contributes to the calculation of exactly one max[i].

Example:

1 4 5 8 9 12

6 7 10 11 13

3 14

10

2 3 4

1 2 3

2

i 1 2 3 4 5 6 7 8
yi 1 2 3 5 7 9 11 ∞

max[i] 0 0 0 1 2 3

Removing this computational overhead leads to a very fast dynamic programming solution.

5



Algorithm FastDPMaxActivitySelect(A)

1: sort A by right endpoint

2: create Y ← {y1, y2, . . . , yk} from A
3: for i← 1 to k do

4: max[i]← 0

5: for i← 1 to n do

6: binary search to find t such that ri ∈ [yt, yt+1)
7: binary search to find s such that li = ys

8: max[t]← max
{

max[t− 1],
max[s] + w ([li, ri])

}
What is the runtime of this algorithm? Lines 1 and 2 can be implemented in Θ(n log n) with comparison
sorts. The loop on line 3 is O(n). The loop at line 5 executes n times. Within the loop, lines 6 and 7 take
O (log n) time, and line 8 takes Θ(1) time. So the cost of the loop is O (n log n). Therefore, the total runtime
is Θ(n log n).

Note that the binary search on line 6 can be eliminated with some book-keeping. What about the binary
search on line 7?

6


