
Extending the RCCL Programming

Environment to Multiple Robots and

Processors

John Lloyd and Mike Parker
McGill University

Rick McClain
GE/RCA Advanced Technology Laboratories

Route 38, Moorestown, New Jersey, USA 08057

September 1987

McGill Research Centre for Intelligent Machines
McGill University

Montr�eal, Qu�ebec, Canada

Postal Address: 3480 University Street, Montr�eal, Qu�ebec, Canada H3A 2A7
Telephone: (514) 398-6319 Telex: 05 268510 FAX: (514) 283-7897

Network Address: mcrcim@larry.mcrcim.mcgill.edu

RCCL/RCI Release 4.2, April 17,1992

Extending the RCCL Programming

Environment to Multiple Robots and

Processors

John Lloyd and Mike Parker
McGill University

Rick McClain
GE/RCA Advanced Technology Laboratories

Route 38, Moorestown, New Jersey, USA 08057

Abstract

The Robot Control C Library (RCCL) is a system for developing robot control programs in a
UNIX environment, and has proven to be particularly useful in research applications. This paper
contains a description of the work presently being undertaken by the RCA Advanced Technology
Laboratory and McGill University in expanding RCCL to handle multiple robots, and upgrading
its implementation to a multiple-processor system. This work includes 1) reworking the RCCL
primitive set to allow for the speci�cation of multiple robot actions, 2) modifying its trajectory
generation mechanism so that several robots may be controlled and coordinated at once, and
3) redesigning the system interface on top of which RCCL is built to allow the creation of
multiple real-time robot control tasks interfaced to UNIX. The paper �nishes by outlining the
implementation of this system on a MicroVAX II con�gured with multiple CPUs on the same
backplane.

RCCL/RCI Release 4.2, April 17,1992

i

Contents

1 Introduction 1

2 Background: the RCCL/RCI environment 2

3 Enhancing RCCL for Multiple Robots 5

3.1 Multiple Robot Control Issues : 5

3.2 New Function Primitives : 6

3.3 Task Implementation : 8

3.3.1 Dual Arm Example : 9

4 RCI: Primitives for Creating Real-Time Control Tasks 11

4.1 The single robot RCI system : 11

4.2 Requirements for prototyping robot control tasks : : : : : : : : : : : : : : : : : 13

4.3 Principle design concept of RCI : 13

4.3.1 Task Structure : 13

4.3.2 Task Images : 14

4.3.3 Task Creation and Deletion : 14

4.3.4 Scheduling : 15

4.3.5 Shared Memory and Message Passing : : : : : : : : : : : : : : : : : : : 16

4.3.6 Support Functions : 17

4.3.7 Robot interfacing aspects : 17

5 Implementation of RCI Using a set of MicroVAX II CPUs 17

5.1 The MicroVAX II multicomputing capability : 17

5.2 The UNIX interface and the auxiliary CPU minikernel : : : : : : : : : : : : : : 18

5.3 The RCI Implementation : 19

5.3.1 Process initialization : 19

5.3.2 Scheduling : 19

5.3.3 Maintaining the real-time clock : 20

6 Conclusion 20

RCCL/RCI Release 4.2, April 17,1992

1

1. Introduction

This paper presents the system work currently being done at the RCA Advanced Technology

Laboratories (ATL), Moorestown, New Jersey, in cooperation with the McGill University Research

Center for Intelligent Machines (McRCIM) Montreal, Canada, in exploring cooperative multi-robot

control and programming environments. This work began last year when ATL implemented the

Robot Control C Library (RCCL) [Hayward and Paul 1986] at their site for doing research on

robot force control techniques. RCCL is a portable library of robot control C routines, usually

implemented under UNIX using a package of system primitives called the Robot Control Interface

(RCI), which makes it possible to create a real-time robot control task and connect it to a UNIX

program.

The multi-robot control work at ATL is motivated by its potential advantages in manipulating

large objects, or performing complex tasks that require more than one hand [Hayward and Hayati

1987]. Many of the speci�c applications being studied are directed at NASA programs for space

station construction and maintenance, which includes the development of a multi-armed servicer

robot [Holcomb, et al. 1987].

The ATL/McGill research e�ort on which this paper is based is directed at

} Extending the RCCL \language" with an aim to creating a comprehensive, cohesive pro-

gramming environment for coordinated control of multiple manipulators. This is discussed

in section 3.

} Extending the RCI system primitives to allow the creation of multiple control tasks in a

multi-processor environment. This is necessary to provide a means for implementing the

multi-robot RCCL, and is described in section 4.

} Using the tools described above to develop algorithms for force control and cooperative

manipulator action based on an outer force control loop wrapped around an inner position

control loop, as per [Maples and Becker 1986]. This work is described in [Lee 1987].

The last section of this paper describes some of the details involved in implementing this

RCCL/RCI Release 4.2, April 17,1992

2 2. BACKGROUND: THE RCCL/RCI ENVIRONMENT

robot control environment on a multi-processor MicroVAX II system.

2. Background: the RCCL/RCI environment

This section summarizes a few of the key features of RCCL as a background for the discussion

of our extensions.

RCCL is a library of routines for describing and controlling robot positions and actions, com-

bined with a trajectory generator for realizing these actions [Hayward and Lloyd 1985, Lloyd

1985]. It is largely an implementation of the ideas presented in Richard Paul's book [Paul 1981].

An RCCL application program is written in the \C" language and uses special primitives to specify

robot action requests and queue them for servicing by the trajectory generator. The trajectory

generator is a high priority real-time background task, which does path interpolation, maps from

Cartesian to joint space, smooths adjacent path segments, and outputs a set of joint setpoints

at a (typical) rate of around 50 Hz. These setpoints are fed to joint level control modules in a

particular robot (which execute a simple position interpolation and control loop at a much higher

rate, typically around 1 KHz.). The control task structure is hence a 3-level a�air, consisting of

an asynchronous planning task (the main RCCL program), and synchronous trajectory-control

and joint-control tasks (Figure 1).

RCCL itself implements only the top two levels, relying on the joint control modules provided

by the robot manufacturer for the third level. For instance, in most present installations, the

planning and trajectory modules execute on a VAX/UNIX system, which is interfaced to the

joint-level robot controller through some sort of high speed parallel link. To ensure that the

trajectory generator can be run in real time, it is necessary to make some adjustments to the

UNIX operating system. These modi�cations constitute the Robot Control Interface (RCI), on

top of which RCCL is written.

The planning task accounts for most RCCL application code; the trajectory generator is

provided as a library task, although one of the more useful features of RCCL allows users to pass

functions to the trajectory task for real-time execution. The planning level spawns the trajectory

task with the procedure rccl_open(). Robot motion requests can then be generated using two

basic kinds of primitives:

} Primitives used in manipulating coordinate frame relationships.

} Primitives which invoke and control robot motions.

The �rst provide for the creation, deletion, and modi�cation of coordinate frame transfor-

mations (represented in RCCL by the data structure type TRSF), and the de�nition of transform

RCCL/RCI Release 4.2, April 17,1992

3

Planning Level Task
(C User Program)

Trajectory Control Task (50 Hz.)

Robot Joint Control Tasks (1 KHz.)

VAX computer

robot controller

move queue

Define transforms and positions
Generate move commands

Path computattions and smoothing
Solve for T6
Generate move commands

shared memory

high speed link

Figure 1: A typical RCCL system.

RCCL/RCI Release 4.2, April 17,1992

4 2. BACKGROUND: THE RCCL/RCI ENVIRONMENT

equations (type POS) between these transformations. Positions are de�ned by transform equa-

tions which relate the value of the manipulator T6 transform to the product of a set of other

transforms. For example, if we have a transform WORLD from robot link 0 to some world coordi-

nate system, a transform P locating a part with respect to the world, and a robot tool transform

TOOL, then locating the tool tip at the part involves satisfying the equation

T6 TOOL = WORLD P

The RCCL primitive for specifying positions is makePosition(), whose argument list is a set of
transforms describing a transform equation. The position equation above would be created with
a piece of code that looks like:

TRSF *coord, *tool, *p /* transform pointers */

POS *pos; /* position pointer */

...initialize transforms...

pos = makePosition(t6, tool, EQ, coord, p, TL, tool);

The keyword EQ denotes the two halves of the equation, while the keyword TL and the

transform following it provide additional information as to where the manipulator tool frame exists.

The ability to create general coordinate transform relationships is a powerful tool. Within the

same equation, one transform might represent the position of a sensor, another might represent

path corrections for compliant motion, and another might generate a motion path. This can be

exploited within RCCL by changing the actual values of the transforms prior to or during motions.

In some sense, the set of transforms and their relationships constitutes a very simple kinematic

\world model" of the robot environment.

The primitive that initiates robot motion is move(), which takes a position data structure

as an argument and queues a request to the trajectory generator to move the robot so that the

position equation is satis�ed. Successive move() requests will travel through the target point;

to stop there, the command stop() is used. Both primitives returns immediately; if we wish to

wait for the requested motion to complete, we must use one of the wait_for primitives. The

motion can be controlled by setting various parameters such as the path generation mode (joint

or Cartesian), speed, forces to exert, force limit conditions, etc. In addition, individual transforms

in the target position equation can be varied by binding them to real-time functions. Since the

robot trajectory will automatically track these variations, we can use this feature to create very

general, dynamically changing, paths.

An RCCL application programmer typically does not work with the trajectory generation

code. Often, however, developers may wish to modify the trajectory generator to incorporate

new features, or replace the trajectory generator completely. Workers experimenting with new

RCCL/RCI Release 4.2, April 17,1992

5

joint-level control laws often �nd it convenient to prototype them directly inside the trajectory

module and bypass level 3 entirely [Cohen and Daneshmend 1987, Aboussouan 1985] (although

this may be constrained by computing time and the ability to achieve the desired sample rates).

At this point, the programmer is no longer working with RCCL, but with RCI. Expanding the

original capabilities of RCI represents a signi�cant part of the McGill/RCA e�ort, and is discussed

in section 4 of this paper.

RCCL was originally written at Purdue University by Vincent Hayward, in collaboration with

Richard Paul, during 1982-83, using a VAX-11/780, a PUMA 560, and a Stanford manipulator.

RCCL was transported to McGill University during 1984-85, where modi�cations were made to

improve its usability [Lloyd 85]. The system was later retargeted to MicroVAX IIs at RCA, the

Jet Propulsion Laboratory (California), and McGill [Lee, et al. 1986]. A MicroVAX II/VMS

implementation was achieved at the NASA Robotics Laboratory, Goddard Space Flight Center,

Maryland, during the spring of 1987. All of these sites still primarily use PUMA robots.

3. Enhancing RCCL for Multiple Robots

3.1 Multiple Robot Control Issues

Before arriving at speci�c extensions to the language we �rst considered how multiple robots might

be used. This led us to establish three di�erent modes of operation for multi-robot control:

1. Independent Operation. This is when several robots are performing independent tasks

at the same time, which can be done by running several single-robot RCCL programs

concurrently.

2. Synchronized Operation. This involves applications where two or more arms are required

to execute a single task, such as in assembly operations: di�erent arms might use di�erent

tools, one arm might pass objects to another, etc. A system supporting this must have

the ability to synchronize individual arm motions, as in specifying that arm A must wait

for arm B to move into position before continuing with its task. Synchronization primitives

have recently been added to RCCL for doing this [Lloyd 85, chapter 5], but have not yet

been used with multiple arms.

3. Coordinated Operation. This concerns instances where several arms are manipulating

a common object. A system supporting this must provide 1) a convenient method of

specifying relative positions amongst the arms that correspond to grasping positions of

each arm on a common object, and 2) a method of specifying a coordinated motion that

RCCL/RCI Release 4.2, April 17,1992

6 3. ENHANCING RCCL FOR MULTIPLE ROBOTS

maintains the relative positions while moving the object along a desired path. The new

RCCL primitives described below are largely directed at this issue.

Coordinated motion implies that kinematic constraints exist between the di�erent arms, which

the trajectory computed for each arm must satisfy. Forces of interaction caused by residual

position errors can then be reduced using a method such as described in [Lee 1987]. We ensure

that the kinematic constraints are satis�ed by computing a single path of motion for the object

being manipulated, which the trajectories for each robot simply follow at some constant o�set.

If each arm were instead moved using independent RCCL trajectory generators, the relative

displacements of the arms would vary between the motion end points.

This need to generate a single path for an object is realized by introducing into RCCL the

concept of an object frame, which is an abstract coordinate frame which can be placed arbitrarily

in the workspace of the robots. Generally, the location of the object frame is rigidly attached

to some object which is to be manipulated. It is de�ned using a position equation like those

which describe robot goal positions, and is created with similar primitives. An object frame can

be \moved", in Cartesian space, using the RCCL motion primitives: a trajectory generator will

then move the object frame through space. By creating robot positions which incorporate this

object frame, and maintaining the robot at these positions, we can move a real object attached

to this object frame. Moreover, by including functionally de�ned transforms in the object frame

equation, we can incorporate sensor-based tracking into its motion.

3.2 New Function Primitives

One goal in specifying our RCCL extensions is to retain the character and general syntax of RCCL

so that old RCCL programs will run with only minor editing, and experienced users will �nd the

transition to multiple arms an easy one. Happily, the original RCCL primitives for controlling a

single arm generalize to multiple arms quite naturally.

A multi-robot RCCL must allow us to be able to move di�erent robots. We hence give

move() an additional argument: a pointer to a new data structure (type MANIP) which denotes

a particular robot and collects together in one place all the data associated with that robot such

as its T6 transform (trans), the joint angles (j6), the
ag completed which is true when all

motions queued for that robot have been serviced, and other such variables.

A MANIP data structure is associated with a particular manipulator by rccl_open(), which
now takes a name of a robot and sets up a trajectory generator for that robot:

MANIP *robot;

robot = rccl_open("PUMA560");

RCCL/RCI Release 4.2, April 17,1992

3.2. NEW FUNCTION PRIMITIVES 7

These simple additions, plus the recently added primitives for motion synchronization (the

event
ag mechanism described in Chapter 5 of [Lloyd 85]) actually gives us everything we need

to do synchronized motions of multiple robots.

Coordinated robot motion and object frames require a bit more enhancement. First, we

generalize makePosition() (section 2) slightly. Originally, this routine always required the

manipulator transform t6 in its argument list, although the purpose of t6 is actually generic: to

identify which of the transforms in the loop is unknown and must be solved for. So that position

equations are not necessarily associated with robots, we de�ned a keyword TRANS that can be

used in place of t6. The example in section 2 can hence be rewritten as

p0 = makePosition(TRANS, tool, EQ, coord, p, TL, tool);

Having generalized the position equation, we need to be able to create object frames. This
is done using a special instance o� the MANIP data structure:

MANIP *obj;

obj = rccl_open ("OBJECT_FRAME");

The object frame is essentially a virtual robot, with its own trajectory generator, and we can

use it with most of the canonical motion control primitives, or examine �elds such as obj->trans

or obj->completed. The only di�erences are that the virtual manipulator has less capability

than the physical manipulator: it does not make any sense to move a generic object in \joint"

mode, nor does it make any sense to look at its joint angles.

The �eld obj->trans contains the instantaneous value of the object transform, and is the

frame that moves in space as we request motions of the object. Using functionally de�ned

transforms, we can force the value of obj->trans to be determined by sensor inputs or any

other means that code can be written for.

An object frame does not have to be connected to any robot, but it can be, by incorporating

its transform obj->trans into a position equation used for moving a robot (see the example

below). Given that an object frame is not always physically attached to anything, we may wish

to sometimes simply \put" an object frame at a (possibly time varying) position, instead of

\moving" it there. For this, we de�ne a primitive maintain(), which is a little bit like move(),

except that 1) it immediately puts the object at the at goal position, and 2) keeps following the

goal position until another action is requested on that object. The primitive can be used with

robots as well as object frames, as long as we are careful to previously move() to the position

that we plan to maintain(). Usage of maintain() is illustrated in the example below.

RCCL/RCI Release 4.2, April 17,1992

8 3. ENHANCING RCCL FOR MULTIPLE ROBOTS

3.3 Task Implementation

Figure 2 illustrates, at the task level, how the new RCCL is

Planning Level Task
(C User Program)

Object Control Task

Path computations
Solve for Object "T6"

PUMA2 Control Task

Path computations
Solve for PUMA2 T6
Inverse Kinematics

PUMA1 Control Task

Path computations
Solve for PUMA1 T6
Inverse Kinematics

shared
memory

Object move queue PUMA2 move queuePUMA1 move queue

To PUMA1 Controller To PUMA2 Controller

Figure 2: Task diagram of a multi-robot RCCL system.

implemented for a system controlling two arms and one object frame. Each manipulator,

and the object frame, has a trajectory generator (implemented using an RCI control task) which

runs at a typical rate of around 50 Hz. As usual, the planning level task is a normal C program

which generates and queues motion requests for the trajectory tasks. Communication among

the tasks is through shared memory. The trajectory tasks remove motion requests from their

respective motion queues and then generate the intermediate setpoints that constitute a path to

the speci�ed goal position. This includes constantly reevaluating the goal position, if necessary,

to take account of functionally de�ned transforms. Some synchronization is required here to

RCCL/RCI Release 4.2, April 17,1992

3.3. TASK IMPLEMENTATION 9

insure that the value of the object frame transform is evaluated �rst, as it may be used in the

position equations of the physical manipulators. The trajectory tasks associated with the robots

must perform the additional step of inverse kinematics to generate the setpoint joint angles which

are transmitted to the robot controller.

This implementation uses the extended RCI primitives described in section 4.

3.3.1 Dual Arm Example

We illustrate the new features of RCCL with a brief example that arises in the context of satellite

servicing. Suppose we wish to grasp a moving object with two manipulators and then follow it

without exerting a force on it, an action which would be the �rst step in a two arm catch of a

rotating satellite. Refer to the transform diagram in Figure 3.

OBJ
("T6")

LOC

TOOL2TOOL1

DISP1 DISP2

COMPLY1 COMPLY2

CAM

COORD1 COORD2

PUMA2
(T6)

PUMA1
(T6)

PUMA2
base
frame

PUMA1
base
frame

Camera
frame

Object
base
frame

Object
motion
frame

Figure 3: Transform diagram for multi-robot object manipulation task.

Assume that we can track the 3-D position and attitude of the object with a camera based

sensor. We use the track data to drive the position of an object frame using a functionally

de�ned transform, Loc, which is constantly updated by sensor processing to give the location of

the object relative to the camera coordinate frame. We can set up a frame describing this object

and have it maintained by the value of Loc:

RCCL/RCI Release 4.2, April 17,1992

10 3. ENHANCING RCCL FOR MULTIPLE ROBOTS

TRSF *Cam, *Loc; /* transforms related to object */

POS *Obj_Pos; /* position equation for object */

MANIP *Obj; /* object frame data structure */

... allocate and initialize transforms and position ...

Obj = rccl_open ("OBJECT_FRAME"); /* Set up object frame, and turn */

rccl_control (Obj); /* on its trajectory generator. */

/* build the equation for the object frame */

Obj_Pos = makePosition (Cam, TRANS, EQ, Loc, TL, TRANS);

maintain (Obj, Obj_pos); /* have object frame track `Loc' */

Next, to move the physical manipulators to grasp points de�ned with respect to the object
frame, we would issue move requests to positions de�ned with respect to Obj->trans:

TRSF *Tool1, *Coord1, *Disp1, *Comply1; /* transforms for robot 1 */

TRSF *Tool2, *Coord2, *Disp2, *Comply2; /* transforms for robot 2 */

POS *p1, *p2; /* robot position eqns. */

MANIP *robot1, *robot2; /* data structures for robots */

extern int comply_on; /* variable to turn on compliance */

... allocate and initialize transforms and positions ...

robot1 = rccl_open ("PUMA1"); /* Setup robot trajectory tasks */

rccl_control (robot1); /* and turn them on ... */

robot2 = rccl_open ("PUMA2");

rccl_control (robot2);

/* Now build the robot position equations */

p1 = makePosition (TRANS, Tool1, EQ,

Coord1, &Obj->trans, Disp1, Comply1, TL, Tool1);

p2 = makePosition (TRANS, Tool2, EQ,

Coord2, &Obj->trans, Disp2, Comply2, TL, Tool2);

trackingMode (robot1); /* cause robot to follow */

move (robot1, p1); /* Move to grasp point, */

trackingMode (robot2);

move (robot2, p2);

wait_for (robot1->completed); /* Wait for both motions to stop */

RCCL/RCI Release 4.2, April 17,1992

11

wait_for (robot2->completed); /* at the grasp position ... */

comply_on = 1; /* tell comply functions to start */

GRASP (robot1); /* then grasp the object at the */

GRASP (robot2); /* same time. */

The primitive trackingMode() preceding the move requests is another small feature that

we have introduced: it puts the trajectory generator into a mode where, after a move to a goal

position is completed, it continues to track the position until another motion request appears

on the move queue (instead of stopping �rmly at the goal position's last value). The program

uses the completed
ag to determine when both robots reach their grasp positions (remember

that the move requests do not block). That this will probably not happen at the same time is

OK since the each arm will continue to track the grasp point. When the grippers are closed, a

compliance algorithm is started, using a compliance function bound to the transforms Comply1

and Comply2, which ensures the arms continue to follow the object while exerting zero force.

This program is naturally oversimpli�ed, ignoring things like via points to control approach,

transform allocation and de�nition, and details of the grasp process. The force control method

for servoing the comply transforms is an issue dealt with in a separate paper (see [Lee, 1988]).

However, the spirit of the library is illustrated.

4. RCI: Primitives for Creating Real-Time Control Tasks

In this section, we �rst summarize the original RCI system, and then describe how it has been en-

hanced to provide a multi-tasking capability. The implementation of this new system is discussed

in section 5.

4.1 The single robot RCI system

RCI was originally designed as a C package that allows the creation of a real-time robot control

task under UNIX. Programs written using RCI are very low level, and implement such things as

path generation or control algorithms. The interface to the robot is at the joint encoder/current

level. The format is very simple: The control task is a function in the user's program that is

tied to a periodic interrupt from some external device (such as a robot controller interface). On

every interrupt, the control function is executed asynchronously with respect to the rest of the

program. The function is called by the device driver, which elevates processor priority to ensure

that the control routine will not be interrupted, and temporarily restores the main program's

RCCL/RCI Release 4.2, April 17,1992

12 4. RCI: PRIMITIVES FOR CREATING REAL-TIME CONTROL TASKS

memory context. Because the control function and the main program use the same memory

context, communication between the two is easily achieved using global variables.

For convenience, RCI automatically performs the communication with the robot controller,

�rst reading back information values (such as joint positions, force sensor data, etc.), checking

for limit conditions, and then posting them to a global \blackboard" variable, which has the

somewhat historical name how. The user's control function is then called, which reads the robot

state described in how, and generates low level position or current commands, which it posts to

another blackboard variable called chg. When the control function returns, RCI examines chg,

does some more checking, and parcels the commands o� to the robot controller. To give the

programmer the option of overlapping computation with the operation of the robot controller, a

second user control function may then be called to precompute things for the next cycle. The

whole scheme runs at some �xed control rate and is diagramed in Figure 4.

wait for start
of control cycle

checking

checking

call first user
control function

call second user
control function

read data from robot
into how variable

send commands described
in the chg variable

to the robot

Figure 4: Execution cycle for an RCI robot control task.

When working with a Unimation PUMA robot, interfaced with a parallel port, it is possible

to run simple control functions at dependable rates of up to 70 Hz. on a MicroVAX II/UNIX

system.

RCCL/RCI Release 4.2, April 17,1992

4.2. REQUIREMENTS FOR PROTOTYPING ROBOT CONTROL TASKS 13

4.2 Requirements for prototyping robot control tasks

RCI's capability of being able to attach a simple control task to programs executing in the

rich environment of a large operating system (UNIX) has proven very useful in research and

development. Driven by this success, we have proceeded to enhance the simple RCI described

above to take advantage of multiple CPUs (on a common backplane) and allow the creation of

several control tasks driving multiple robots.

The extended RCI system allows the creation of several control tasks, which may run at

di�erent rates or be triggered by di�erent events. For generality, a task is not necessarily connected

to a robot (as in the original system code); the robot interfacing features are optional. The

mechanisms by which the RCI internally performs I/O are also available to the programmer for

embedding special purpose I/O in the control functions themselves.

The design concept, described in the next section, was motivated by the following goals:

} Ease of use { particularly necessary since the system is meant to serve as a development

and prototyping environment.

} Extremely fast operation { robot path generation and control requires the ability to ex-

ecute tasks at rates ranging up to 100 Hz. or higher; consequently, speed is of absolute

importance.

} Synchronized scheduling { some control tasks need to run at a �xed pace with respect to

each other, so a common clock is needed that can drive tasks at synchronized rates.

} Shared memory between tasks. { required to ensure the fastest possible inter-task com-

munication.

} Message passing between tasks. { desirable for instances where communication speed is

not of too much concern and data isolation is desired.

4.3 Principle design concept of RCI

4.3.1 Task Structure

A single UNIX process (known as the parent, or planning task) may create several control tasks.

The anticipated number of control tasks is 1 to 5; this is not a limit, but rather a number which

has guided our thinking in designing the interface primitives. The parent task and the control

tasks comprise an executing RCI program. Di�erent RCI programs may run concurrently (if the

required resources are available), but communication between these programs can be done only

RCCL/RCI Release 4.2, April 17,1992

14 4. RCI: PRIMITIVES FOR CREATING REAL-TIME CONTROL TASKS

through the normal UNIX interprocess communication facilities. While in principle it would be

possible to establish communication and synchronization between control tasks with di�erent

parent processes, this was not seen to be necessary and creates resource allocation problems.

In a multi-processor con�guration, one host processor runs UNIX, while others serve as aux-

iliaries which run only RCI tasks. A common backplane is assumed to facilitate shared memory.

The parent task always runs on the UNIX host, while the control tasks may run on either the

host or an auxiliary. As in the original RCI, each control task is simply a pair of control functions.

4.3.2 Task Images

The images for the parent task and all of the control tasks are the same, as in the original RCI

system. For tasks executing on the same processor, this is implemented, as before, by using

the same memory context. An auxiliary processor receives a copy of the original UNIX program

image, or at least a copy of those segments of it which are accessed by the control tasks running

on that processor. Although more than one control task belonging to the same program may be

executed per auxiliary processor, no more than one RCI program may be associated with each

auxiliary processor; this is an e�ciency/implementation constraint discussed in section 5.3.1.

4.3.3 Task Creation and Deletion

Control tasks are created and deleted by primitives called from the planning task. Creating a task

does not actually turn it on (activate it); that is done using rci_start(), described later.

td = rci_create (name, proc)

creates a control task with the given name on the processor proc; a default processor is selected

if proc is unspeci�ed. The task is connected to a robot if name equals the name of one of the

robots supported by the system (section 4.3.7). td is a pointer to a task descriptor which is used

to reference the task and contains task and robot speci�c information.

At the present time, all control tasks and shared memory areas (section 4.3.5) must be set up

before any of them are activated. This restriction is imposed so that control tasks do not have to

worry about accessing tasks or memory areas that do not exist. This is not really very restricting

since most task attributes such as the control functions, the scheduling discipline, and whether

it is active, may be changed dynamically.

Correspondingly, all tasks and memory areas are deleted together using the call

rci_close()

The actual control functions are speci�ed with

RCCL/RCI Release 4.2, April 17,1992

4.3. PRINCIPLE DESIGN CONCEPT OF RCI 15

rci_control (control1, control2, startup)

RCI will either call the control functions called back-to-back, or interleave them with the robot I/O

if it is connected to a robot (Figure 4). The startup function is called once at task initialization

time and can be used to perform any time consuming set up procedures.

4.3.4 Scheduling

Various planning level primitives determine how an RCI control task is scheduled.

To run a task o� the common clock,

rci_onclock (td, interval, offset)

noti�es the RCI scheduler to wakeup the task referenced by td once every interval clock ticks,
with an o�set, according to the following algorithm:

if ((clock_ticks - offset) % interval == 0)

{ wakeup the task;

}

To run a task o� some arbitrary event, instead of the clock, a wakeup function can be speci�ed:

rci_onfunction (td, wakeup_function)

The wakeup function can examine I/O space or memory locations, and returns a non-zero

value when the task should be woken up. When the task is executing on the host CPU, the

wakeup function must be supplemented with an interrupt from a device speci�ed by the primitive

rci_deviceInterrupt() (See section 5 for an explanation). The driver for this device must

have RCI support built into it.

Once a control task is invoked, it will not be interrupted by other control tasks until it

completes. This permits simple round-robin scheduling for tasks on the same processor; tasks

which must run concurrently have to be assigned di�erent processors. A timeout mechanism

detects rogue tasks which exceed their allocated time.

RCI tasks attached to robots are typically daisy-chained o� the robot controller: a process

on the controller wakes up, spends several milliseconds collecting sensor and feedback data, and

then wakes up the control task and communicates with it. If we are controlling several robots in

sync by running them o� the RCI system clock, we really need to wakeup the robot controller,

which will in turn wake up the control task. This can be done by requesting the scheduler to call

a trigger function for a task on a certain clock interval/o�set:

rci_trigger (td, interval, offset, trigger_function)

Setting the scheduling discipline for an RCI task does not actually activate it. Tasks are
activated and released using the primitives

RCCL/RCI Release 4.2, April 17,1992

16 4. RCI: PRIMITIVES FOR CREATING REAL-TIME CONTROL TASKS

rci_start (bitmask)

rci_release (bitmask)

which take bit masks as arguments so that several tasks can be speci�ed atomically (the bit

corresponding to a particular task can be obtained from a �eld in its task descriptor).

4.3.5 Shared Memory and Message Passing

Shared memory between tasks is set up by planning level primitives before the tasks are activated:

memp = rci_sharedMemory (label, size, hostTd, accessMask)

This creates a shared memory region of size bytes with name label and returns a pointer to

it. hostTd speci�es the task whose processor will host the memory, and accessMask is a bit

mask describing which tasks (besides the host) have access to the memory. A control task with

access to this memory can get a pointer to it by calling rci_getMemory (label) when it �rst

starts up.

Shared access to compile time static variables can be achieved with the call

rci_sharedData (accessMask, addr, size)

which causes the compile-time generated memory segment de�ned by addr and size to be

shared among all tasks speci�ed by the accessMask.

The message passing primitives are quite simple and are callable from all tasks. Since the

scheduling of RCI tasks is handled by a separate mechanism, messages do not have to ful�ll a

synchronization/rendezvous function and so do not block.

n = rci_send (sendcode, buffer, size)

n = rci_receive (getcode, buffer, size, sender)

rci_send() takes the message of size bytes contained in buffer and queues it for delivery

to the task indicated by the bit mask sendcode. The function blocks only until the queuing is

complete and returns the number of bytes it was able to queue; if this number is less than size it

indicates that the queuing area is out of space. rci_receive() probes the queue of deliverable

messages and returns the �rst from any of the senders speci�ed by the bit mask getcode into

the supplied bu�er. The task descriptor of the sending task is returned in sender; a value of 0

means no message was received.

An RCI control task can interrupt the parent task by sending it a UNIX signal with the call

rci_signal(). Generalizing this to allow software interrupts to be sent to other tasks could be

useful but was considered overly elaborate for the present implementation.

RCCL/RCI Release 4.2, April 17,1992

17

4.3.6 Support Functions

A few support functions are available for control tasks, which do not have access to the usual

UNIX system calls. These include functions for local memory allocation (rci_malloc() and

rci_free()), the function rci_printf() which prints diagnostic messages to the task proces-

sor console, rci_descriptor() which returns the task descriptor of a named task, and a few

test-and-set primitives for shared memory interfacing.

4.3.7 Robot interfacing aspects

RCI maintains a database of robots. When a task is created which has the name of one of these

robots, that task is connected to the robot. This means that RCI will 1) instantiate parameter

blocks in the task descriptor with the joint level data for that robot and 2) automatically perform

I/O with the robot and maintain the how and chg structures for use by the control functions. The

�elds in the robot parameter blocks, as well as the how and chg data structures, are de�ned to

represent a general robot at the joint level. This includes features such as joint angles, velocities,

and torques, the limits on these values, lower level representations such as joint encoder counts

and DAC values, conversion routines between such representations, and calibration information.

Fields are also available for generic sensor I/O. RCI does not, at the moment, maintain kinematic

or dynamic robot parameters since this information tends to depend on the RCI application.

5. Implementation of RCI Using a set of MicroVAX II CPUs

5.1 The MicroVAX II multicomputing capability

The usual processor elements in a MicroVAX II system are (presently) either KA630 or KA620

CPU boards, each of these implements a VAX instruction set with
oating point support and

contains one megabyte of local memory and a Q-bus interface [DEC 1986]. The local memory of

each processor can be expanded through a private interconnect. One CPU must be con�gured as

an arbiter which controls the Q-bus; it is then possible to add up to three auxiliary CPUs. The

CPUs communicate with each other through the Q-bus (Figure 5).

A processor can attach a region of Q-bus space to a section of its physical memory. Another

processer can then access this memory by mapping a region of its virtual memory to the Q-bus re-

gion, instead of physical memory. Processors signal each other through an interprocessor doorbell

mechanism: processor A can cause an internal interrupt in processor B by setting a bit in pro-

cessor B's interprocessor communication register which appears in Q-bus space. Unfortunately,

RCCL/RCI Release 4.2, April 17,1992

18 5. IMPLEMENTATION OF RCI USING A SET OF MICROVAX II CPUS

the Q-bus architecture prevents auxiliary CPUs from being able to receive device interrupts; all

device interrupts must be handled by the arbiter CPU.

virtual address
space

physical
memory

MicroVAX CPU 1

virtual address
space

physical
memory

MicroVAX CPU 2Q-bus
address
space

shared segment

Figure 5: Shared memory between MicroVAX processors.

5.2 The UNIX interface and the auxiliary CPU minikernel

UNIX (which runs on the arbiter CPU) can be made to communicate with the auxiliary CPUs by

means of a \KA device" driver, which keeps track of their status and is responsible for booting

them. Booting is accomplished by having the arbiter CPU set up a \boot block" in Q-bus space

which the auxiliary CPU boots from on request by the arbiter.

Normally, the KA driver is used to boot a special \minikernel" on the auxiliary which is

responsible for downloading, running, and maintaining one user \process". These actions are

facilitated by passing simple messages between the CPUs using the doorbell interrupt and some

shared Q-bus memory. The messages pass through the KA driver and include directives for

RCCL/RCI Release 4.2, April 17,1992

5.3. THE RCI IMPLEMENTATION 19

downloading code and data segments to the auxiliary, allocating memory on the auxiliary, creating

and mapping to shared regions of Q-bus memory, starting or stopping execution of code on the

auxiliary, and sending signals back to the arbiter CPU.

5.3 The RCI Implementation

5.3.1 Process initialization

The RCI primitives either specify processors explicitly or allow the system to choose an auxiliary

processor from among those available. The KA driver is used to check the requested processors

for availability; a processor is not available if it has been allocated to another RCI program. This

restriction is for both simplicity and e�ciency: to be able to share an auxiliary CPU between

di�erent RCI programs would require giving the CPU a full multi-processing capability, which is

more complex to implement and less e�cient to run. It is possible to run multiple control tasks

from the same RCI program on one CPU since they are just routines which can be executed

sequentially and do not interrupt each other.

The required processors are then booted (if necessary), the real-time code and data segments

of the RCI program are then downloaded into them, and a small RCI monitor is then started on

each auxiliary CPU which helps �nish the task set-up and which will later call the various control

tasks assigned to that CPU, round-robin style, when they are active and ready to run. Shared

memory is set up according to the description passed to the RCI system by the RCI user program.

Space is allocated for each of the task descriptors and robot-speci�c parameter blocks associated

with each control task. The task descriptors are made global to the whole system; each control

task receives its own descriptor as a parameter, and can get the descriptor for another task with

the rci_descriptor() call.

5.3.2 Scheduling

When the �rst call is made to rci_start() for a control task, the RCI monitor on the appropriate

CPU is noti�ed, and this then calls the task's startup() function. If the task is driven o� the

system clock, the scheduler is also noti�ed (see below). The task is then active and remains so

until a call is made to rci_release() or an abort condition is raised.

The RCI monitor on each processor polls to see when any of the control tasks on that processor

are runnable. For tasks bound to a wakeup function (using rci_onfunction()), this is done

by simply calling that function repeatedly. For tasks attached to the system clock, the monitor

checks a run count in the task descriptor which is incremented by the scheduler. When a task

is runnable, the monitor calls the two control functions; if the task is associated with a robot, it

RCCL/RCI Release 4.2, April 17,1992

20 6. CONCLUSION

also calls robot I/O and checking routines and maintains the how and chg blackboard variables.

For scheduler driven tasks, the monitor decrements the run count in the task descriptor. Polling

is then resumed.

For RCI tasks running on the arbiter CPU, there is no monitor per se since polling is not

workable. Instead, the invocation of each task must be tied to an device interrupt (as speci�ed

by the rci_deviceInterrupt() call. Arbiter tasks invoked by the scheduler are tied to a

speci�c (default) device interrupt associated with the scheduler.

The scheduler is a special asynchronous \task" bound to a real-time clock. One auxiliary

processor per RCI program is elected to run the scheduler, which works in the following way: the

scheduler maintains a private list of all control tasks, whether they are active and bound to the

system clock, and if so, at what time they should next execute. Every time the scheduler routine

is called, it scans the task list and wakes up each task whose indicated run time is less than or

equal to the current time. The wakeup is done (as described above) by incrementing a count

in the task's descriptor (and sending an interrupt if the task is executing on the arbiter). The

next wakeup time for the task is then computed. Before the scheduler routine returns, it posts

a request to the minikernel to reinvoke it at the next time that a task wakeup will be required.

Because of the tight time constraints the scheduler must run under, we assume that it is run only

on an auxiliary processor.

5.3.3 Maintaining the real-time clock

The scheduler paradigm described above assumes that the auxiliary minikernel can maintain a

real-time clock, and can execute functions (speci�cally, the scheduler routine) at speci�c times

described by that real-time clock. The easiest clock to use is the 100 Hz. interval timer built

into each VAX CPU board. This may, however, be too slow for some applications. In that case,

an external timer is required. A small di�culty is encountered here in that it is not possible to

interrupt an auxiliary processor using the usual Q-bus interrupt mechanism. To overcome this, we

have implemented a small clock device which sits on the Q-bus, and at some selectable interval

obtains control of the bus and sets the doorbell interrupt bit on the auxiliary CPU. The clock

device maintains a count which the auxiliary can then read to determine that the interrupt is in

fact a clock interrupt.

6. Conclusion

We have described work which is being done to create a useful multi-robot programming and

development environment by extending the toolkit already provided by the RCCL/RCI system.

RCCL/RCI Release 4.2, April 17,1992

21

Our principle motivation has been the proven usefulness of having a full C/UNIX environment for

creating and testing robot control algorithms at many di�erent levels. The present status of our

work is as follows: the RCI extensions are nearly complete and will be running on the MicroVAX

system by the end of October, 1987. Since the multi-rccl and force control algorithm work is

proceeding in parallel with this, the full system should be in operation with preliminary results

available by the end of 1987.

RCCL/RCI Release 4.2, April 17,1992

22 6. CONCLUSION

References

[Aboussouan 1985] Patrick Aboussouan, \Frequency Response Estimation of Manipulator
Dynamic Parameters" (M. Eng. Thesis). Dept. of Electrical Engineering, McGill Univer-
sity, Montreal, Canada, December 1985.

[Cohen and Daneshmend 1987] Moshe Cohen and Laeeque K. Daneshmend, \Evaluation
of an Acceleration Feedback Position Control Algorithm on a Commercial Manipulator".
Submitted to the 1988 IEEE Conference on Robotics and Automation.

[DEC 1986] Digital Equipment Corporation, KA630-AA CPU Module User's Guide, DEC
Educational Services Development and Publishing, Marlboro, Mass. DEC Order Number
EK-KA630-UG-001.

[Hayward and Hayati 1987] Vincent Hayward and Samad Hayati, \Design Principles of a
Cooperative Robot Controller". To appear in Space Station Automation III, Proceedings
of SPIE, November 1987, Cambridge, Mass.

[Hayward and Lloyd 1985] Vincent Hayward and John Lloyd, \RCCL User's Guide". Tech-
nical Report, Dept. of Electrical Engineering, McGill University, Montreal, Canada, De-
cember 1985.

[Hayward and Paul 1986] Vincent Hayward and Richard Paul, \Robot Manipulator Control
Under UNIX: RCCL, a Robot Control C Library". International Journal of Robotics
Research, Winter, pp. 94 { 111. (Vol. 5, No. 4)

[Lee, et al. 1986] Jin S. Lee, Samad Hayati, Vincent Hayward, and John Lloyd, \Imple-
mentation of RCCL, a robot control C library on a MicroVAX II". Advances in Intelligent
Robotics Systems, SPIE's Cambridge Symposium on Optical and Optoelectronic Engi-
neering, Cambridge, Massachusetts, October 26-31, 1986 pp. 472 { 480.

[Lee 1987] Jin Lee, "Multi-Arm Force Control Using Position Accommodation", submitted
to the 1988 IEEE International Conference on Robotics and Automation.

[Lloyd 1985] John Lloyd, Implementation of a Robot Control Development Environment
(M. Eng. Thesis). Dept. of Electrical Engineering, McGill University, Montreal, Canada,
December 1985.

[Holcomb, et al. 1987] L. B. Holcomb and M. D. Montemerlo, "NASA Automation and
Robotics Technology Program". IEEE AES Magazine, April, 1987, pg. 19 { 26.

[Maples and Becker 1986] J. A. Maples and J. J. Becker, "Experiments in Force Control of
Robotic Manipulators". Proceedings of IEEE Conference on Robotics and Automation,
San Francisco, CA., April 7-10, 1986, pp. 695 { 702. (Vol. 2)

[Paul 1981] Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control.
MIT Press, Cambridge, Mass., 1981

RCCL/RCI Release 4.2, April 17,1992

