

CPSC 425: Computer Vision

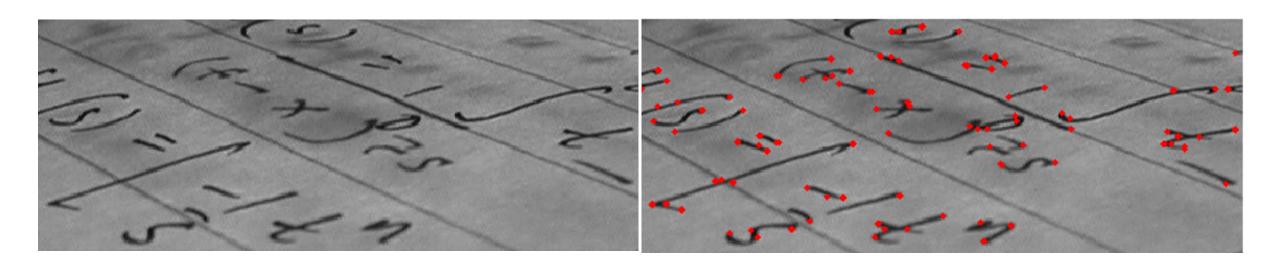


Image Credit: https://en.wikipedia.org/wiki/Corner_detection

Lecture 10: Corner Detection

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- Edge Detection (review)
- Corner Detection
- Harris Corner Detection

- Image Structure
- Blob Detection

Readings:

— Today's Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

Reminders:

Assignment 2: Scaled Representations, Face Detection and Image Blending

Lecture 9: Re-cap Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

Lecture 9: Re-cap Edge Detection

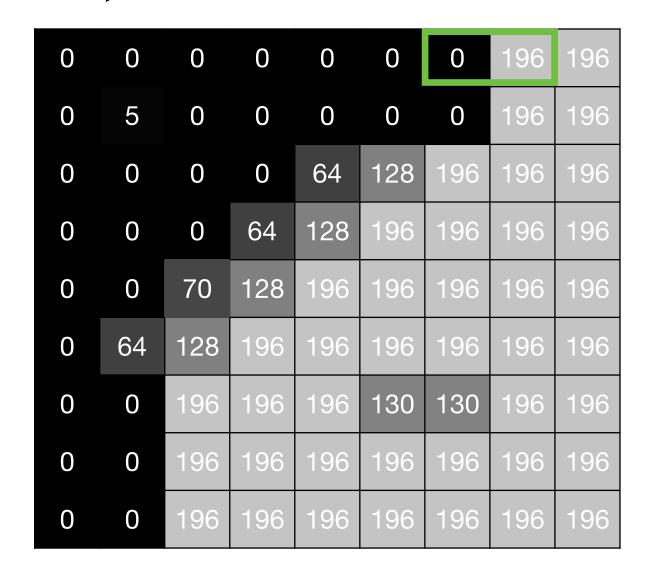
Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

	Approach	Detection	Localization	Single Resp	Limitations
Sobel	Gradient Magnitude Threshold	Good	Poor	Poor	Results in Thick Edges
Marr / Hildreth	Zero-crossings of 2nd Derivative (LoG)	Good	Good	Good	Smooths Corners
Canny	Local extrema of 1st Derivative	Best	Good	Good	

0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196



1 1 x-Derivative

0	0	0	0	0	0	196	0	х
5	-5	0	0	0	0	196	0	Х
0	0	0	64	64	68	0	0	Х
0	0	64	64	68	0	0	0	Х
0	70	58	68	0	0	0	0	Х
64	64	68	0	0	0	0	0	Х
0	196	0	0	-66	0	66	0	Х
0	196	0	0	0	0	0	0	Х
0	196	0	0	0	0	0	0	Х

0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

x-Derivative

0	0	0	0	0	0	196	0	х
5	-5	0	0	0	0	196	0	Х
0	0	0	64	64	68	0	0	Х
0	0	64	64	68	0	0	0	Х
0	70	58	68	0	0	0	0	Х
64	64	68	0	0	0	0	0	Х
0	196	0	0	-66	0	66	0	Х
0	196	0	0	0	0	0	0	Х
0	196	0	0	0	0	0	0	Х

1 y-Derivative

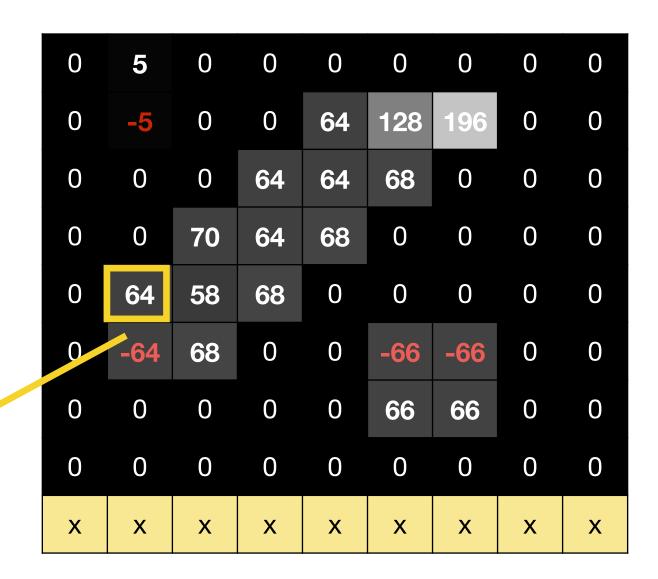
0	5	0	0	0	0	0	0	0
0	-5	0	0	64	128	196	0	0
0	0	0	64	64	68	0	0	0
0	0	70	64	68	0	0	0	0
0	64	58	68	0	0	0	0	0
0	-64	68	0	0	-66	-66	0	0
0	0	0	0	0	66	66	0	0
0	0	0	0	0	0	0	0	0
X	x	x	X	x	x	x	X	X

0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

x-Derivative

0	0	0	0	0	0	196	0	х
5	-5	0	0	0	0	196	0	Х
0	0	0	64	64	68	0	0	Х
0	0	64	64	68	0	0	0	X
0	70	58	68	0	0	0	0	X
64	64	68	0	0	0	0	0	X
	196	0	0	-66	0	66	0	X
0	196	0	0	0	0	0	0	Х
0	196	0	0	0	0	0	0	Х

y-Derivative



Gradient Magnitude

$$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$$

0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

x-Derivative

0	0	0	0	0	0	196	0	X
5	-5	0	0	0	0	196	0	Х
0	0	0	64	64	68	0	0	X
0	0	64	64	68	0	0	0	X
0	70	58	68	0	0	0	0	X
64	64	68	0	0	0	0	0	X
9	196	0	0	-66	0	66	0	X
0	196	0	0	0	0	0	0	Х
0	196	0	0	0	0	0	9	Х

y-Derivative

0	5	0	0	0	0	0	0	0
0	-5	0	0	64	128	196	0	0
0	0	0	64	64	68	0	0	0
0	0	70	64	68	0	0	0	0
0	64	58	68	0	0	0	0	0
0	-64	68	0	0	-66	-66	0	0
0	0	0	0	0	66	66	0	0
0	0	0	0	0	0	0	0	0
X	X	X	X	X	x	X	X	х

Gradient Magnitude

$$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$$

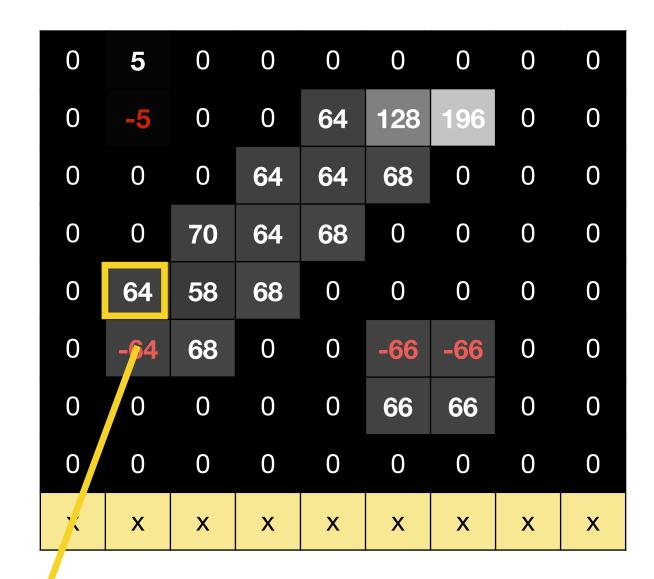
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

0 0 0 0 0 196 196 0 5 0 0 0 0 196 196 0 0 0 0 64 128 196 196 196 196 0 0 0 64 128 196 196 196 196 196 0 0 70 128 196 196 196 196 196 196 0 64 128 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196

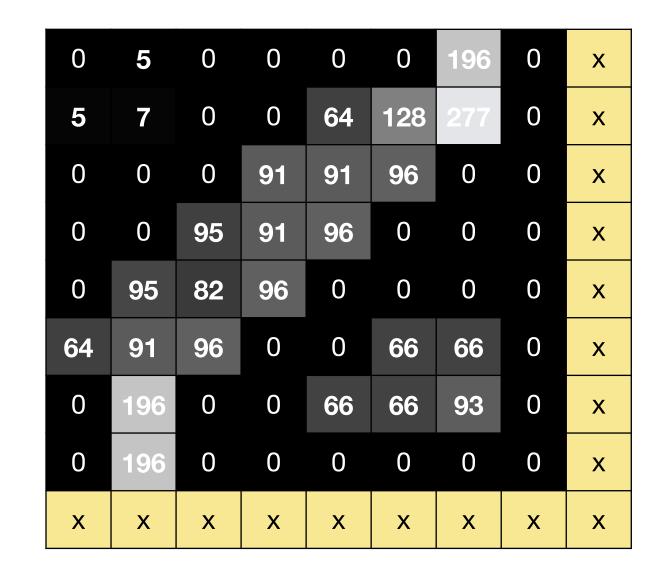
x-Derivative

0	0	0	0	0	0	196	0	х
5	-5	0	0	0	0	196	0	Х
0	0	0	64	64	68	0	0	Х
0	0	64	64	68	0	0	0	Х
0	70	58	68	0	0	0	0	Х
64	64	68	0	0	0	0	0	Х
0	196	0	0	-66	0	66	0	Х
0	196	0	0	0	0	0	0	Х
0	196	0	0	0	0	0	0	Х

y-Derivative



Gradient **Magnitude**





0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

x-Derivative

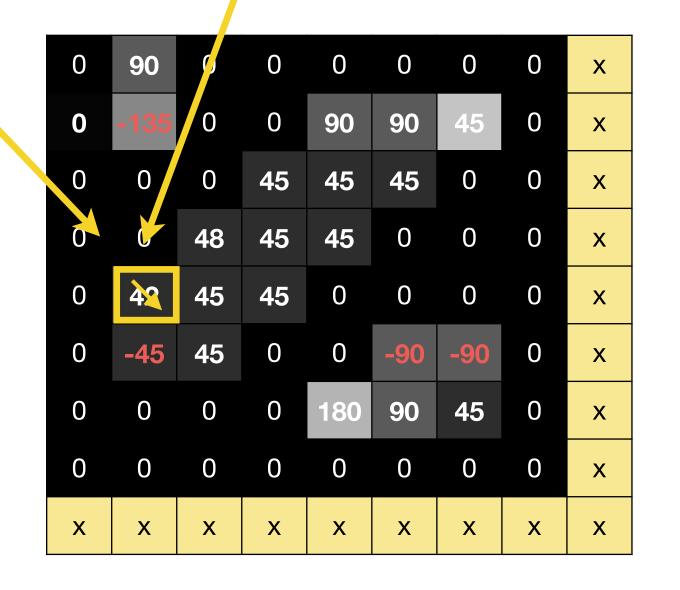
0	0	0	0	0	0	196	0	Х
5	-5	0	0	0	0	196	0	X
0	0	0	64	64	68	0	0	X
0	0	64	64	68	0	0	0	X
0	70	58	68	0	0	0	0	X
64	64	68	0	0	0	0	0	Х
0	196	0	0	-66	0	66	0	X
0	196	0	0	0	0	0	0	X
0	196	0	0	0	0	0	0	X

y-Derivative

0	5	0	0	0	0	0	0	0
0	-5	0	0	64	128	196	0	0
0	0	0	64	64	68	0	0	0
0	0	70	64	68	0	0	0	0
0	64	58	68	0	0	0	0	0
0	-64	68	0	0	-66	-66	0	0
0	0	0	0	0	66	66	0	0
0	0	0	0	0	0	0	0	0
X	x	x	x	x	x	X	X	X

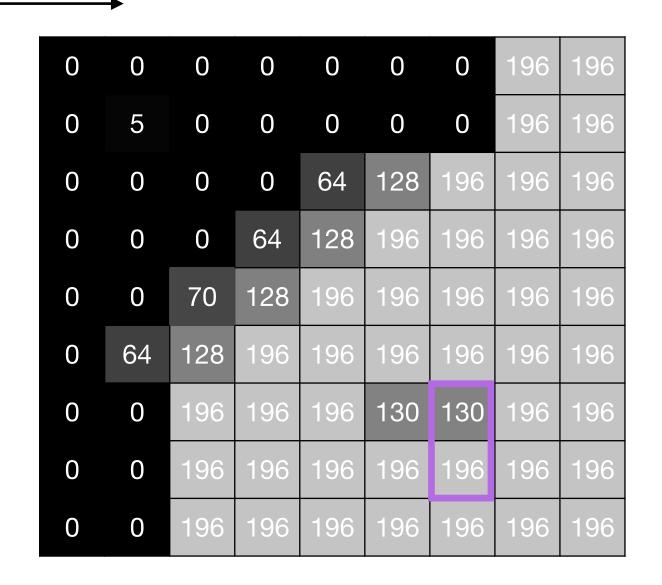
Gradient **Magnitude**

0	5	0	0	0	0	196	0	Х
5	7	0	0	64	128	277	0	х
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	х
Х	Х	Х	X	Х	Х	X	X	Х

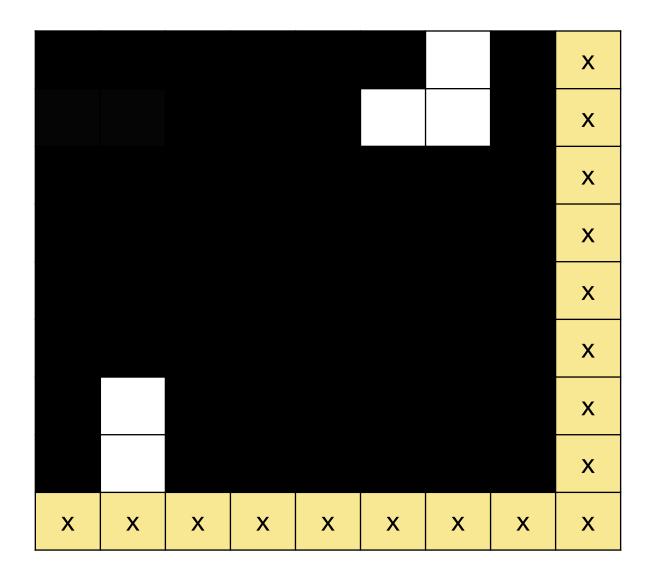


$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

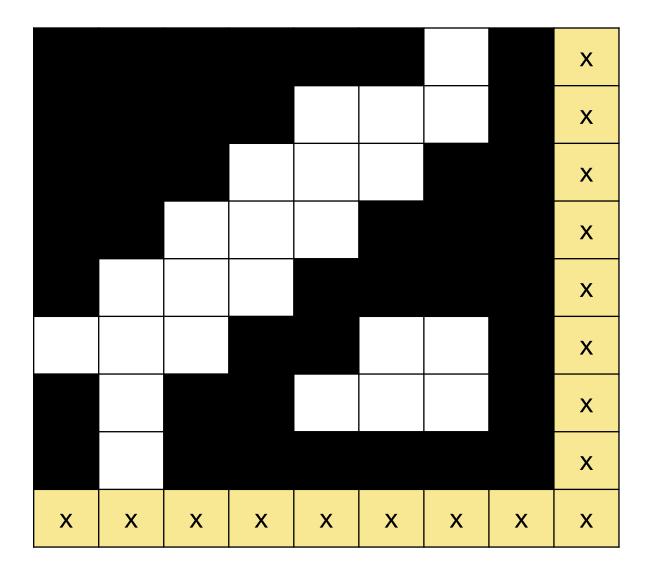
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$



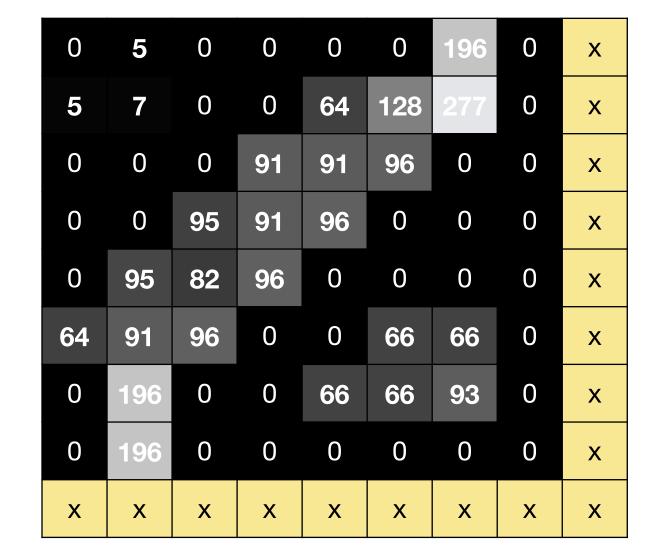
Sobel (threshold = 100)

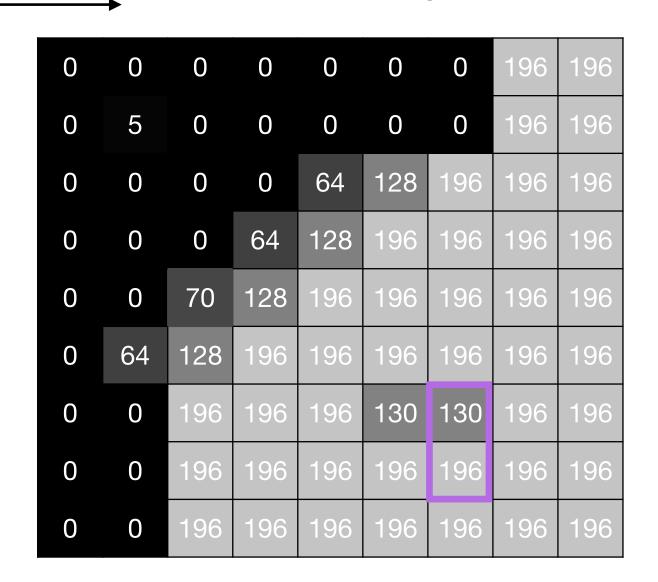


Sobel (threshold = 50)

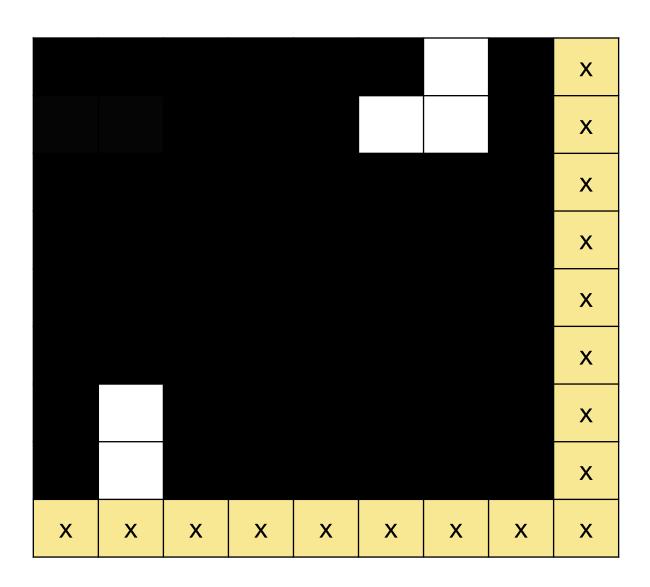


Gradient **Magnitude**

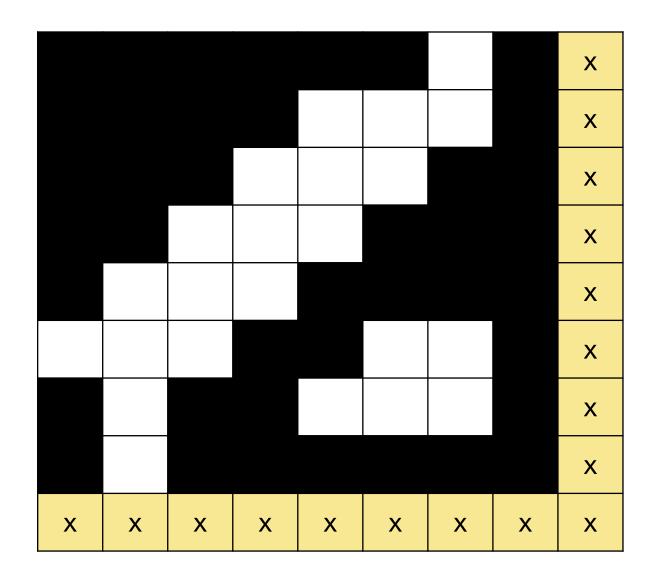




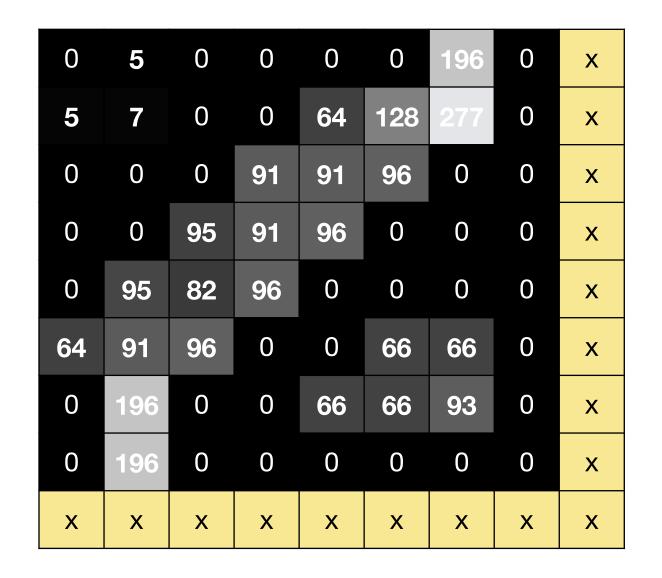
Sobel (threshold = 100)



Sobel (threshold = 50)



Gradient Magnitude



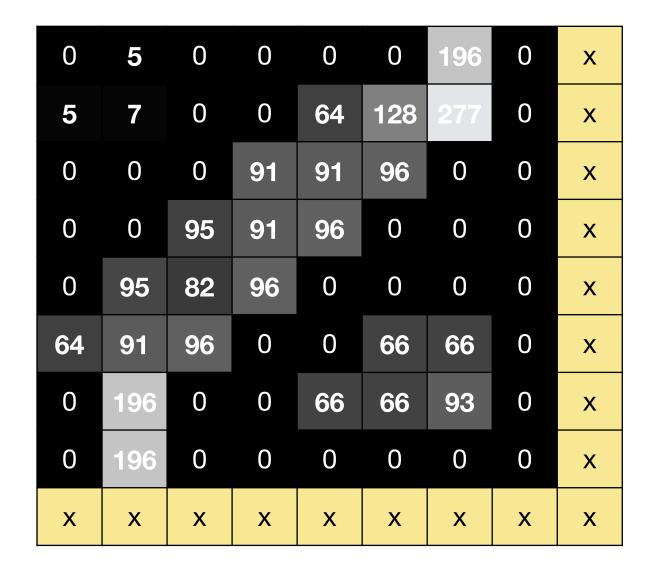
Sobel issues:

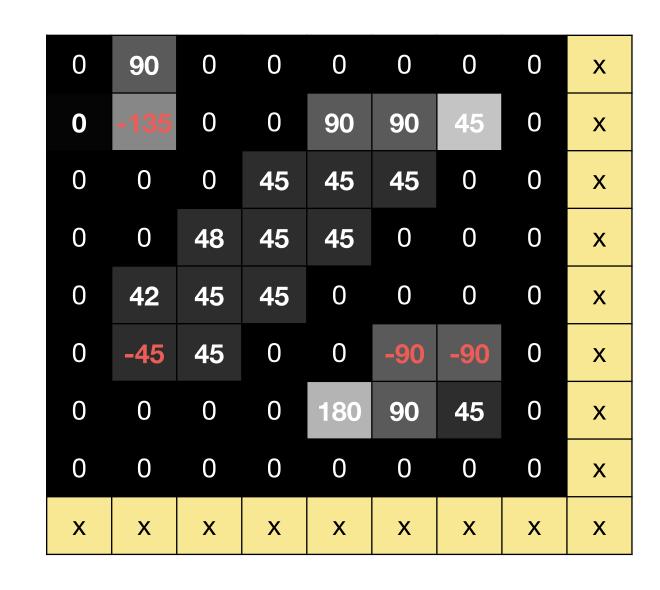
- Brittle = result depends on threshold
- Thick edges = poor localization

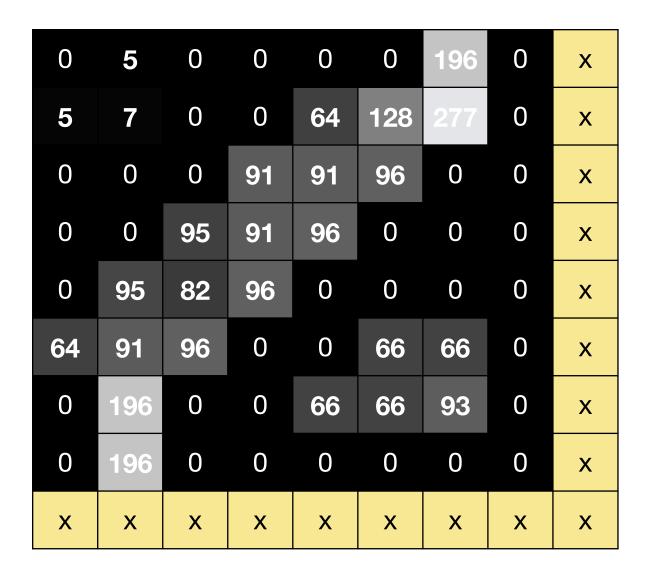
Canny Edge Detector

- 3. Non-maximum suppression
 - thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

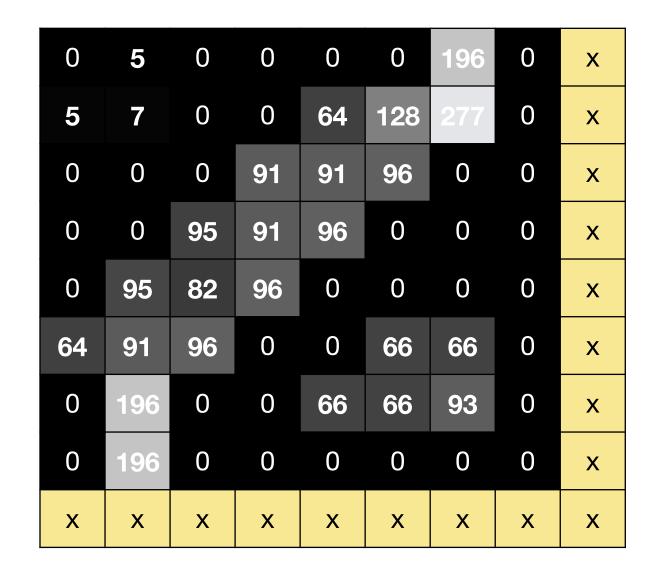
Gradient **Magnitude**



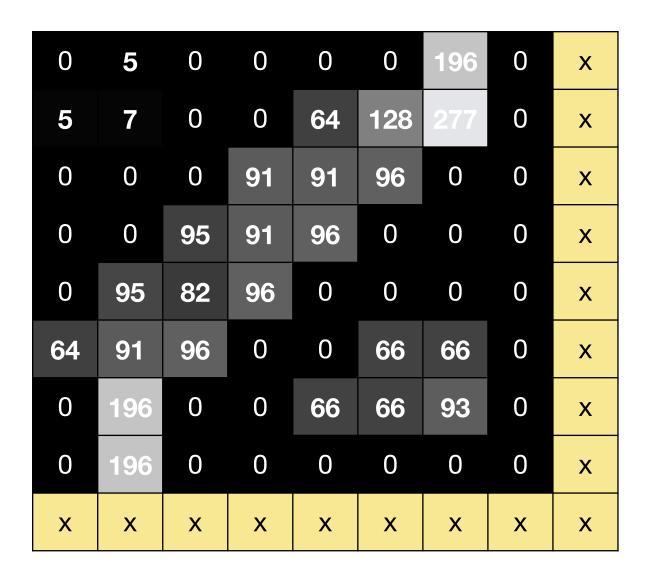




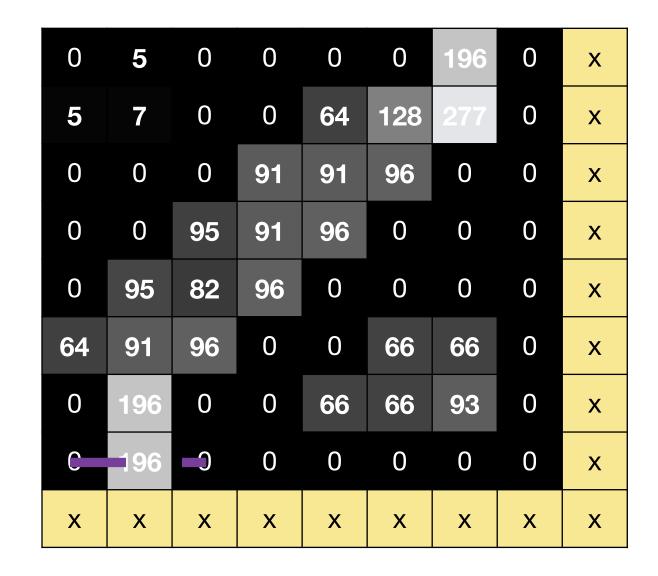
Gradient **Magnitude**

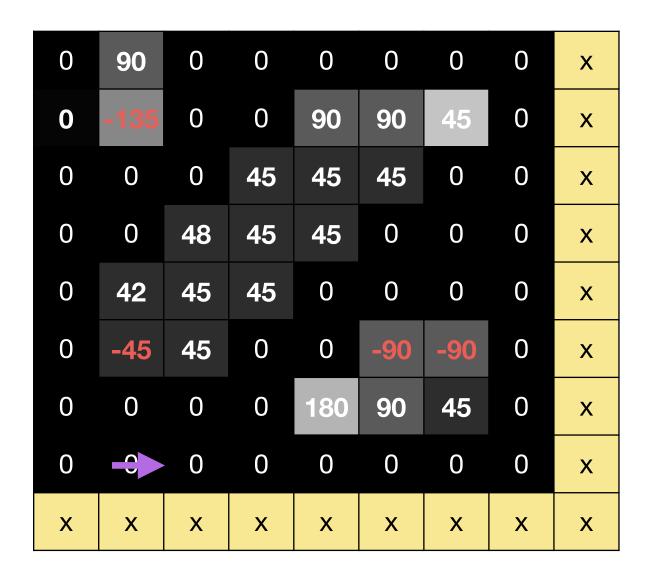


0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	Х
0	0	0	45	45	45	0	0	Х
0	0	48	45	45	0	0	0	Х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	Х
0	0	0	0	180	90	45	0	Х
0	0	0	0	0	0	0	0	х
Х	x	X	X	x	X	X	X	Х



Gradient **Magnitude**



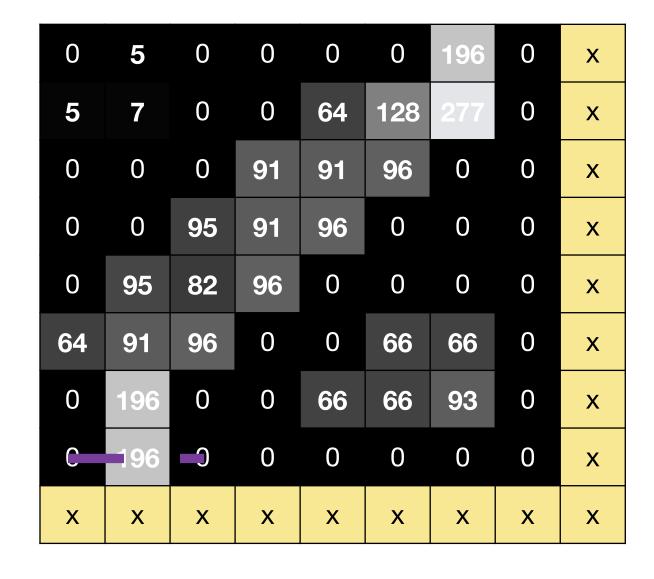


0	5	0	0	0	0	196	0	Х
5	7	0	0	64	128	277	0	Х
0	0	0	91	91	96	0	0	Х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	Х
0	196	0	0	0	0	0	0	Х
X	X	X	X	X	X	х	X	Х

No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



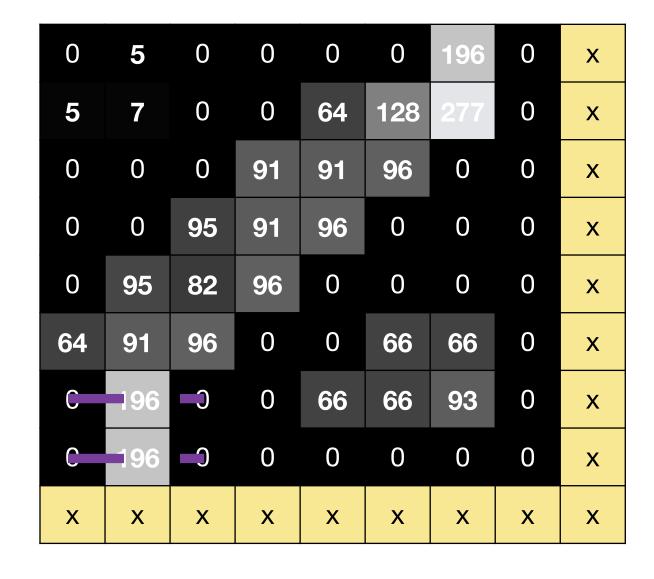
0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	48	45	45	0	0	0	Х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	Х
0	0	0	0	180	90	45	0	Х
0		0	0	0	0	0	0	Х
Х	X	X	X	X	X	Х	X	х

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	х
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	X
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	X
0	196	0	0	0	0	0	0	х
X	X	X	X	X	Х	X	X	X

No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



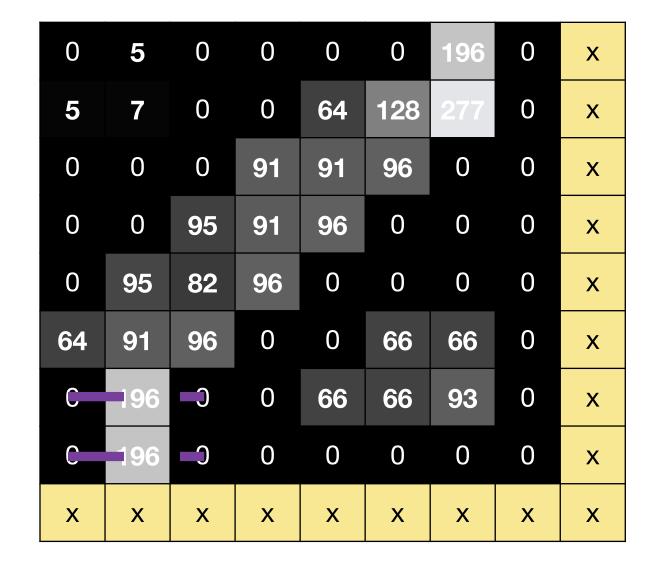
0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	48	45	45	0	0	0	X
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	Х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
Х	X	X	X	X	X	Х	X	х

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	Х
0	0	0	91	91	96	0	0	Х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	Х
0	196	0	0	0	0	0	0	Х
Х	Х	X	Х	Х	Х	Х	X	х

No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



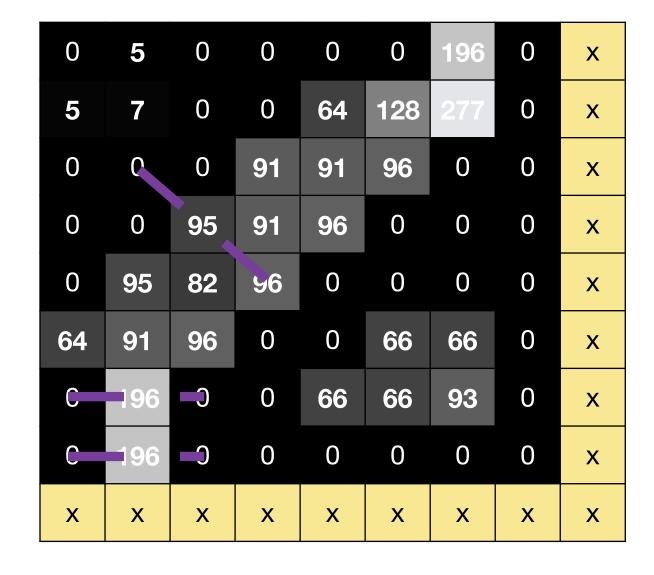
0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	Х
0		0	0	0	0	0	0	х
Х	X	Х	X	X	X	X	X	х

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	х
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	Х
X	x	X	X	X	X	X	X	Х

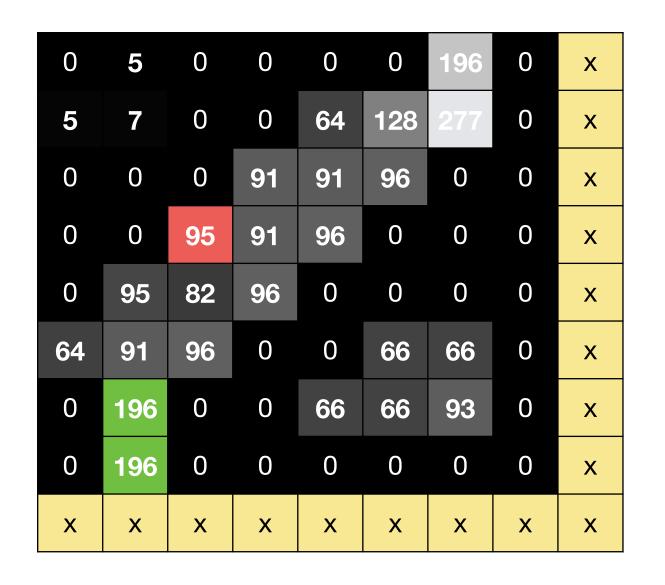
No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



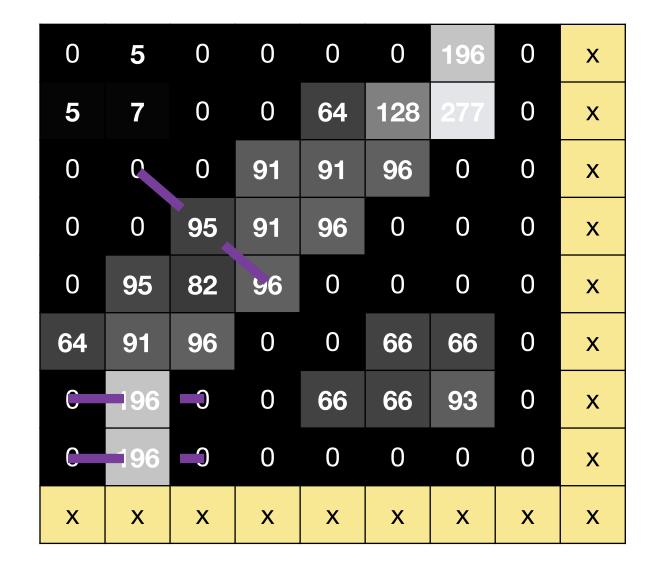
0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	90	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
X	X	X	X	X	X	X	X	х



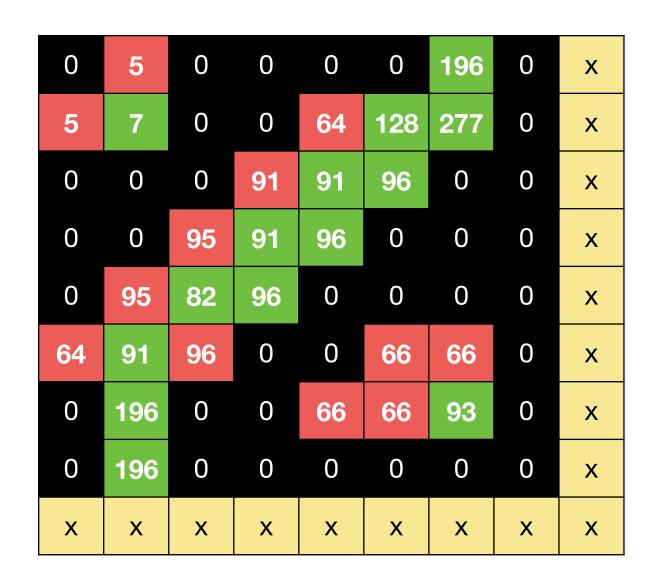
No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



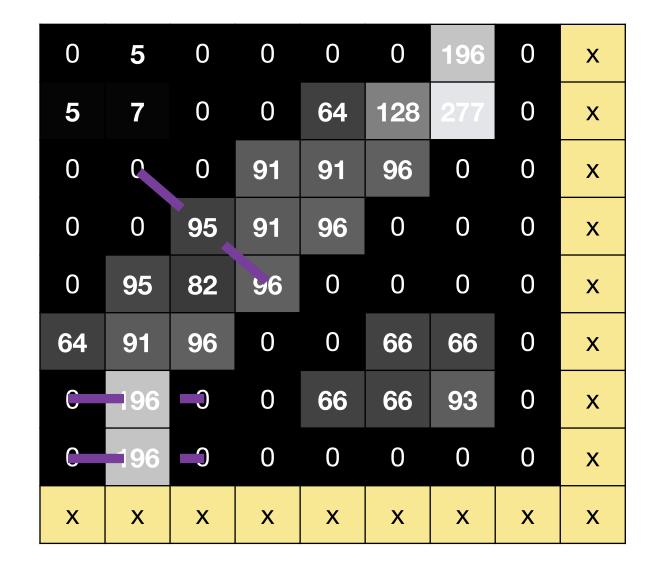
0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	90	45	45	0	0	0	X
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	Х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
X	X	X	X	X	X	X	X	х



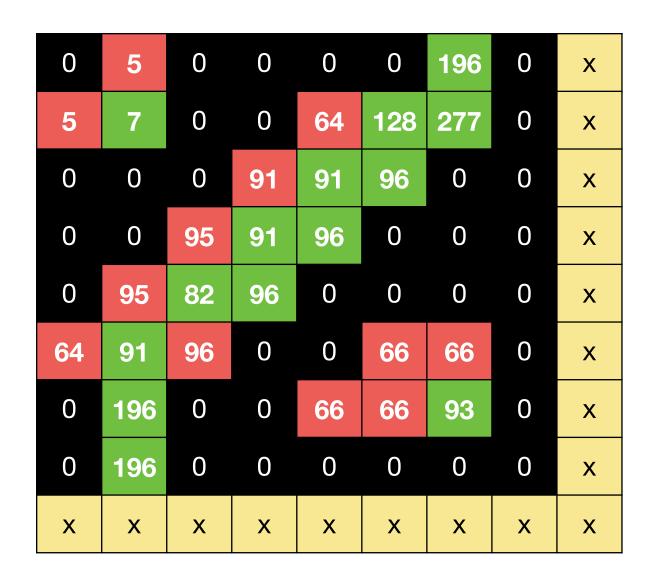
No longer considered as possible edge points

Can still be edge points

Gradient **Magnitude**



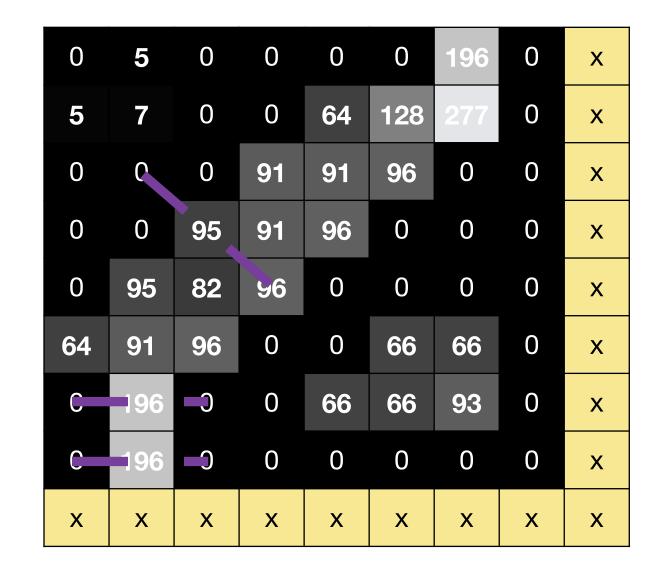
0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	Х
0	0	0	45	45	45	0	0	Х
0	0	93	45	45	0	0	0	Х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0	-0	0	0	0	0	0	0	х
X	X	X	X	X	X	X	X	х

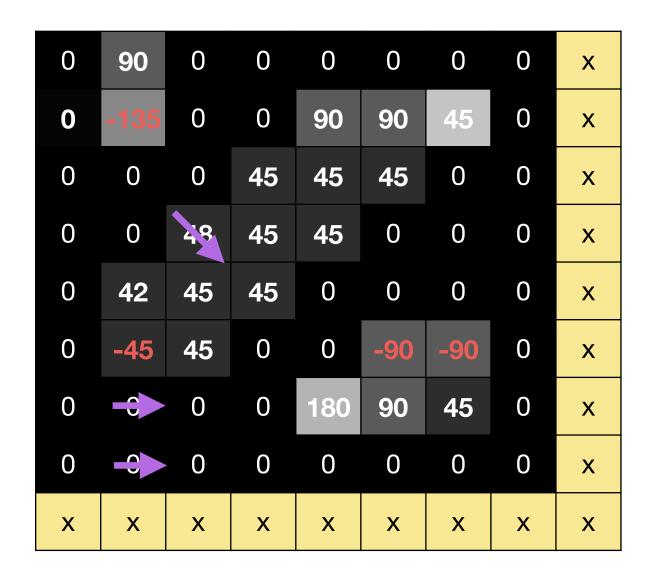


Goal:

- Identify local maxima, which can be edge points
- Thin edges, so we can improve localization

Gradient Magnitude





0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0</

Linking Edge Points

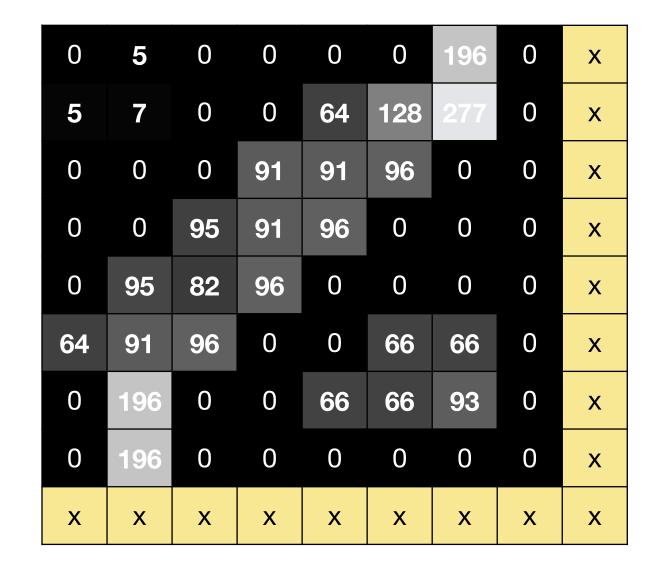
0	5	0	0	0	0	196	0	X
5	7	0	0	64	128	277	0	Х
0	0	0	91	91	96	0	0	Х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	X
0	196	0	0	0	0	0	0	Х
X	X	X	X	X	X	X	X	X

gradient magnitude $> \mathbf{k}_{high}$ =100

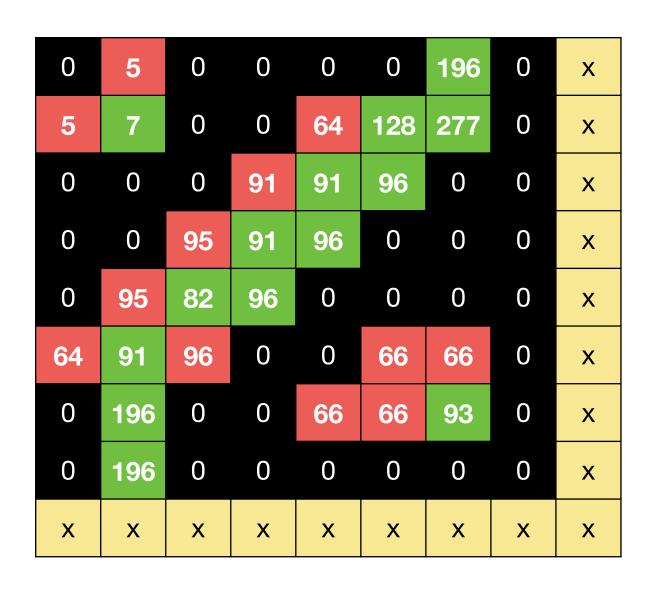
 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

gradient magnitude < $\mathbf{k}_{low} = 50$

Gradient **Magnitude**



0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	Х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
X	X	X	X	X	X	Х	X	х



Linking Edge Points

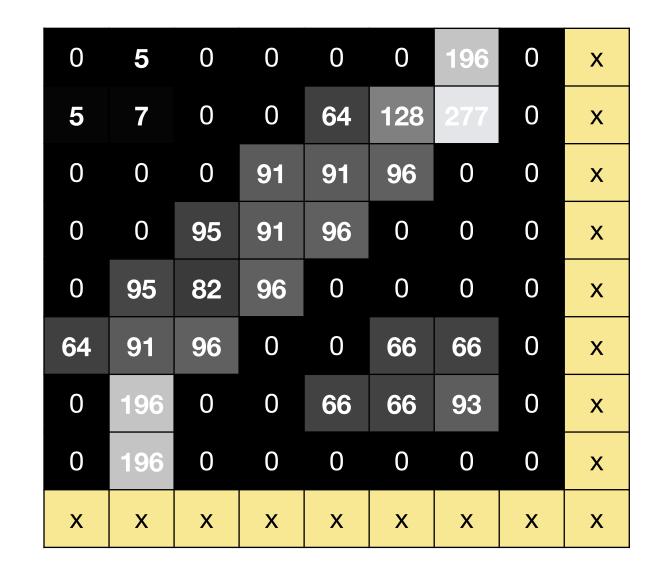
0	5	0	0	0	0	196	0	Х
5	7	0	0	64	128	277	0	Х
0	0	0	91	91	96	0	0	Х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	Х
0	196	0	0	0	0	0	0	Х
X	х	х	X	Х	X	х	X	х

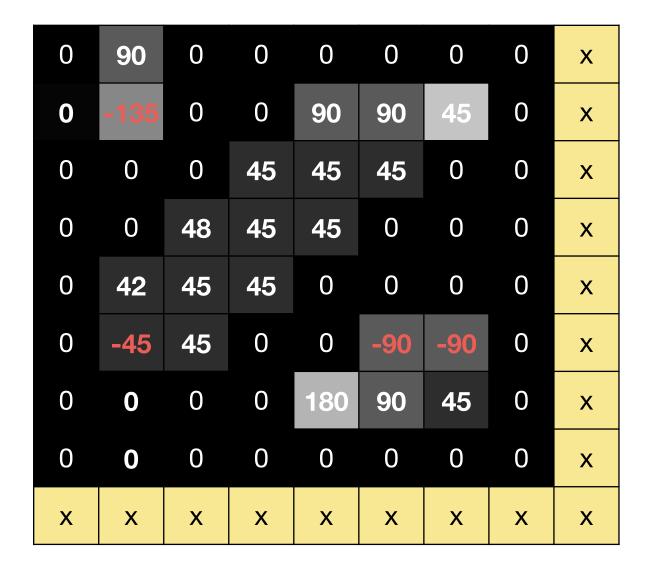
gradient magnitude $> \mathbf{k}_{high}$ =100

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

gradient magnitude < $\mathbf{k}_{low} = 50$

Gradient **Magnitude**





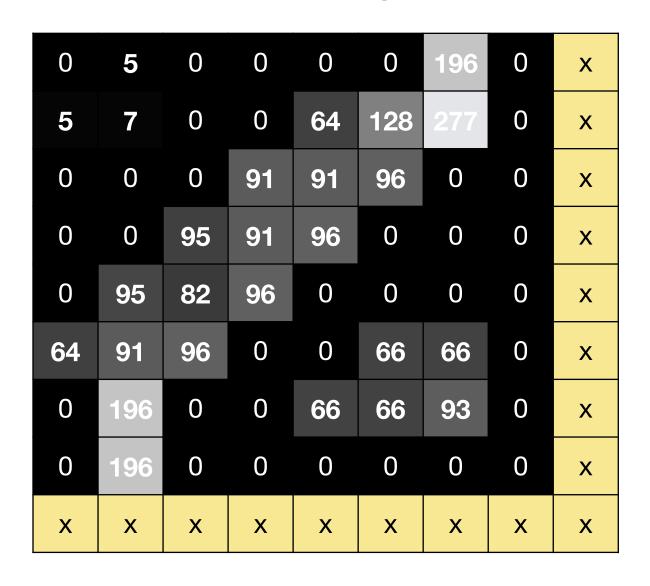
0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 0 x x x x x x x x x

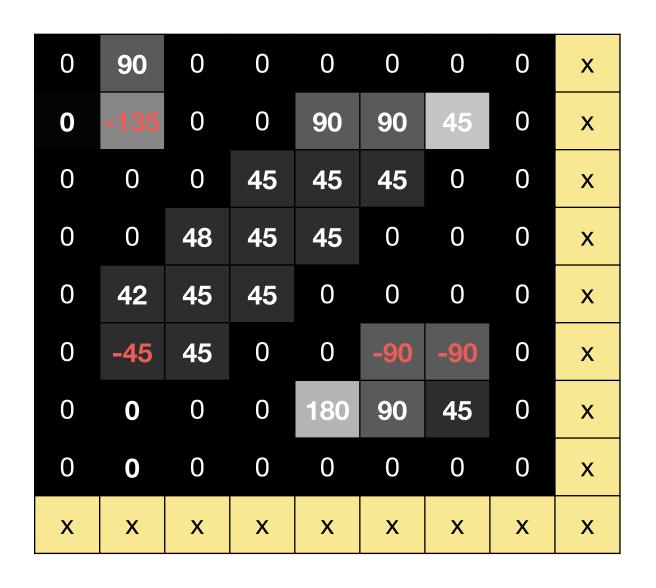
Linking Edge Points

0	5	0	0	0	0	196	O	Х
5	7	0	0	64	128	277	0	Х
0	0	0	91	91	96	0	0	Х
0	0	95	91	96	0	0	0	Х
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	Х
0	196	0	0	0	0	0	0	Х
Х	Х	X	Х	Х	Х	Х	Х	х

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

Gradient **Magnitude**





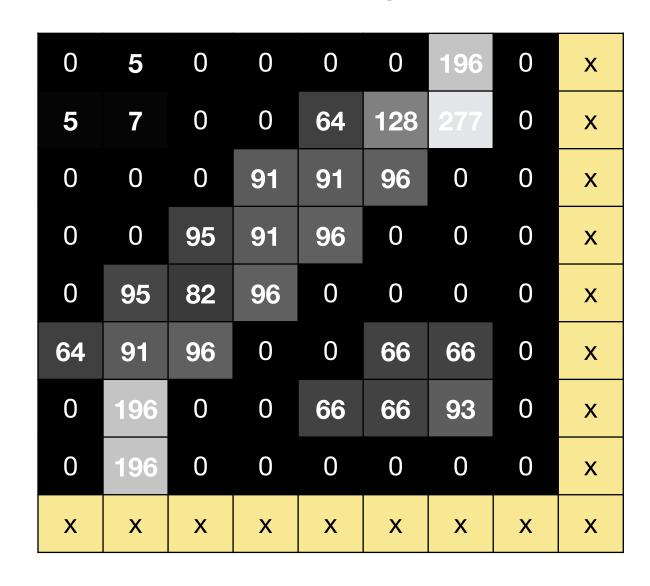
0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 82 96 0 0 0 0 x 64 91 96 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0 0 0 196 0 0 0 0</

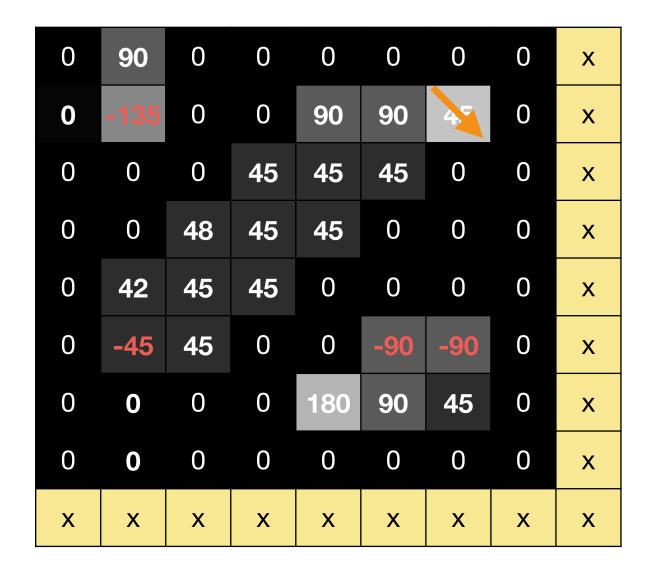
Linking Edge Points

0	5	0	0	0	0	196	O	Х
5	7	0	0	64	128	277	0	X
0	0	0	91	91	93	0	0	X
0	0	95	91	96	0	0	0	X
0	95	82	96	0	0	0	0	X
64	91	96	0	0	66	66	0	Х
0	196	0	0	66	66	93	0	X
0	196	0	0	0	0	0	0	Х
Х	Х	Х	Х	Х	Х	Х	Х	Х

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

Gradient **Magnitude**





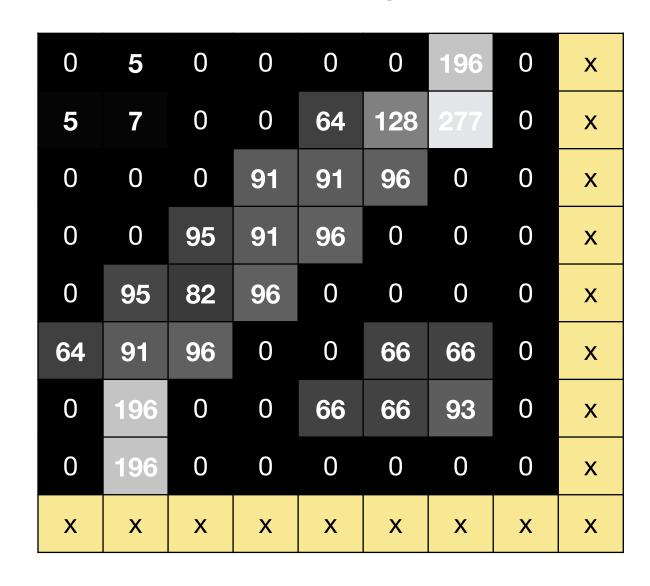
0 5 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0 0 196 0 0 0 0 0 0 0

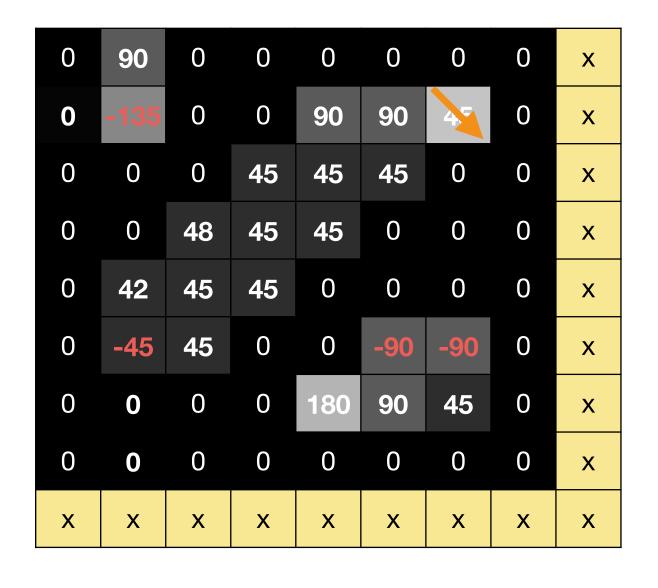
Linking Edge Points

					_			
0	5	0	0	0	0	196	0	X
5	7	0	0	64	128	277	0	X
0	0	0	91	91	95	0	0	Х
0	0	95	91	96	0	0	0	X
0	95	82	96	0	0	0	0	Х
64	91	96	0	0	66	66	0	X
0	196	0	0	66	66	93	0	X
0	196	0	0	0	0	0	0	X
Х	х	Х	Х	X	Х	X	Х	Х

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

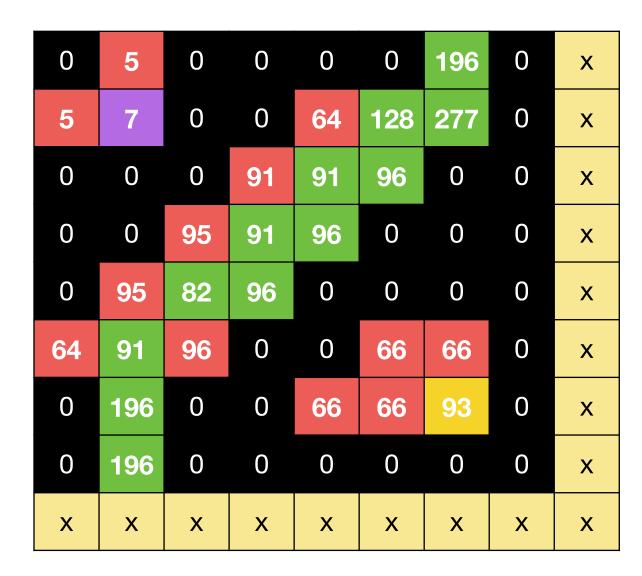
Gradient **Magnitude**



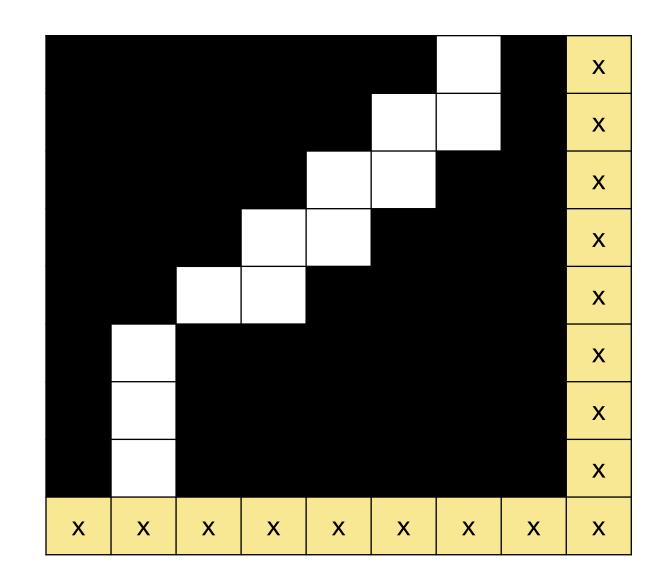


196 128 277 91 96 0 91 96 0 66 66 93 0 X X X Χ

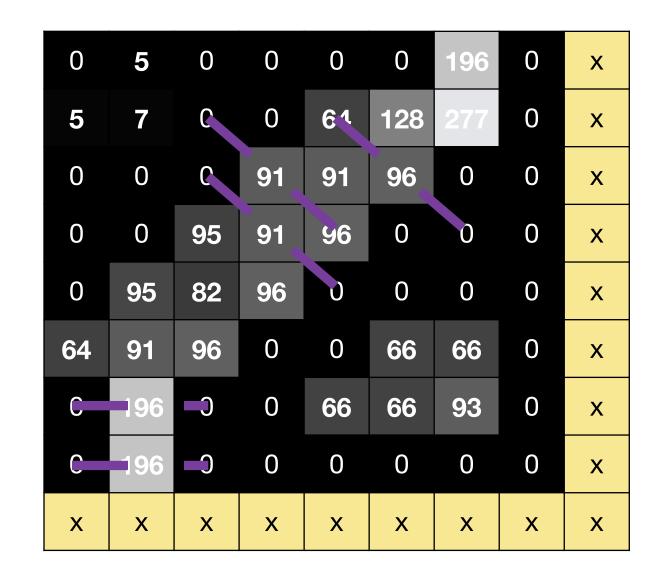
Linking Edge Points

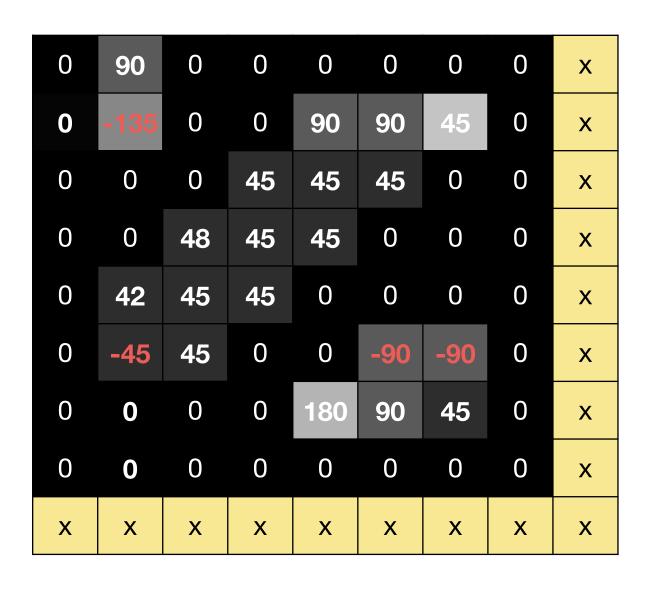


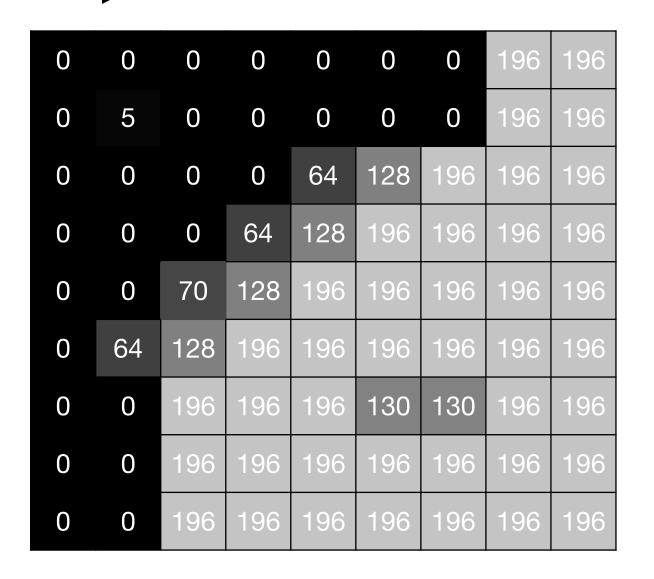
Canny Edge Detector



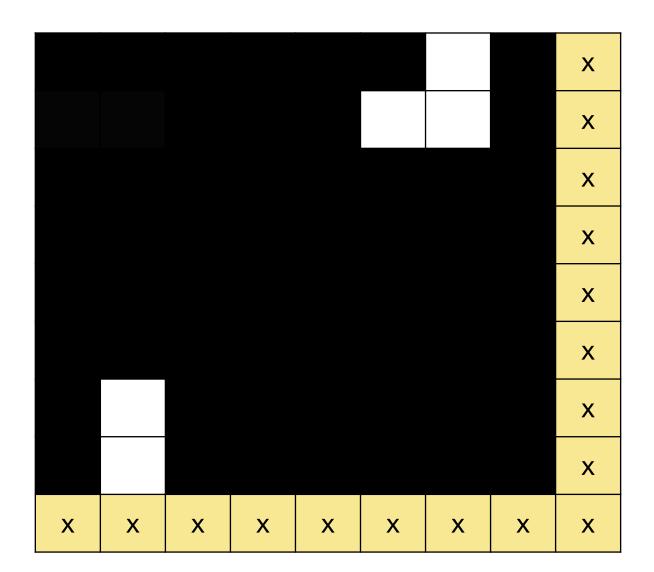
Gradient **Magnitude**



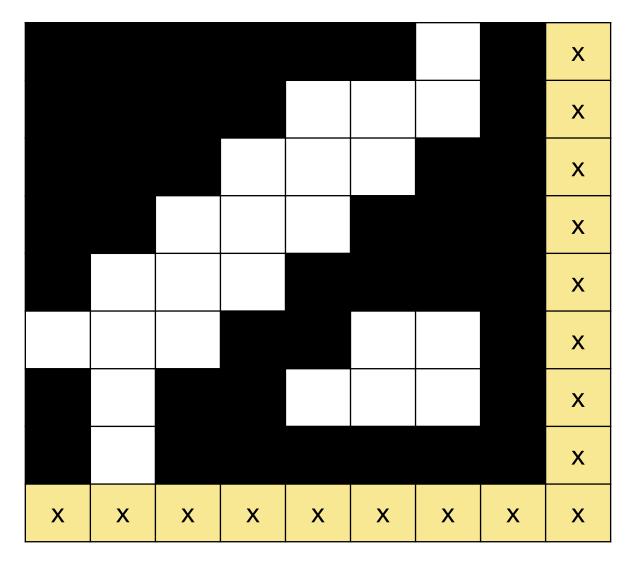




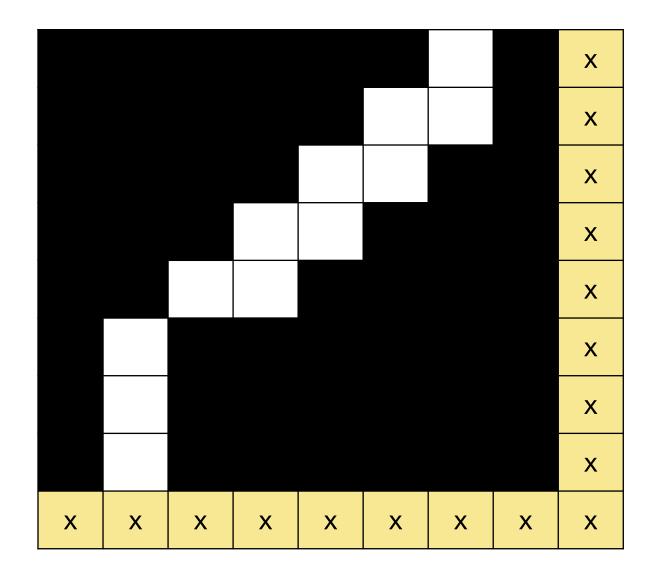
Sobel (threshold = 100)



Sobel (threshold = 50)



Canny Edge Detector



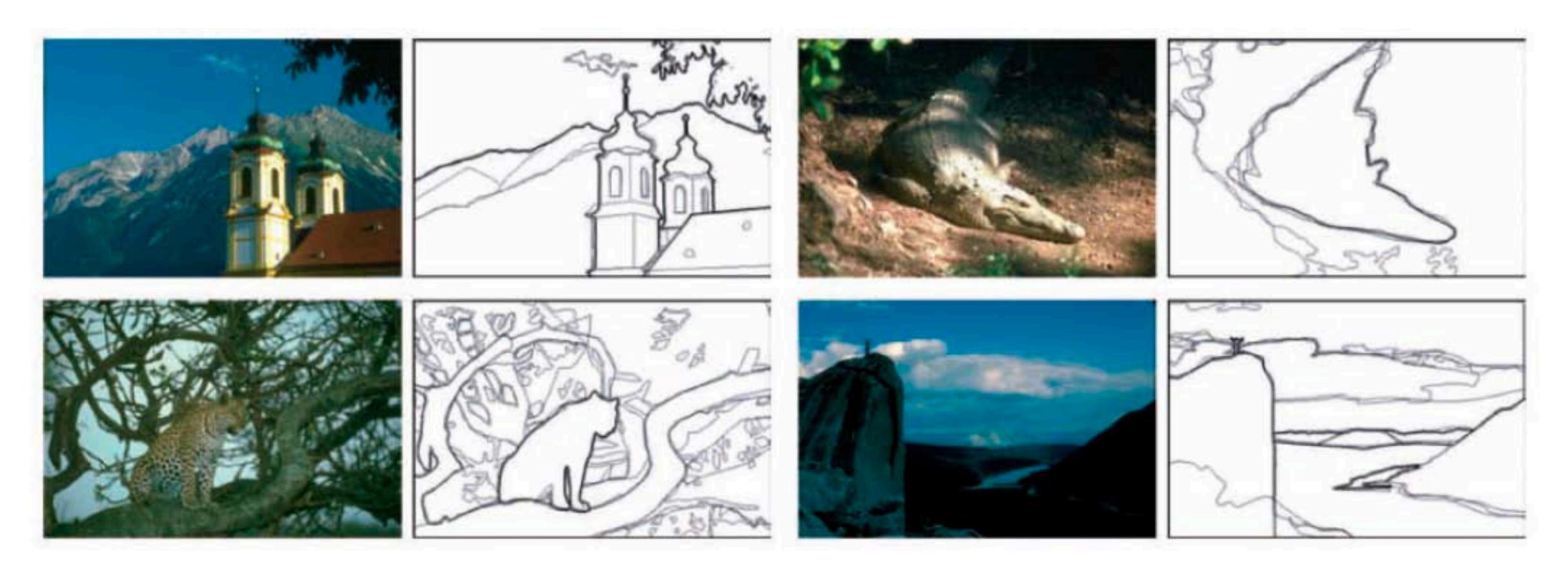
The fact that the edge is shifted can be addressed by better derivative filter (central difference)

How do humans perceive boundaries?

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to boundaries that humans perceive to be salient or significant?

How do humans perceive boundaries?



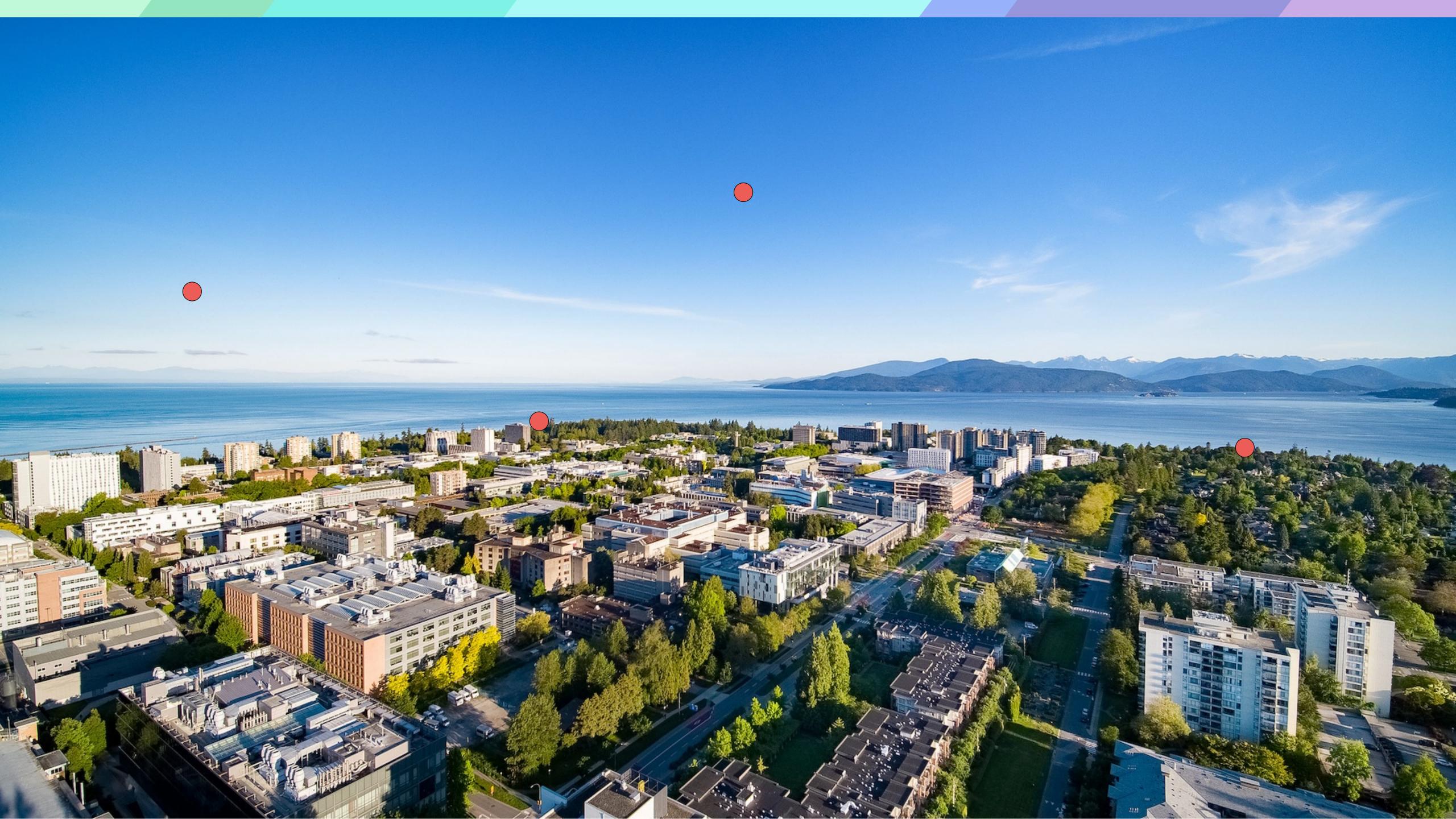
Each image shows multiple (4-8) human-marked boundaries. Pixels are darker where more humans marked a boundary.

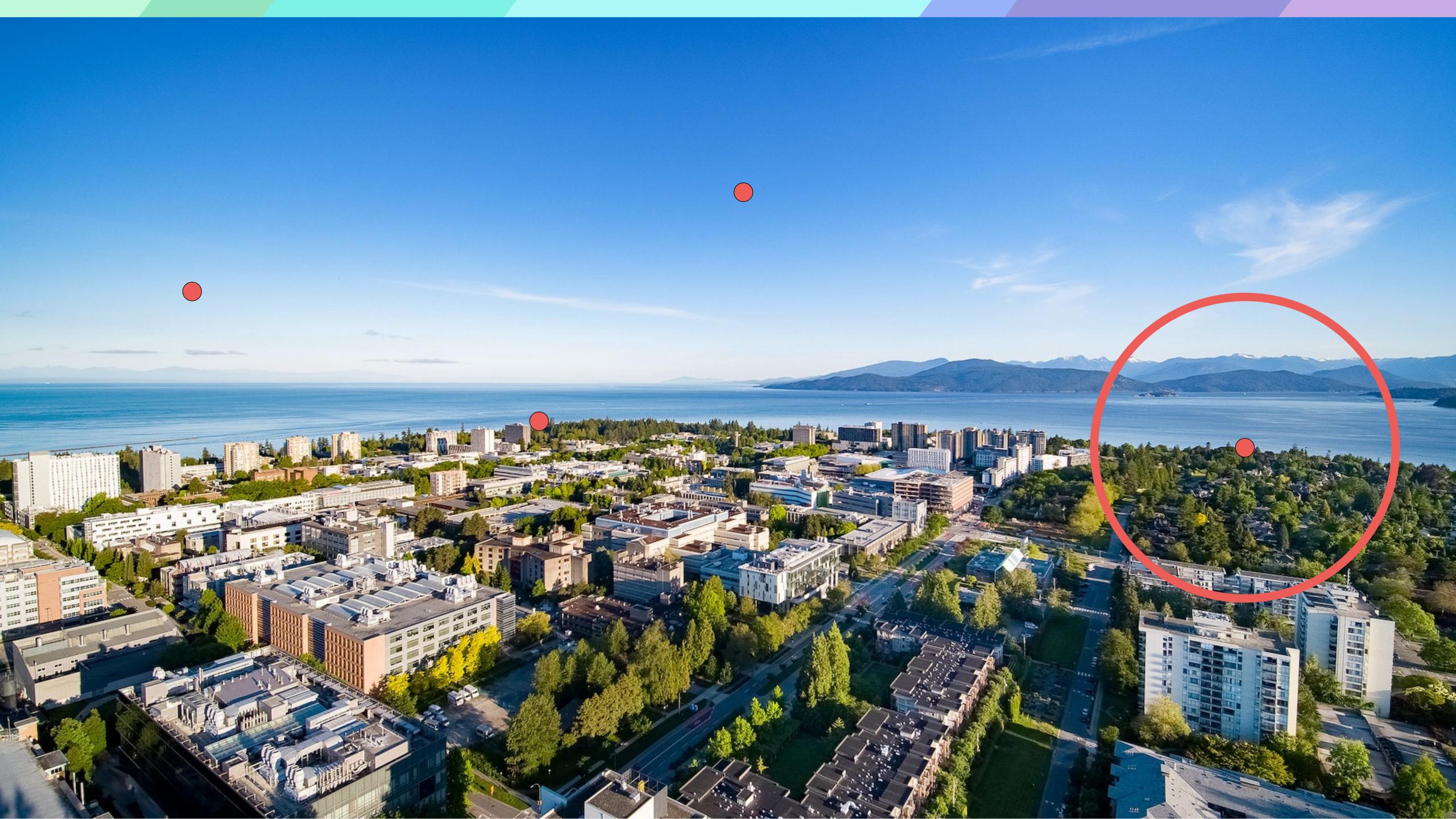
Boundary Detection

We can formulate boundary detection as a high-level recognition task

— Try to learn, from sample human-annotated images, which visual features or cues are predictive of a salient/significant boundary

Many boundary detectors output a **probability or confidence** that a pixel is on a boundary



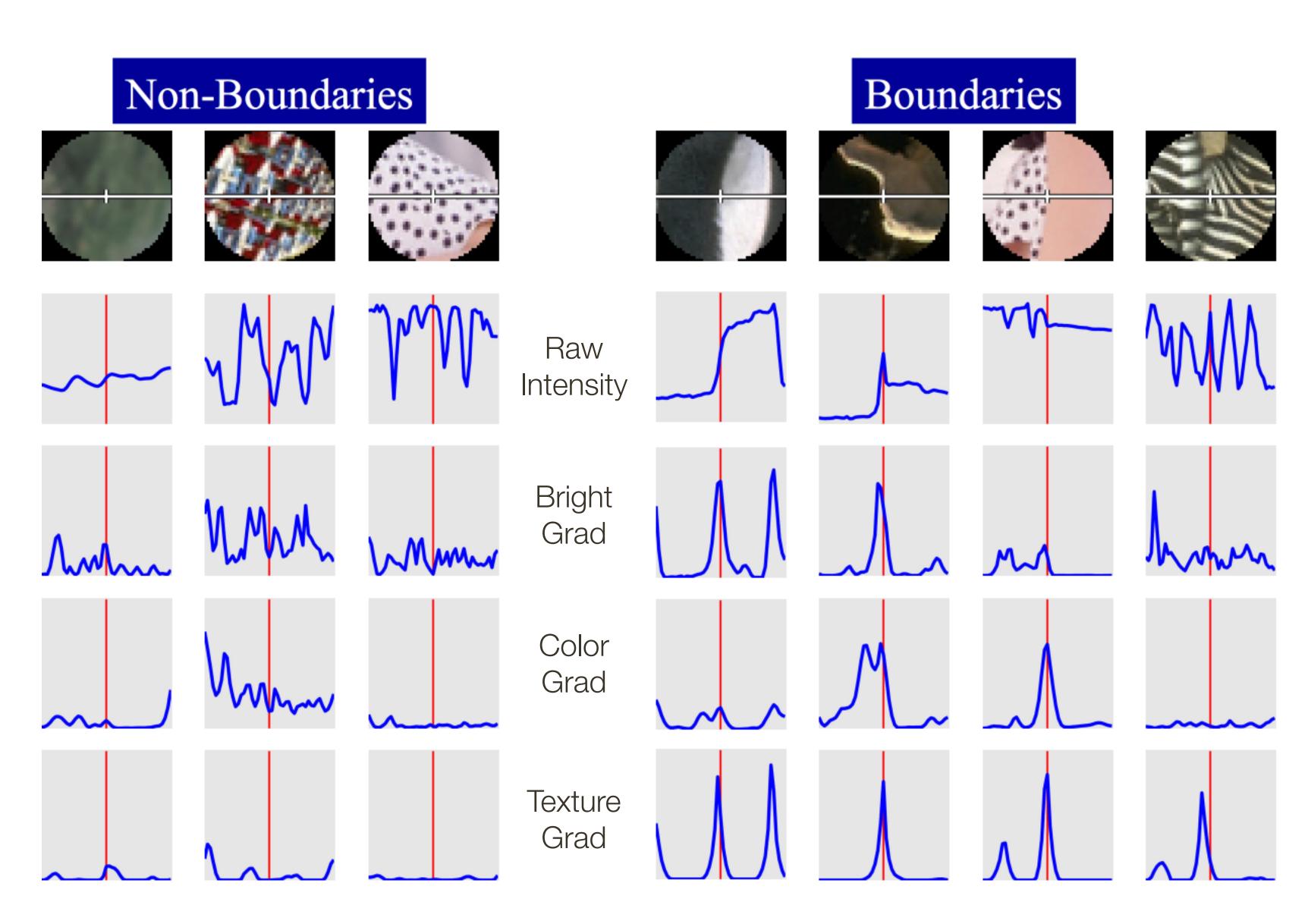




Boundary Detection:

Features:

- Raw Intensity
- Orientation Energy
- Brightness Gradient
- Color Gradient
- Texture gradient



Boundary Detection:

For each **feature** type

- Compute non-parametric distribution (histogram) for left side
- Compute non-parametric distribution (histogram) for right side
- Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that outputs probabilities (Logistic Regression, SVM, etc.)

Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

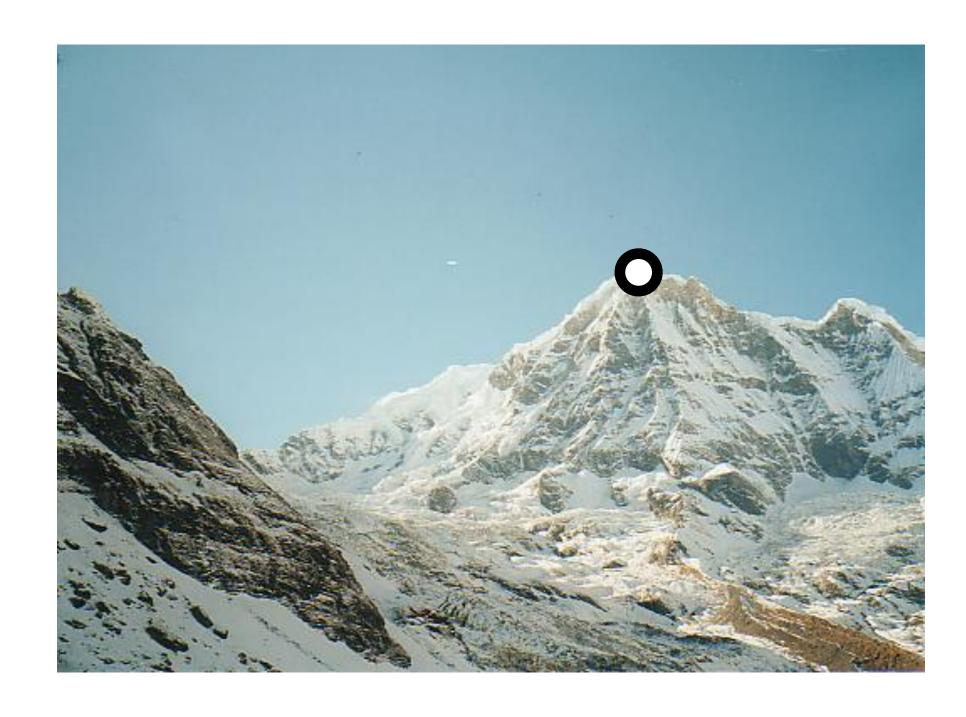
Learning Goals

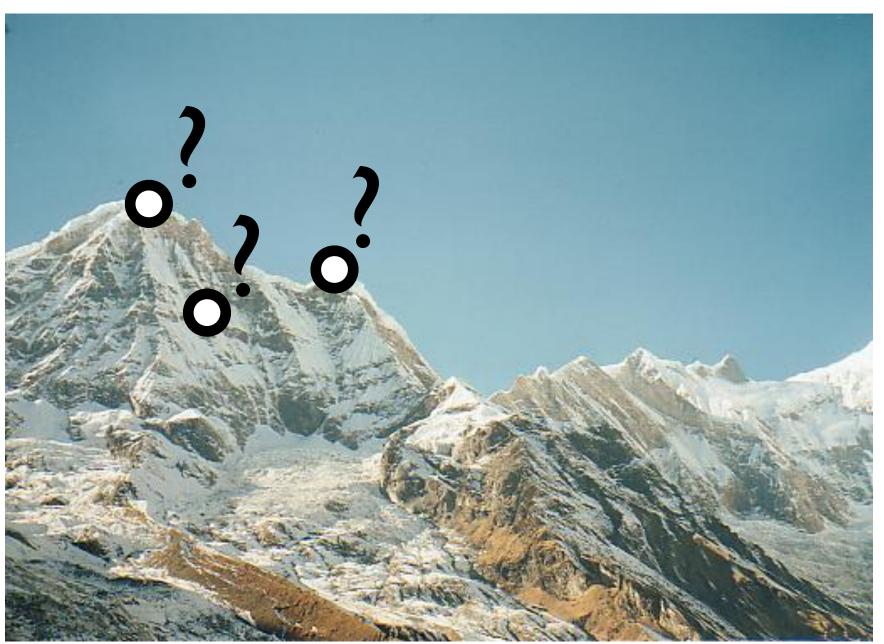
Why corners (blobs)?
What are corners (blobs)?

Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) between images

This has **many** applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...





Motivation: Template Matching

When might template matching fail?

Different scales

Different orientation

Lighting conditions

Left vs. Right hand

Partial Occlusions

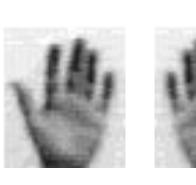
Different Perspective

When might template matching in scaled representation fail?

Different orientation

Lighting conditions

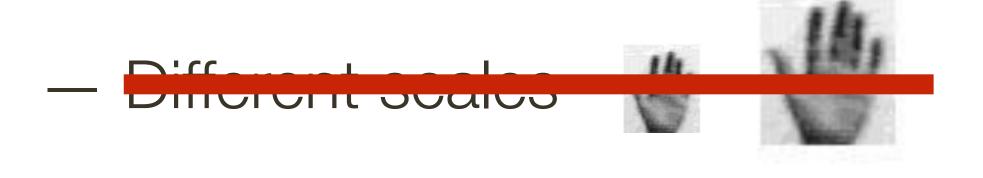
Left vs. Right hand



Partial Occlusions

Different Perspective

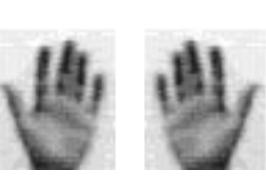
When might edge matching in scaled representation fail?



Different orientation

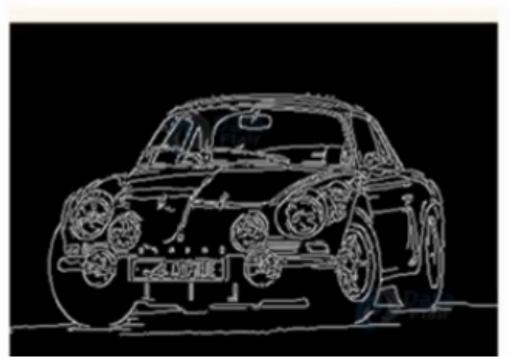
- Lighting conditions

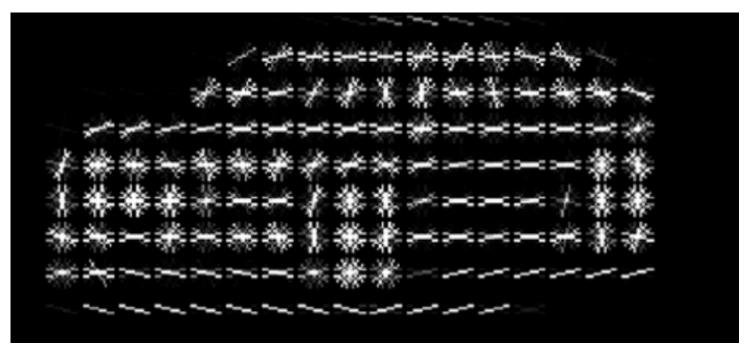
Left vs. Right hand



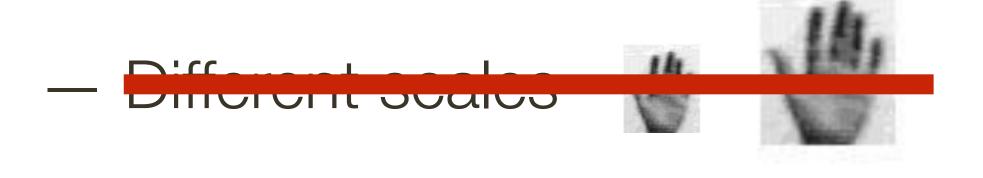
— Partial Occlusions

Different Perspective





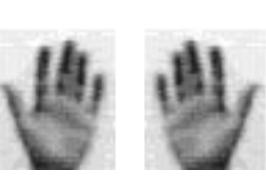
When might edge matching in scaled representation fail?



Different orientation

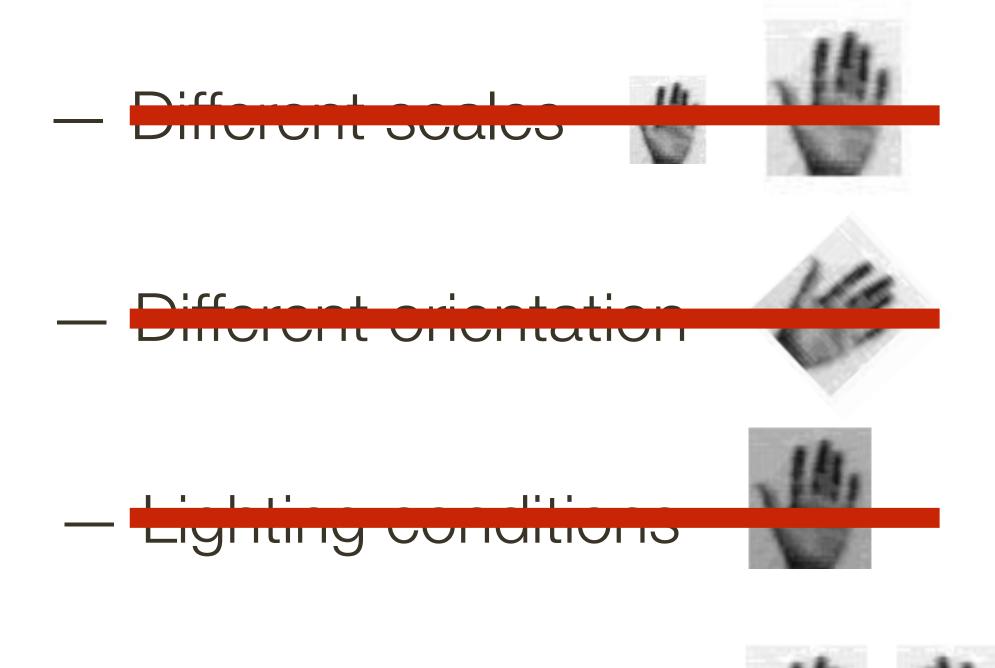
- Lighting conditions

Left vs. Right hand

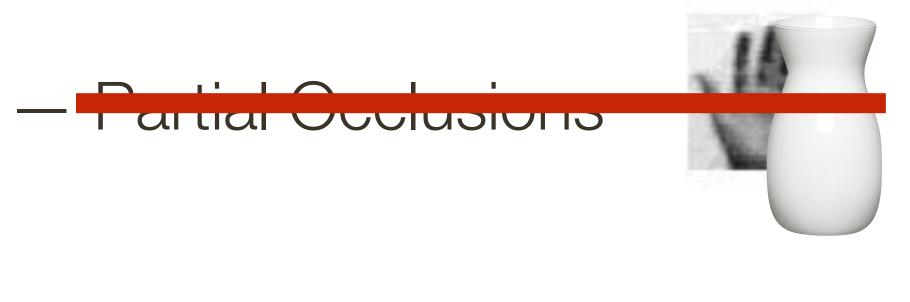


— Partial Occlusions

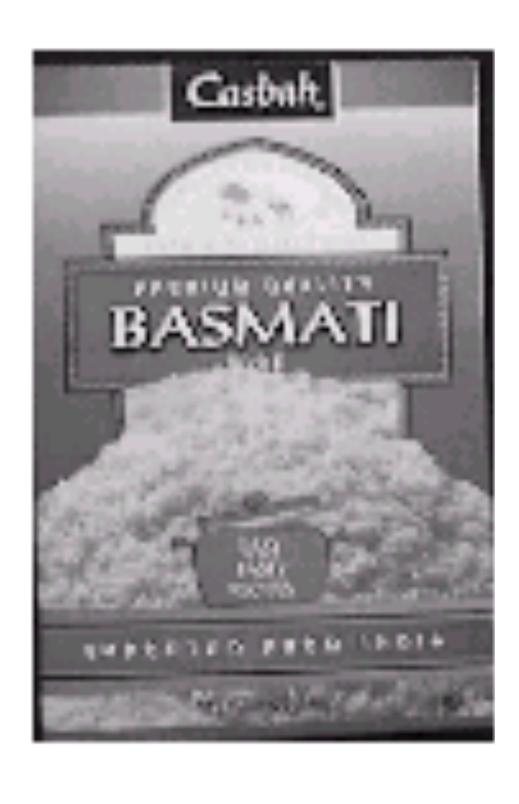
Different Perspective

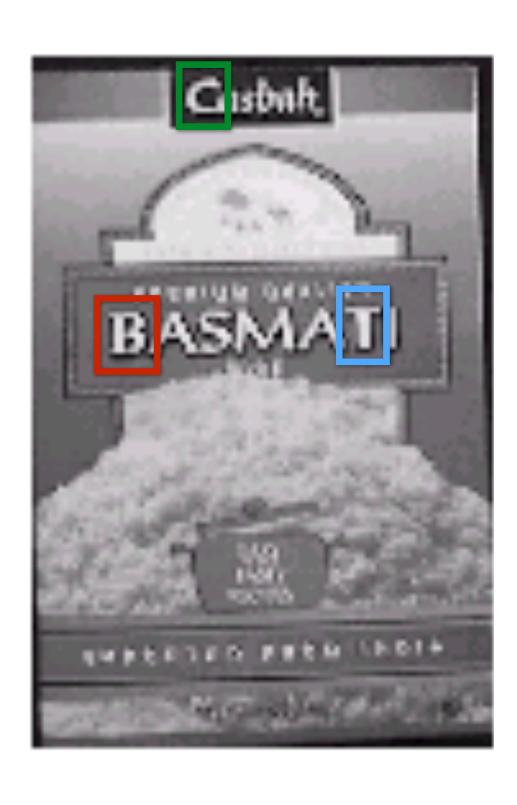


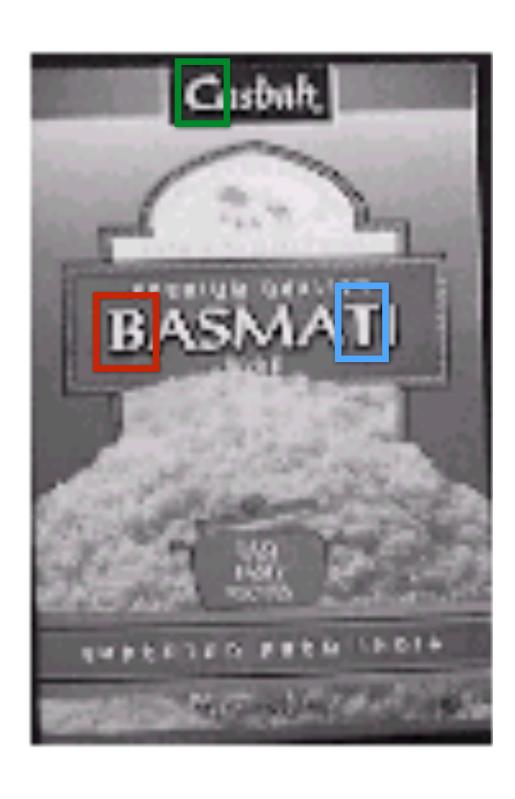
Left vs. Right hand

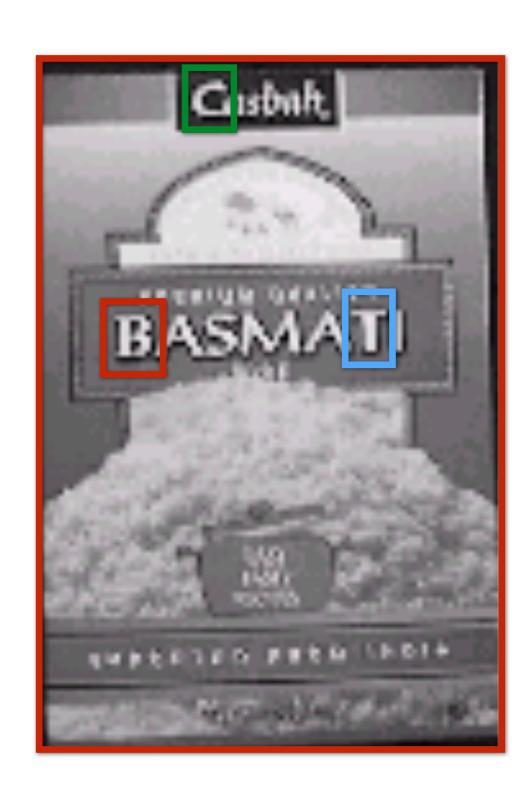


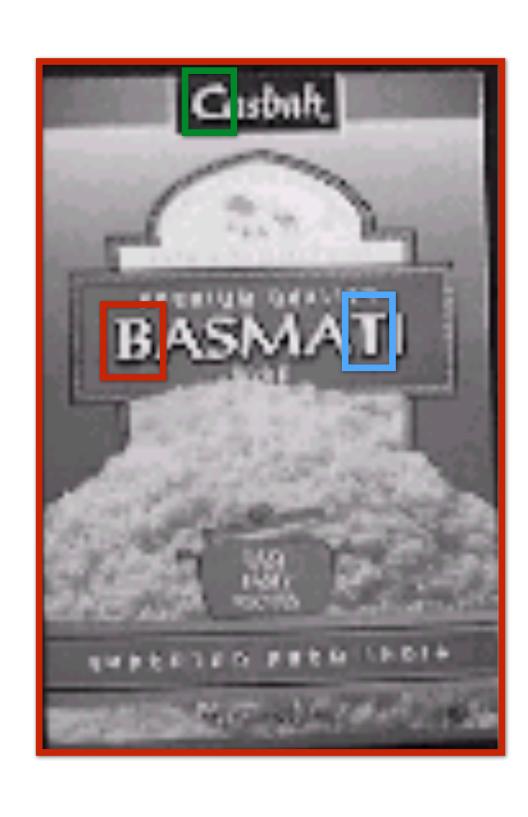
- Different Deropootive

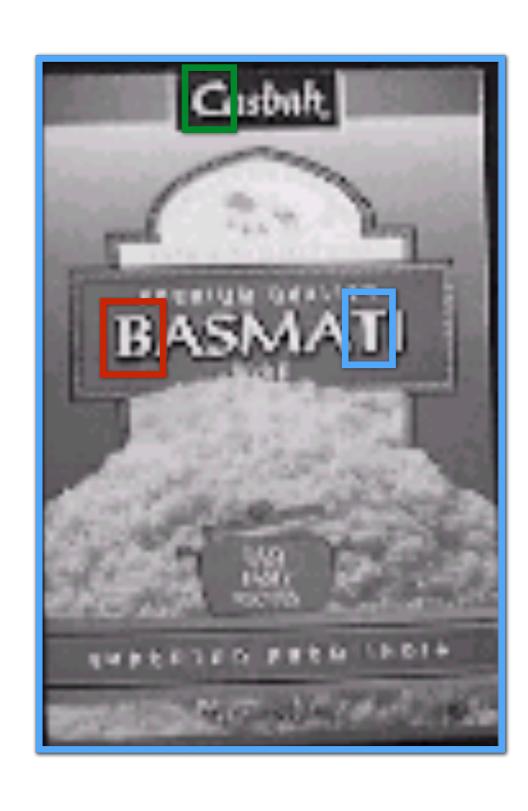




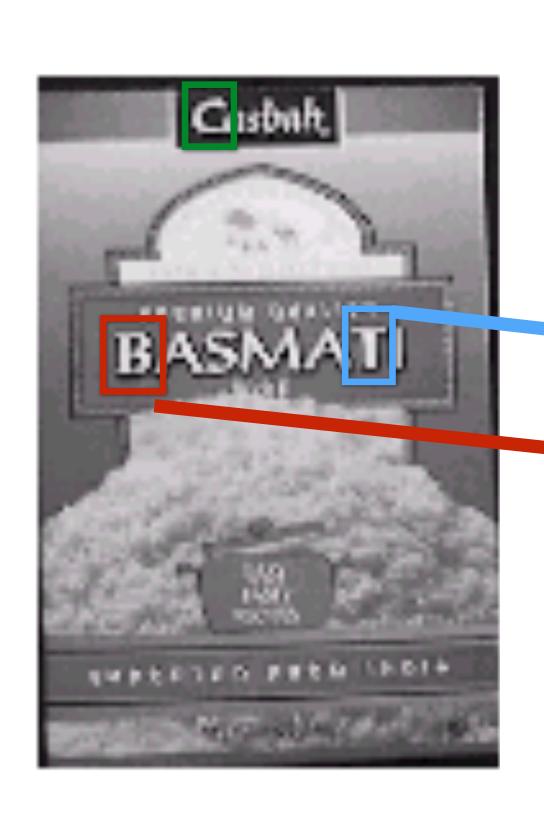


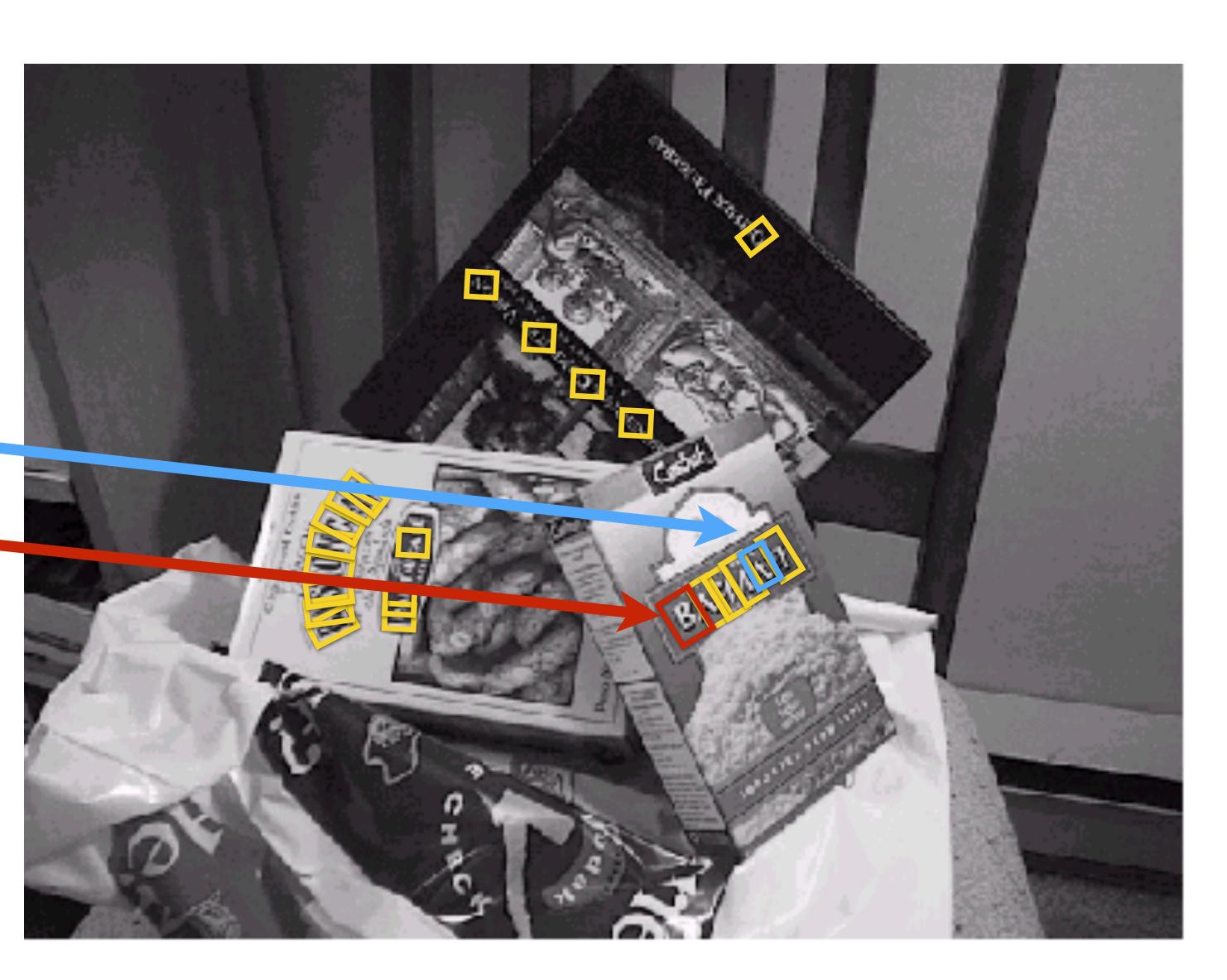






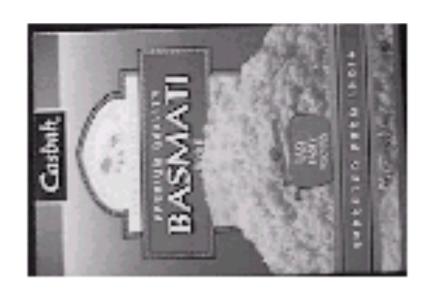


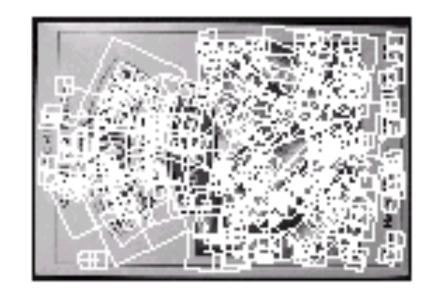


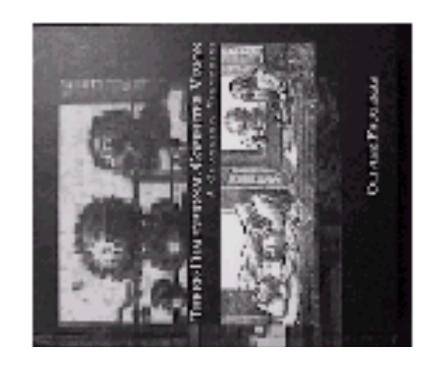


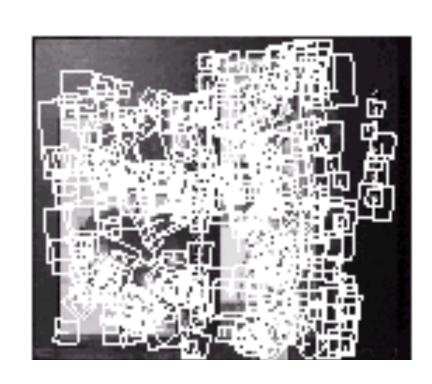
Planar Object Instance Recognition

Database of planar objects



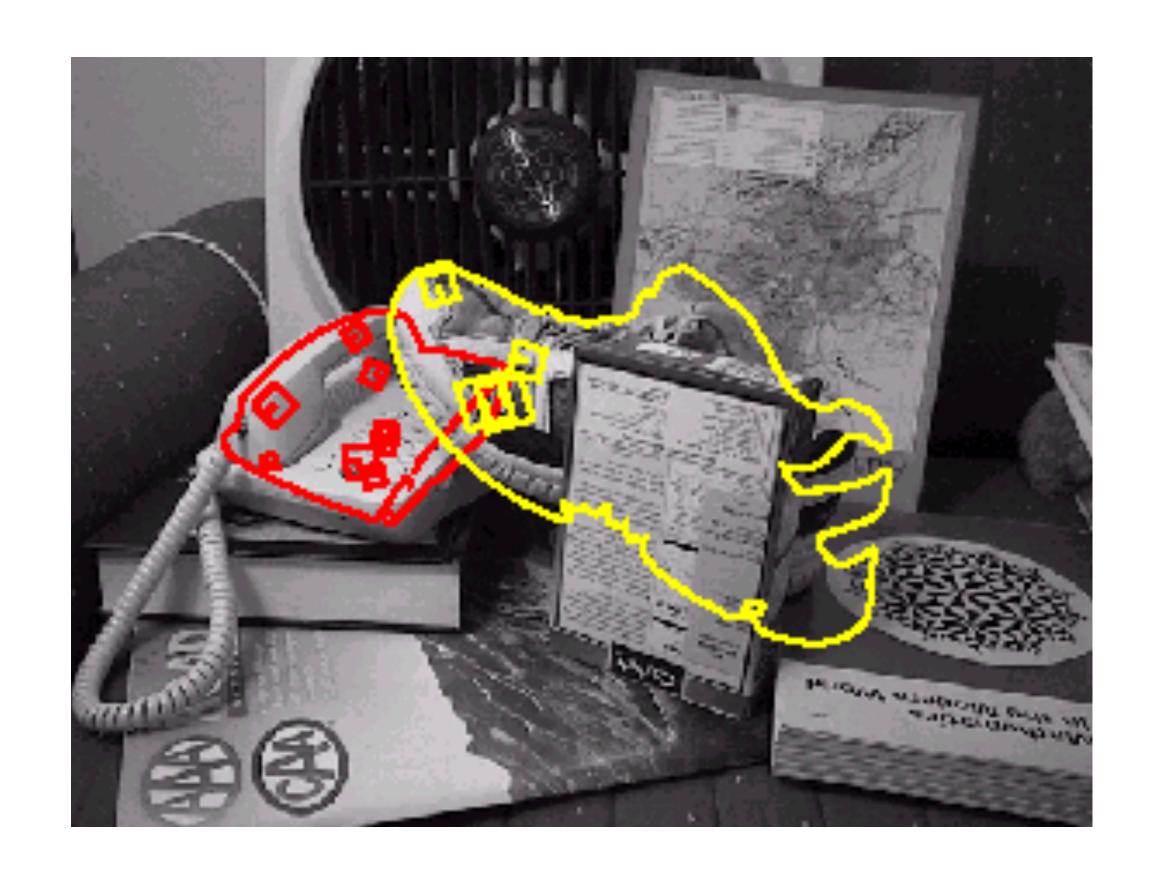






Instance recognition

Recognition under Occlusion



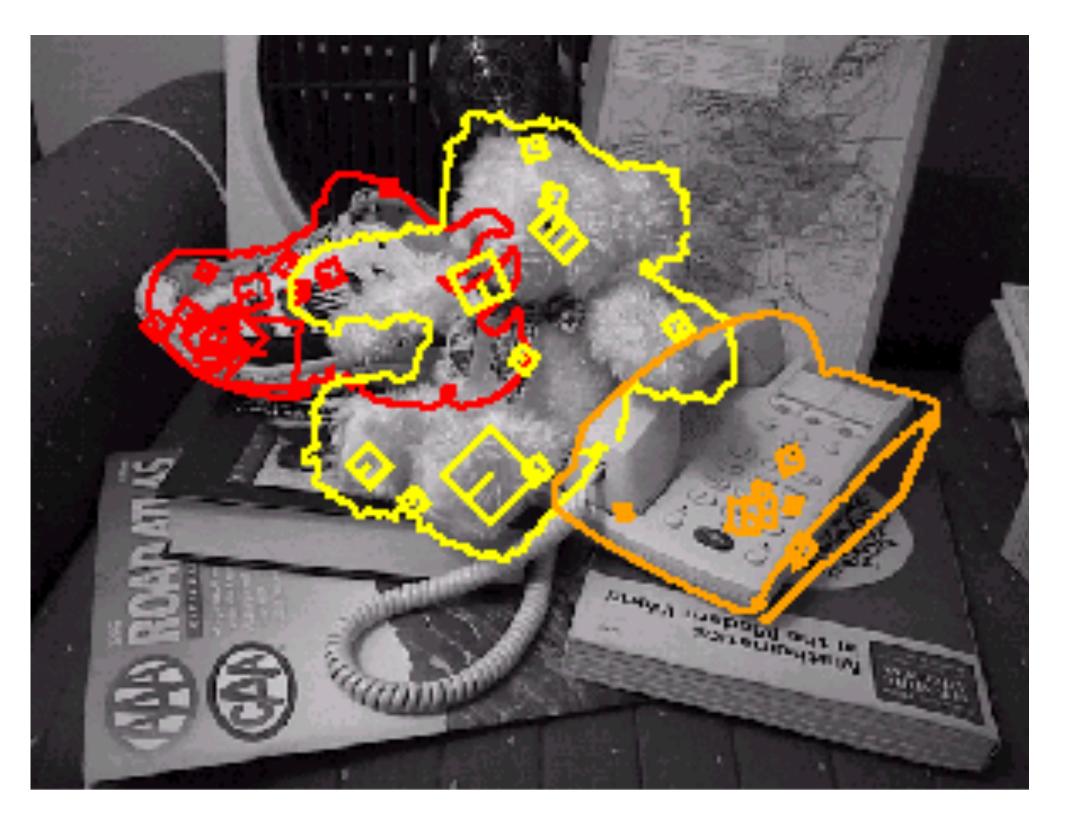
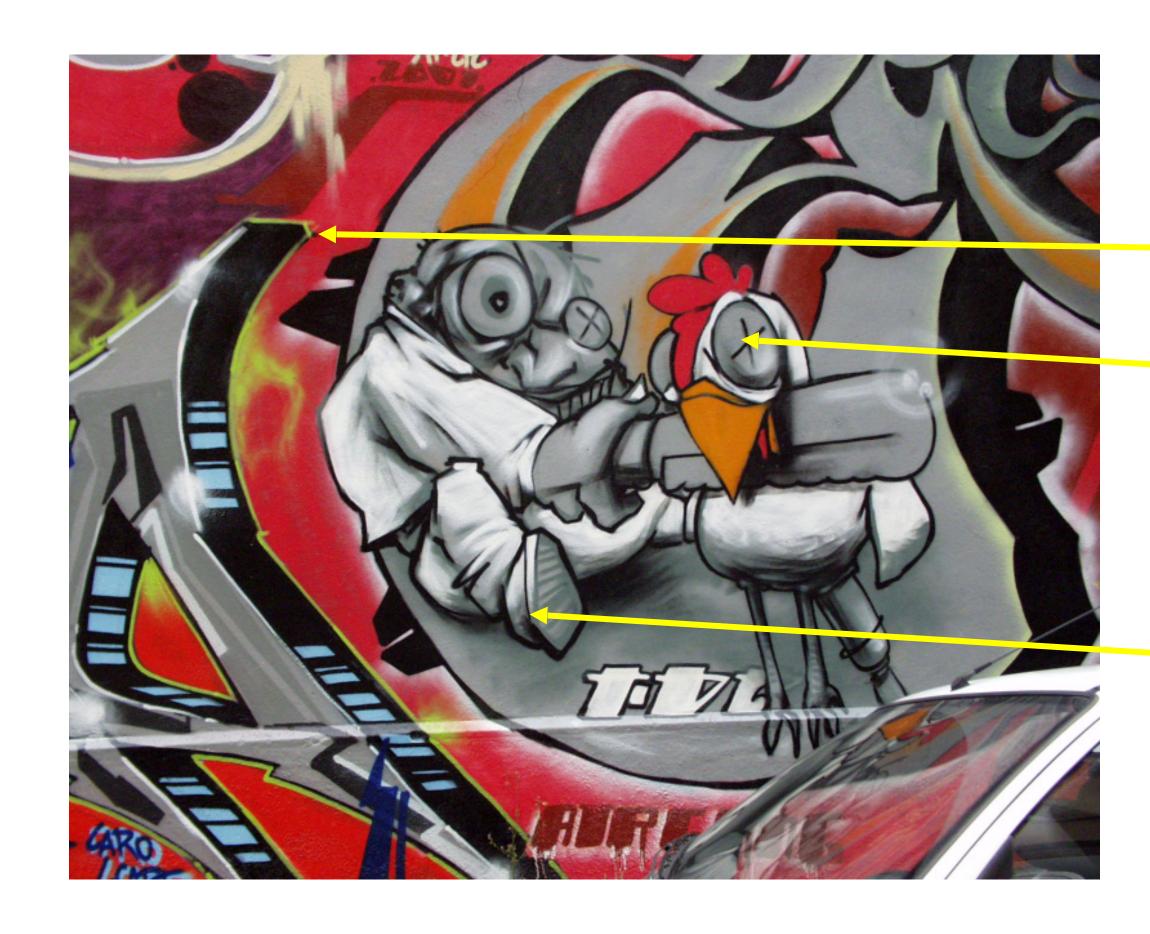
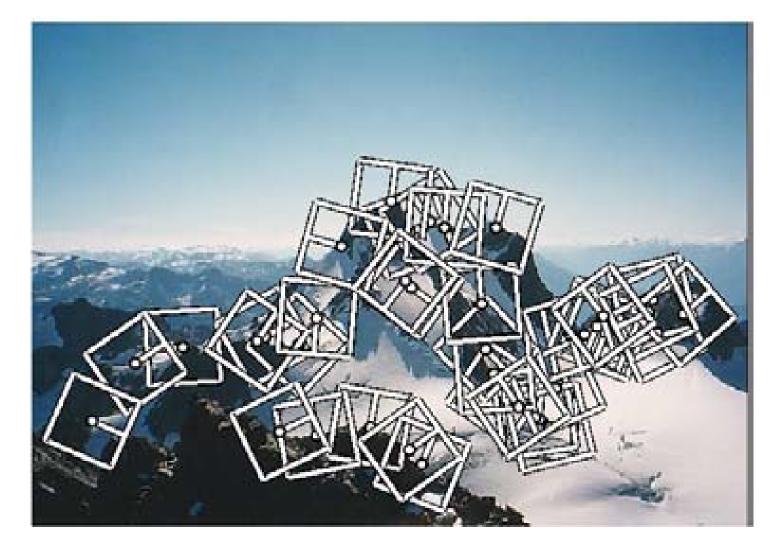


Image Matching

Image Matching



Feature Detectors



Corners/Blobs

Edges

Regions

Straight Lines

Feature Descriptors

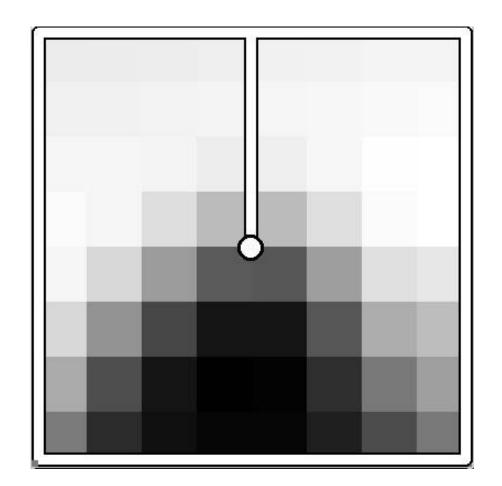
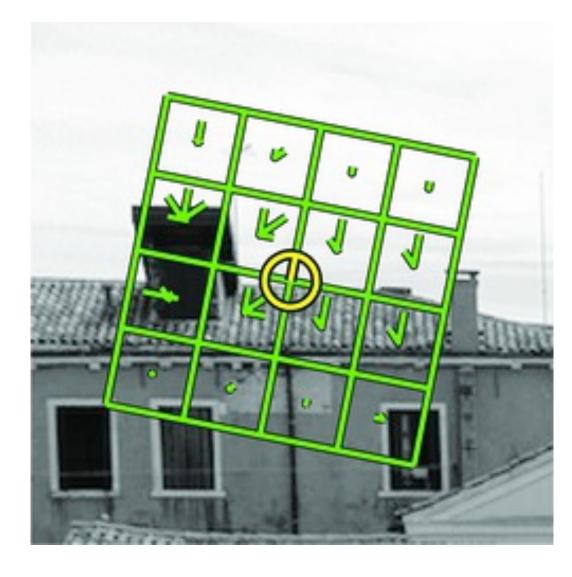
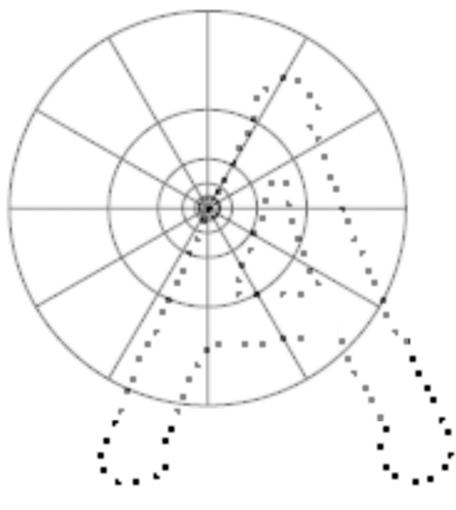


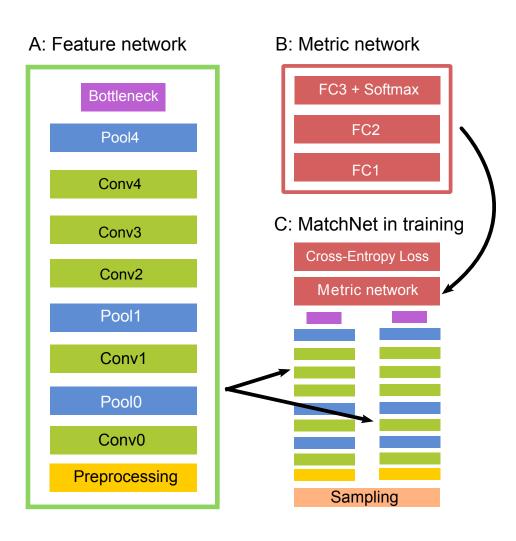
Image Patch



SIFT



Shape Context



Learned Descriptors

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

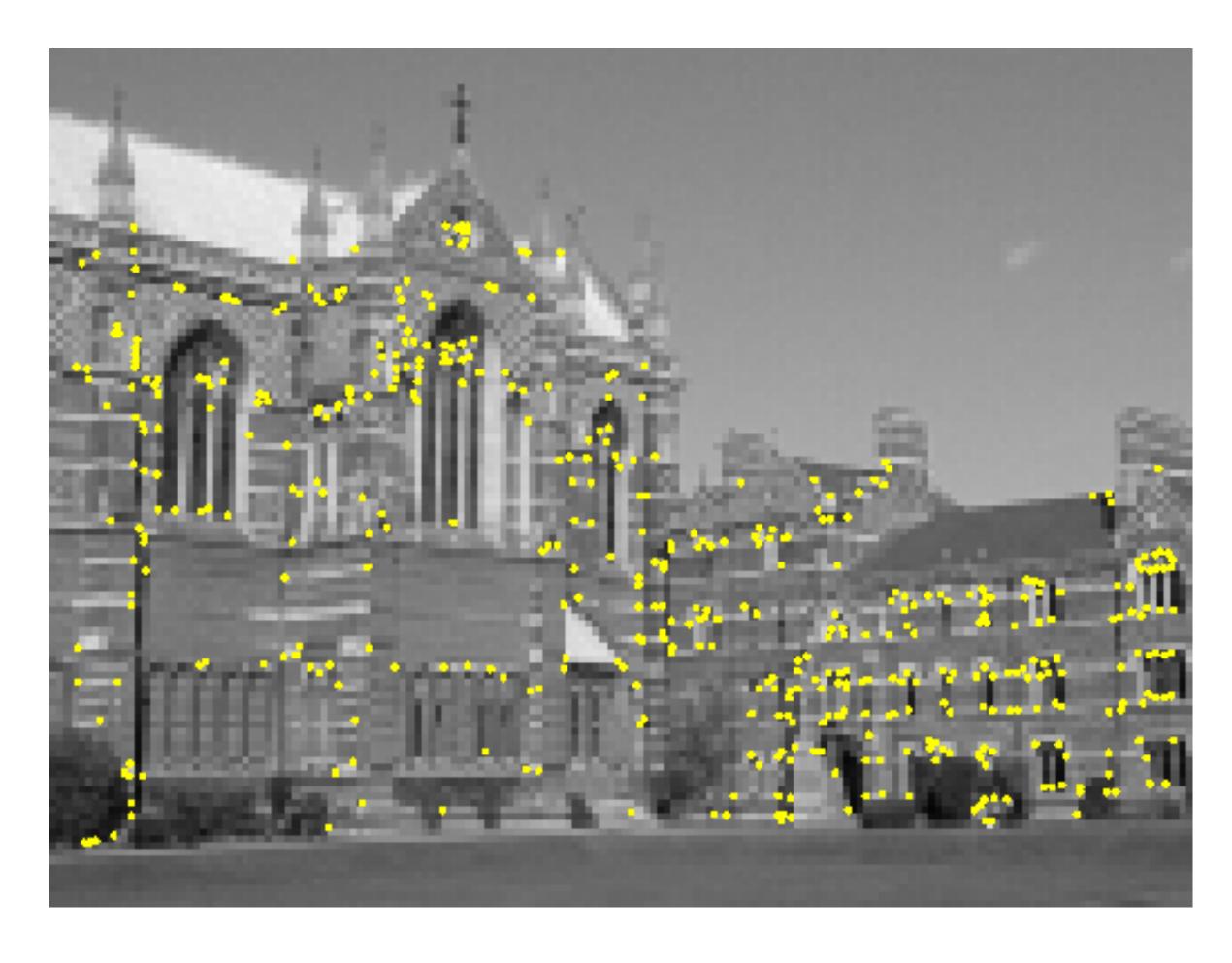
Accurate: precise localization

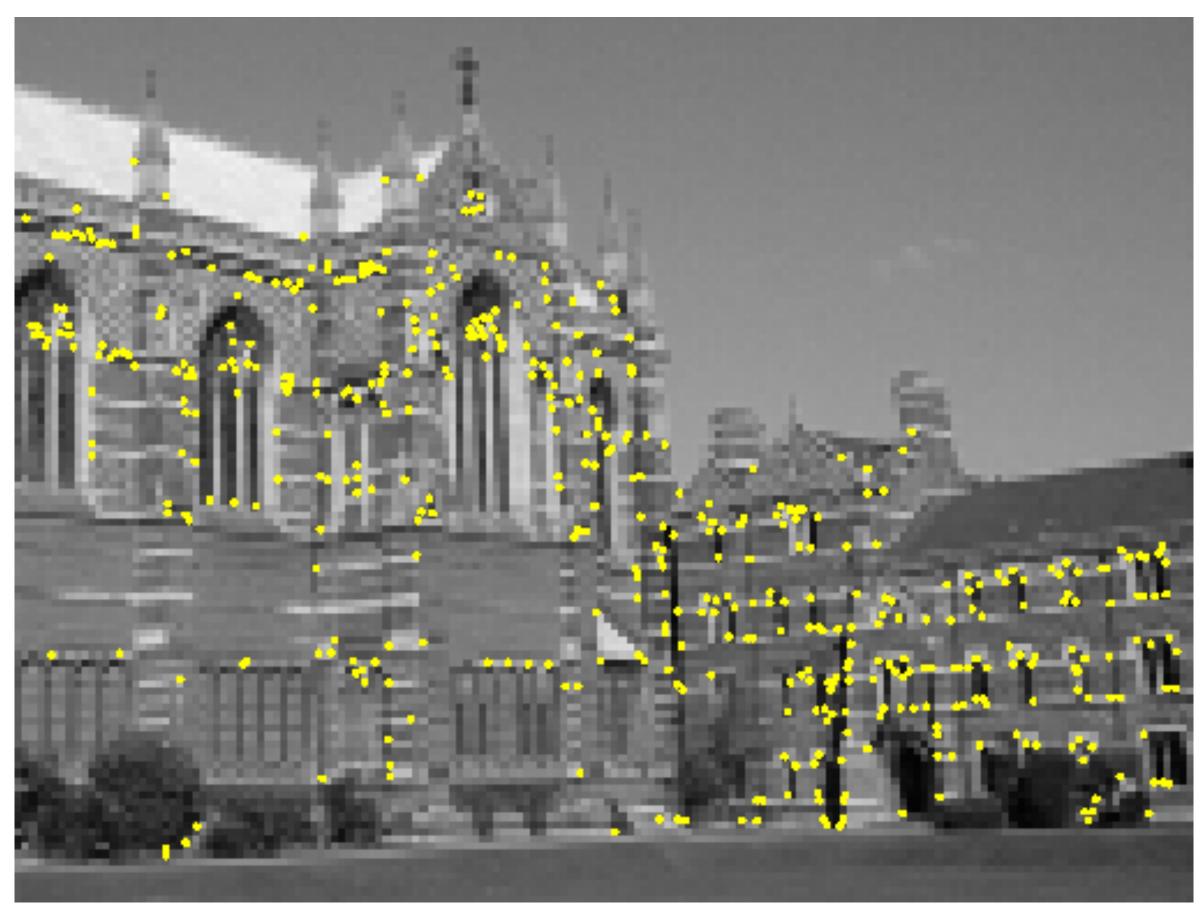
Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?





What is a corner?

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

What is a corner?

Corner

Interest Point

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

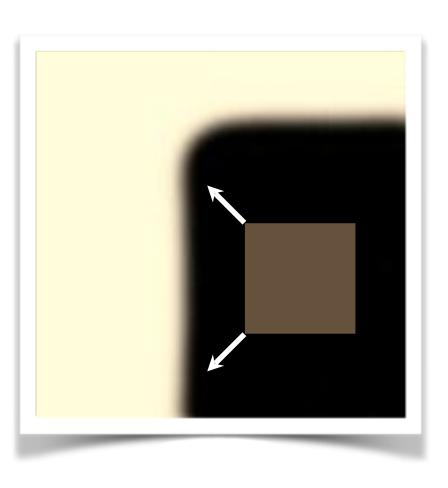
A corner can be localized reliably.

Thought experiment:

A corner can be localized reliably.

Thought experiment:

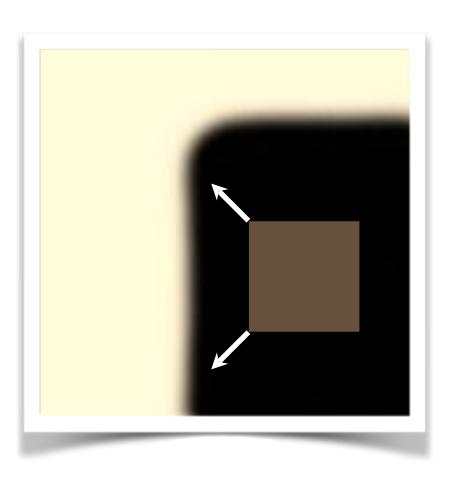
- Place a small window over a patch of constant image value.



"flat" region:

A corner can be localized reliably.

Thought experiment:

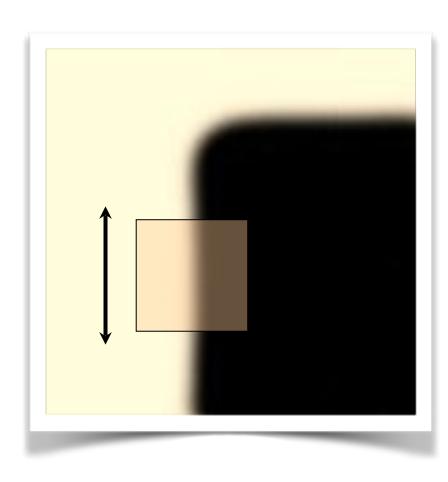


"flat" region:
no change in all
directions

A corner can be localized reliably.

Thought experiment:

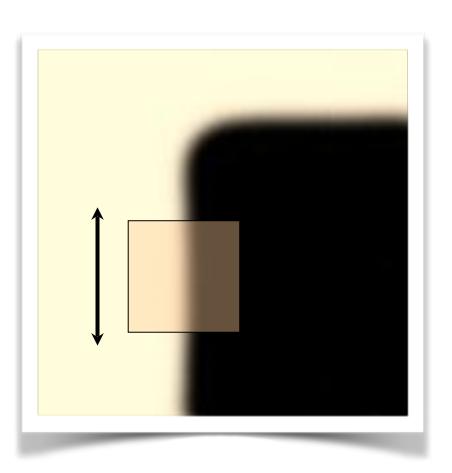
- Place a small window over a patch of constant image value.
 If you slide the window in any direction, the image in the window will not change.
- Place a small window over an edge.



"edge":

A corner can be localized reliably.

Thought experiment:

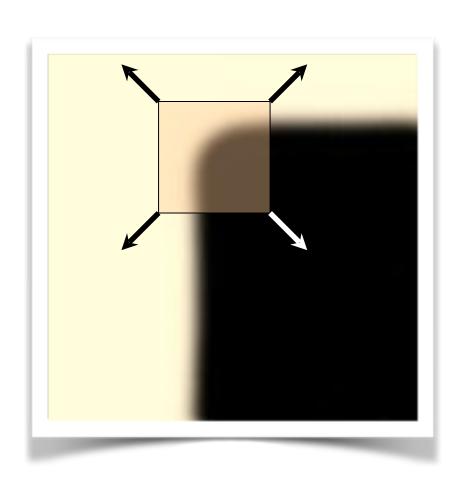


"edge":
no change along
the edge direction

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)

A corner can be localized reliably.

Thought experiment:

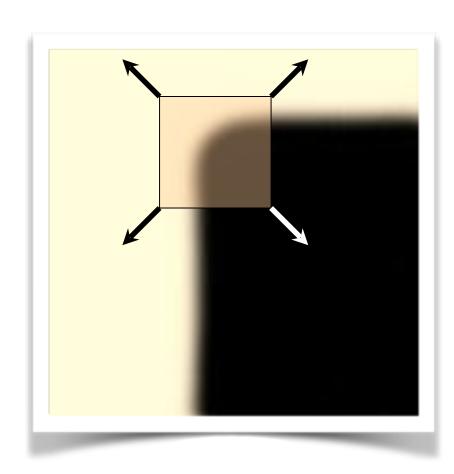


"corner":

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner.

A corner can be localized reliably.

Thought experiment:

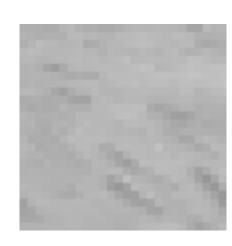


"corner":
significant change
in all directions

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner. If you slide the window in any direction, the image in the window changes.

What kind of structures are present in the image locally?

What kind of structures are present in the image locally?

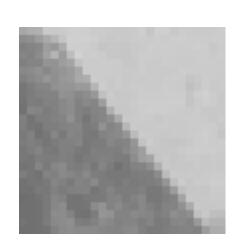


OD Structure: not useful for matching

What kind of structures are present in the image locally?



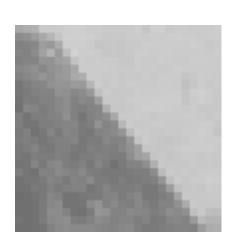
OD Structure: not useful for matching



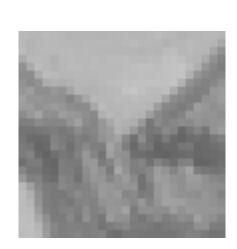
1D Structure: edge, can be localized in one direction, subject to the "aperture problem"

What kind of structures are present in the image locally?

OD Structure: not useful for matching



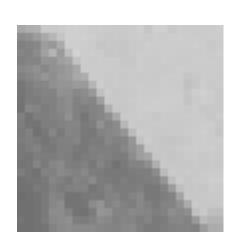
1D Structure: edge, can be localized in one direction, subject to the "aperture problem"



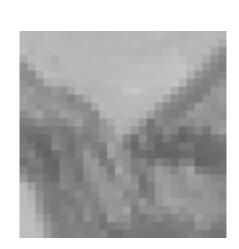
2D Structure: corner, or interest point, can be localised in both directions, good for matching

What kind of structures are present in the image locally?

OD Structure: not useful for matching



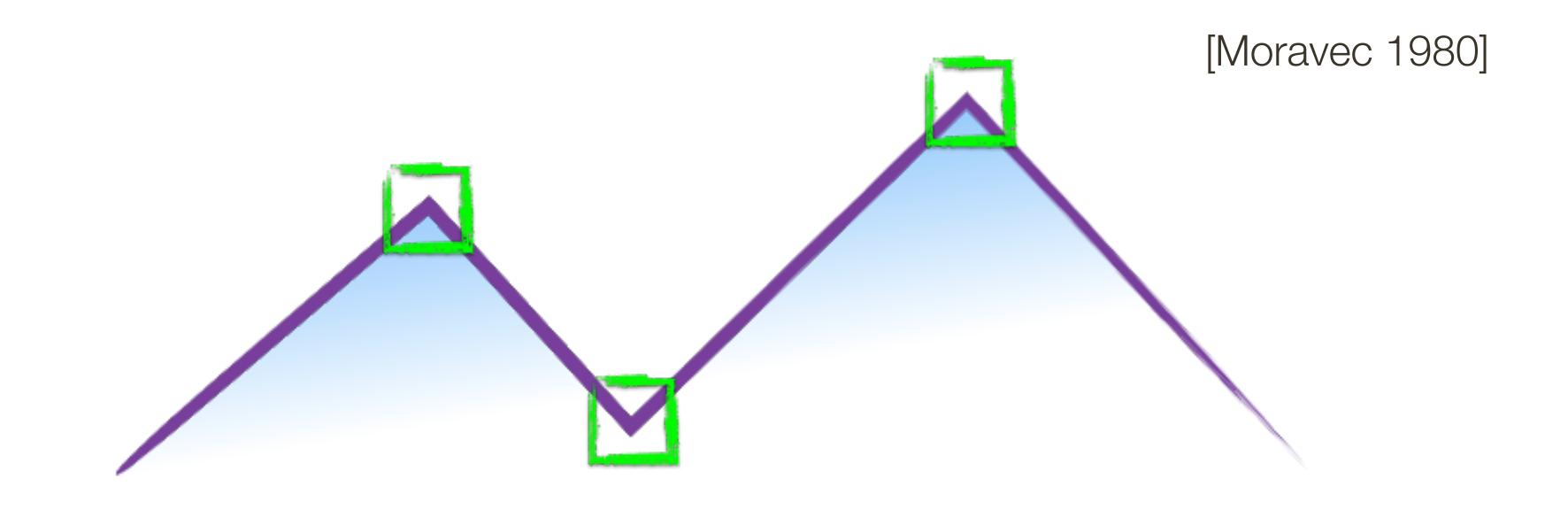
1D Structure: edge, can be localized in one direction, subject to the "aperture problem"



2D Structure: corner, or interest point, can be localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or Interest point detectors find points with 2D structure.

How do you find a corner?

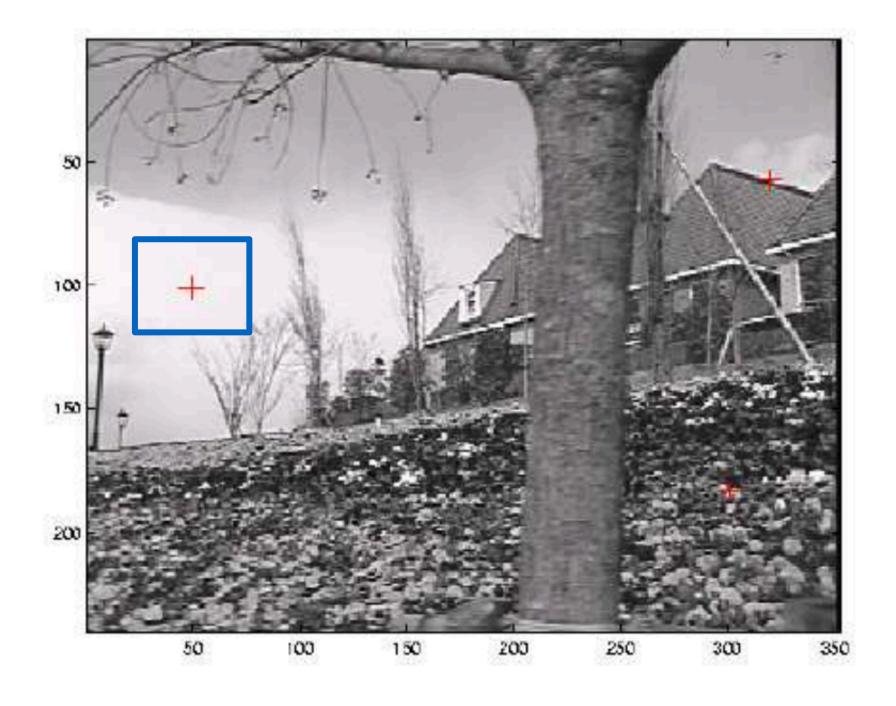


Easily recognized by looking through a small window

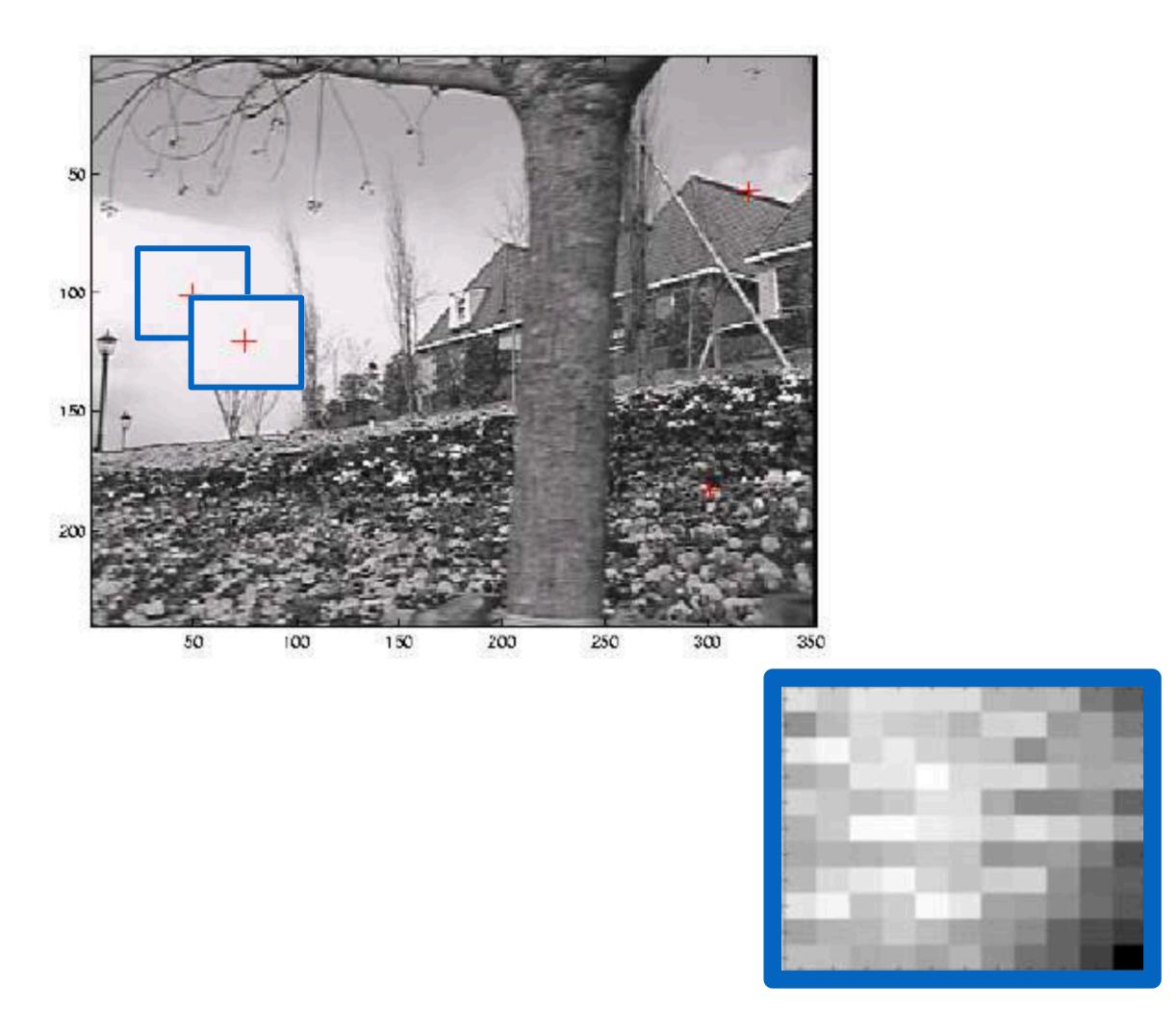
Shifting the window should give large change in intensity

Autocorrelation is the correlation of the image with itself.

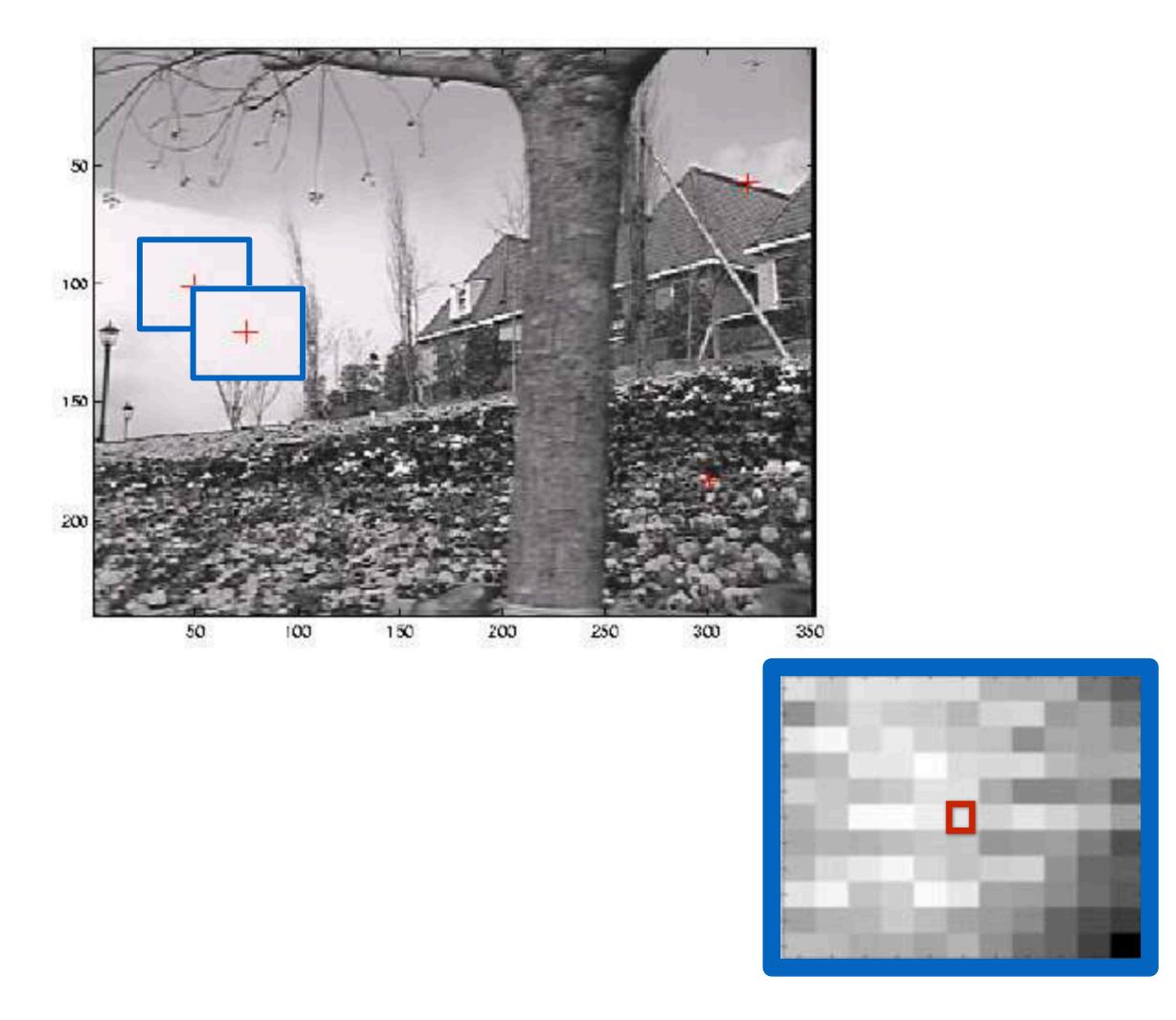
- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.



Szeliski, Figure 4.5

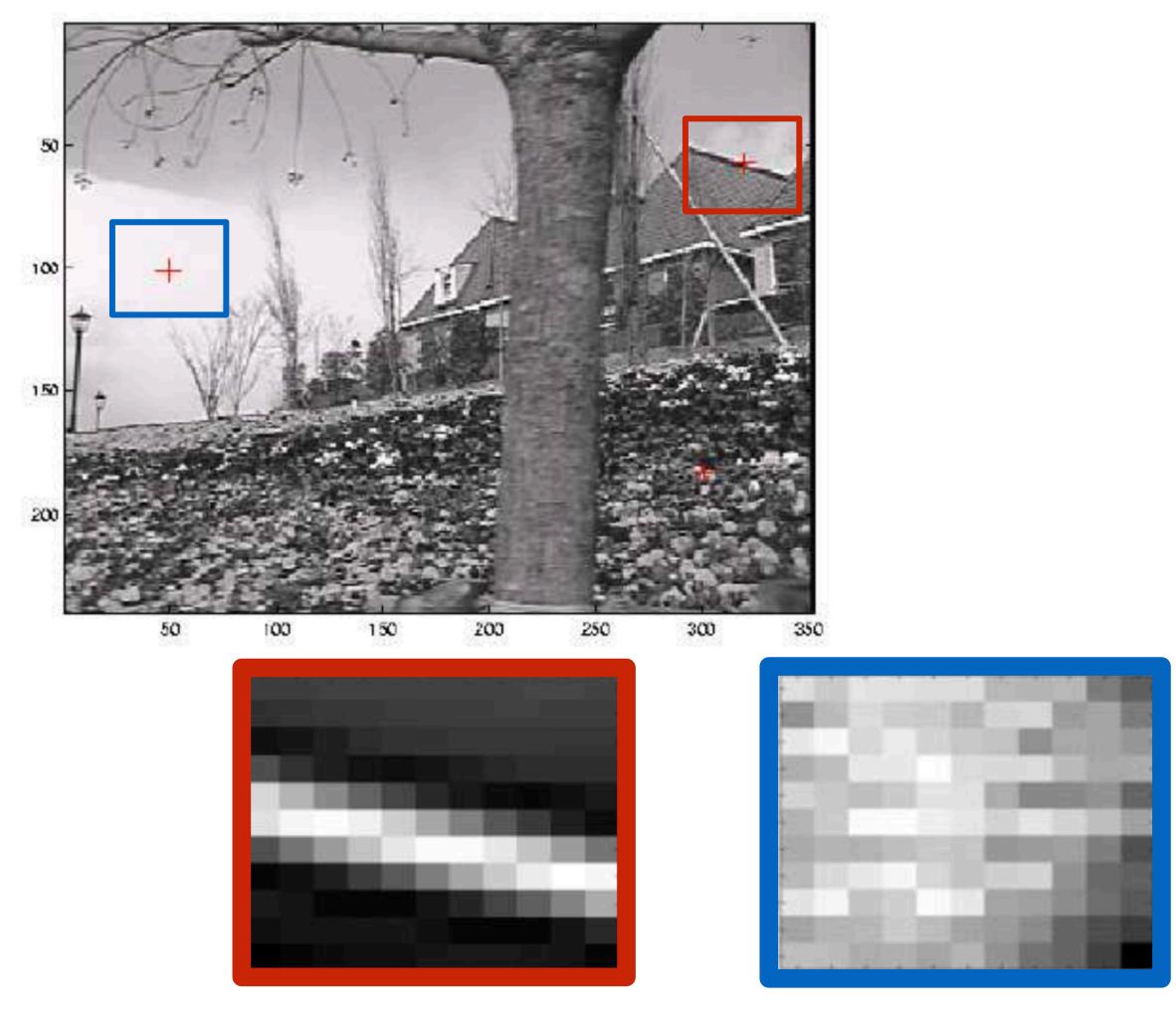


Szeliski, Figure 4.5

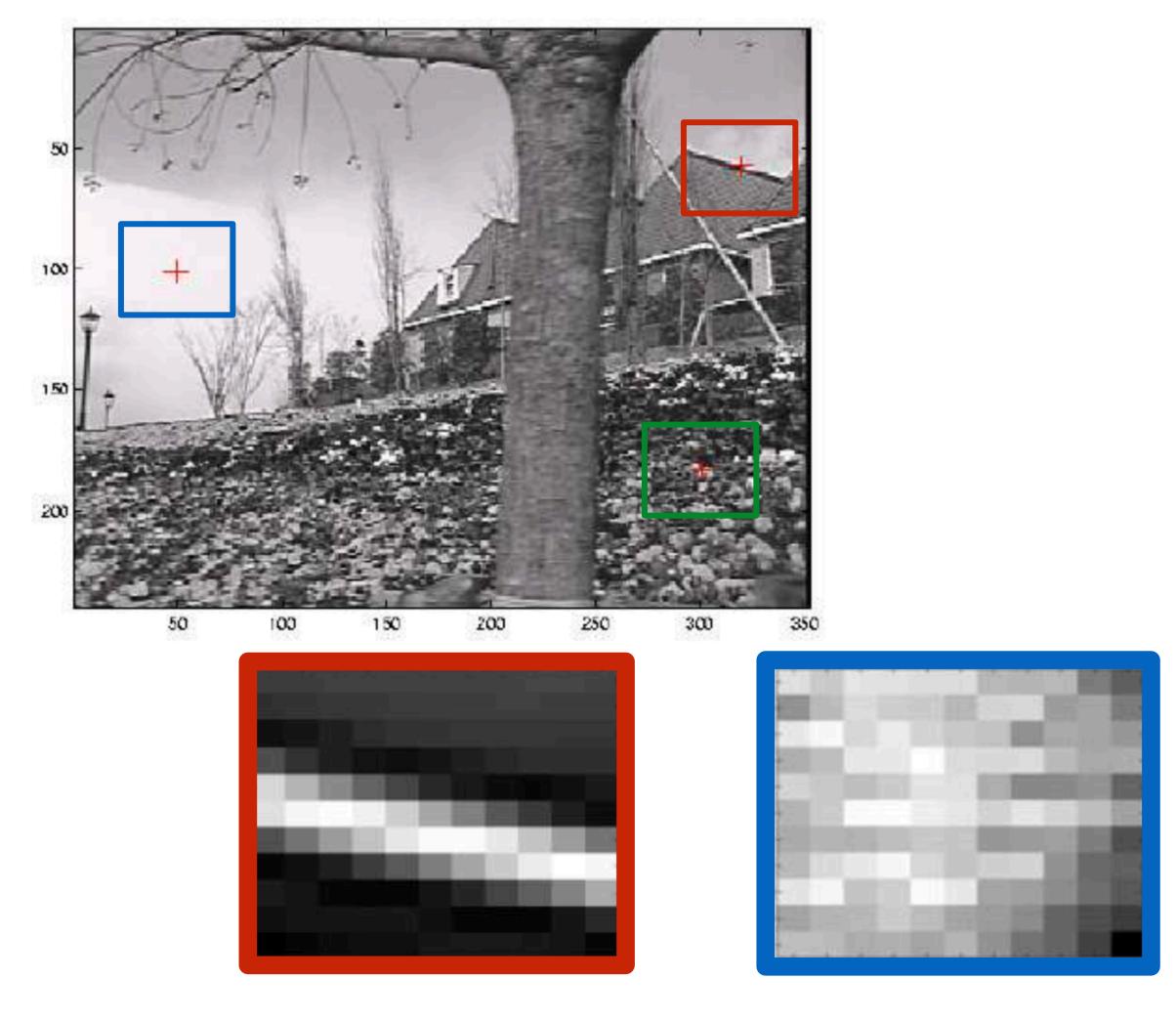


Szeliski, Figure 4.5

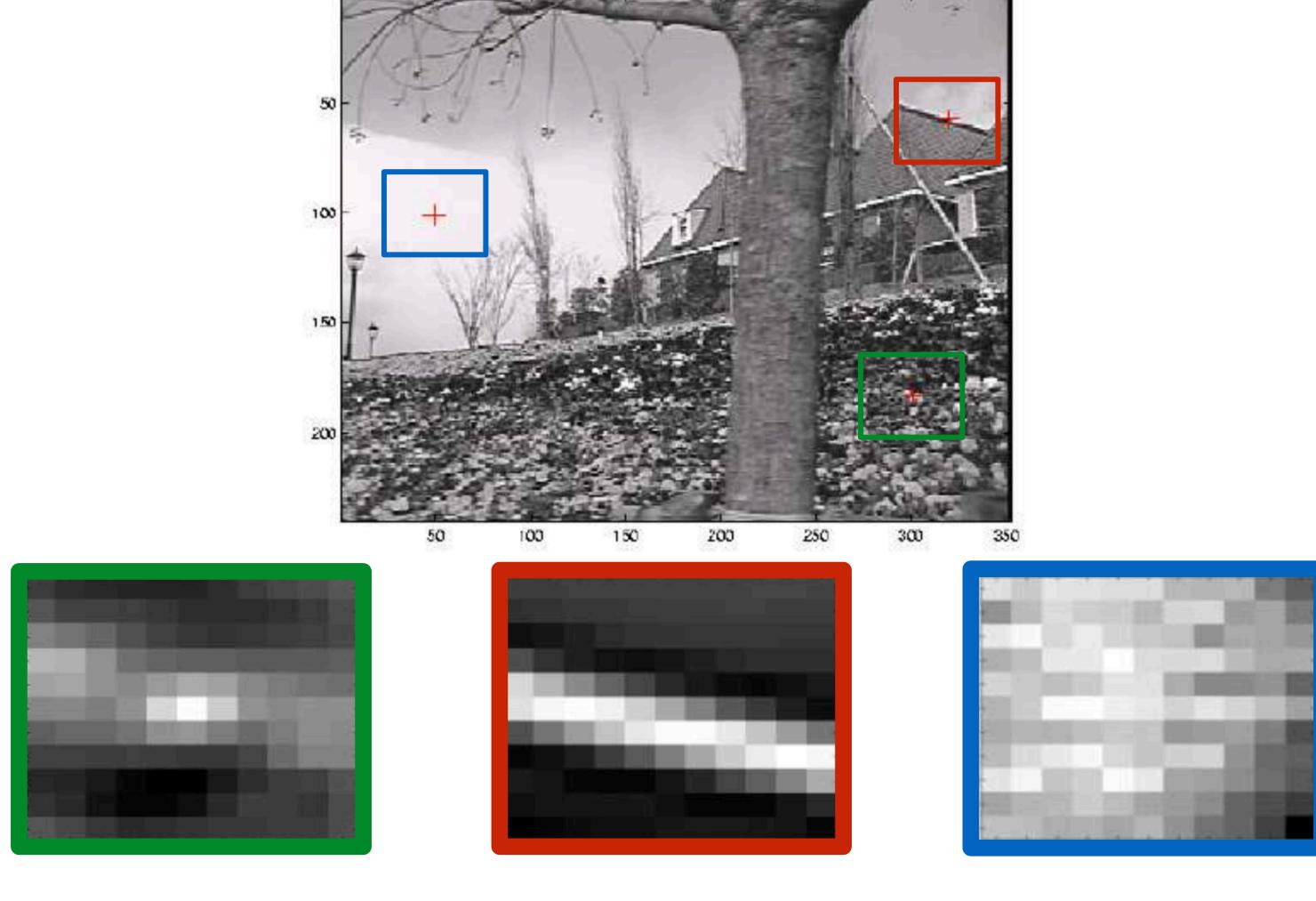
Szeliski, Figure 4.5



Szeliski, Figure 4.5



Szeliski, Figure 4.5



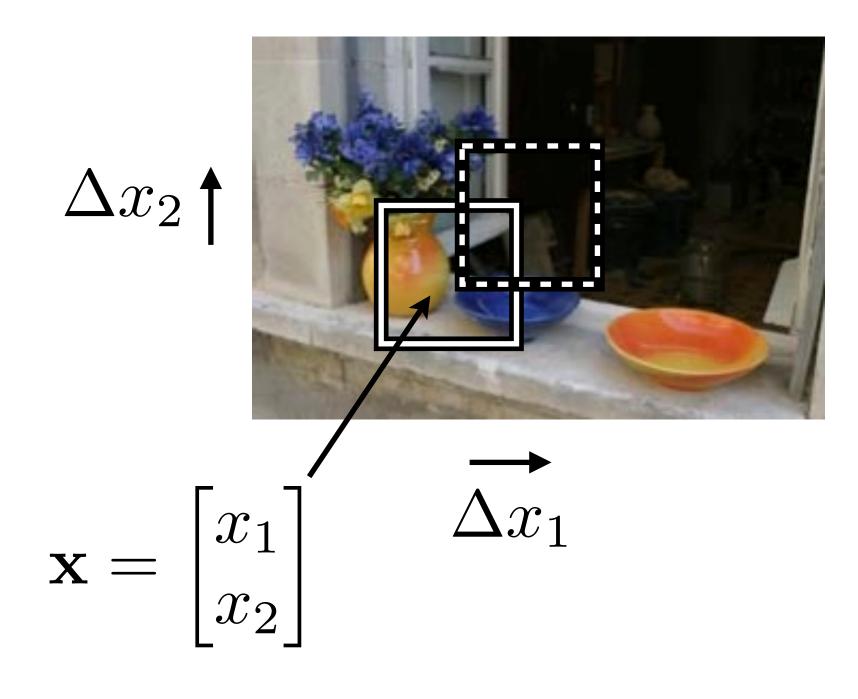
Szeliski, Figure 4.5

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

Local SSD Function

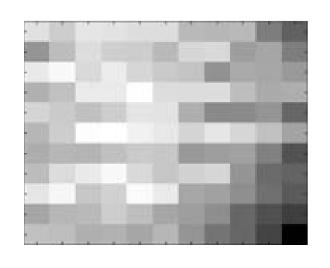
Consider the sum squared difference (SSD) of a patch with its local neighbourhood

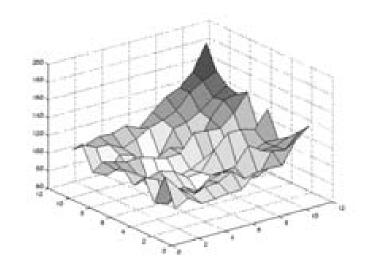


$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

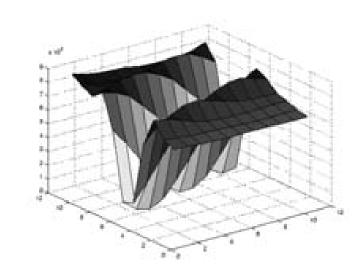
Local SSD Function

Consider the local SSD function for different patches

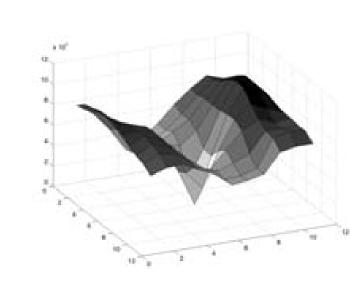




High similarity locally



High similarity along the edge



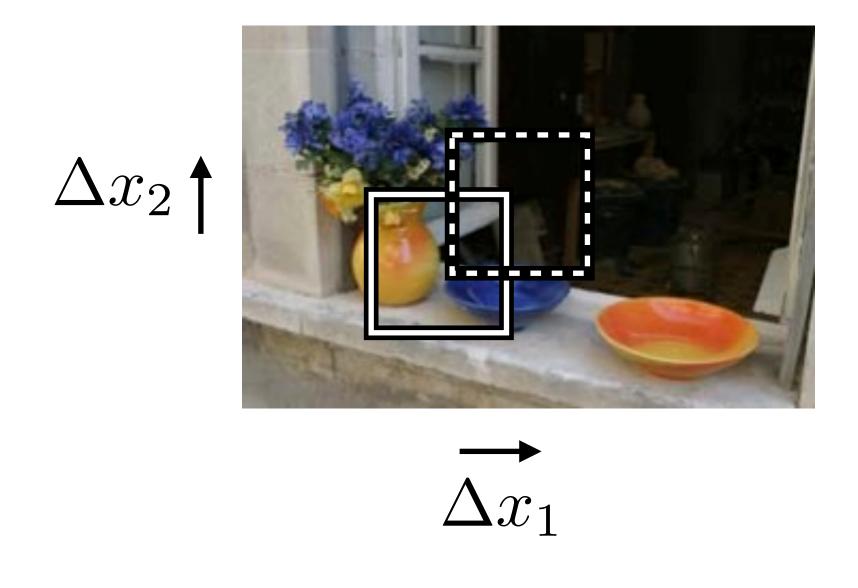
Clear peak in similarity function

Harris corners are peaks of a local similarity function



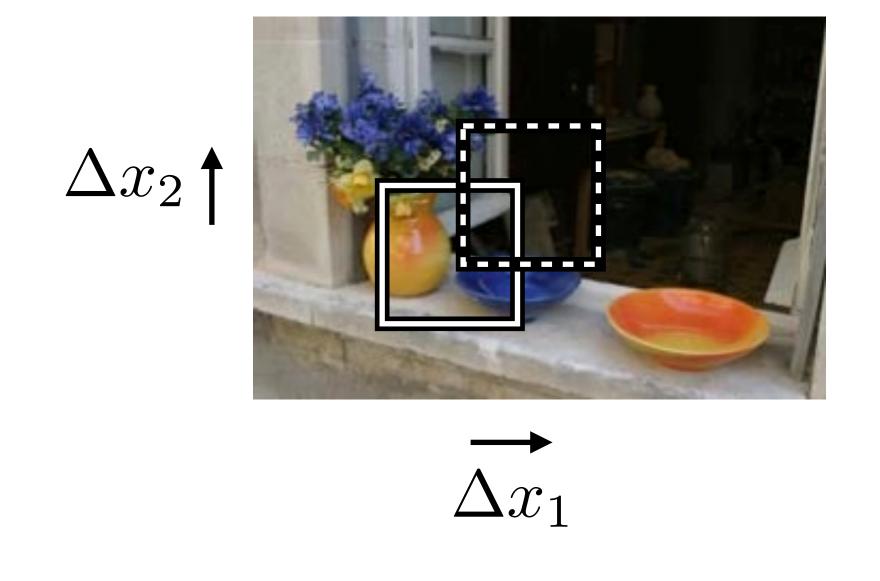


We will use a first order approximation to the local SSD function



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

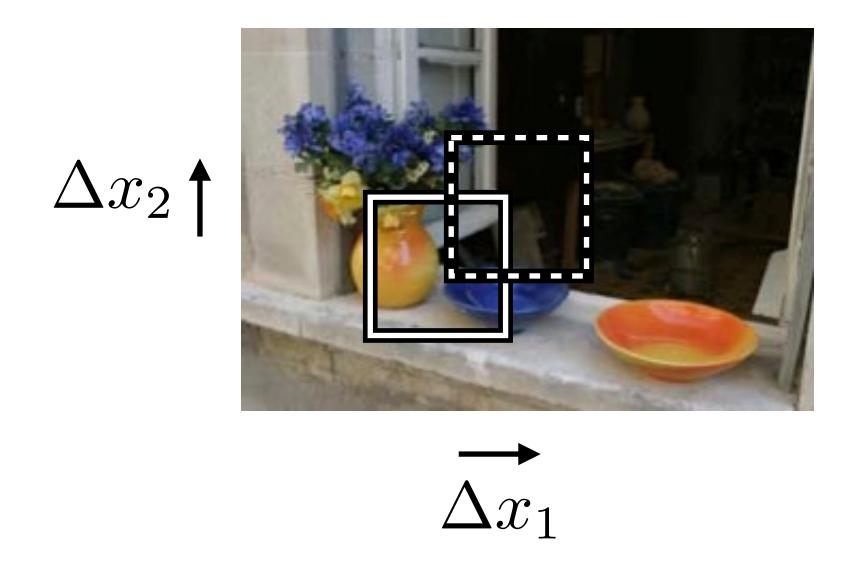
We will use a first order approximation to the local SSD function



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^{2}$$

$$= \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}$$

$$\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$$



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$
$$= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

$$\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

SSD function must be large for all shifts $\Delta {f x}$ for a corner / 2D structure

This implies that both eigenvalues of $\, \, H \,$ must be large

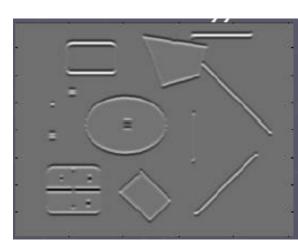
Note that H is a 2x2 matrix

Harris Corner Detection

- 1.Compute image gradients over small region
- 2. Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

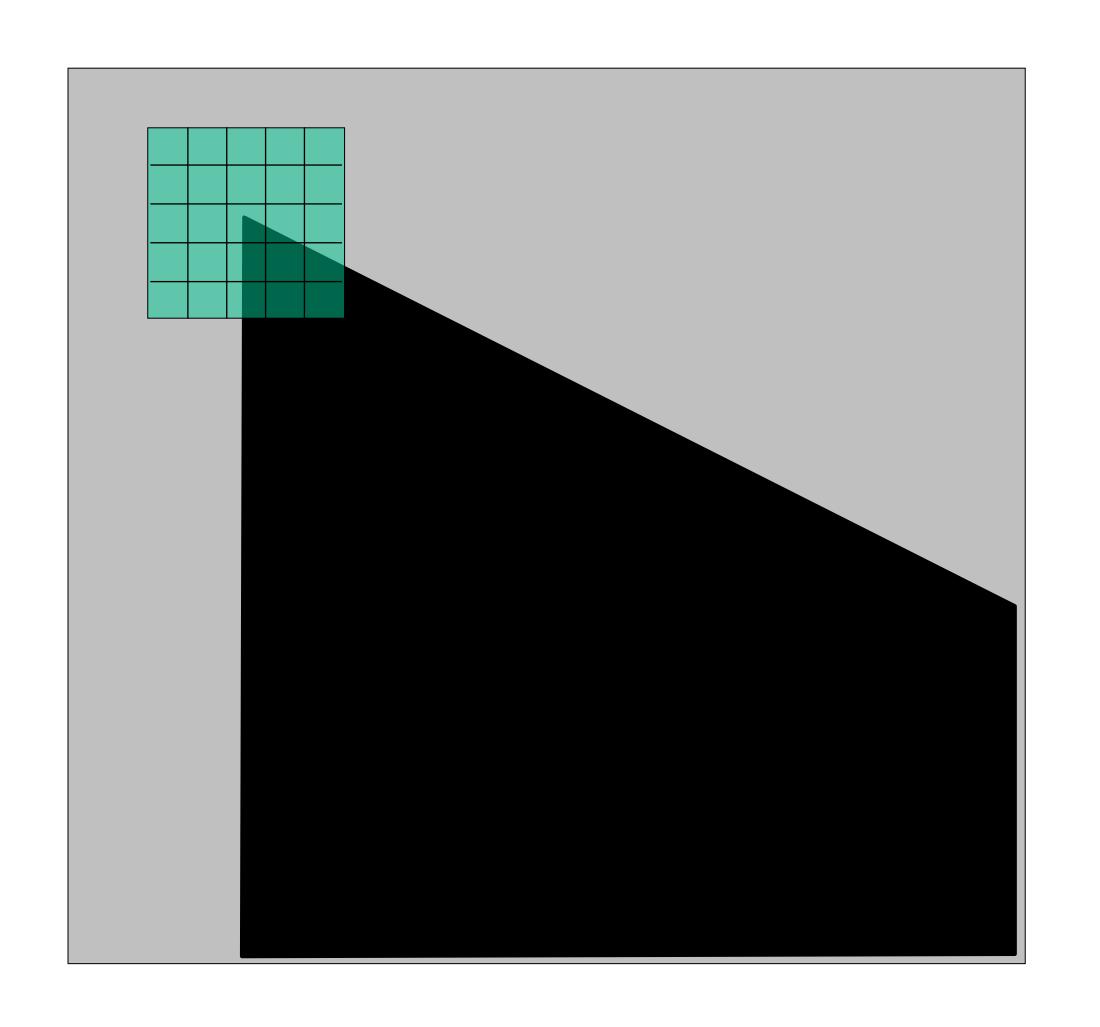
$$I_y = \frac{\partial I}{\partial y}$$



$$\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

1. Compute image gradients over a small region

(not just a single pixel)



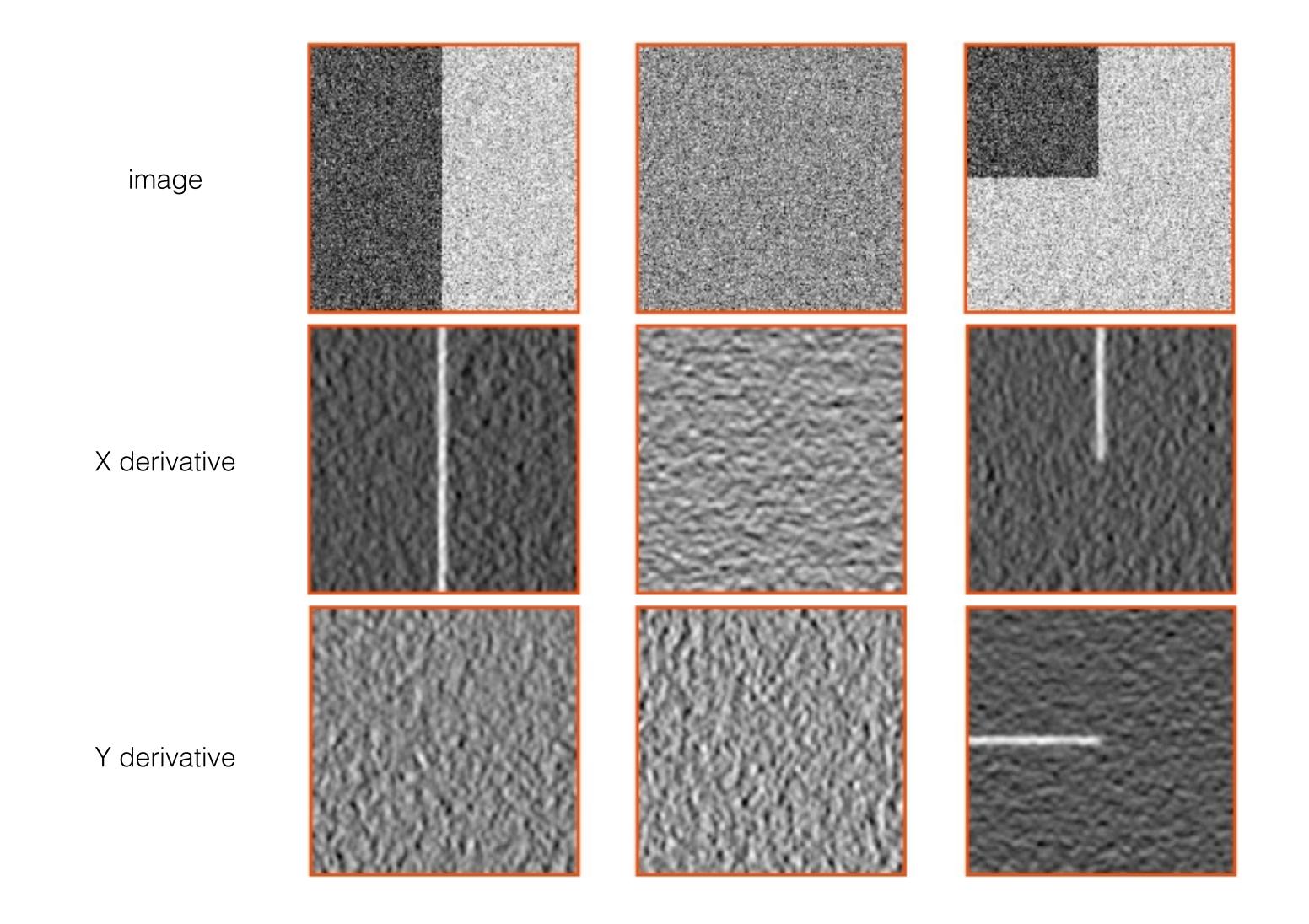
array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

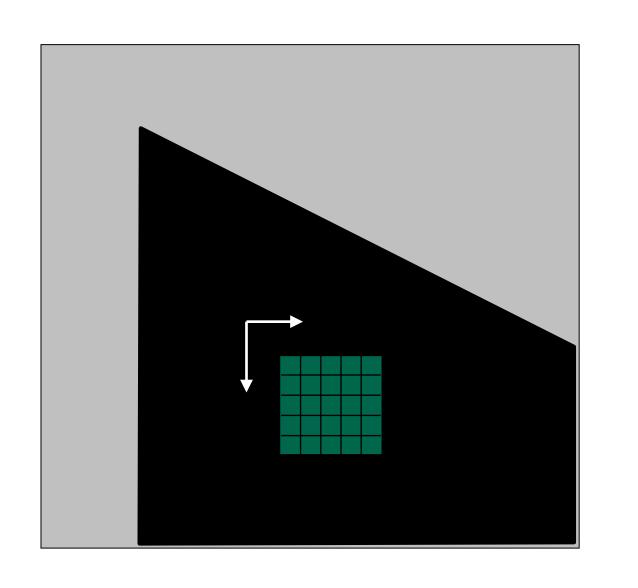
array of y gradients

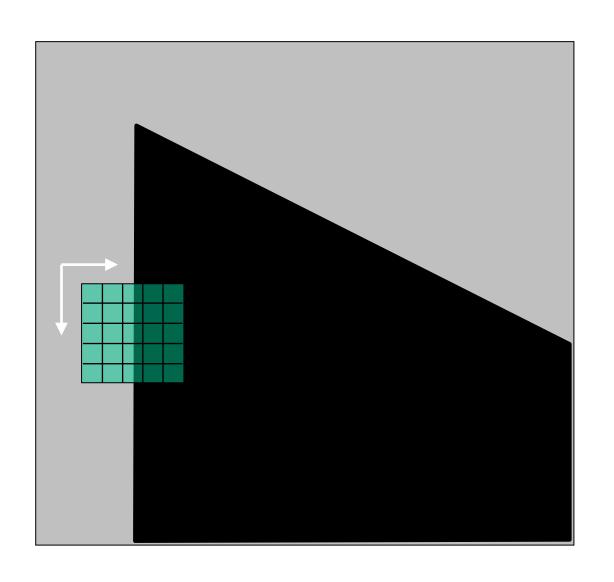
$$I_y = \frac{\partial I}{\partial y}$$

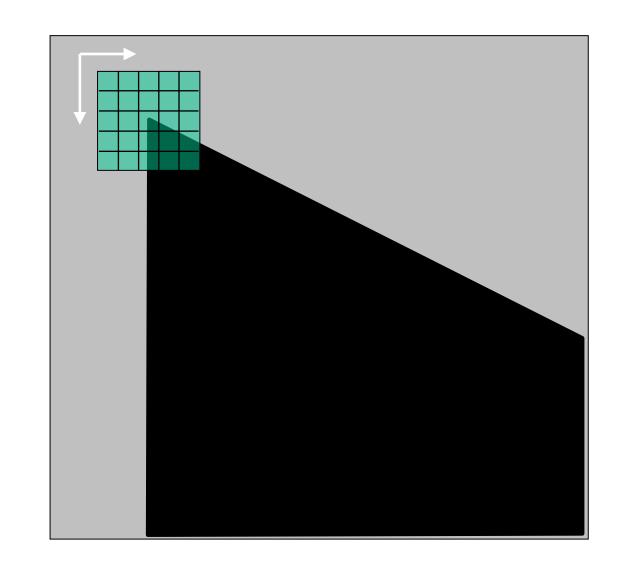
Visualization of Gradients

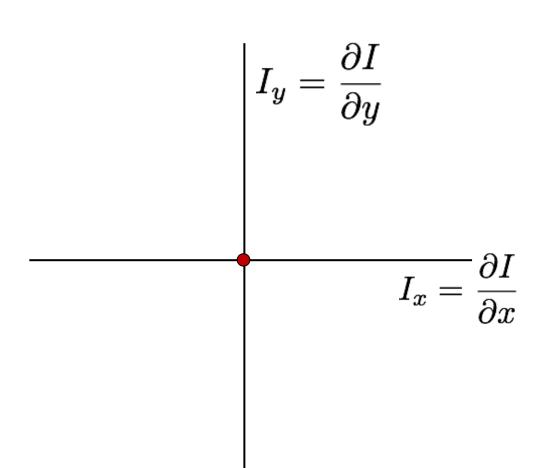


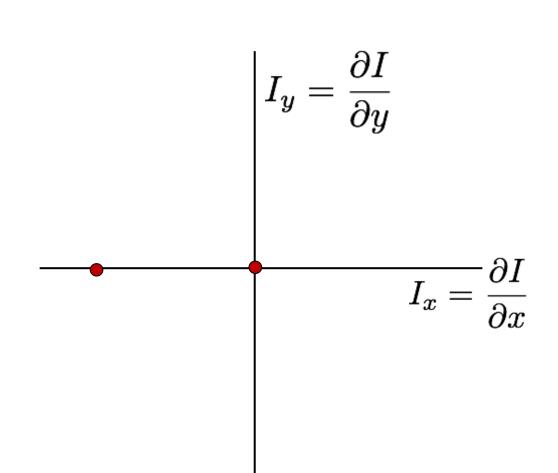
What Does a **Distribution** Tells You About the **Region**?

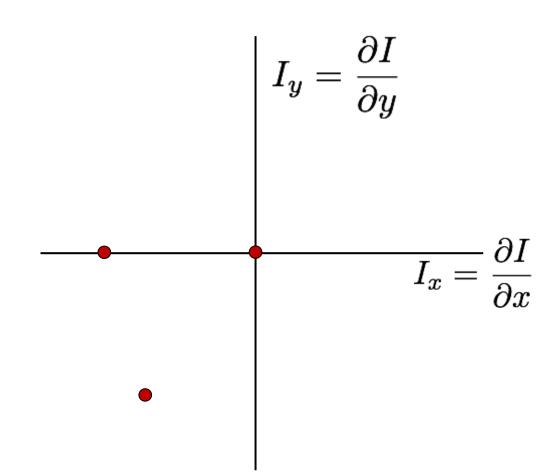


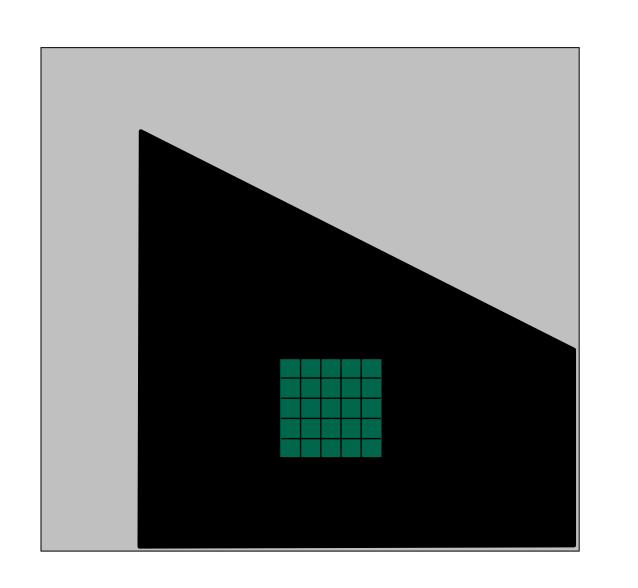


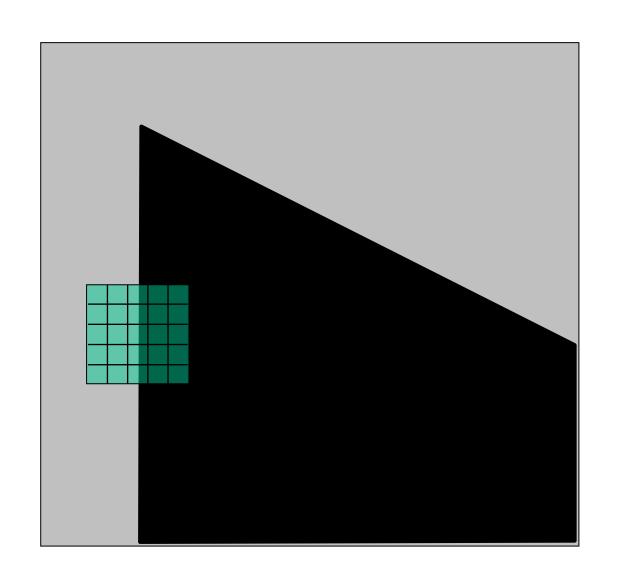


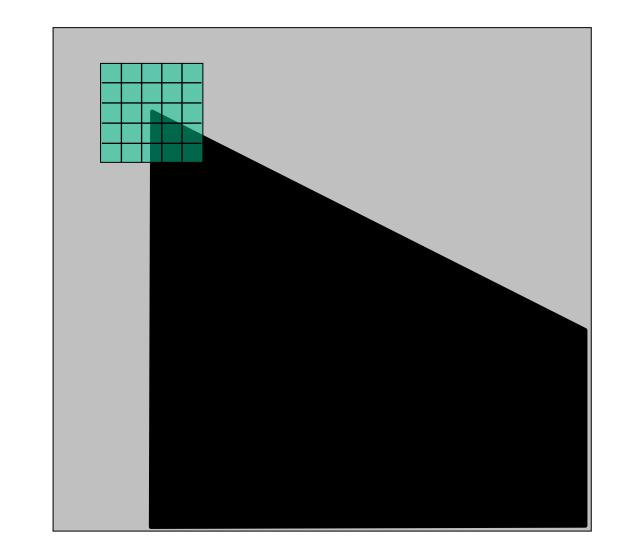


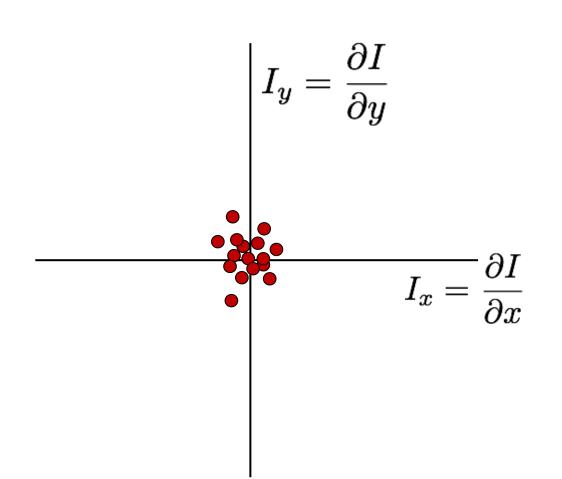


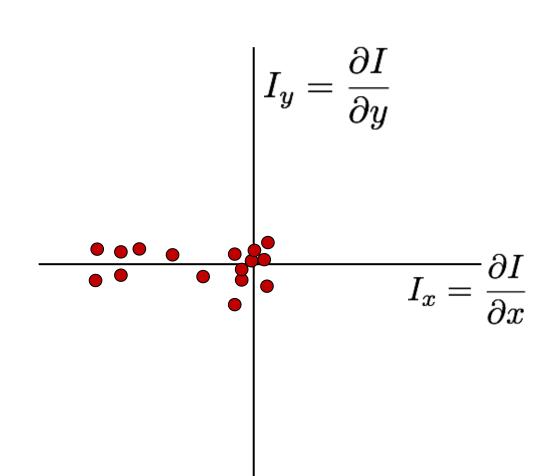


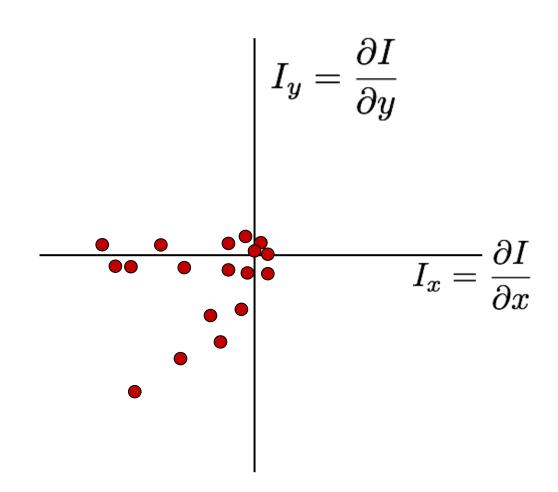


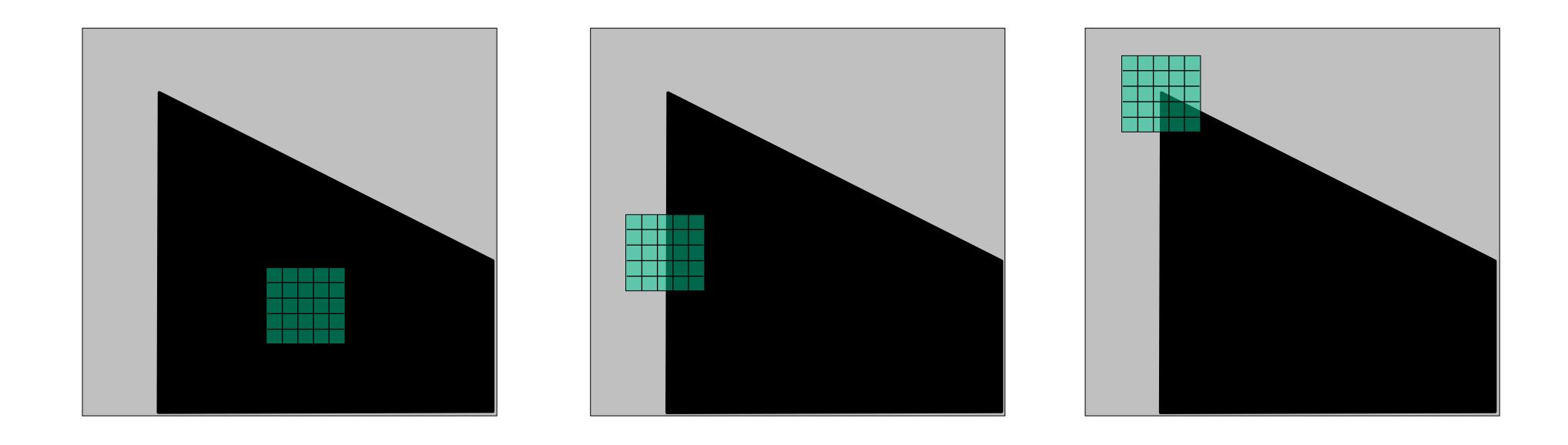


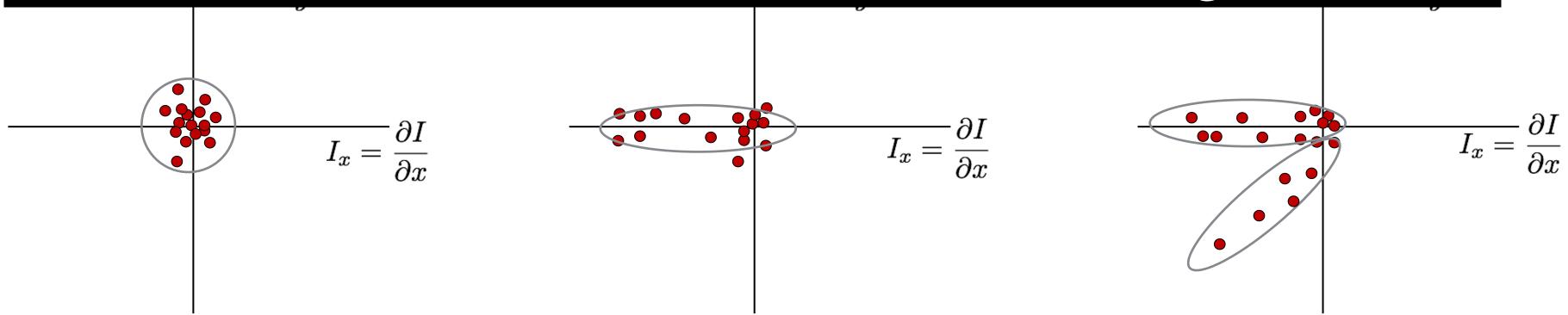


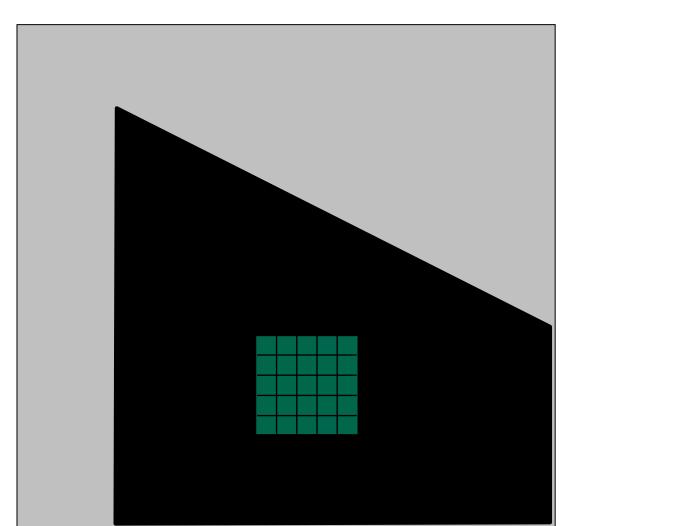


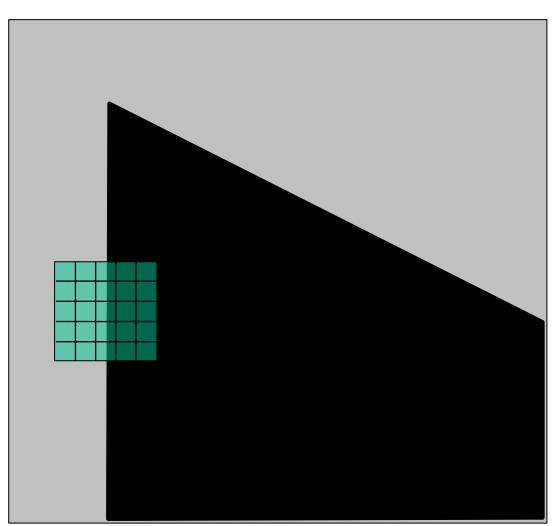


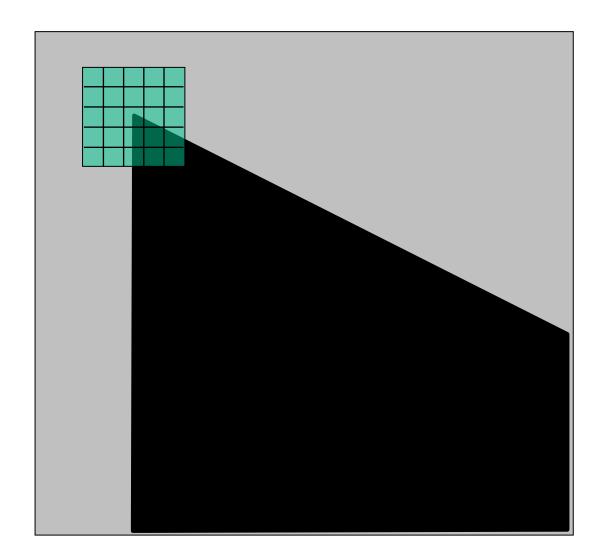




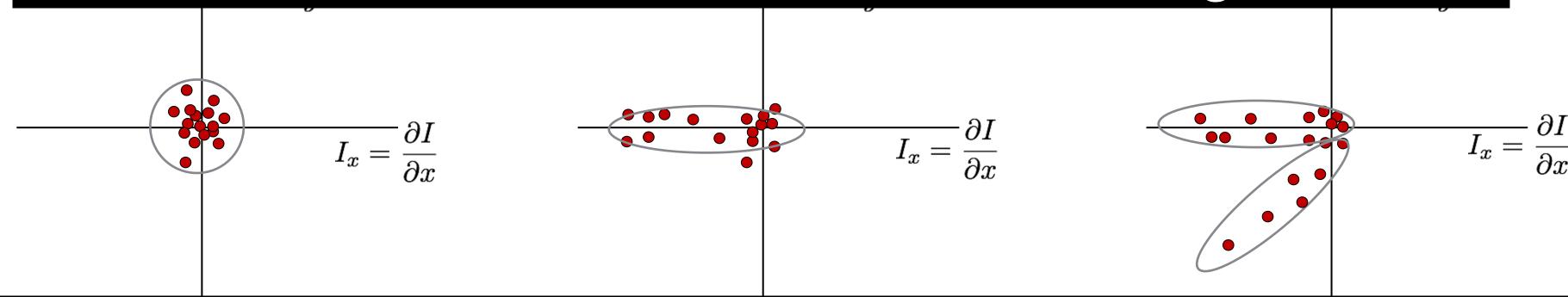




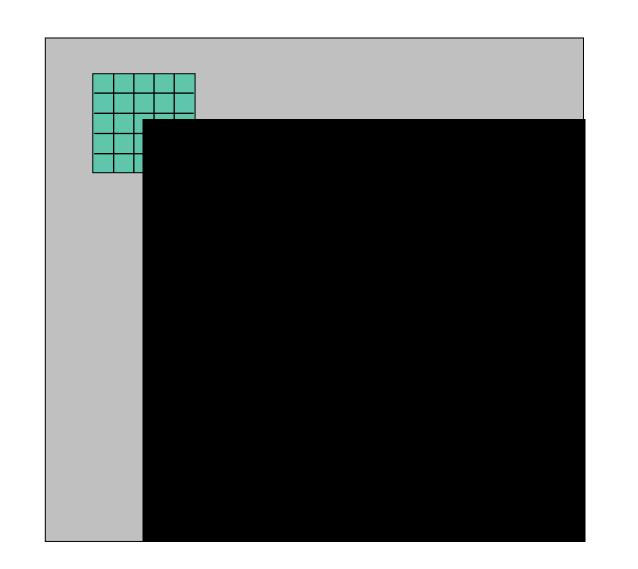


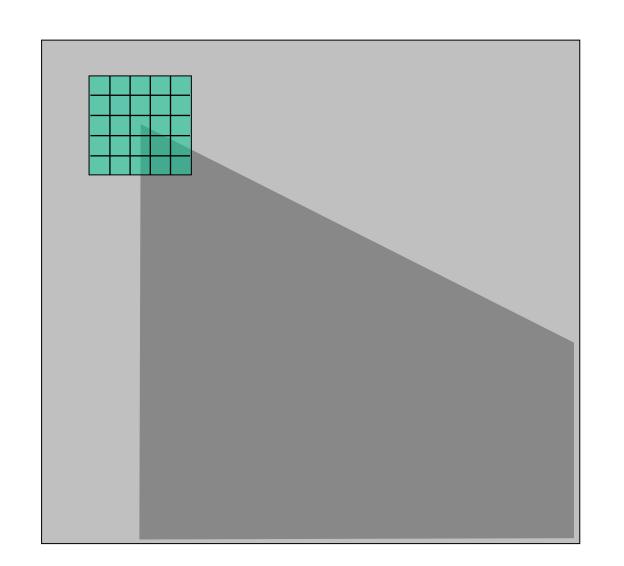


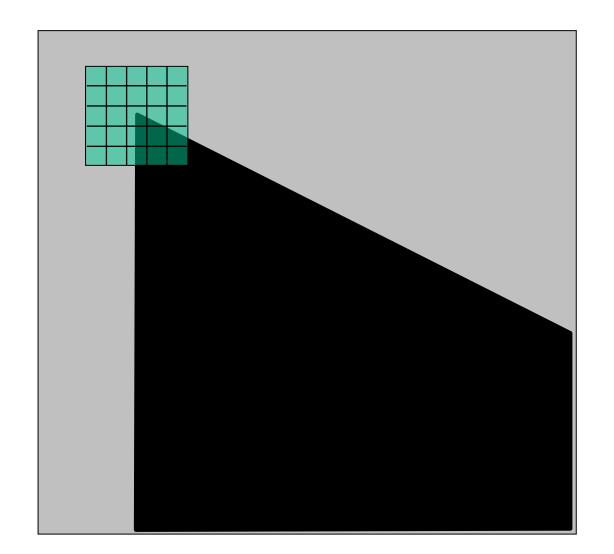
Distribution reveals the orientation and magnitude



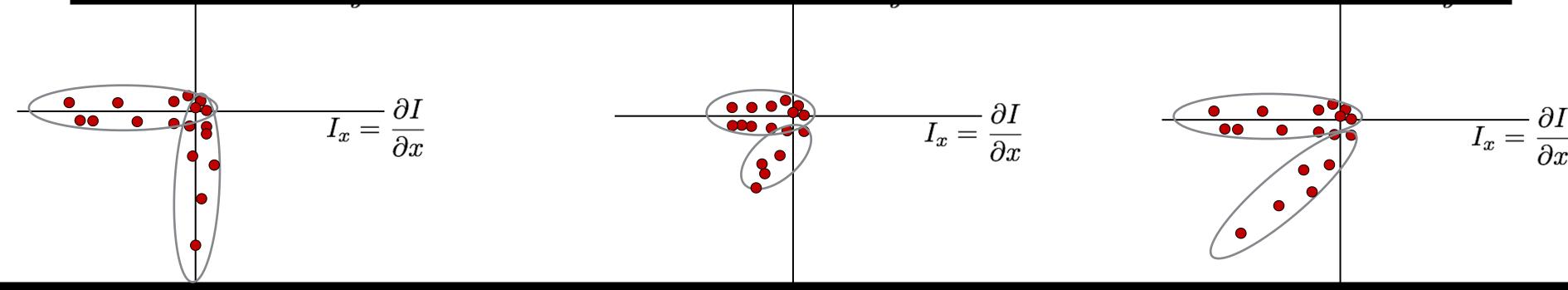
How do we quantify the orientation and magnitude?







Distribution reveals the orientation and magnitude



How do we quantify the orientation and magnitude?

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$I_x=rac{\partial I}{\partial x}$$
 $I_y=rac{\partial I}{\partial y}$ $\sum_{m p\in P}I_xI_y$ =Sum(.*) array of x gradients

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

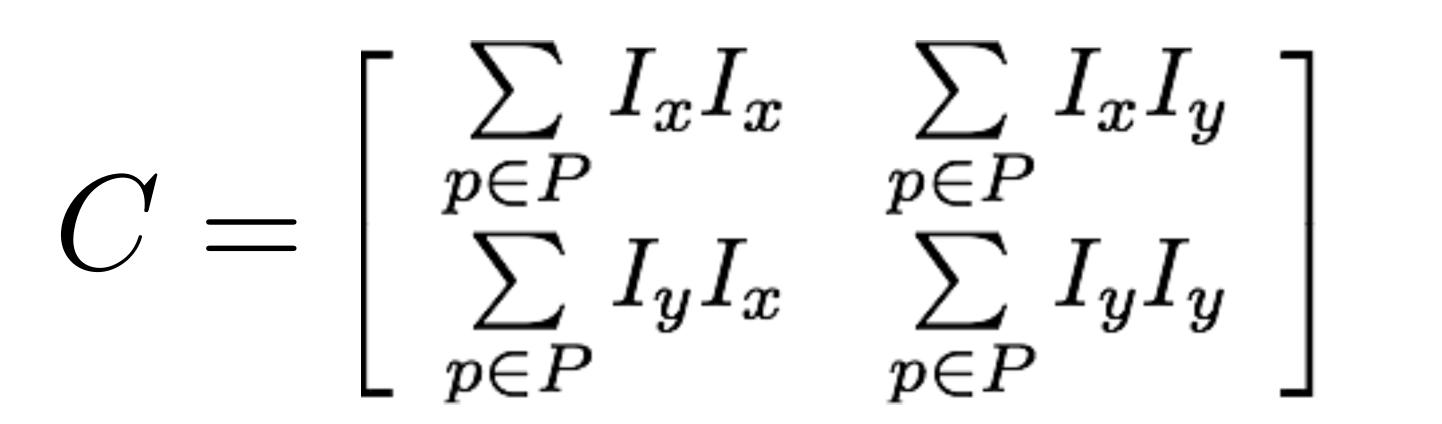
Matrix is **symmetric**

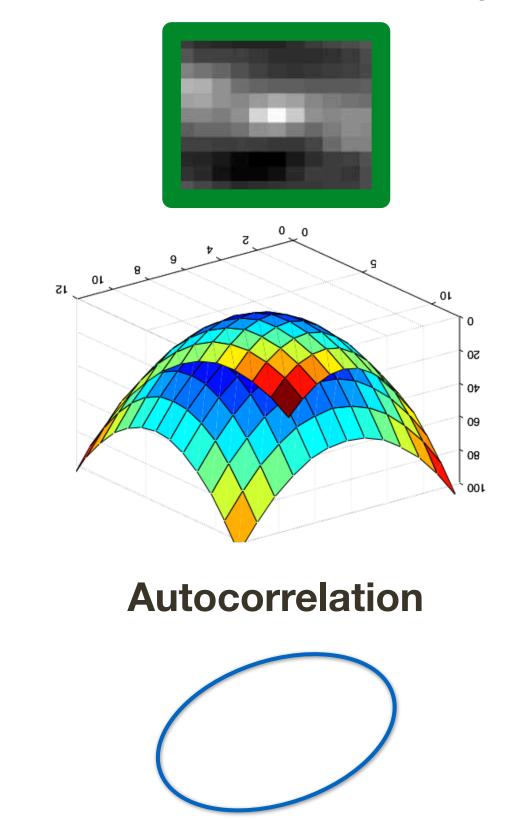
By computing the gradient covariance matrix ...

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

we are fitting a quadratic to the gradients over a small image region

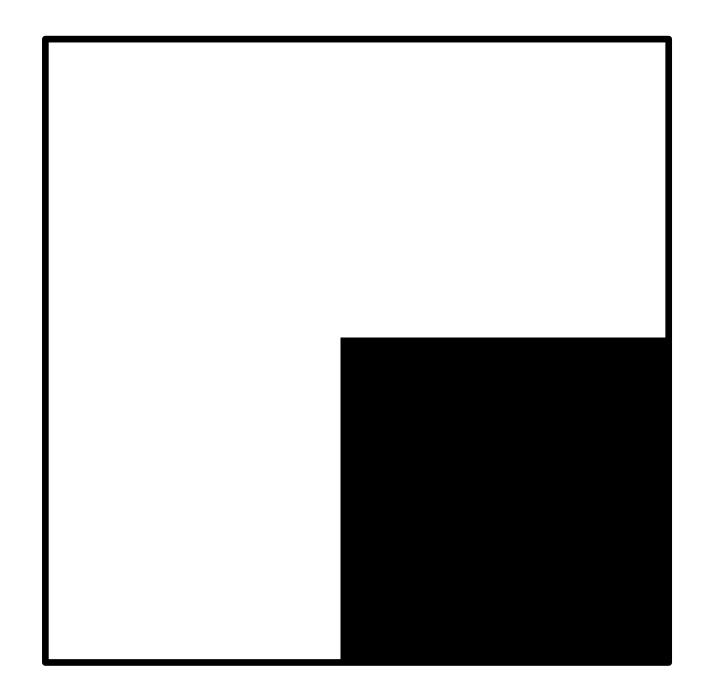
By computing the gradient covariance matrix ...





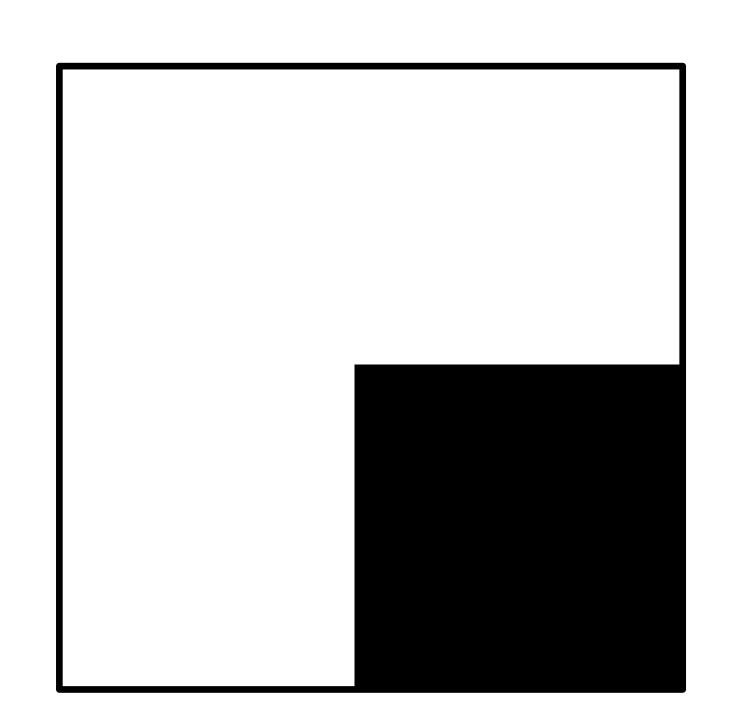
Covariance matrix

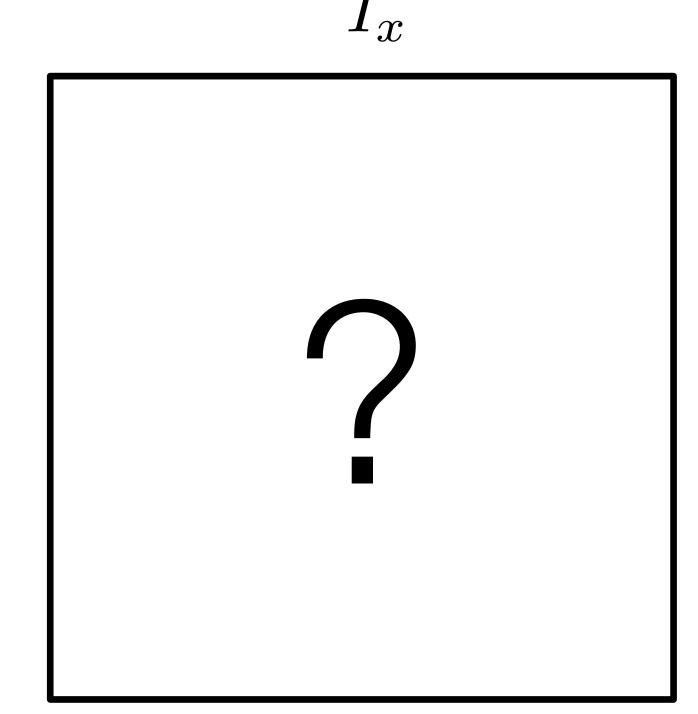
we are fitting a quadratic to the gradients over a small image region

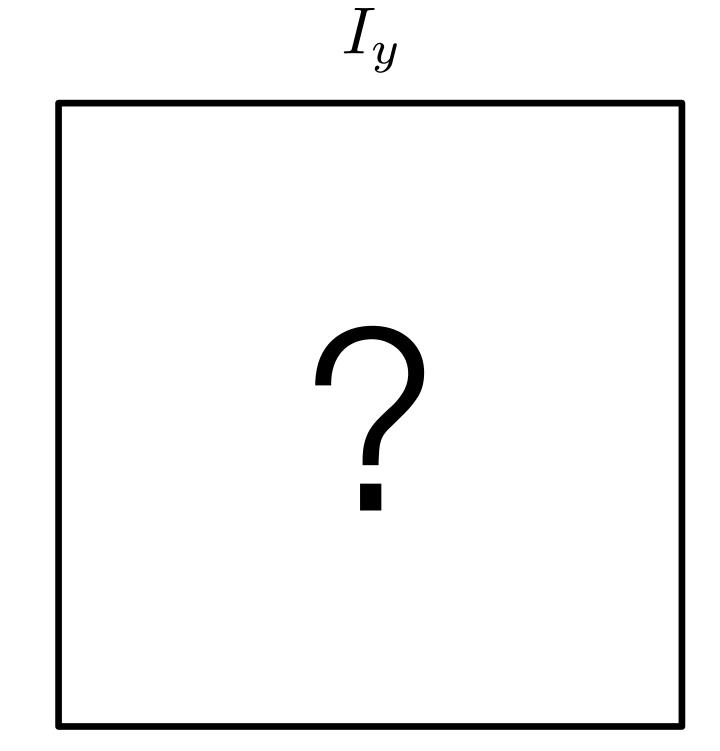


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

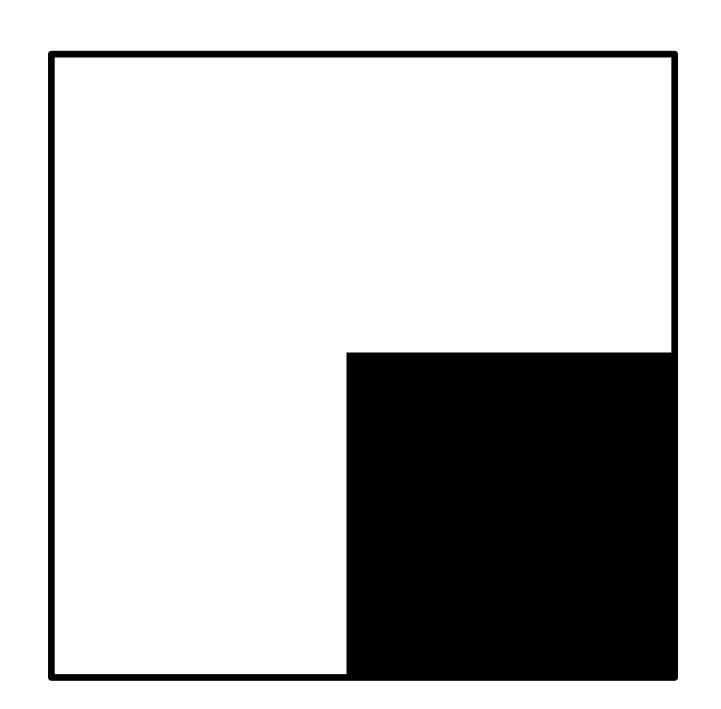




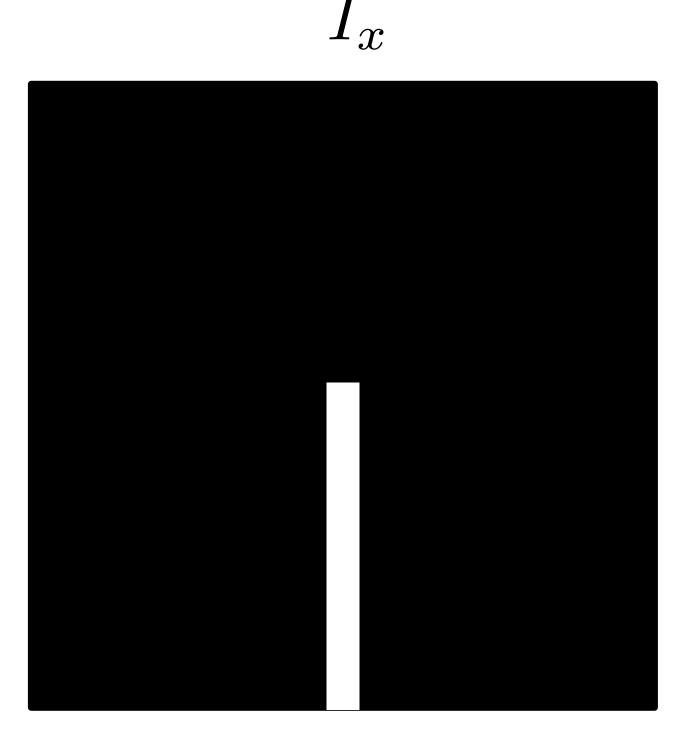


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

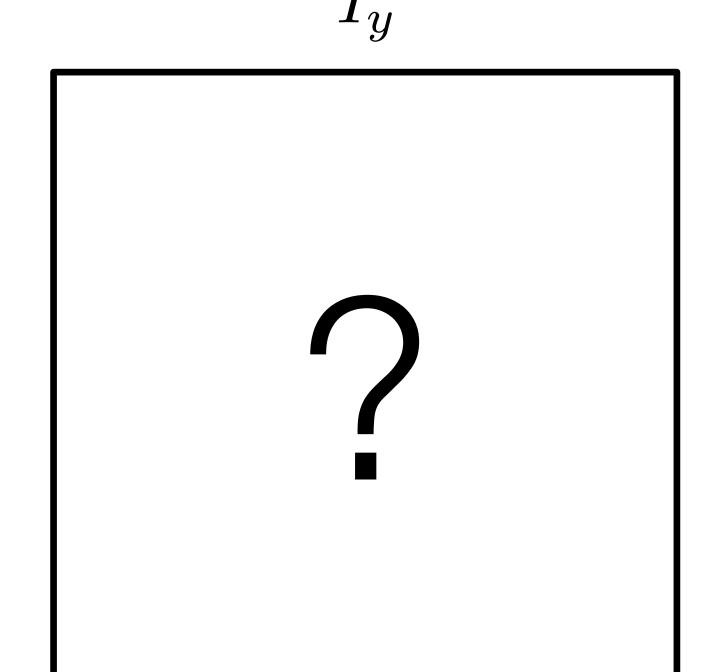


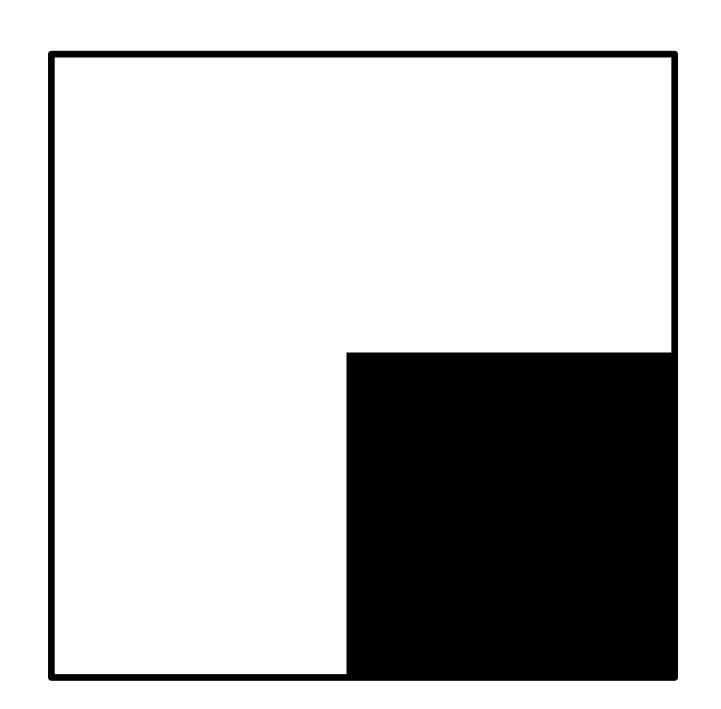
Local Image Patch



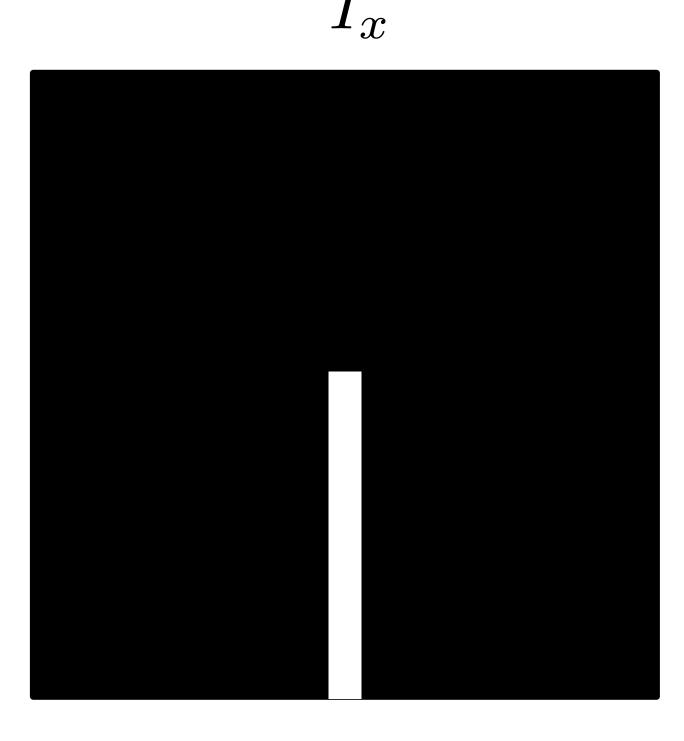
high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$





Local Image Patch

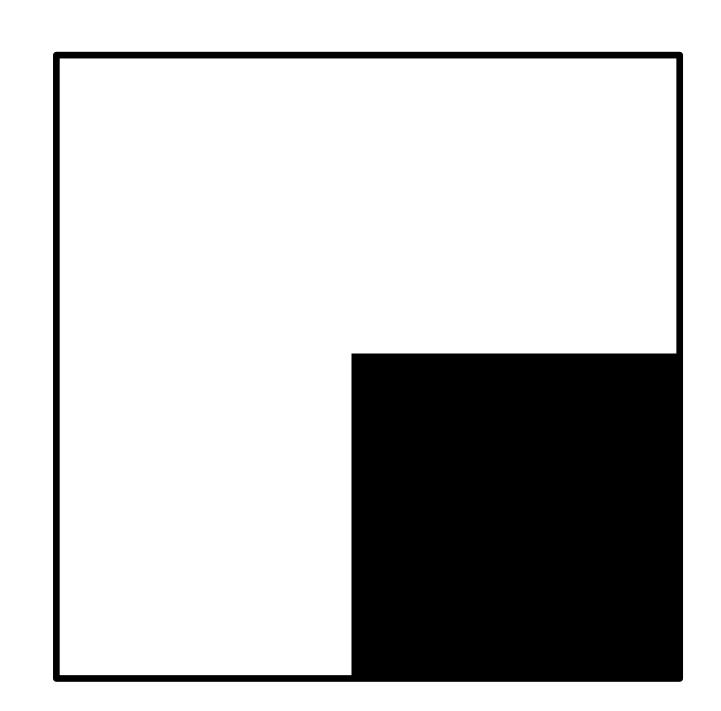


high value along vertical strip of pixels and 0 elsewhere

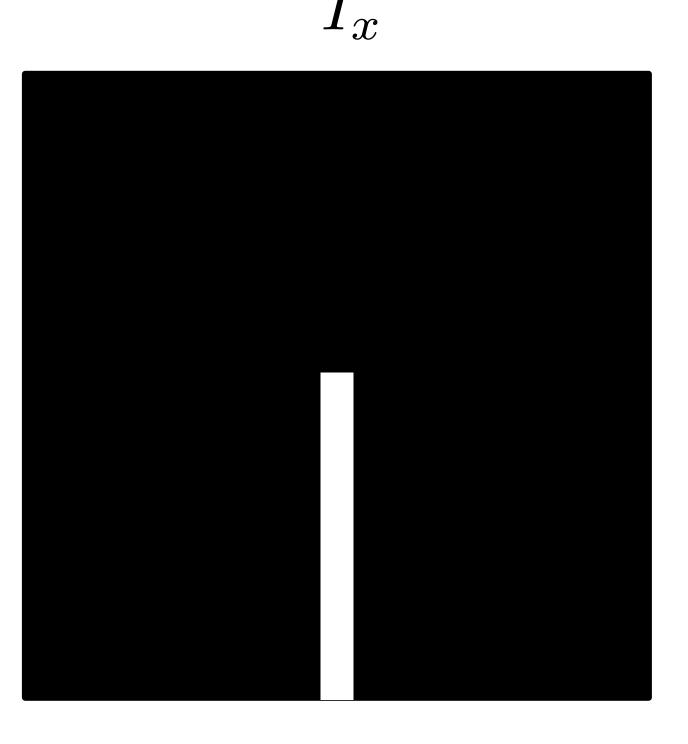
$$C = \begin{bmatrix} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{bmatrix} = ?$$



high value along horizontal strip of pixels and 0 elsewhere



Local Image Patch



high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 I_y

high value along horizontal strip of pixels and 0 elsewhere

General Case

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

General Case

It can be shown that since every C is symmetric:

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

... so general case is like a rotated version of the simple one

Quick Eigenvalue/Eigenvector Review

Given a square matrix $\bf A$, a scalar λ is called an **eigenvalue** of $\bf A$ if there exists a nonzero vector $\bf v$ that satisfies

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

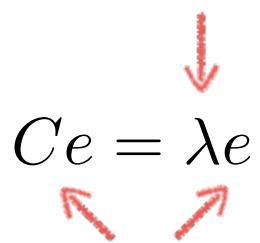
The vector ${f v}$ is called an **eigenvector** for ${f A}$ corresponding to the eigenvalue λ .

The eigenvalues of A are obtained by solving (characteristic equation)

$$\det(\mathbf{A} - \lambda I) = 0$$

eigenvalue $Ce = \lambda e \qquad \qquad (C - \lambda I)e = 0$ eigenvector

eigenvalue



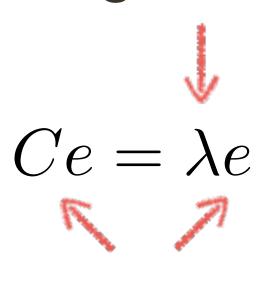
eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

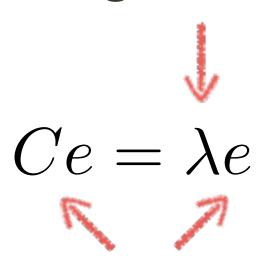
1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[egin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array}
ight]$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$C = \left[egin{array}{ccc} 2 & 1 \ 1 & 2 \end{array}
ight] \qquad \det \left(\left[egin{array}{ccc} 2 - \lambda & 1 \ 1 & 2 - \lambda \end{array}
ight]
ight)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$

 $(2 - \lambda)(2 - \lambda) - (1)(1)$

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$
$$\lambda^{2} - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$
$$\lambda_{1} = 1, \lambda_{2} = 3$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

Visualization as Ellipse

Since C is symmetric, we have $C=R^{-1}\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R$

We can visualize ${\cal C}$ as an ellipse with axis lengths determined by the eigenvalues and orientation determined by ${\cal R}$

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$

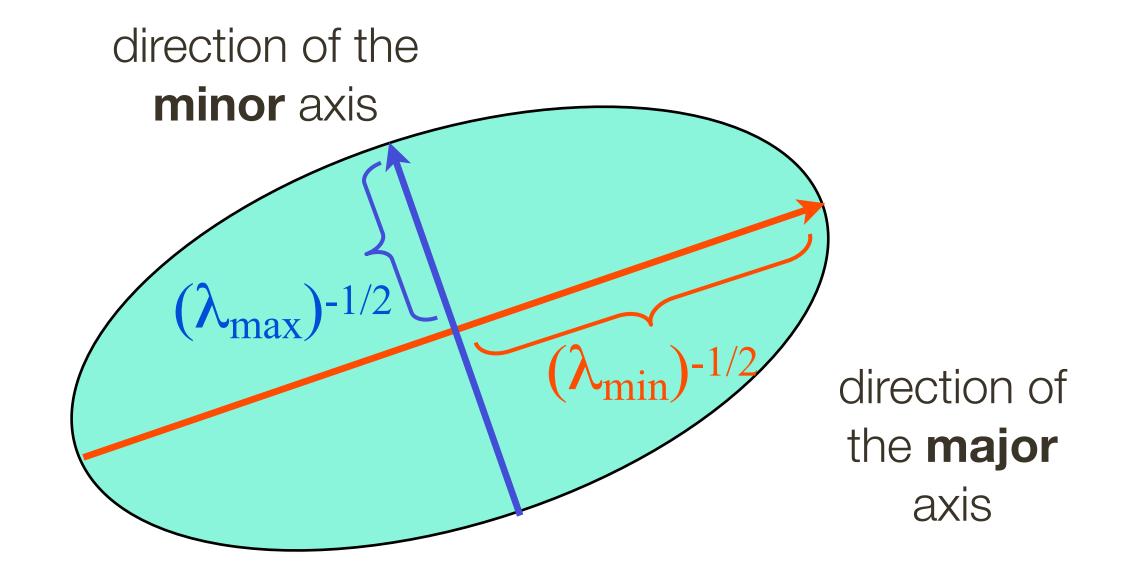
Visualization as Ellipse

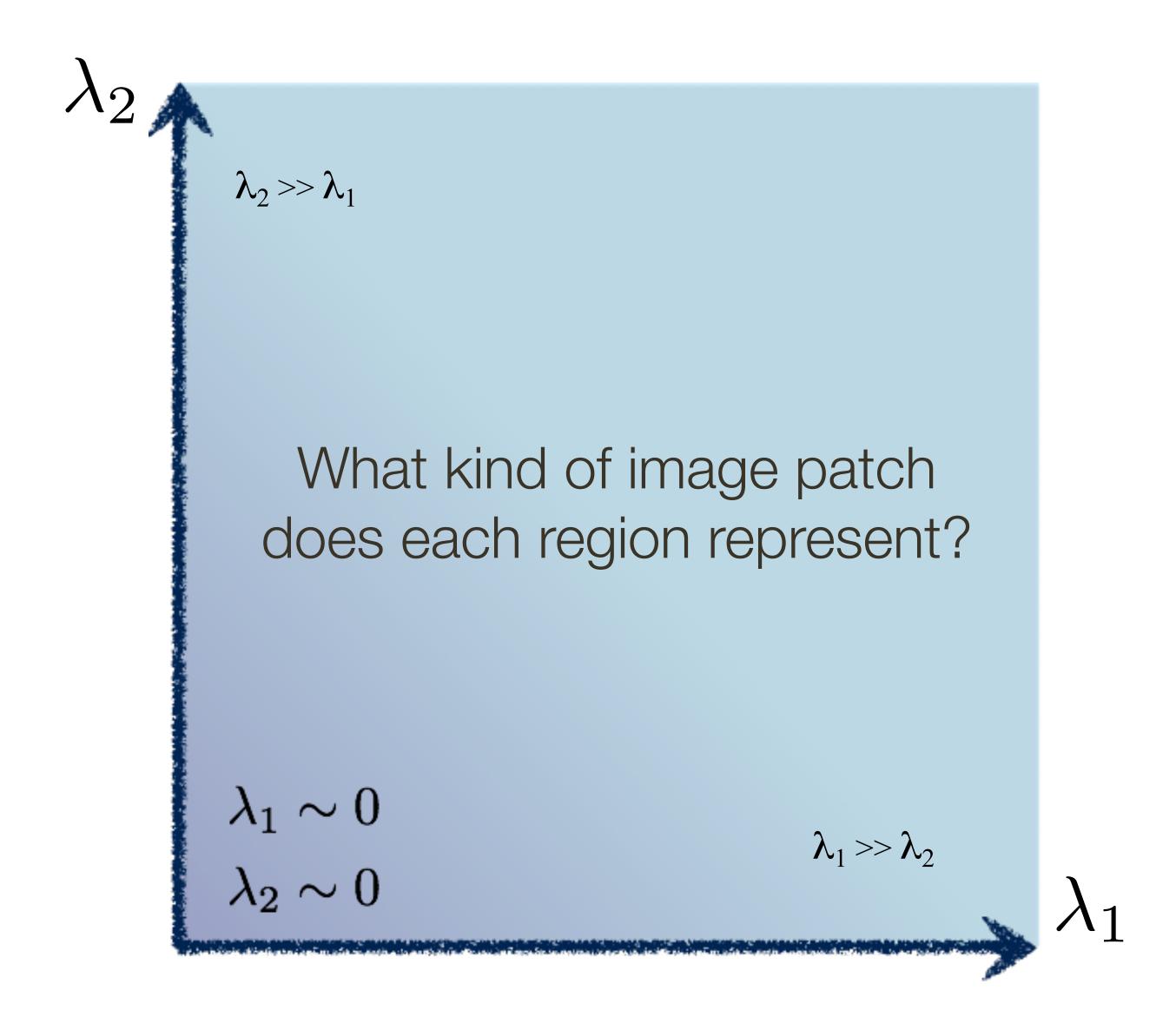
Since C is symmetric, we have $C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

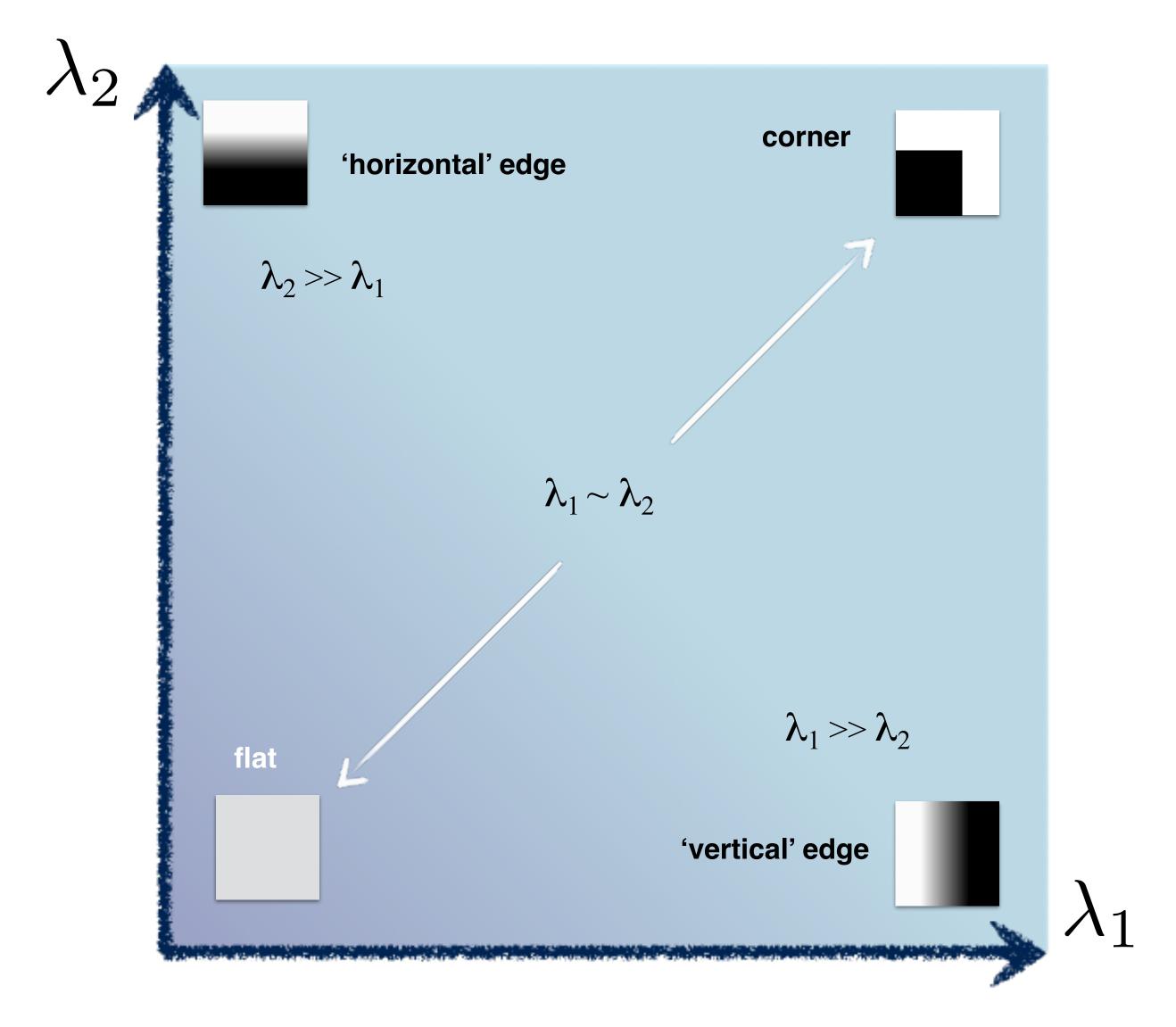
We can visualize ${\cal C}$ as an ellipse with axis lengths determined by the eigenvalues and orientation determined by ${\cal R}$

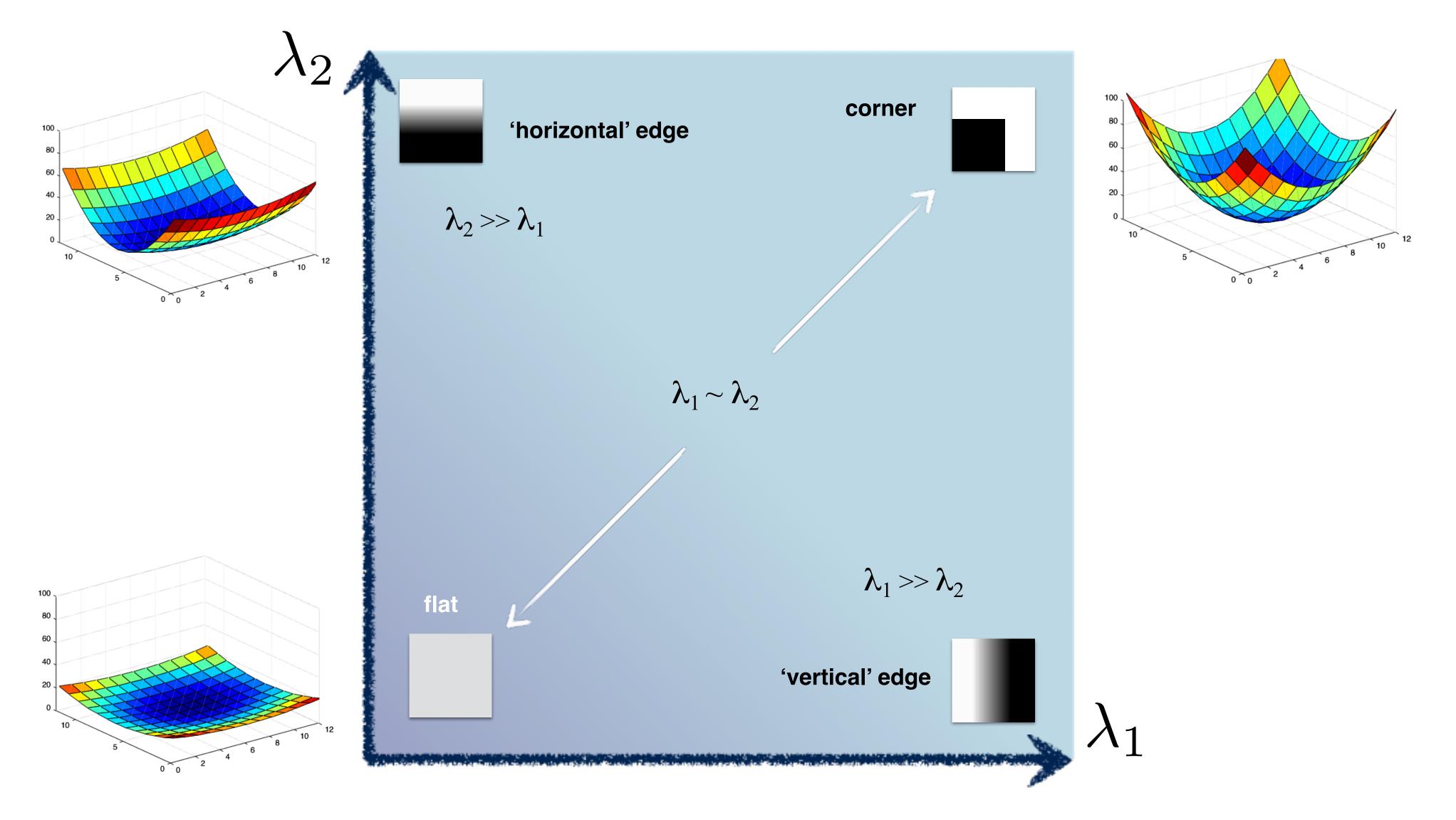
Ellipse equation:

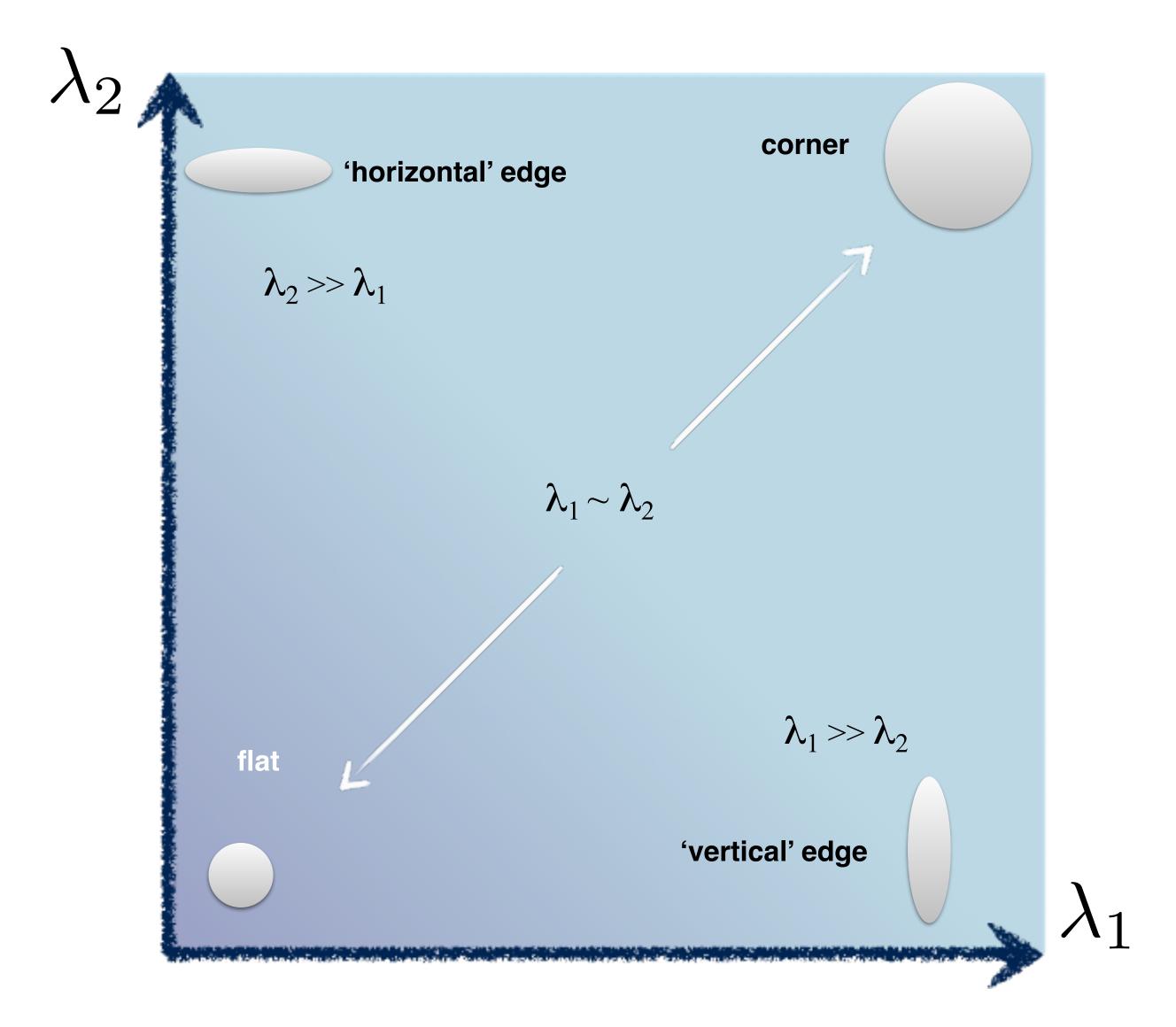
$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$











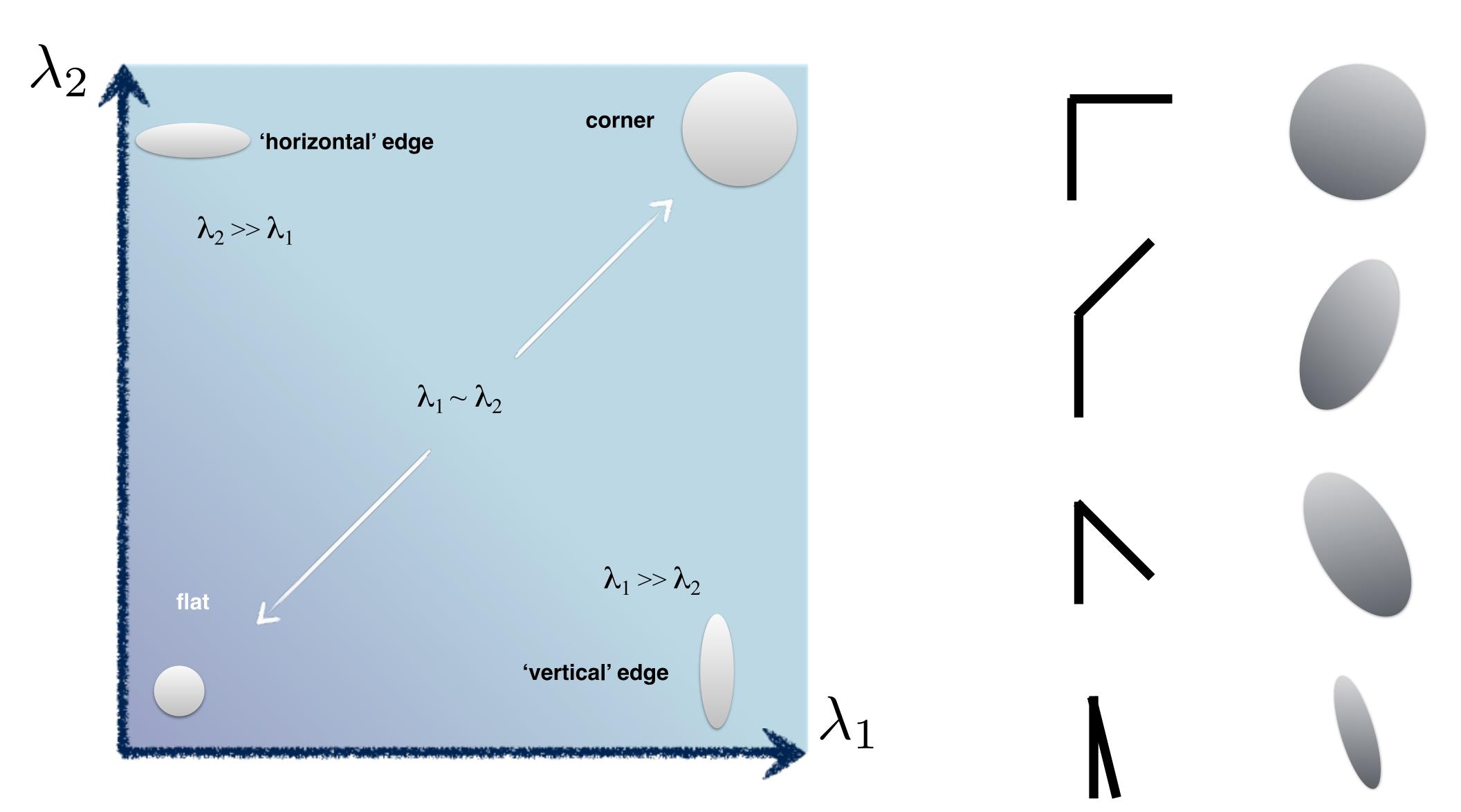
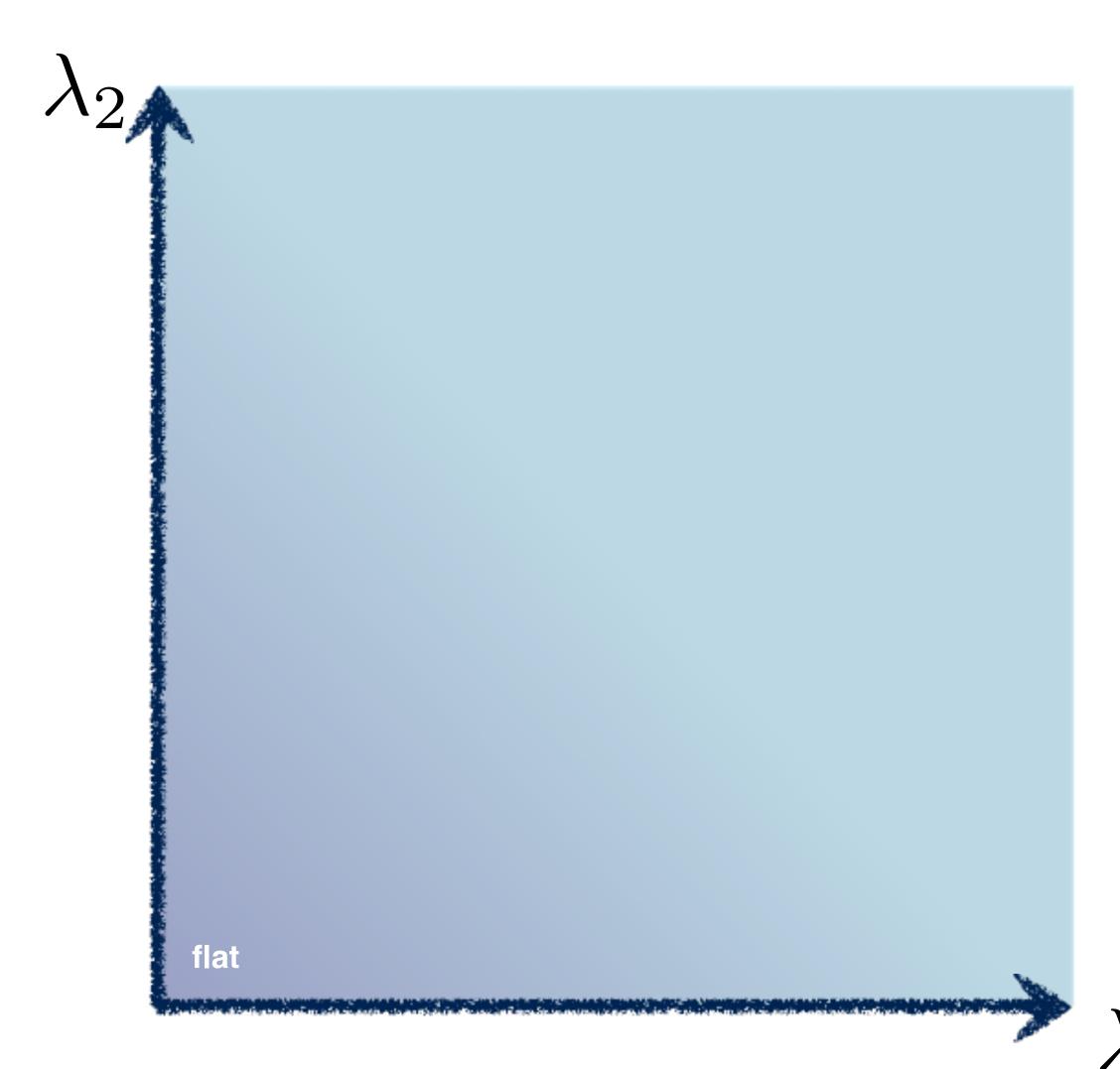


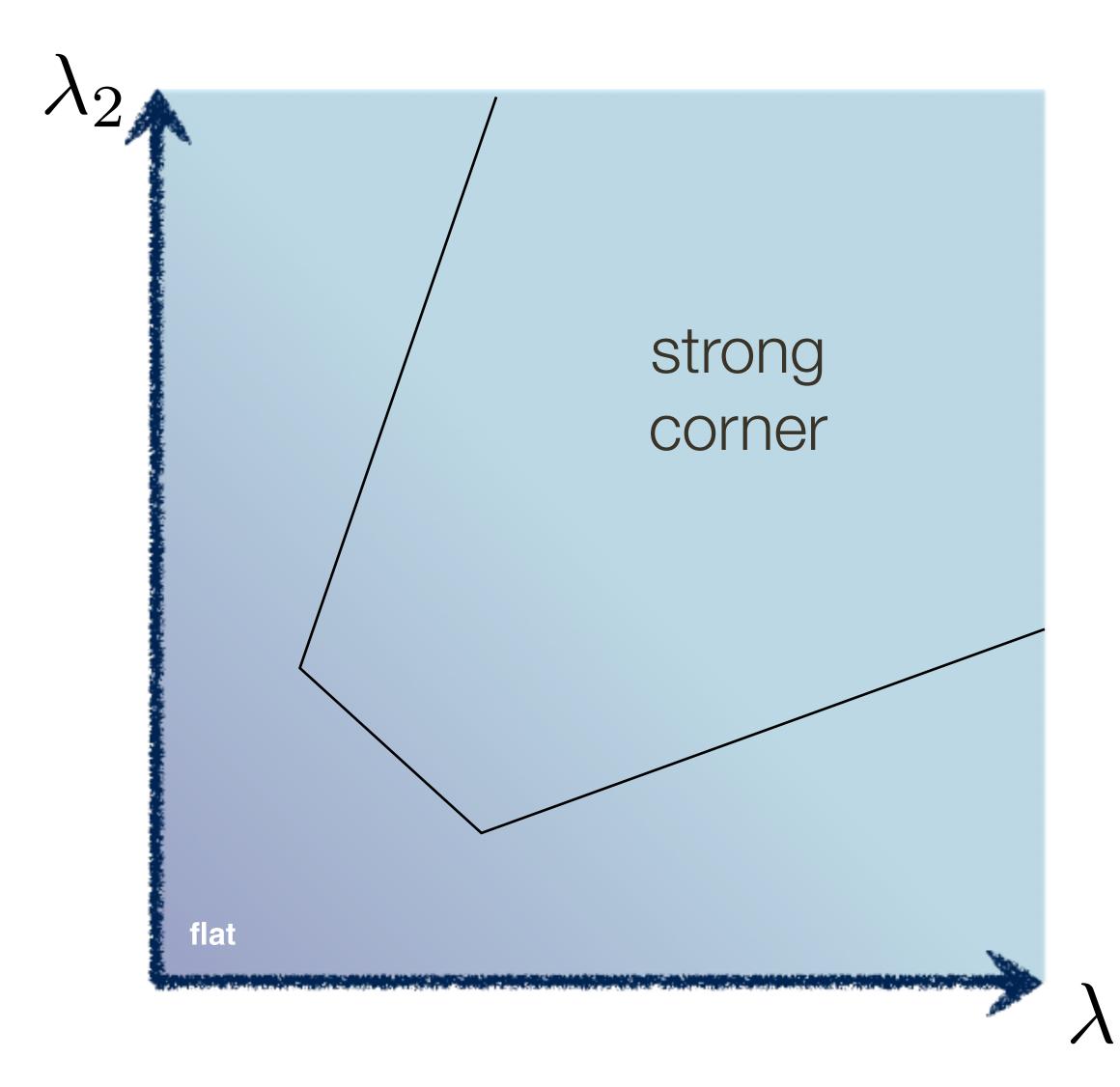
Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

(a function of)



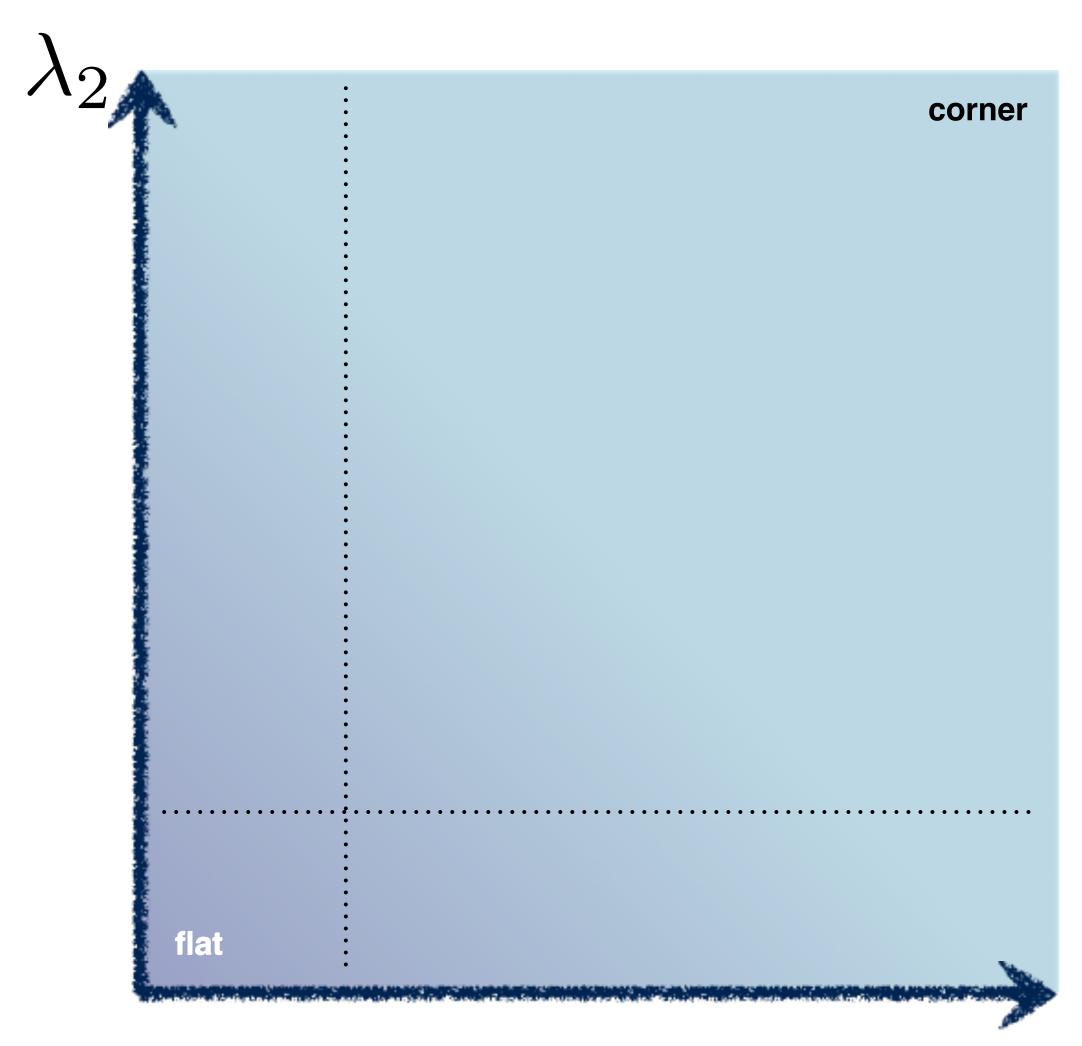
Think of a function to score 'cornerness'

(a function of)



Think of a function to score 'cornerness'

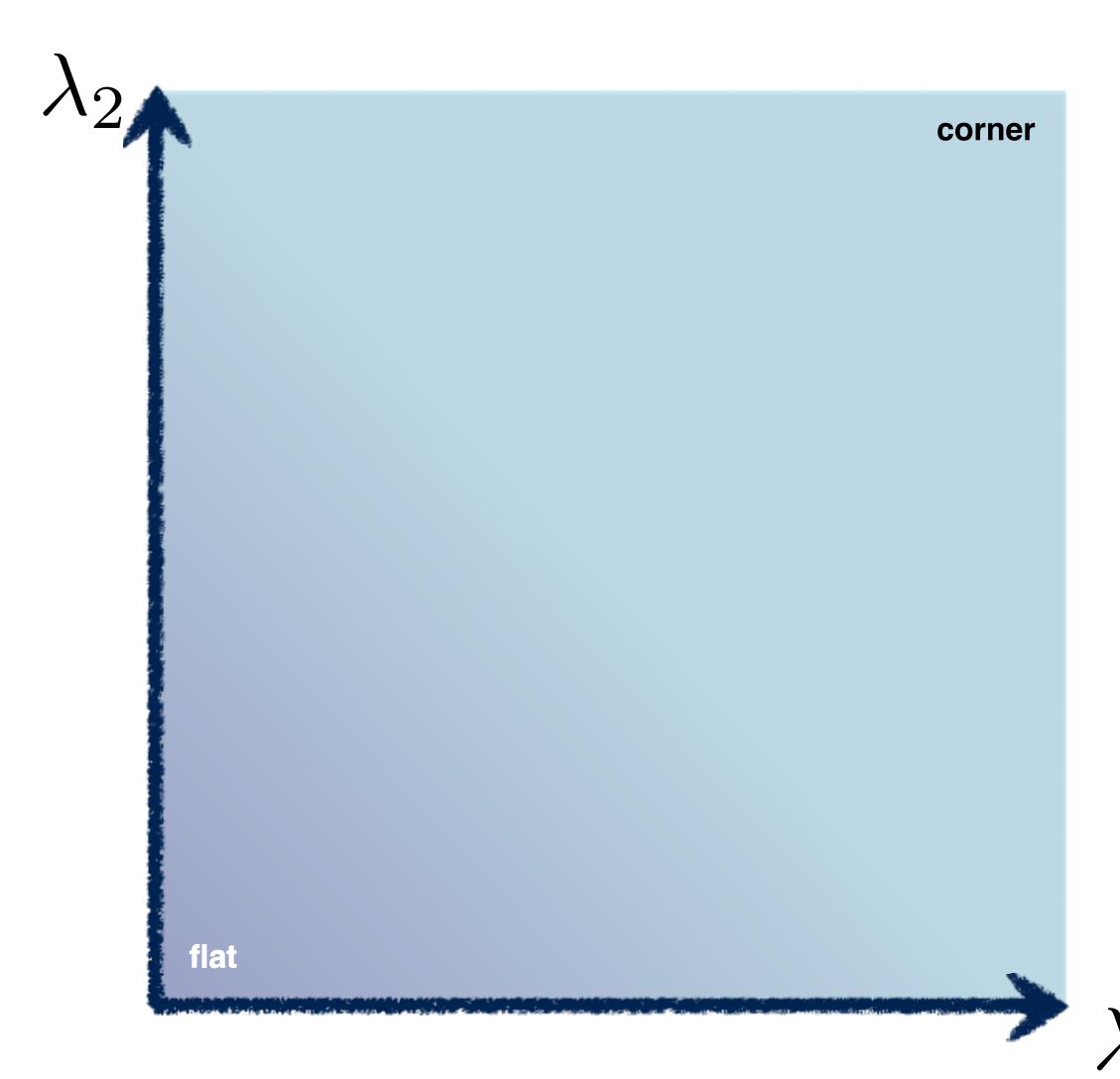
(a function of)



Use the **smallest eigenvalue** as the response function

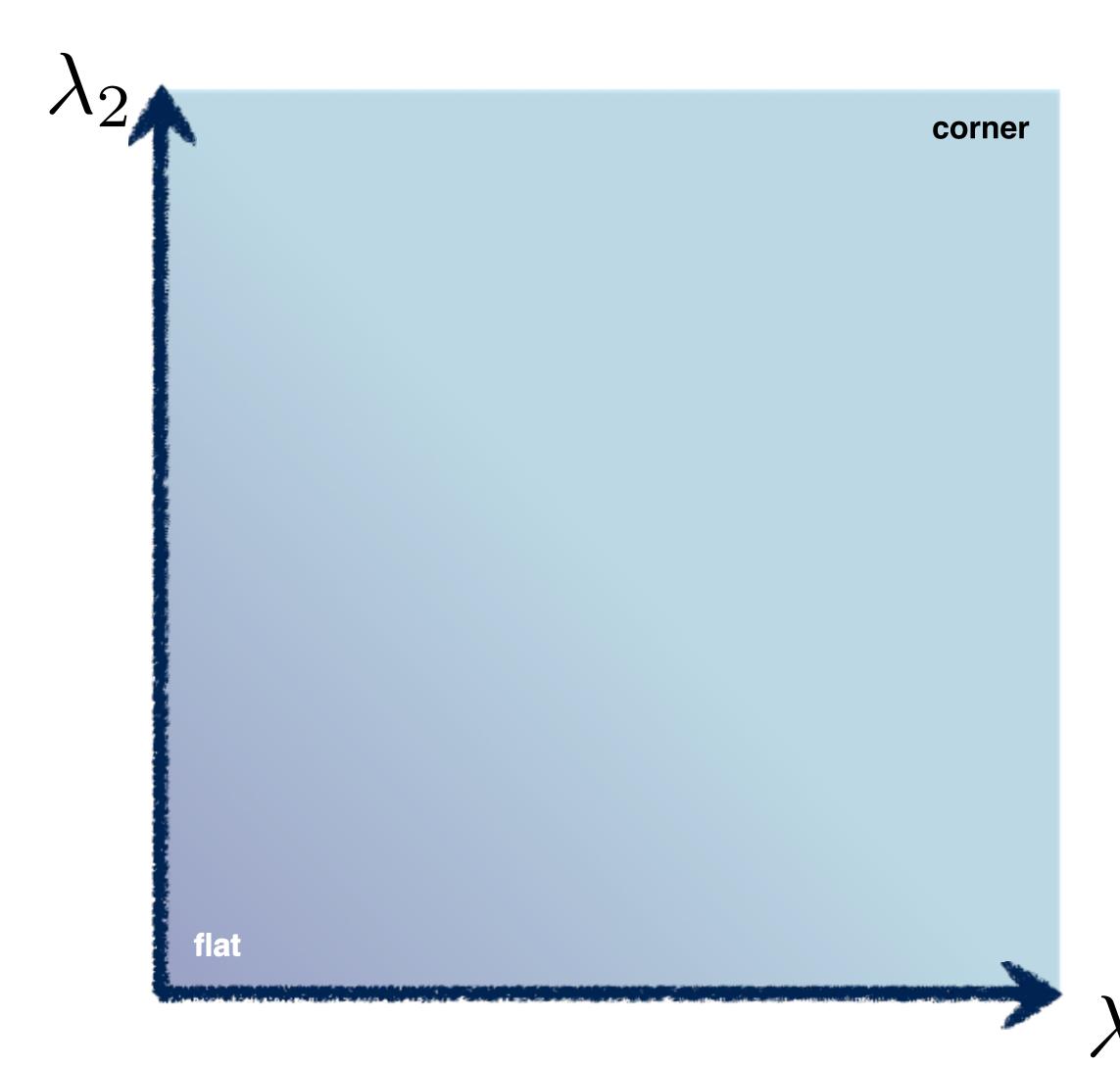
$$\min(\lambda_1, \lambda_2)$$

(a function of)



$$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$$

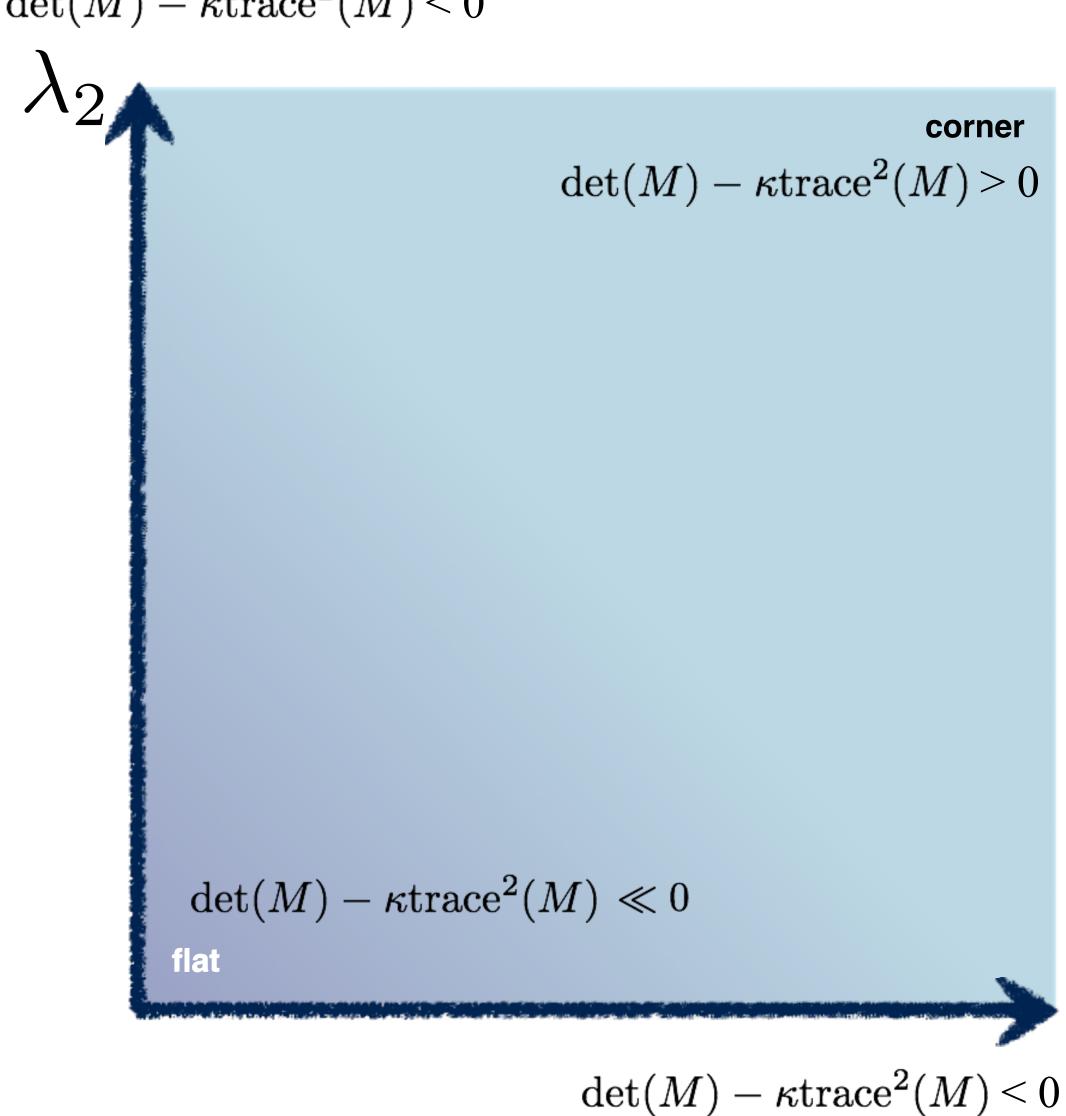
(a function of)



$$\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$= \det(C) - \kappa \operatorname{trace}^2(C)$$
(more efficient)

 $\det(M) - \kappa \operatorname{trace}^2(M) < 0$ (a function of)



$$\det(C) - \kappa \operatorname{trace}^2(C)$$
 (more efficient)

 $\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$

(a function of)

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

Kanade & Tomasi (1994)

$$\min(\lambda_1,\lambda_2)$$

Nobel (1998)

$$\frac{\det(C)}{\operatorname{trace}(C) + \epsilon}$$

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's
- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Compute the Covariance Matrix

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

Compute the Covariance Matrix

 $E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^{2}$ Error Window Shifted Intensity function function

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures change of intensity for small shifts ... remember AutoCorrelation)

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

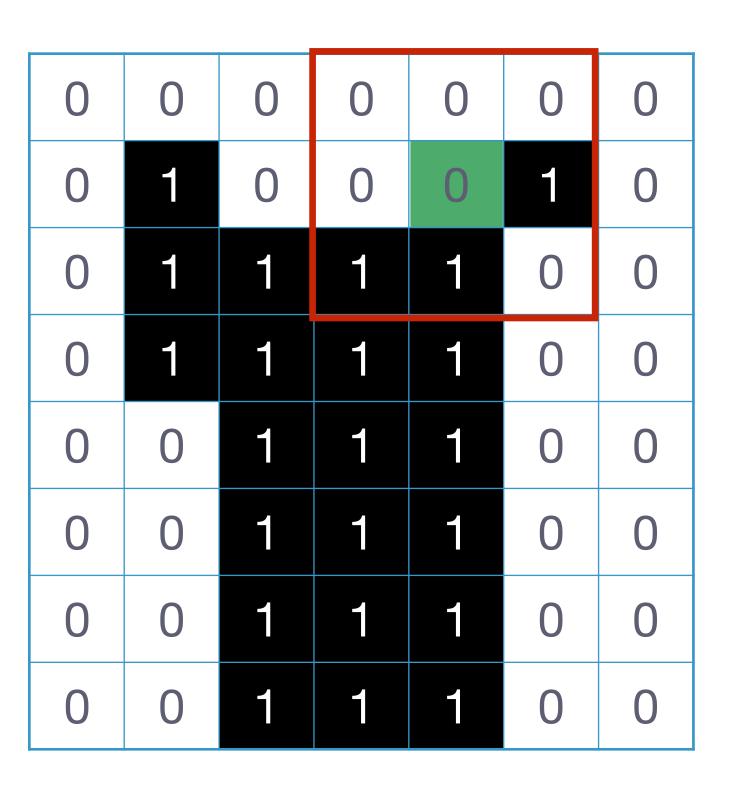
$$I_x = \frac{\partial I}{\partial x}$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$

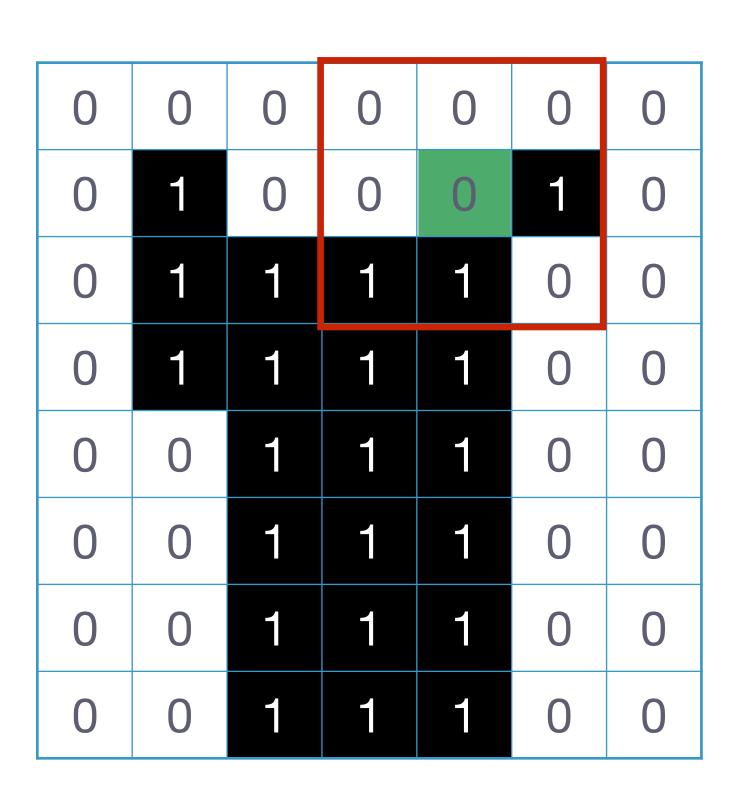


$$\sum \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

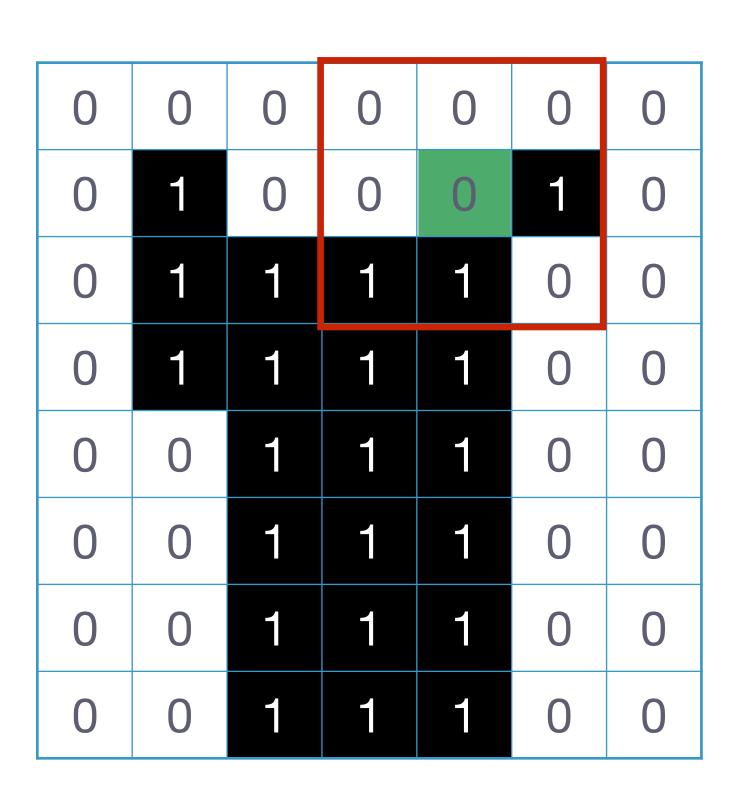
$$I_x = \frac{\partial I}{\partial x}$$



$$\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

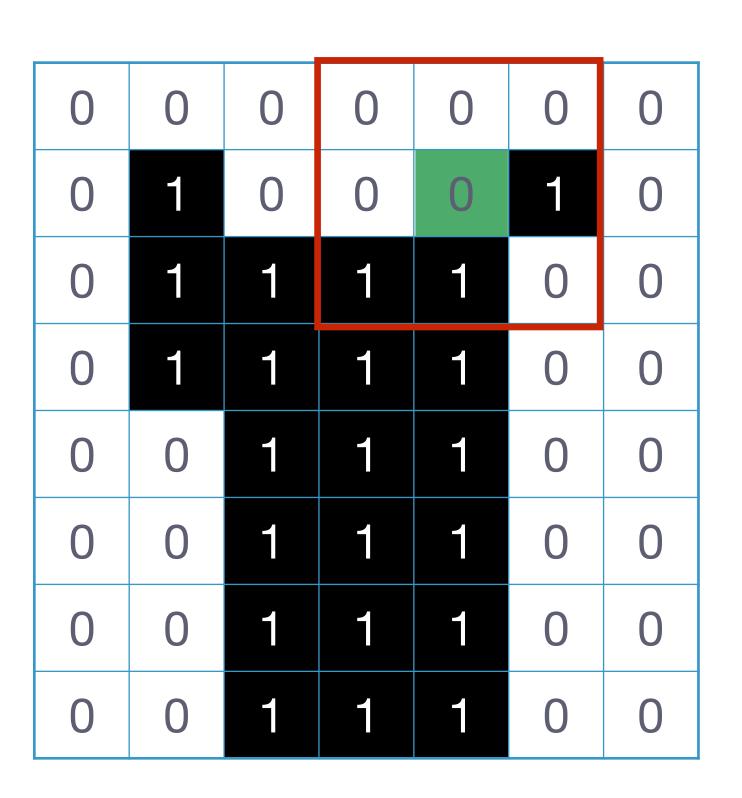


$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial u}$$



$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

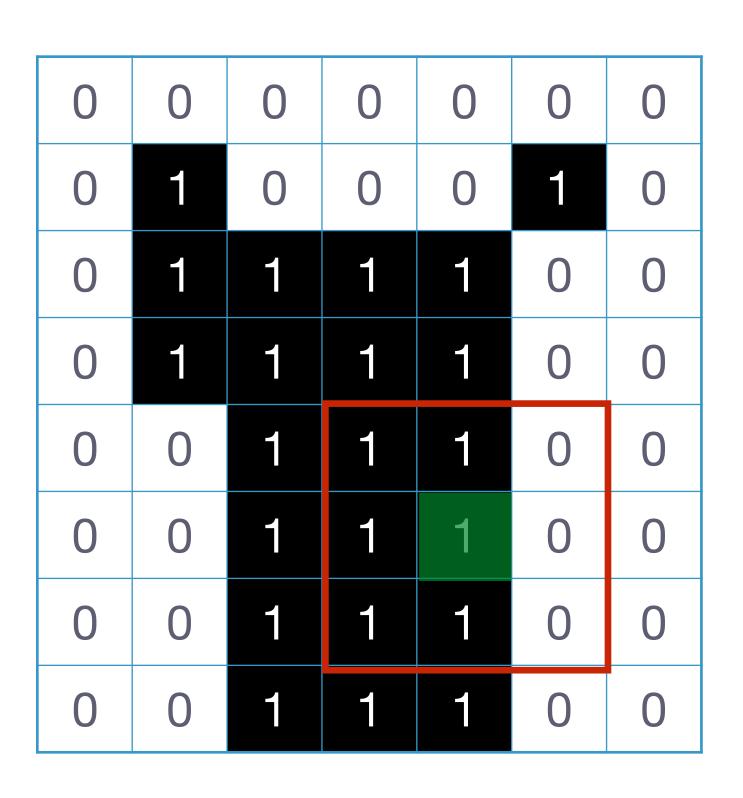
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

Lets compute a measure of "corner-ness" for the green pixel:



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \Longrightarrow \lambda_1 = 3; \lambda_2 = 0$$

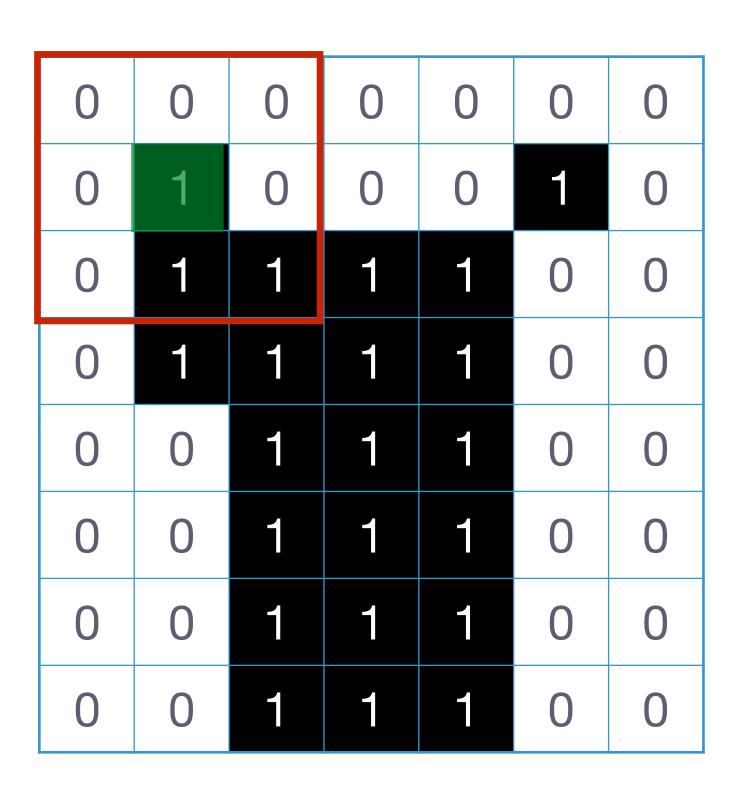
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^{2}(\mathbf{C}) = -0.36$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$

						-
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's
- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Properties: Rotational Invariance



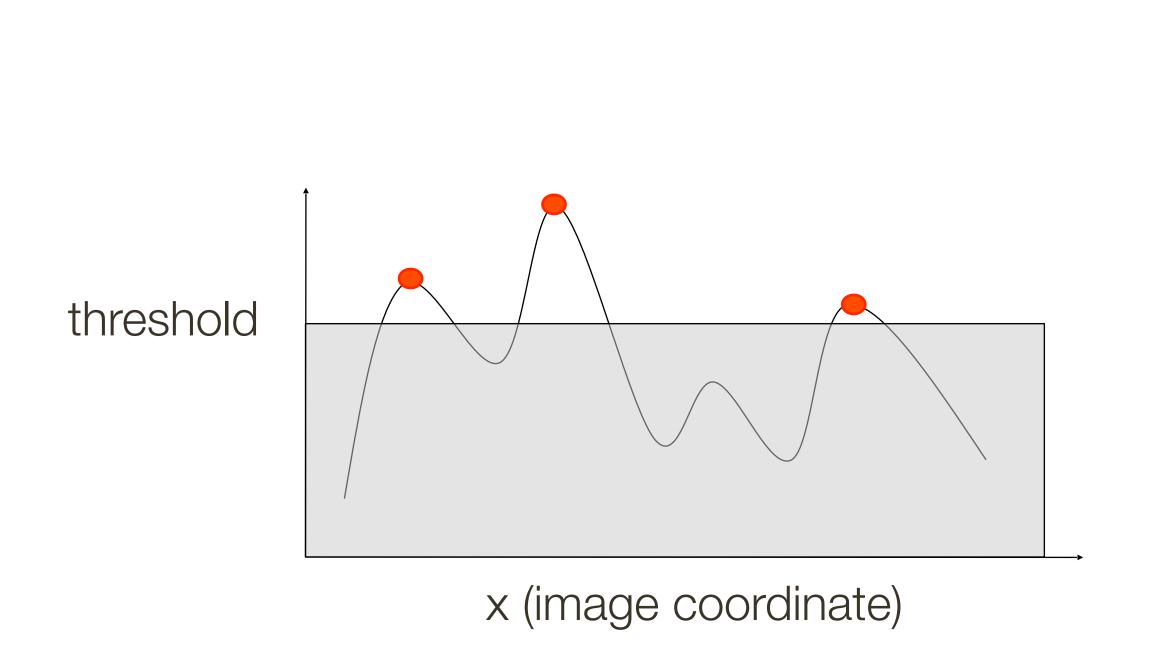
Ellipse rotates but its shape (eigenvalues) remains the same

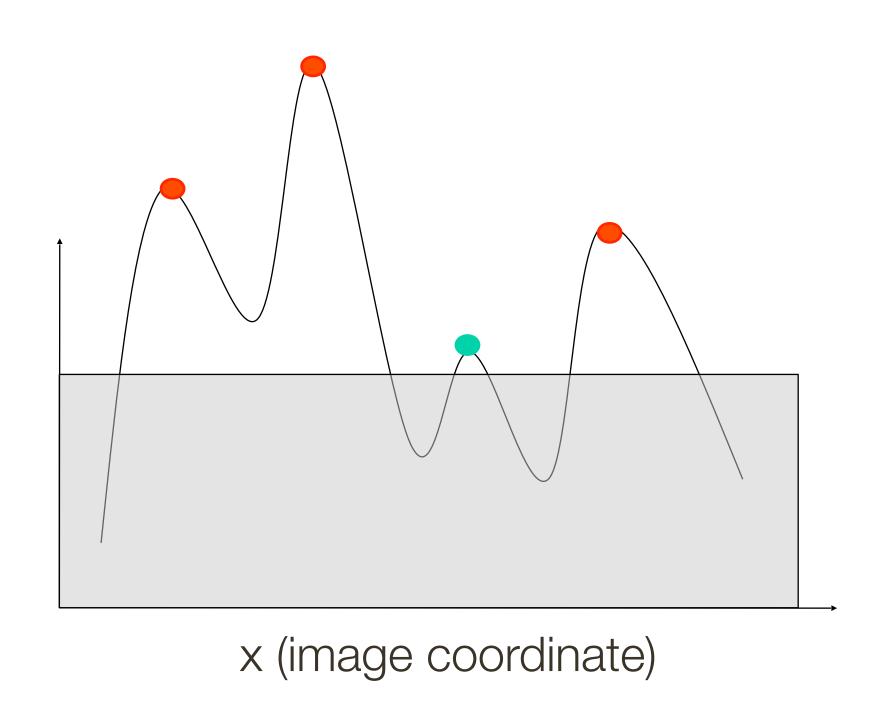
Corner response is invariant to image rotation

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

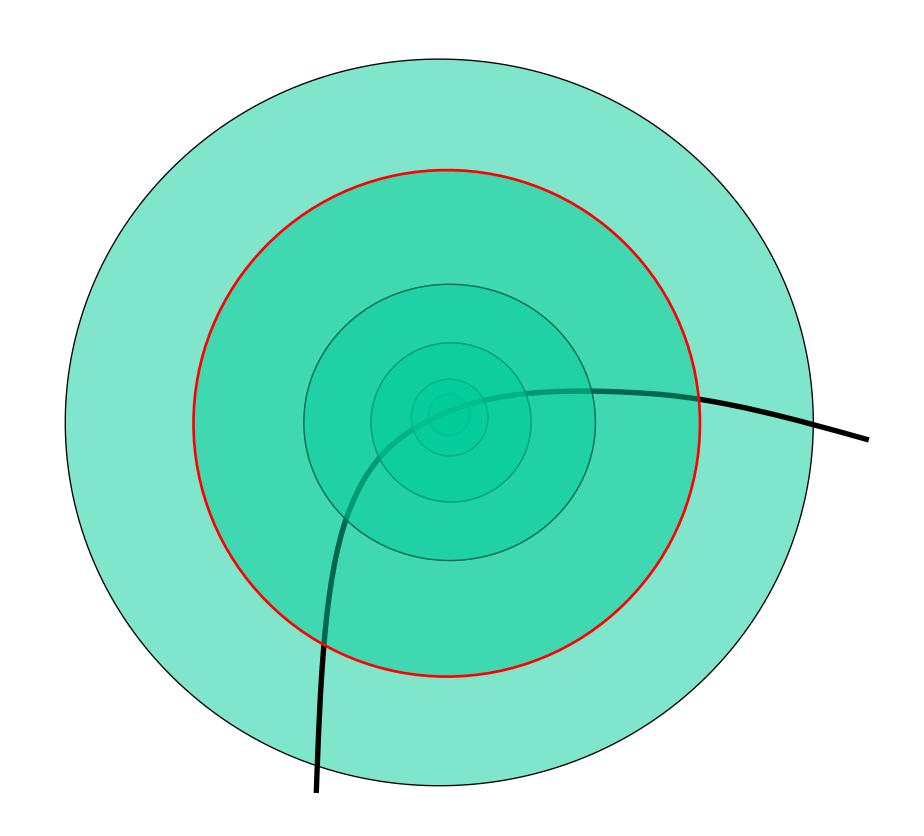


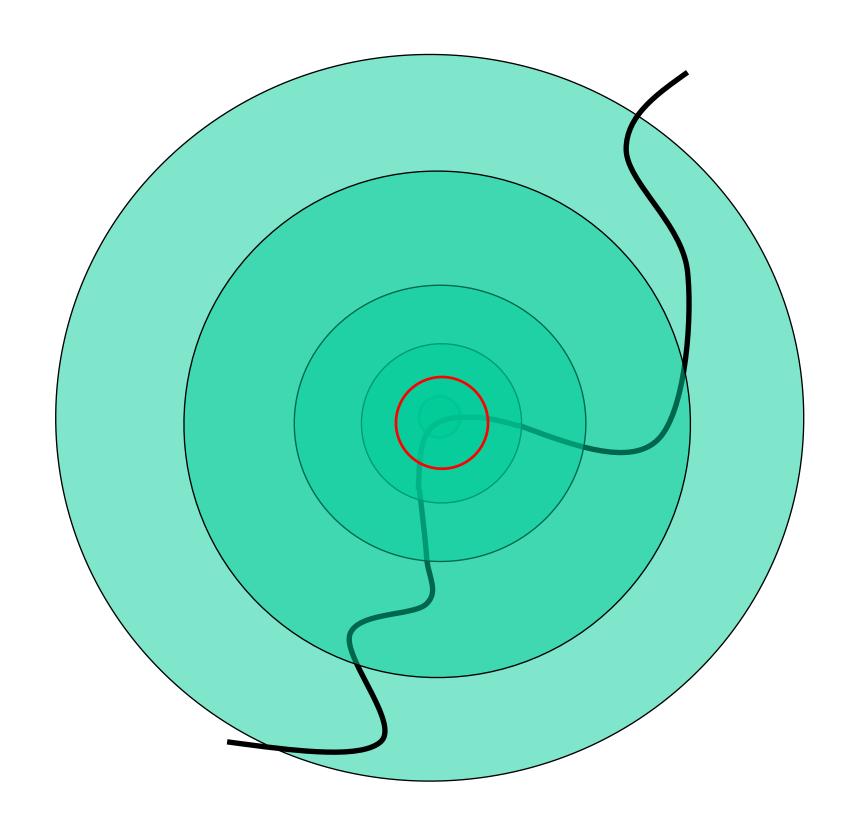


Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Properties: NOT Invariant to Scale Changes

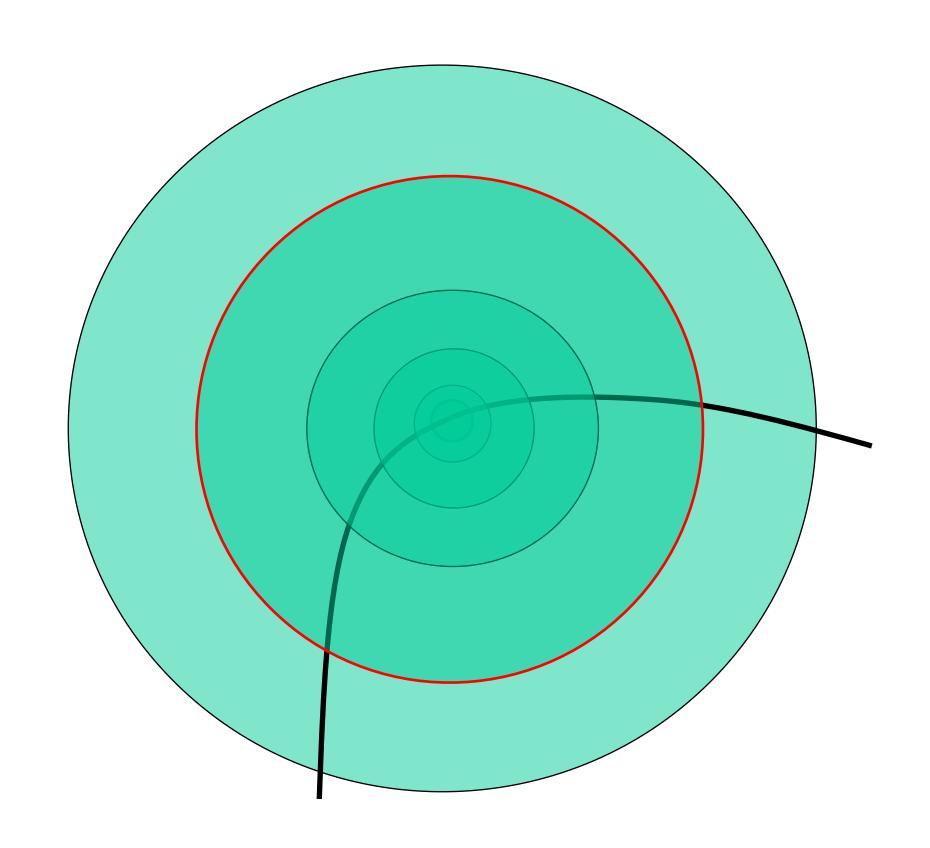
Intuitively ...

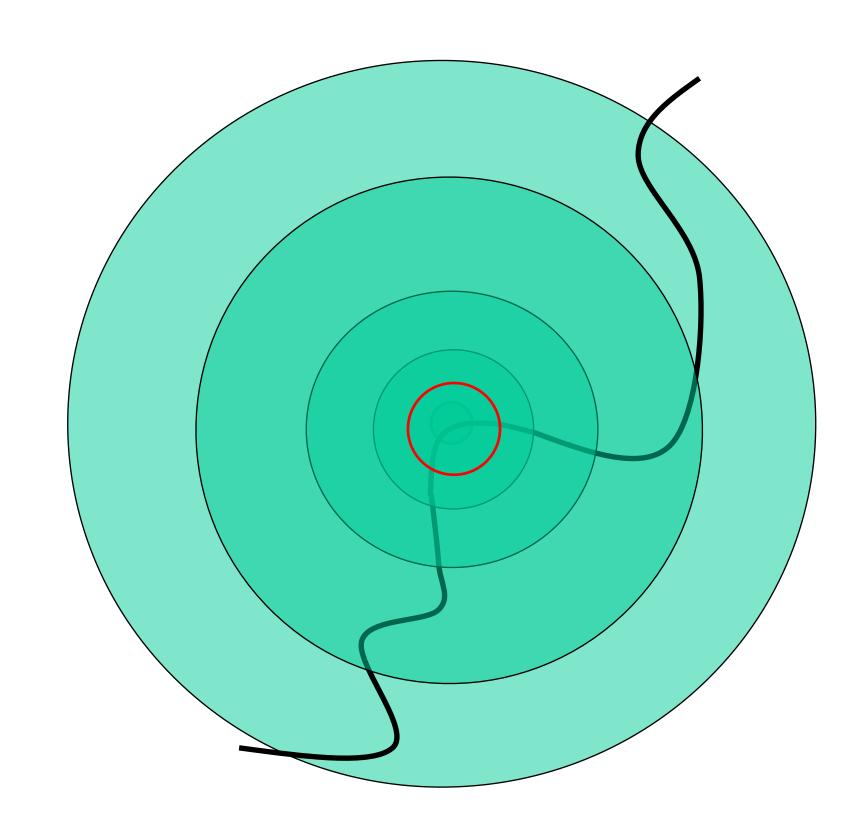




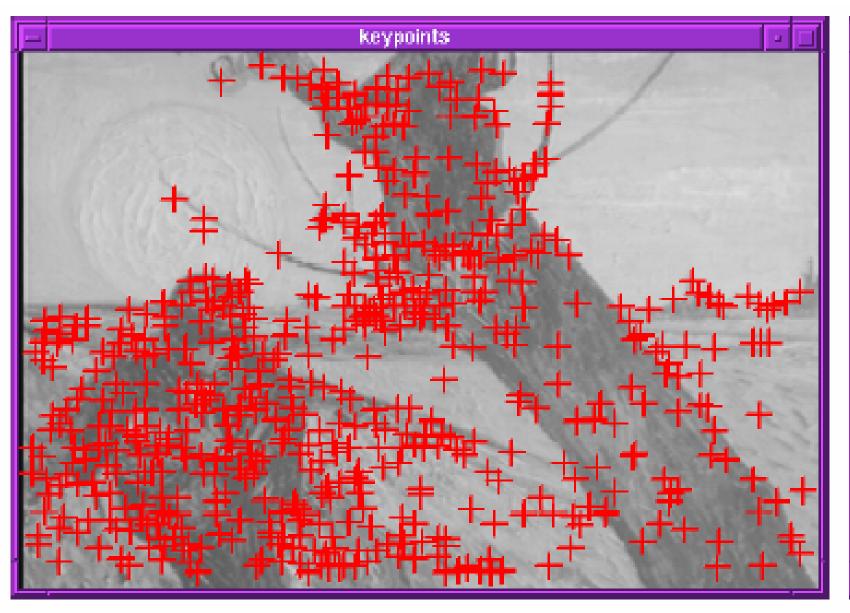
Intuitively ...

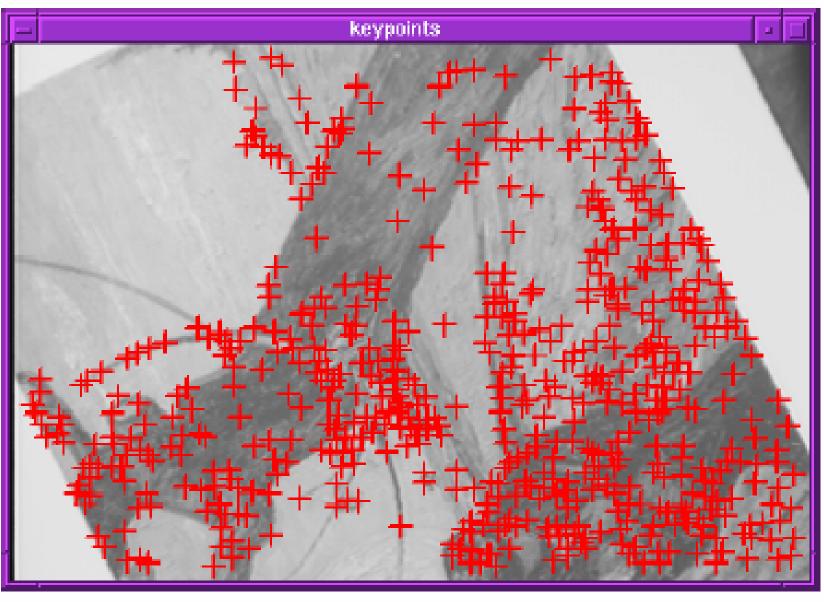
Find local maxima in both position and scale





Example 1:

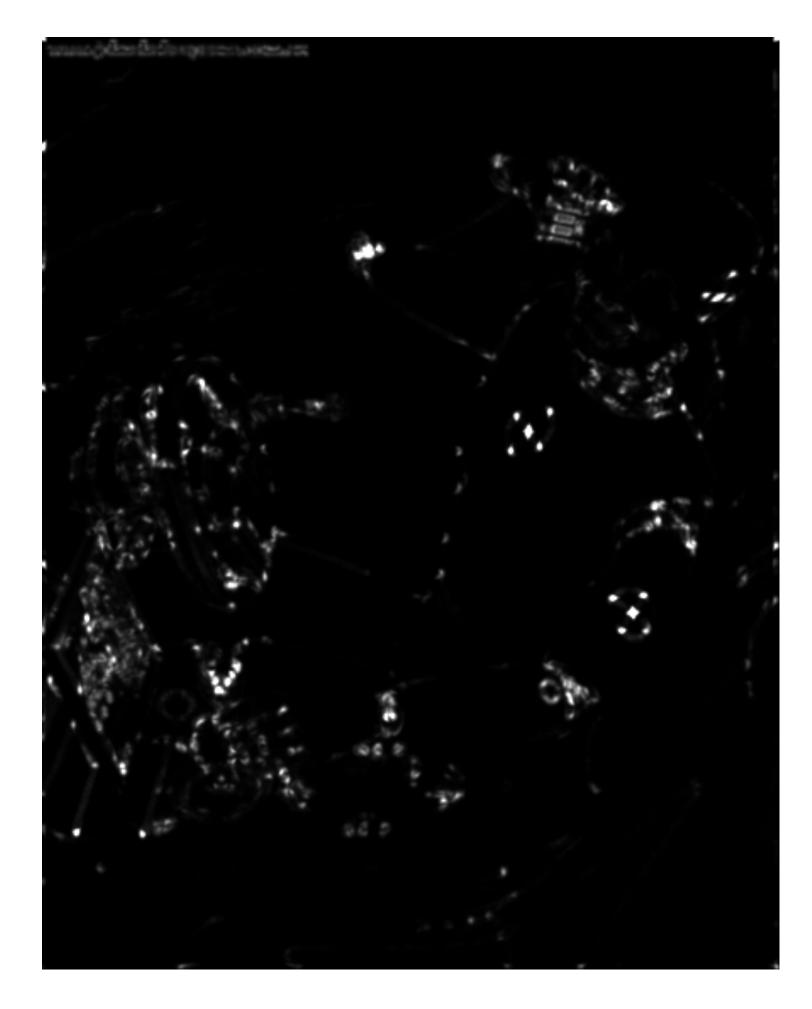




Example 2: Wagon Wheel (Harris Results)

 $\sigma=1$ (219 points) $\sigma=2$ (155 points) $\sigma=3$ (110 points) $\sigma=4$ (87 points)

Example 3: Crash Test Dummy (Harris Result)

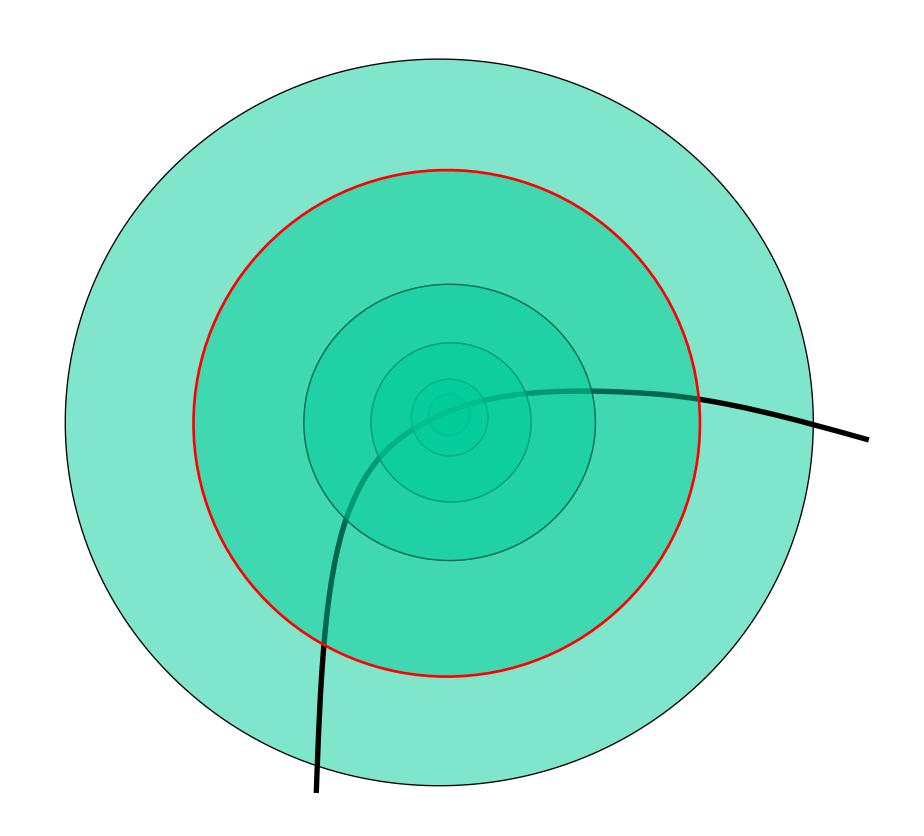


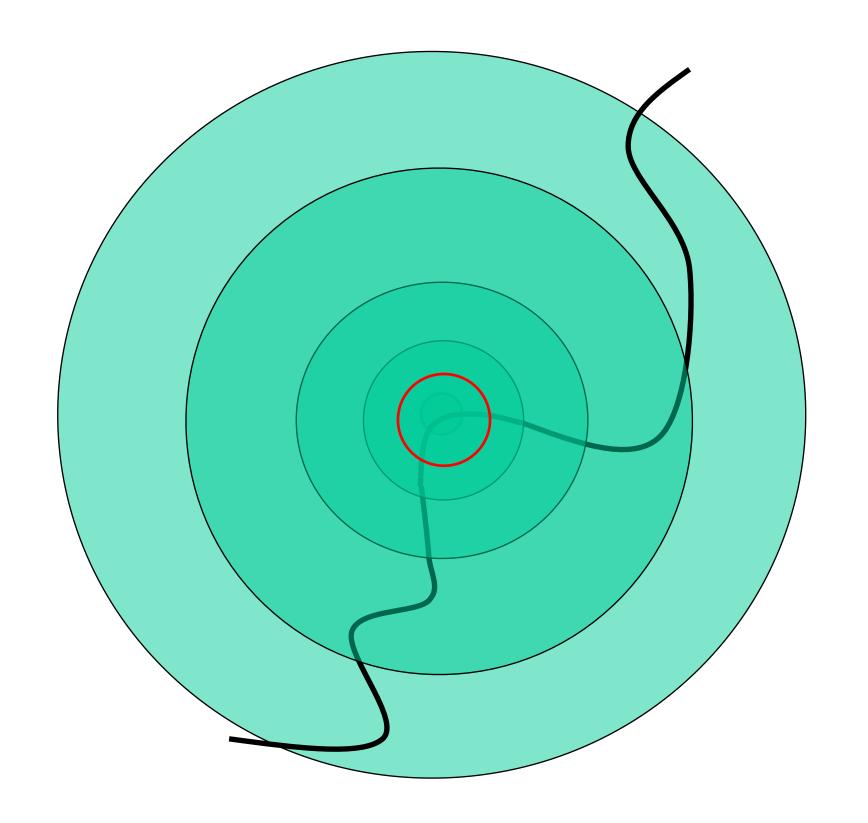
corner response image

 $\sigma = 1$ (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald

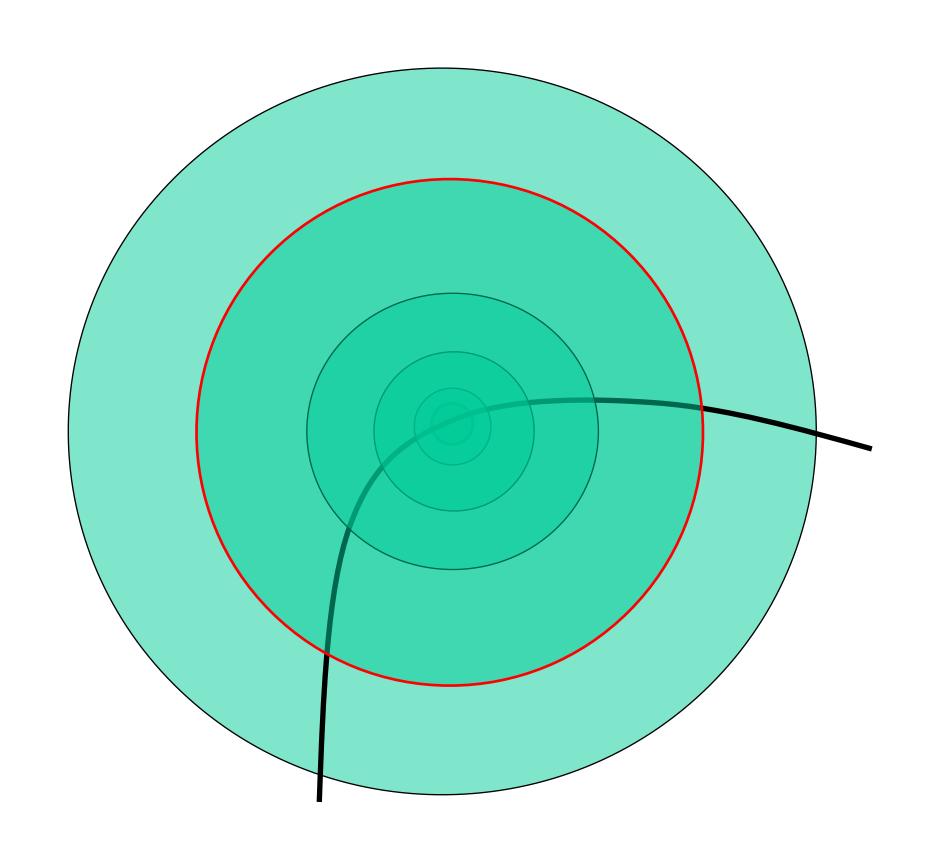
Intuitively ...

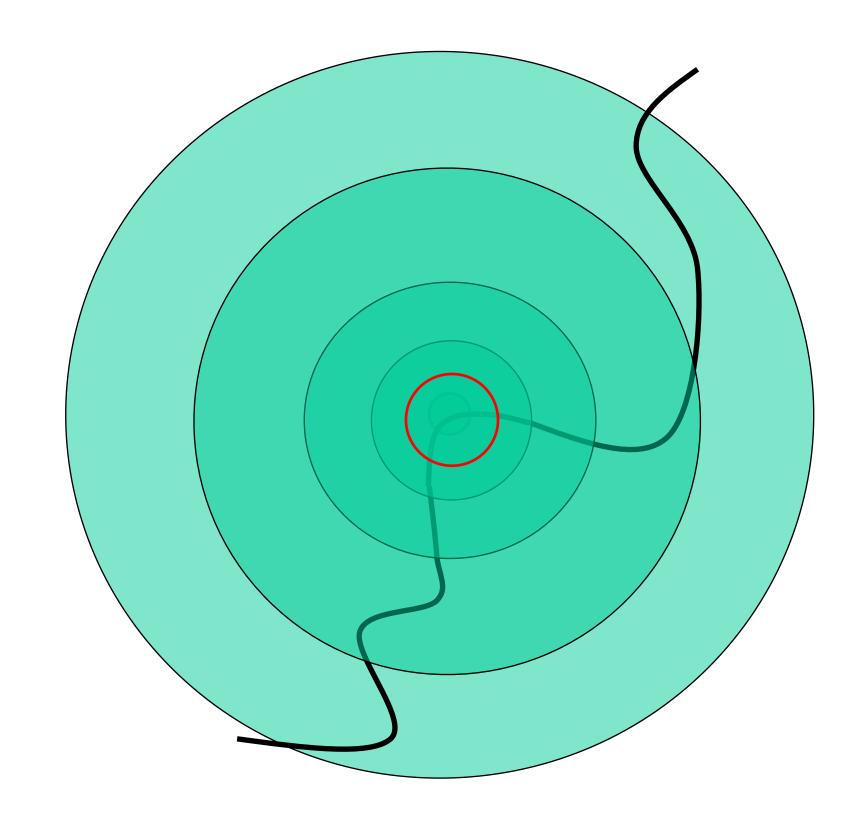




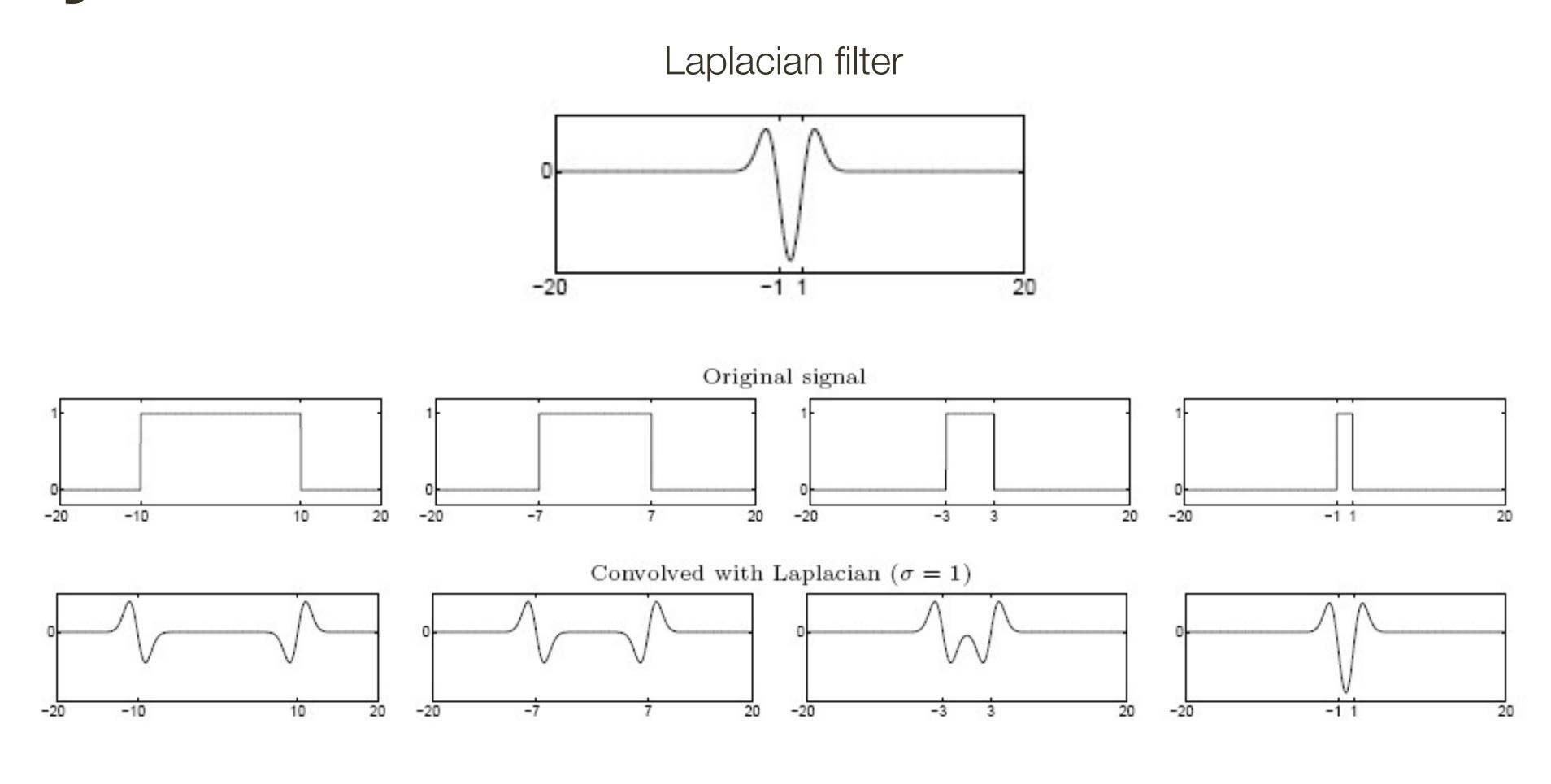
Intuitively ...

Find local maxima in both position and scale





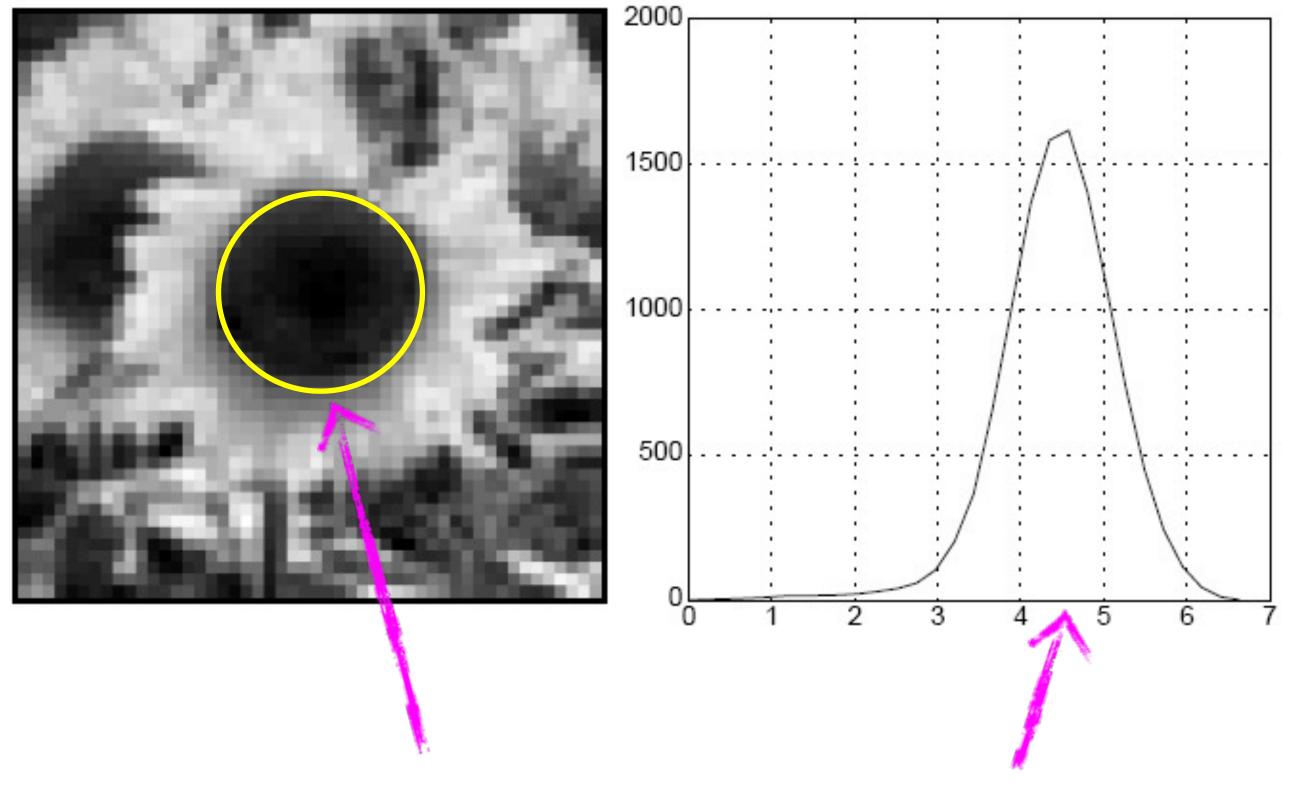
Formally ...



Highest response when the signal has the same **characteristic scale** as the filter

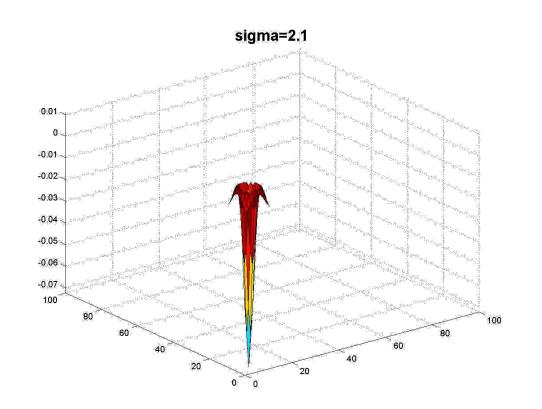
Characteristic Scale

characteristic scale - the scale that produces peak filter response

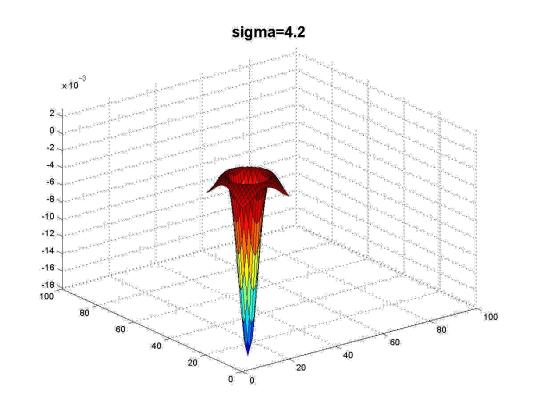


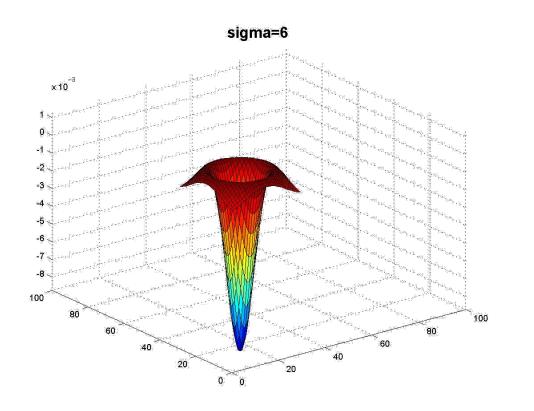
characteristic scale

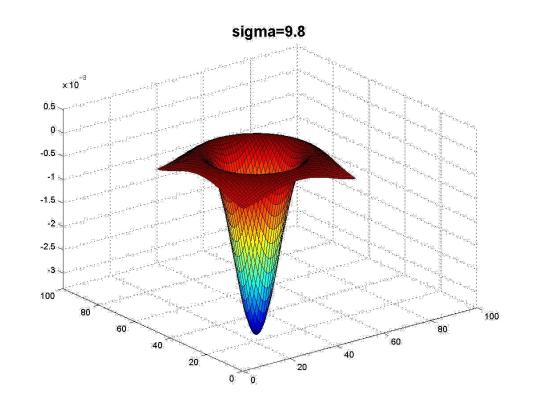
we need to search over characteristic scales

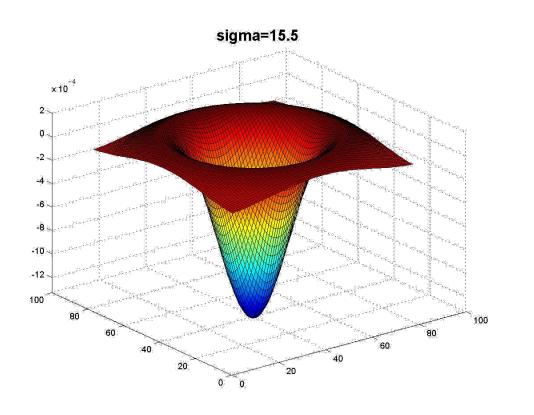


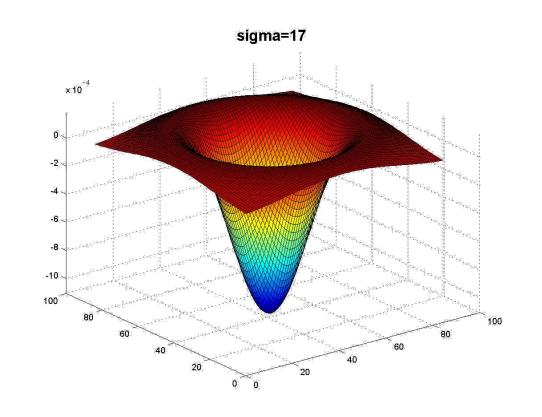
jet color scale blue: low, red: high





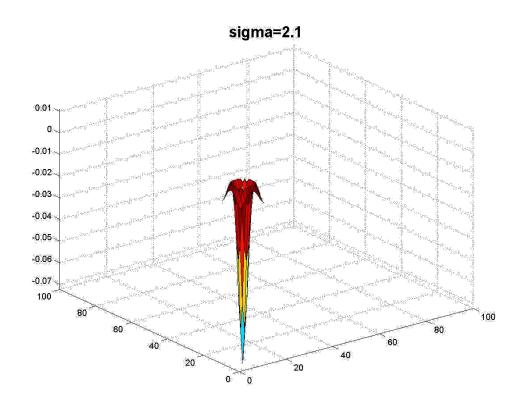




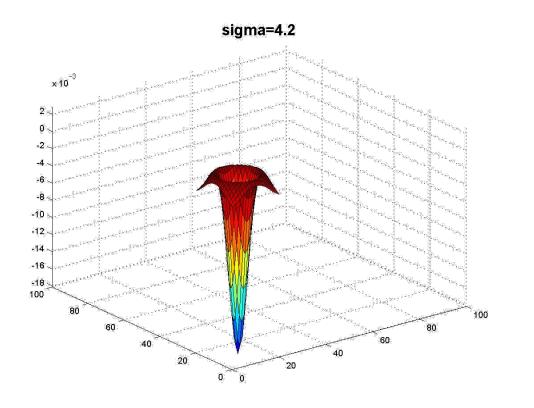


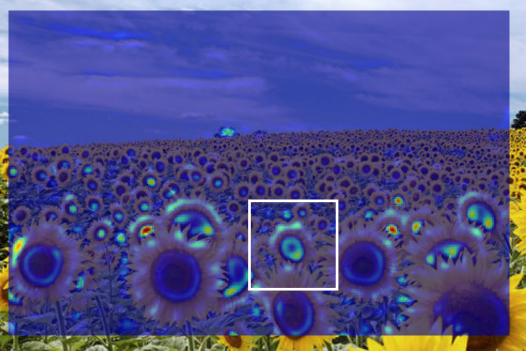
Full size

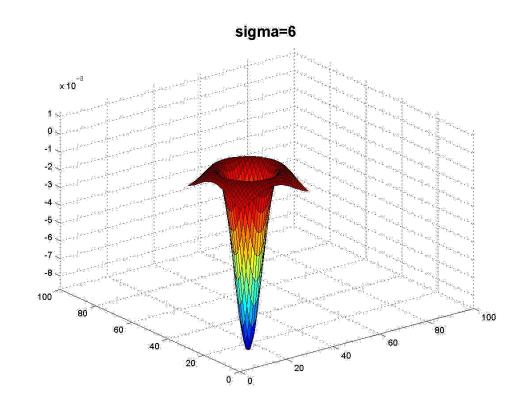
3/4 size

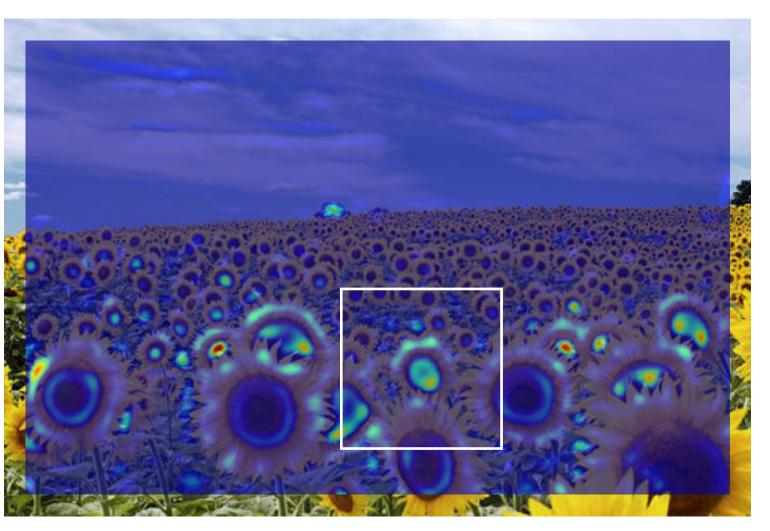


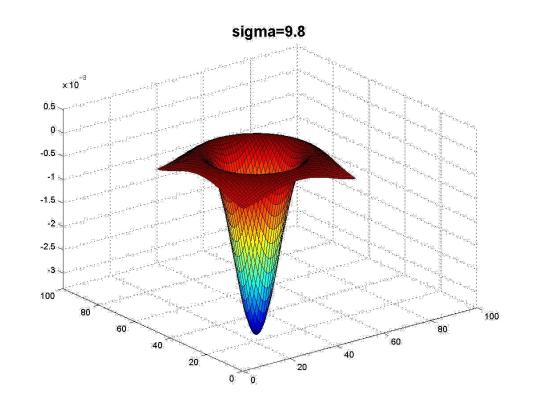


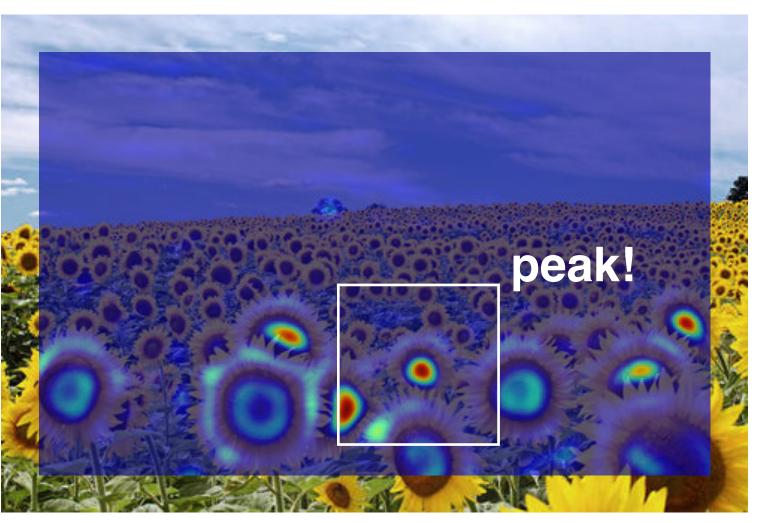


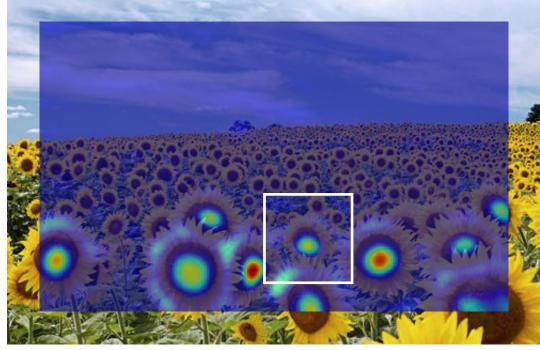


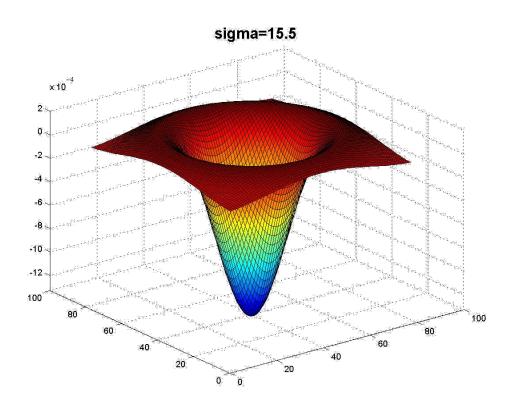


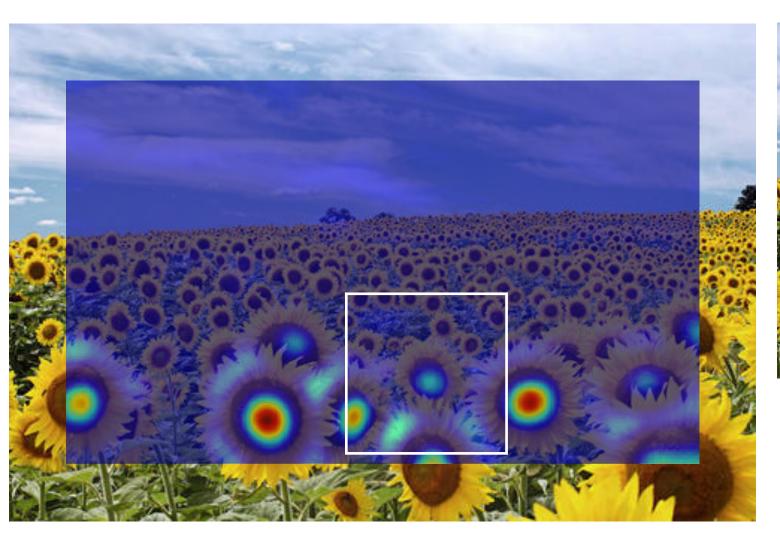


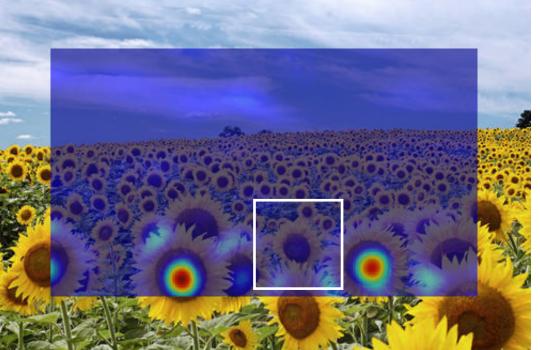


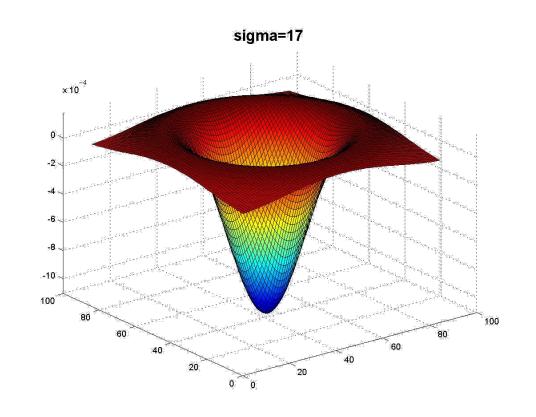


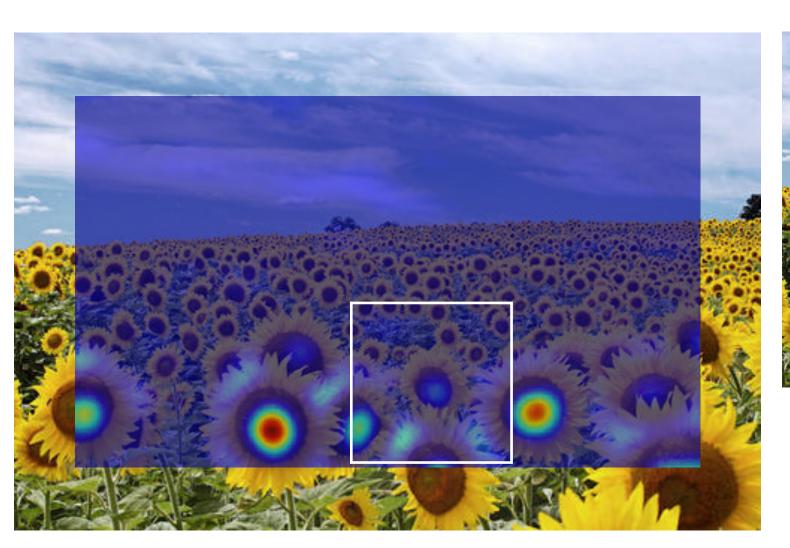


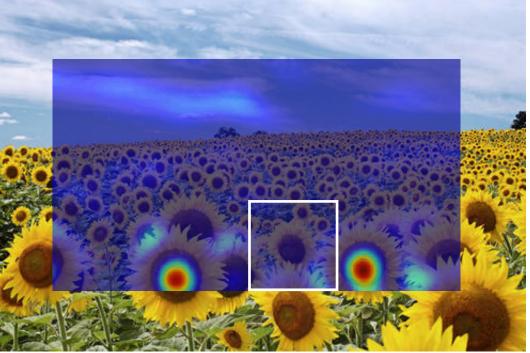






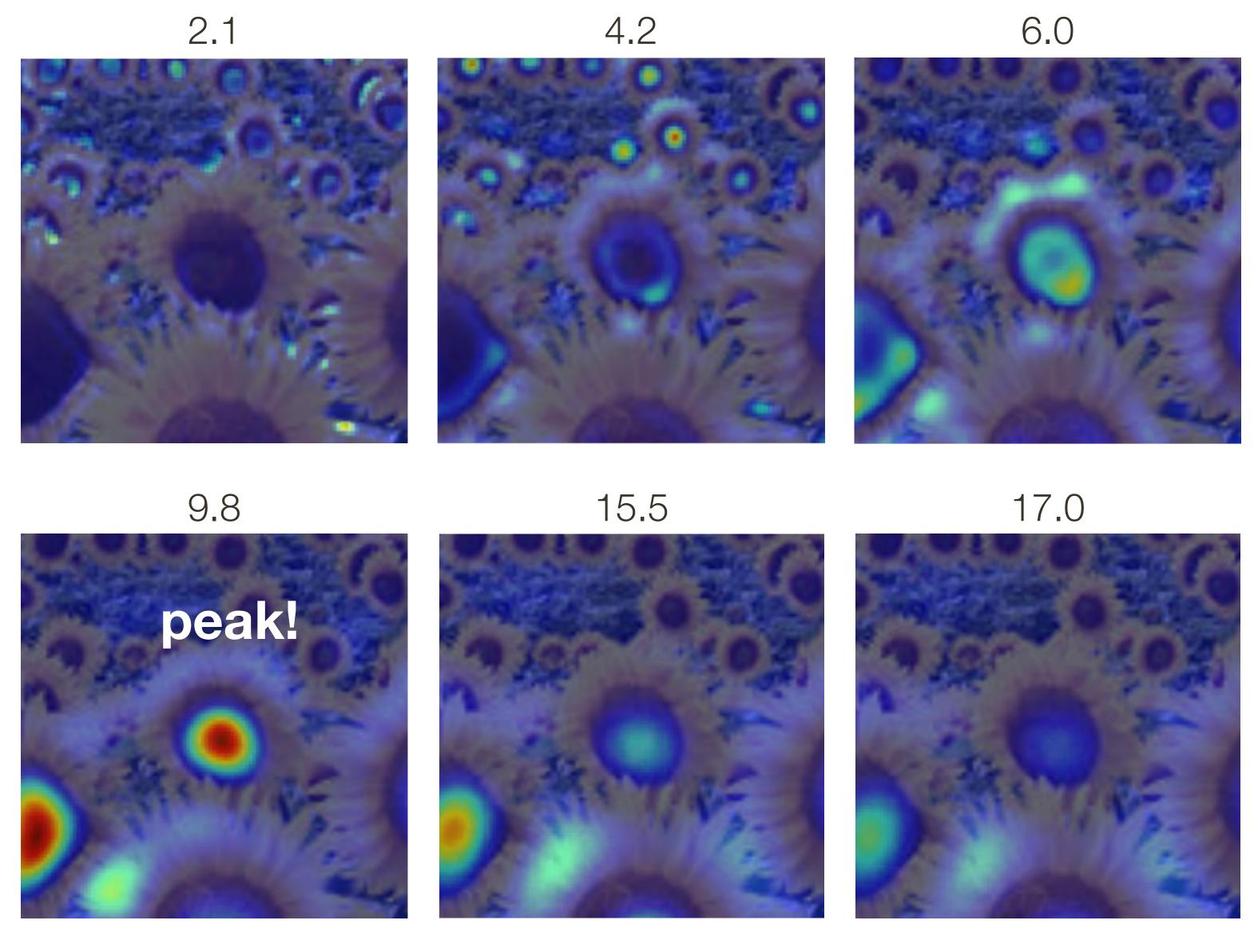


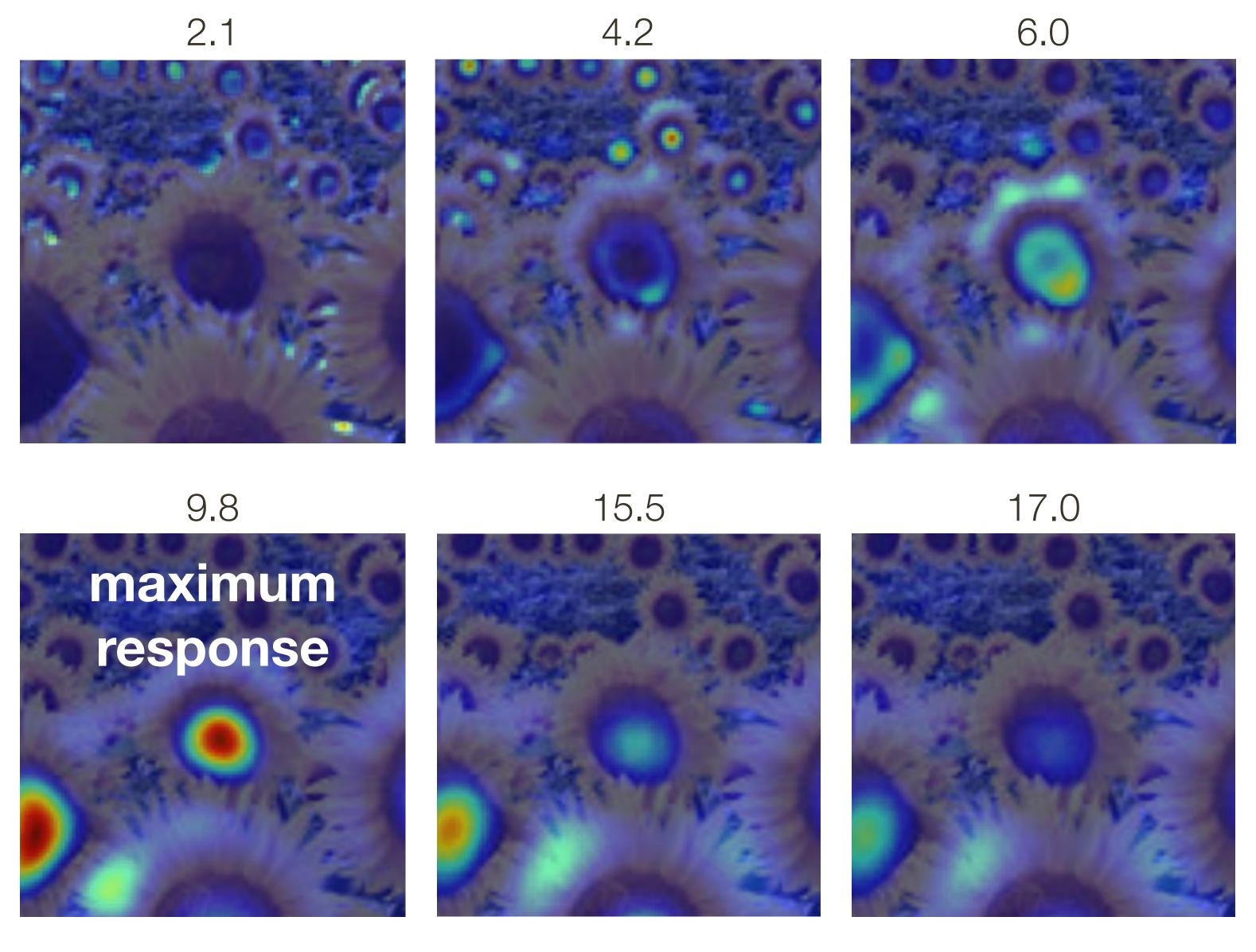




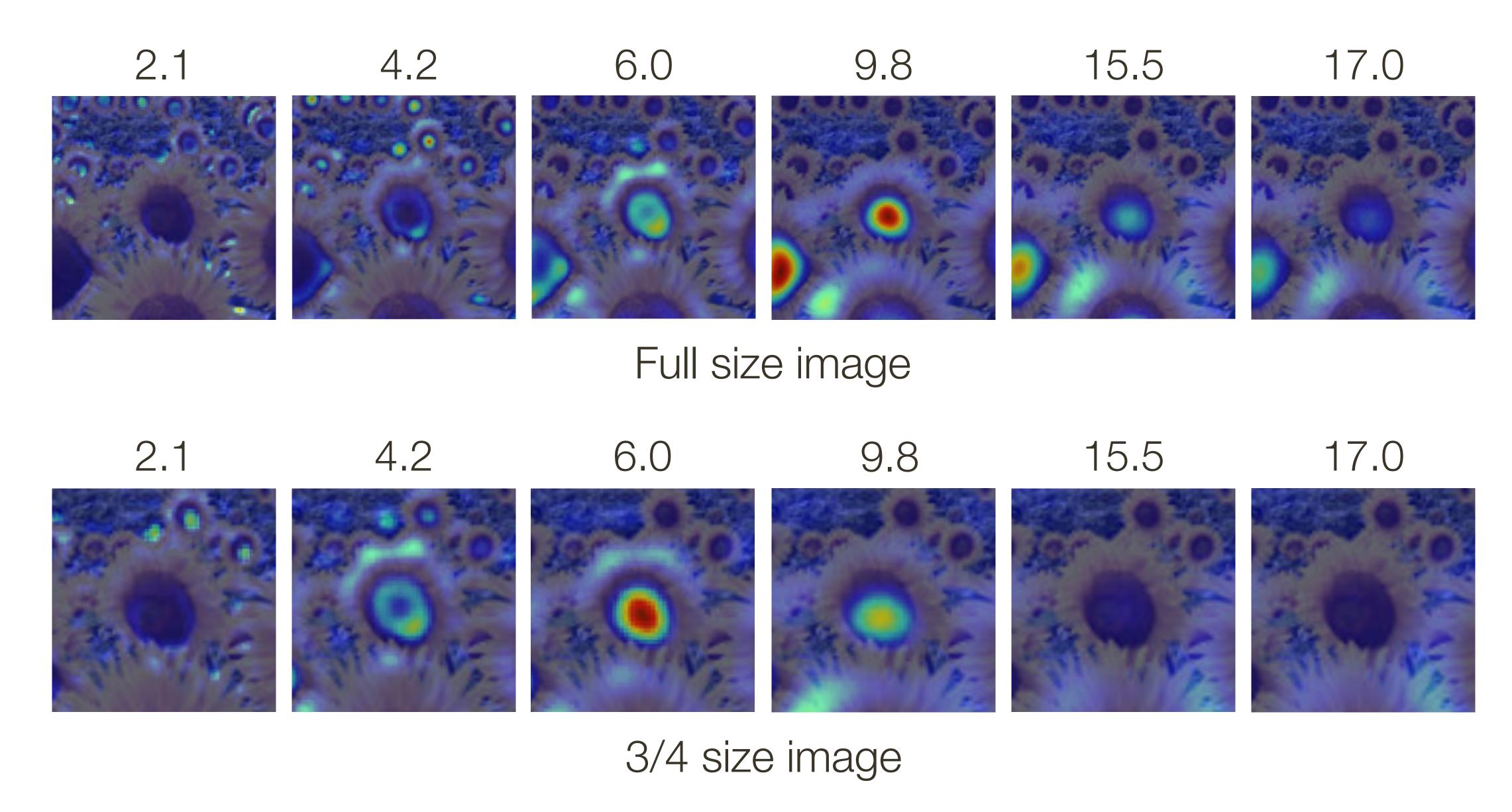
Full size

3/4 size



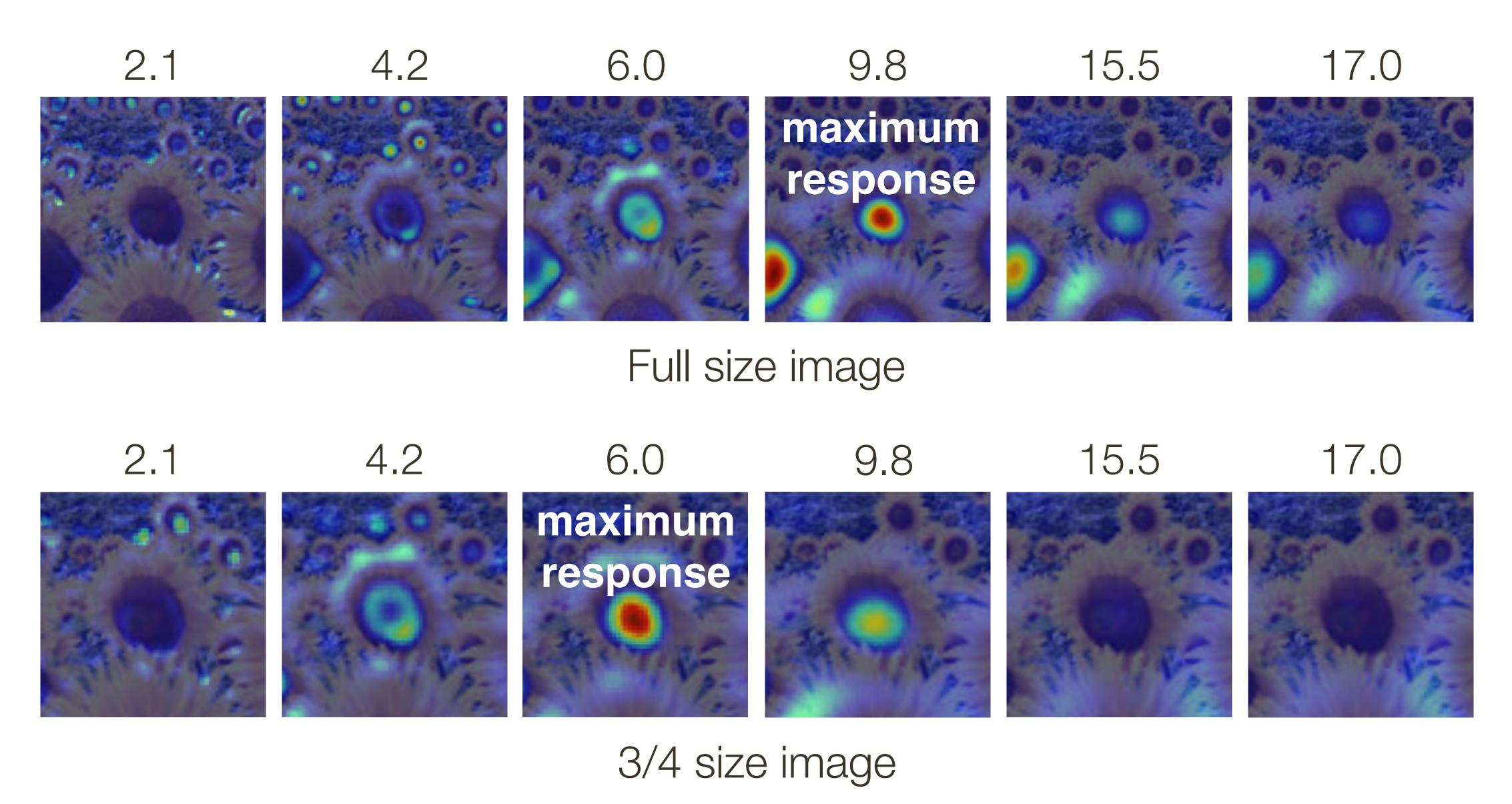


Optimal Scale



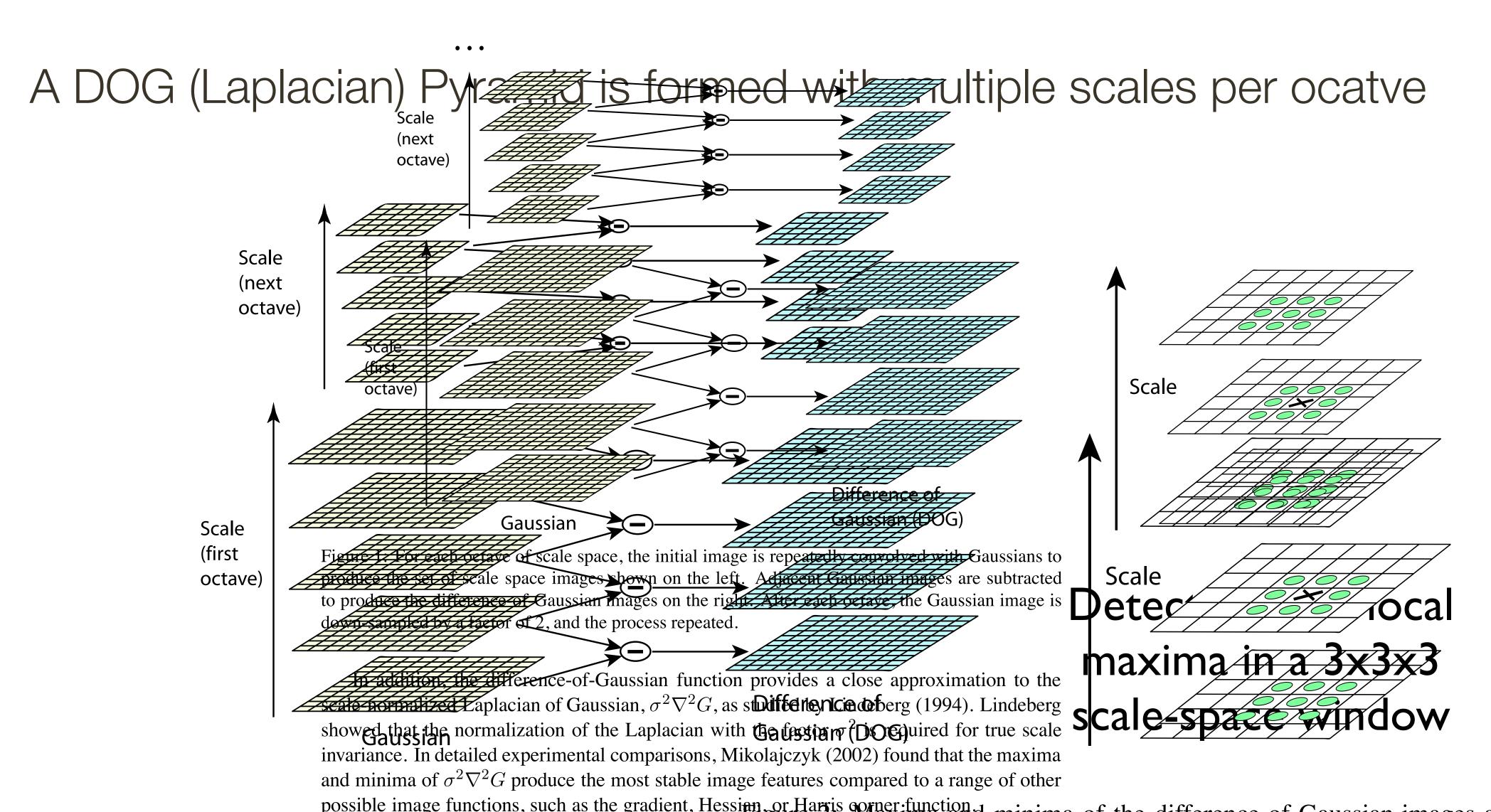
179

Optimal Scale



180

Scale Selection



possible image functions, such as the gradient, Hessian or Harris corner function of the difference-of-Gaussian images are detected by comparing the relationship between D and $\sigma^2 \nabla^2 G$ can be understood from the heat diffusion equation (parameterized in terms of σ rather than the more usual t = 0):

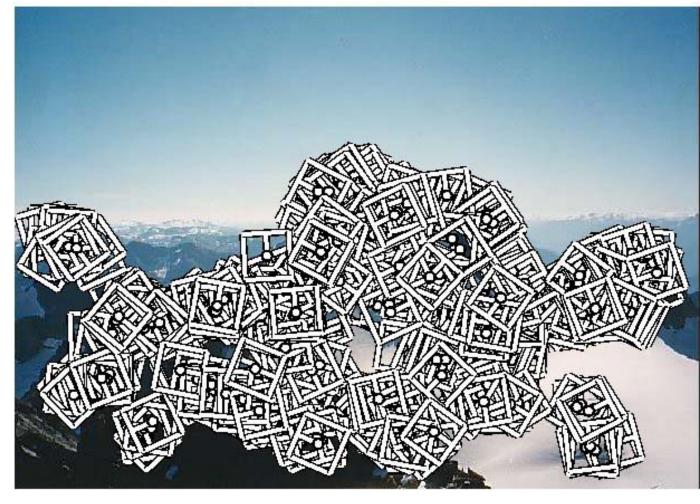
with circles).

Implementation

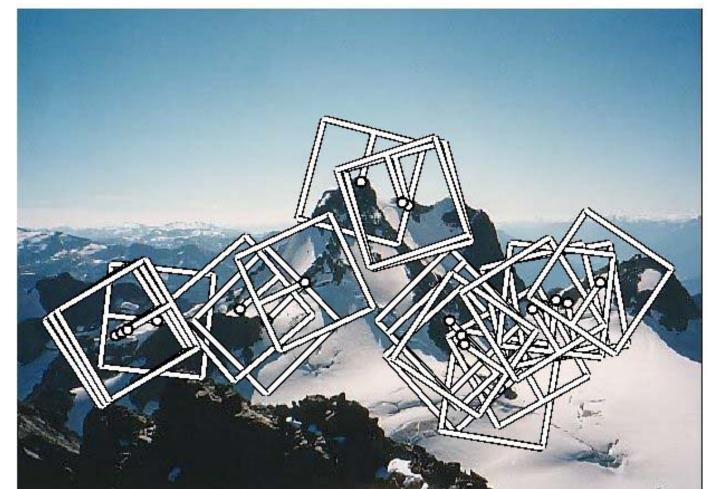
```
For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)
```

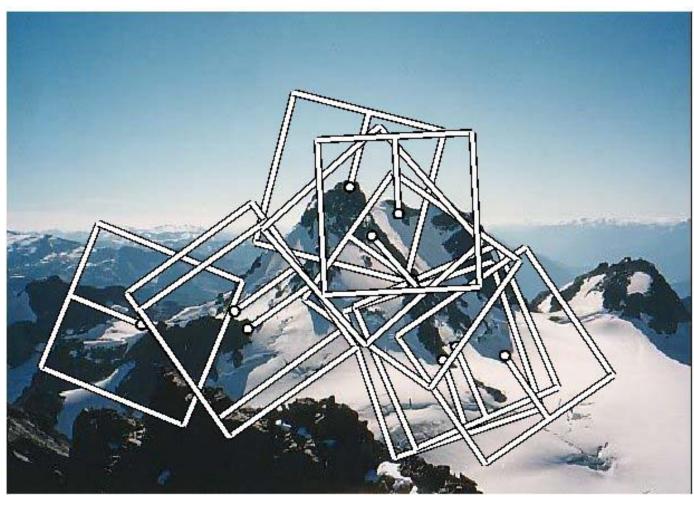
For each level of the Gaussian pyramid $\begin{tabular}{l} if local maximum and cross-scale \\ \begin{tabular}{l} save scale and location of feature (x,y,s) \\ \end{tabular}$

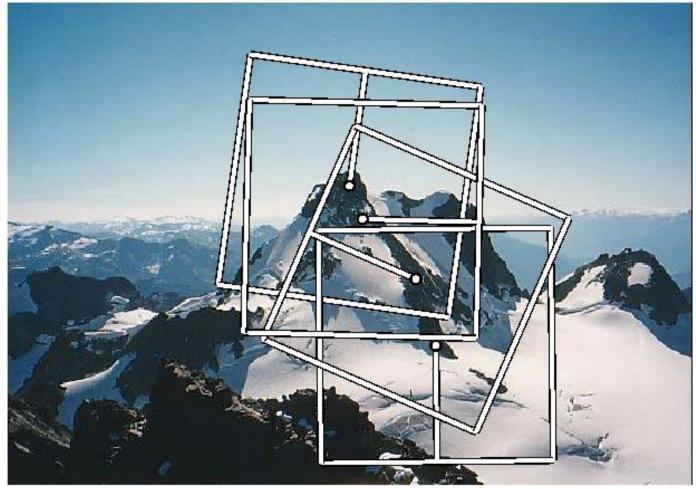
Multi-Scale Harris Corners











Summary Table

Summary of what we have seen so far:

Representation	Result is	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	
corner	sparse	locally distinct features	Harris

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest points