

# CPSC 425: Computer Vision

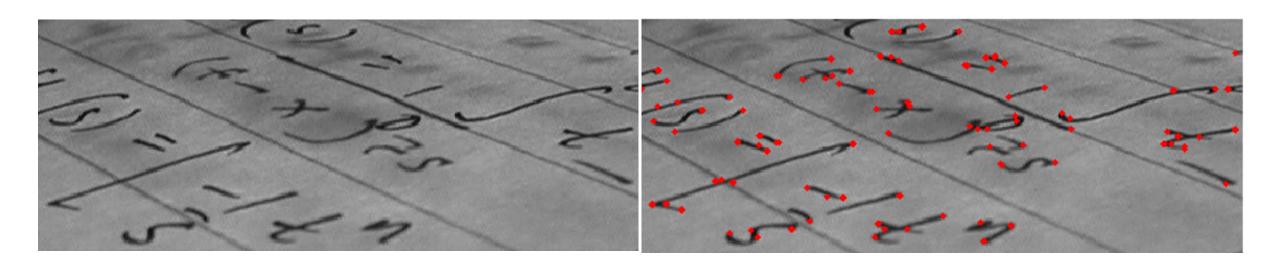


Image Credit: https://en.wikipedia.org/wiki/Corner\_detection

Lecture 10: Corner Detection

( unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung** )

# Menu for Today

# **Topics:**

- Edge Detection (review)
- Corner Detection
- Harris Corner Detection

- Image Structure
- Blob Detection

# Readings:

— Today's Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

# Reminders:

Assignment 2: Scaled Representations, Face Detection and Image Blending

# Lecture 9: Re-cap Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

**Example**: artist's line drawing (but artist also is using object-level knowledge)



# Lecture 9: Re-cap Edge Detection

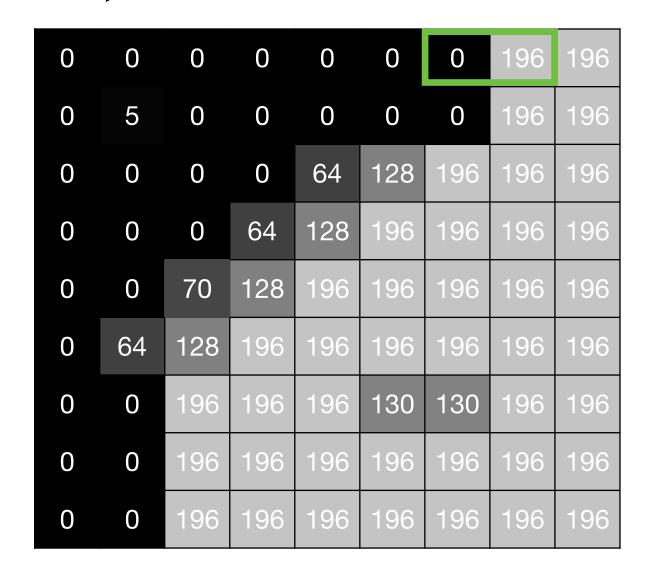
Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

|                 | Approach                                  | Detection | Localization | Single Resp | Limitations               |
|-----------------|-------------------------------------------|-----------|--------------|-------------|---------------------------|
| Sobel           | Gradient Magnitude<br>Threshold           | Good      | Poor         | Poor        | Results in Thick<br>Edges |
| Marr / Hildreth | Zero-crossings of 2nd<br>Derivative (LoG) | Good      | Good         | Good        | Smooths<br>Corners        |
| Canny           | Local extrema of 1st<br>Derivative        | Best      | Good         | Good        |                           |

| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
|---|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 5  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
| 0 | 0  | 0   | 0   | 64  | 128 | 196 | 196 | 196 |
| 0 | 0  | 0   | 64  | 128 | 196 | 196 | 196 | 196 |
| 0 | 0  | 70  | 128 | 196 | 196 | 196 | 196 | 196 |
| 0 | 64 | 128 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 130 | 130 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |



1 1 x-Derivative

| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | х |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | Х |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | Х |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | Х |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | Х |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | -66 | 0  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |

| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
|---|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 5  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
| 0 | 0  | 0   | 0   | 64  | 128 | 196 | 196 | 196 |
| 0 | 0  | 0   | 64  | 128 | 196 | 196 | 196 | 196 |
| 0 | 0  | 70  | 128 | 196 | 196 | 196 | 196 | 196 |
| 0 | 64 | 128 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 130 | 130 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |

## x-Derivative

| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | х |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | Х |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | Х |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | Х |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | Х |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | -66 | 0  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |

1 y-Derivative

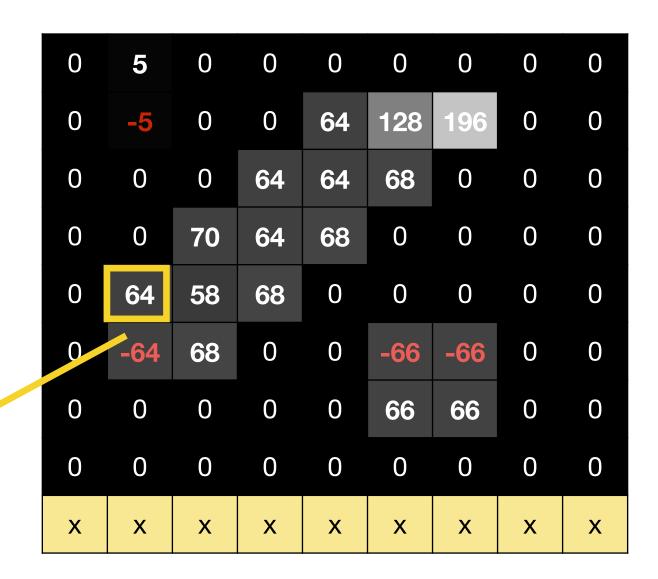
| 0 | 5   | 0  | 0  | 0  | 0   | 0   | 0 | 0 |
|---|-----|----|----|----|-----|-----|---|---|
| 0 | -5  | 0  | 0  | 64 | 128 | 196 | 0 | 0 |
| 0 | 0   | 0  | 64 | 64 | 68  | 0   | 0 | 0 |
| 0 | 0   | 70 | 64 | 68 | 0   | 0   | 0 | 0 |
| 0 | 64  | 58 | 68 | 0  | 0   | 0   | 0 | 0 |
| 0 | -64 | 68 | 0  | 0  | -66 | -66 | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 66  | 66  | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 0   | 0   | 0 | 0 |
| X | x   | x  | X  | x  | x   | x   | X | X |

| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
|---|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 5  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
| 0 | 0  | 0   | 0   | 64  | 128 | 196 | 196 | 196 |
| 0 | 0  | 0   | 64  | 128 | 196 | 196 | 196 | 196 |
| 0 | 0  | 70  | 128 | 196 | 196 | 196 | 196 | 196 |
| 0 | 64 | 128 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 130 | 130 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |

### x-Derivative

| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | х |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | Х |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | Х |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | X |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | X |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | X |
|    | 196 | 0  | 0  | -66 | 0  | 66  | 0 | X |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |

### y-Derivative



## Gradient Magnitude

$$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$$

| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
|---|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 5  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
| 0 | 0  | 0   | 0   | 64  | 128 | 196 | 196 | 196 |
| 0 | 0  | 0   | 64  | 128 | 196 | 196 | 196 | 196 |
| 0 | 0  | 70  | 128 | 196 | 196 | 196 | 196 | 196 |
| 0 | 64 | 128 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 130 | 130 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |

### x-Derivative

| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | X |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | Х |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | X |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | X |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | X |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | X |
| 9  | 196 | 0  | 0  | -66 | 0  | 66  | 0 | X |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 9 | Х |

### y-Derivative

| 0 | 5   | 0  | 0  | 0  | 0   | 0   | 0 | 0 |
|---|-----|----|----|----|-----|-----|---|---|
| 0 | -5  | 0  | 0  | 64 | 128 | 196 | 0 | 0 |
| 0 | 0   | 0  | 64 | 64 | 68  | 0   | 0 | 0 |
| 0 | 0   | 70 | 64 | 68 | 0   | 0   | 0 | 0 |
| 0 | 64  | 58 | 68 | 0  | 0   | 0   | 0 | 0 |
| 0 | -64 | 68 | 0  | 0  | -66 | -66 | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 66  | 66  | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 0   | 0   | 0 | 0 |
| X | X   | X  | X  | X  | x   | X   | X | х |

## Gradient Magnitude

$$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$$

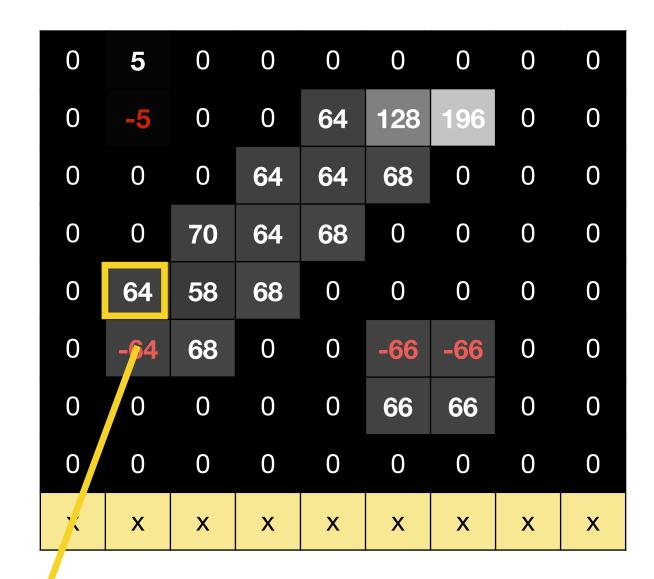
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

# 0 0 0 0 0 196 196 0 5 0 0 0 0 196 196 0 0 0 0 64 128 196 196 196 196 0 0 0 64 128 196 196 196 196 196 0 0 70 128 196 196 196 196 196 196 0 64 128 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196 0 0 196 196 196 196 196 196 196 196

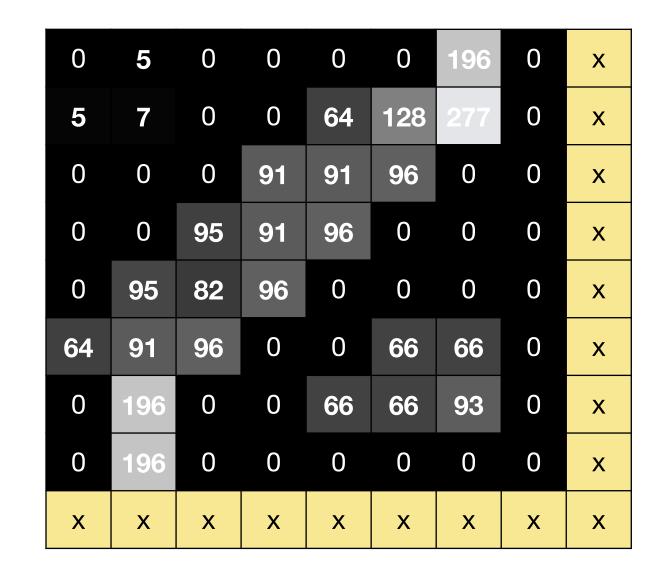
### x-Derivative

| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | х |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | Х |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | Х |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | Х |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | Х |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | -66 | 0  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | Х |

### y-Derivative



### Gradient **Magnitude**





| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
|---|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 5  | 0   | 0   | 0   | 0   | 0   | 196 | 196 |
| 0 | 0  | 0   | 0   | 64  | 128 | 196 | 196 | 196 |
| 0 | 0  | 0   | 64  | 128 | 196 | 196 | 196 | 196 |
| 0 | 0  | 70  | 128 | 196 | 196 | 196 | 196 | 196 |
| 0 | 64 | 128 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 130 | 130 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |
| 0 | 0  | 196 | 196 | 196 | 196 | 196 | 196 | 196 |

### x-Derivative

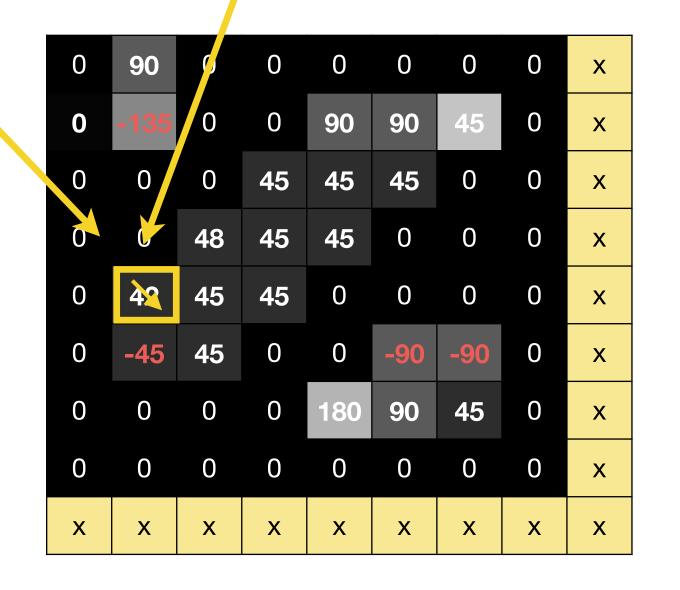
| 0  | 0   | 0  | 0  | 0   | 0  | 196 | 0 | Х |
|----|-----|----|----|-----|----|-----|---|---|
| 5  | -5  | 0  | 0  | 0   | 0  | 196 | 0 | X |
| 0  | 0   | 0  | 64 | 64  | 68 | 0   | 0 | X |
| 0  | 0   | 64 | 64 | 68  | 0  | 0   | 0 | X |
| 0  | 70  | 58 | 68 | 0   | 0  | 0   | 0 | X |
| 64 | 64  | 68 | 0  | 0   | 0  | 0   | 0 | Х |
| 0  | 196 | 0  | 0  | -66 | 0  | 66  | 0 | X |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | X |
| 0  | 196 | 0  | 0  | 0   | 0  | 0   | 0 | X |

### y-Derivative

| 0 | 5   | 0  | 0  | 0  | 0   | 0          | 0 | 0 |
|---|-----|----|----|----|-----|------------|---|---|
| 0 | -5  | 0  | 0  | 64 | 128 | 196        | 0 | 0 |
| 0 | 0   | 0  | 64 | 64 | 68  | 0          | 0 | 0 |
| 0 | 0   | 70 | 64 | 68 | 0   | 0          | 0 | 0 |
| 0 | 64  | 58 | 68 | 0  | 0   | 0          | 0 | 0 |
| 0 | -64 | 68 | 0  | 0  | -66 | <b>-66</b> | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 66  | 66         | 0 | 0 |
| 0 | 0   | 0  | 0  | 0  | 0   | 0          | 0 | 0 |
| X | x   | x  | x  | x  | x   | X          | X | X |

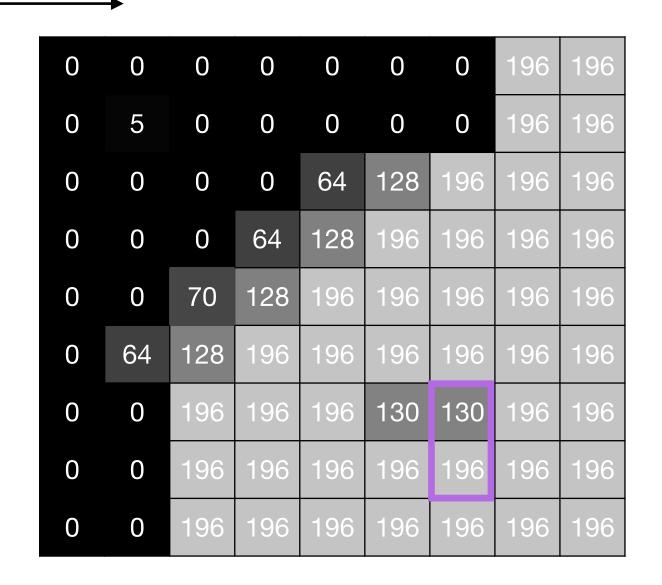
### Gradient **Magnitude**

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | Х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | х |
| Х  | Х   | Х  | X  | Х  | Х   | X   | X | Х |

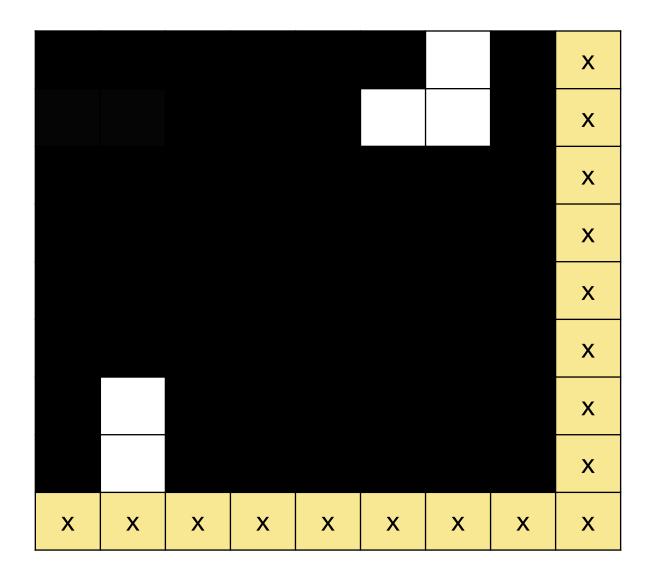


$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

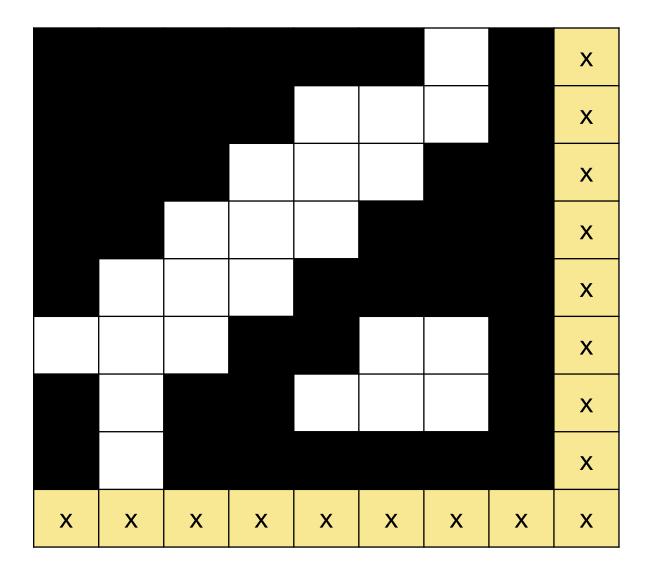
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$



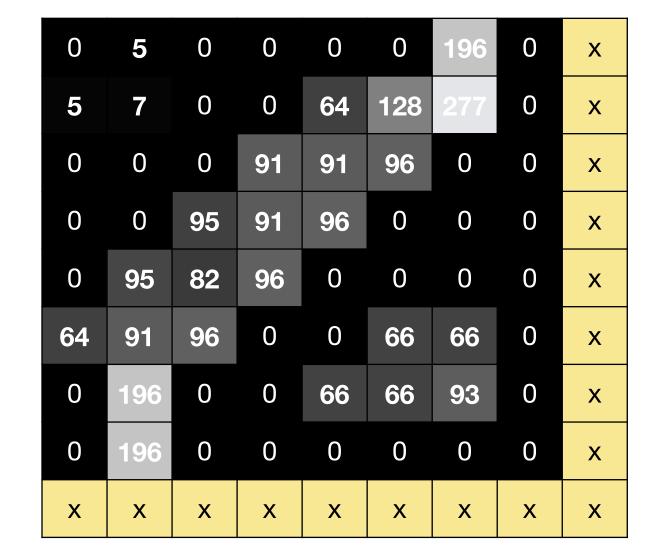
**Sobel** (threshold = 100)

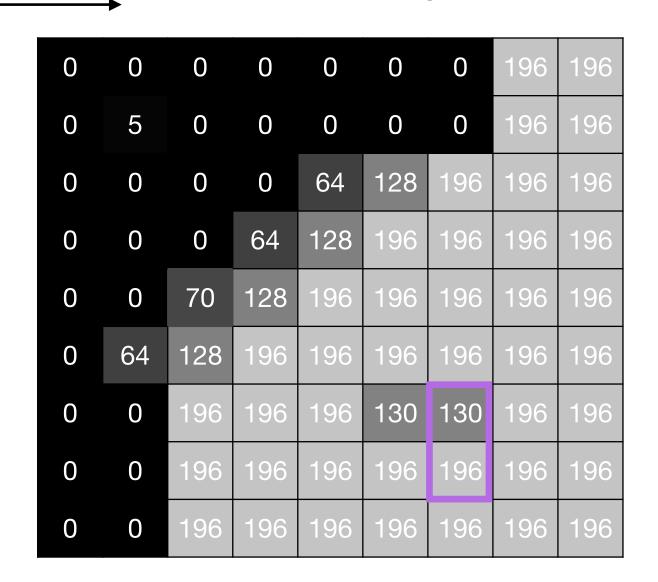


**Sobel** (threshold = 50)

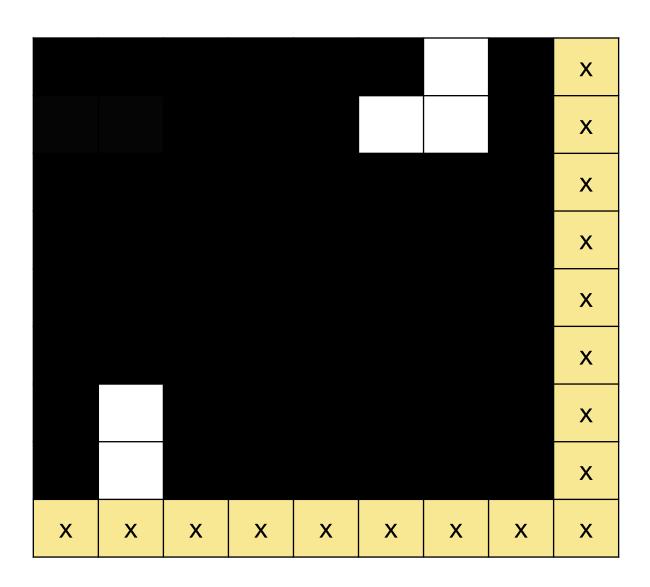


### Gradient **Magnitude**

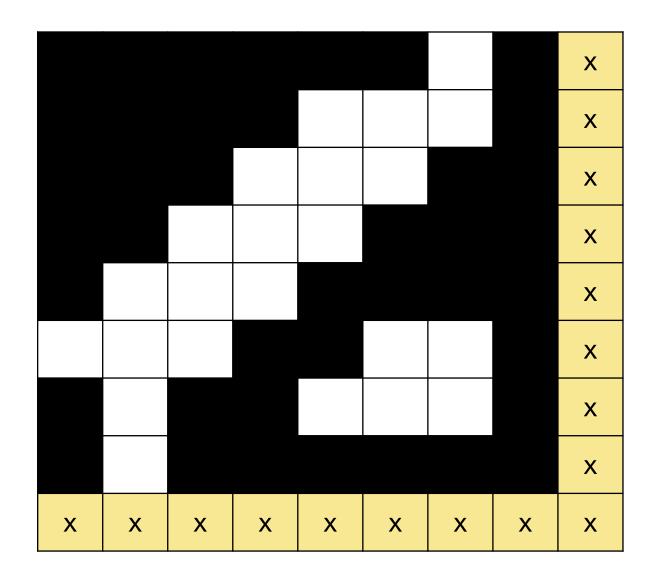




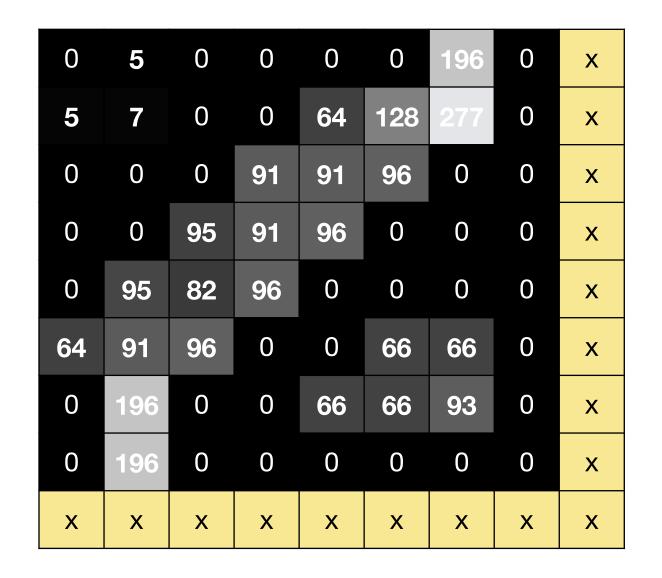
**Sobel** (threshold = 100)



**Sobel** (threshold = 50)



### Gradient Magnitude



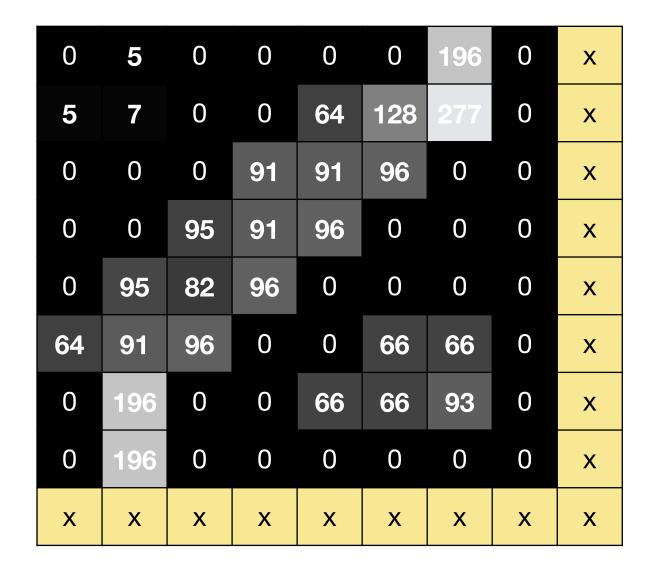
# Sobel issues:

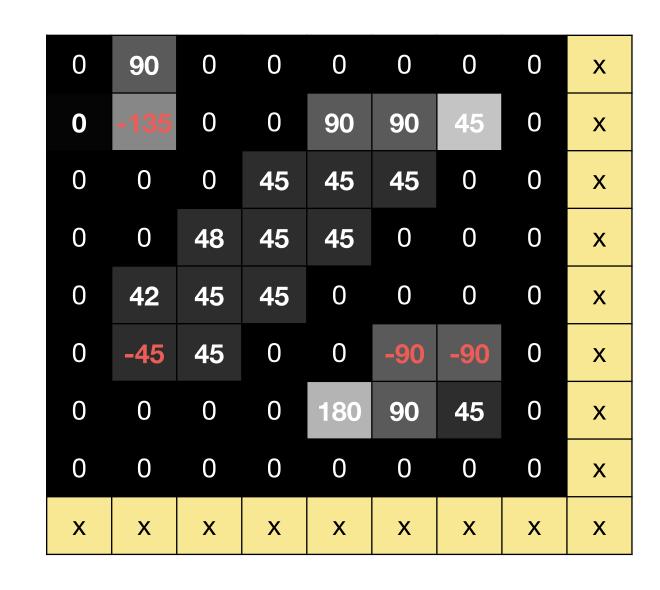
- Brittle = result depends on threshold
- Thick edges = poor localization

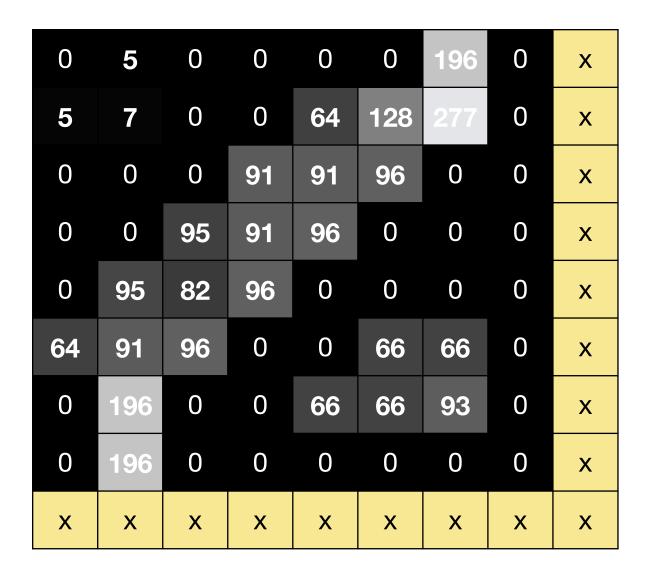
# Canny Edge Detector

- 3. Non-maximum suppression
  - thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding
  - Low, high edge-strength thresholds
  - Accept all edges over low threshold that are connected to edge over high threshold

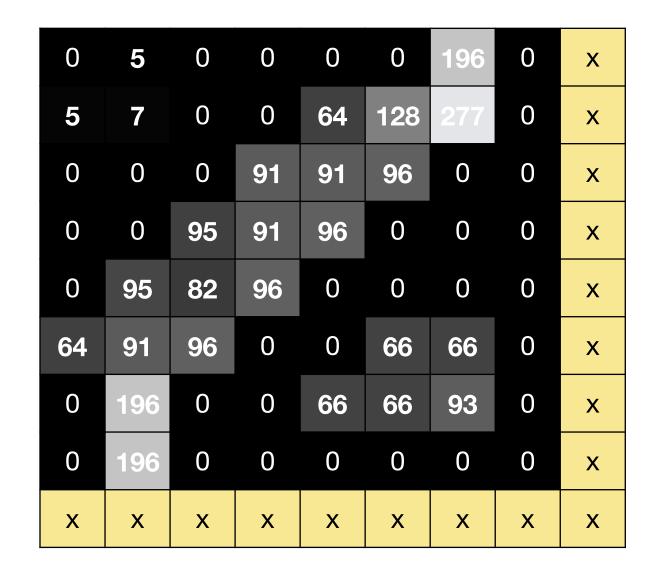
Gradient **Magnitude** 



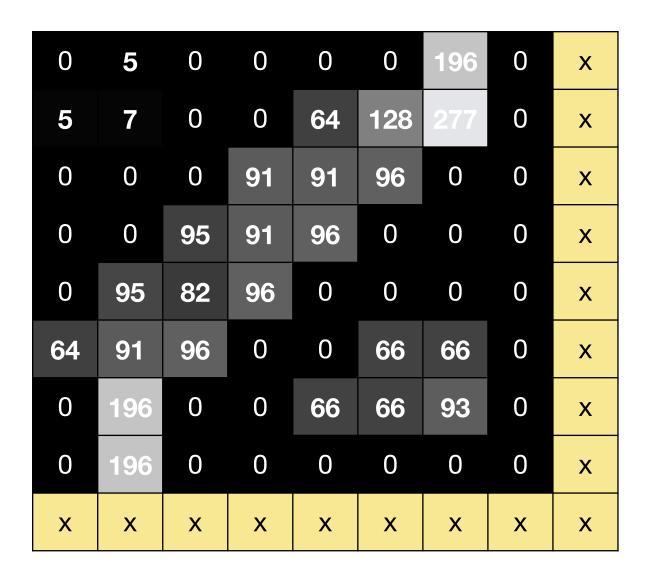




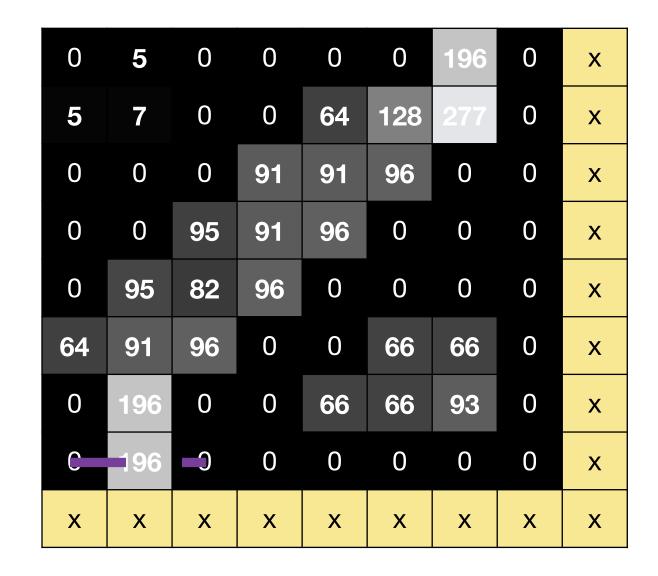
### Gradient **Magnitude**

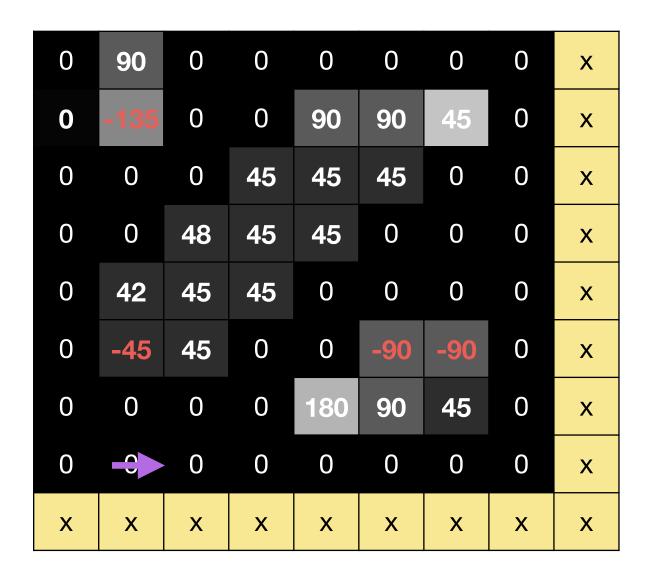


| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | Х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 48 | 45 | 45  | 0   | 0   | 0 | Х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | Х |
| 0 | 0    | 0  | 0  | 180 | 90  | 45  | 0 | Х |
| 0 | 0    | 0  | 0  | 0   | 0   | 0   | 0 | х |
| Х | x    | X  | X  | x   | X   | X   | X | Х |



### Gradient **Magnitude**



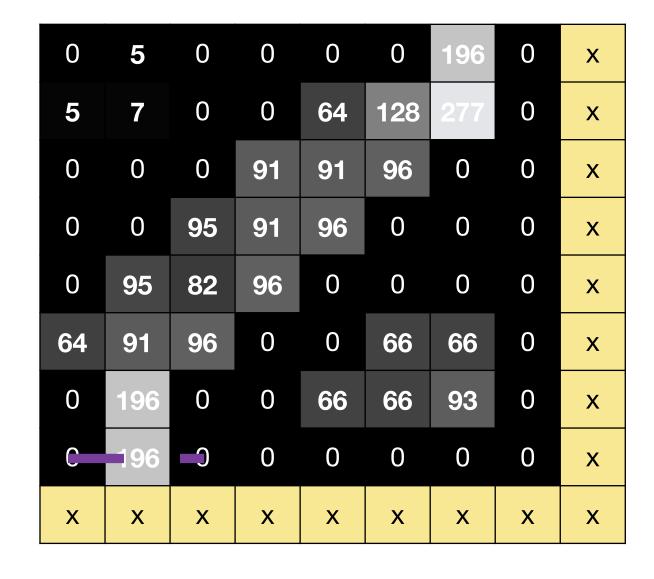


| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | Х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | Х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | Х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| X  | X   | X  | X  | X  | X   | х   | X | Х |

No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



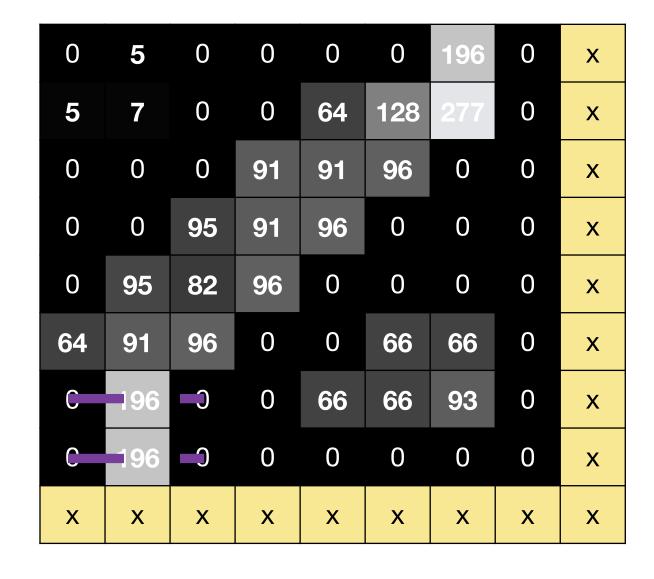
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | Х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 48 | 45 | 45  | 0   | 0   | 0 | Х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | Х |
| 0 | 0    | 0  | 0  | 180 | 90  | 45  | 0 | Х |
| 0 |      | 0  | 0  | 0   | 0   | 0   | 0 | Х |
| Х | X    | X  | X  | X   | X   | Х   | X | х |

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | X |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | X |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | х |
| X  | X   | X  | X  | X  | Х   | X   | X | X |

No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



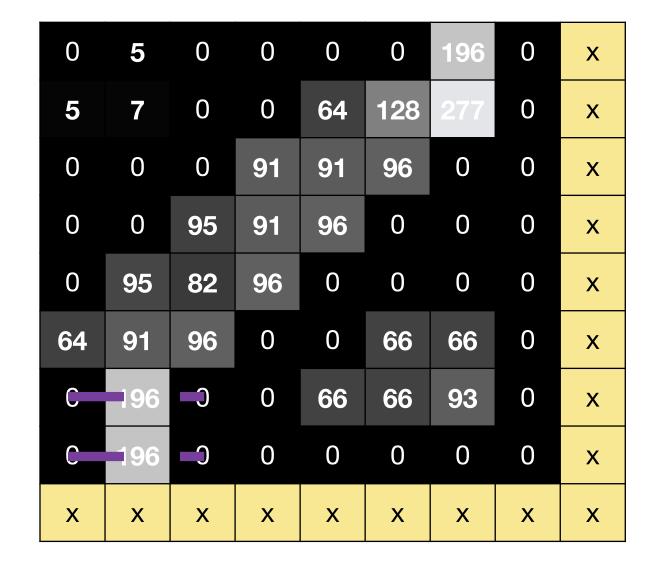
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 48 | 45 | 45  | 0   | 0   | 0 | X |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | Х |
| 0 |      | 0  | 0  | 180 | 90  | 45  | 0 | х |
| 0 |      | 0  | 0  | 0   | 0   | 0   | 0 | х |
| Х | X    | X  | X  | X   | X   | Х   | X | х |

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | Х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | Х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| Х  | Х   | X  | Х  | Х  | Х   | Х   | X | х |

No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



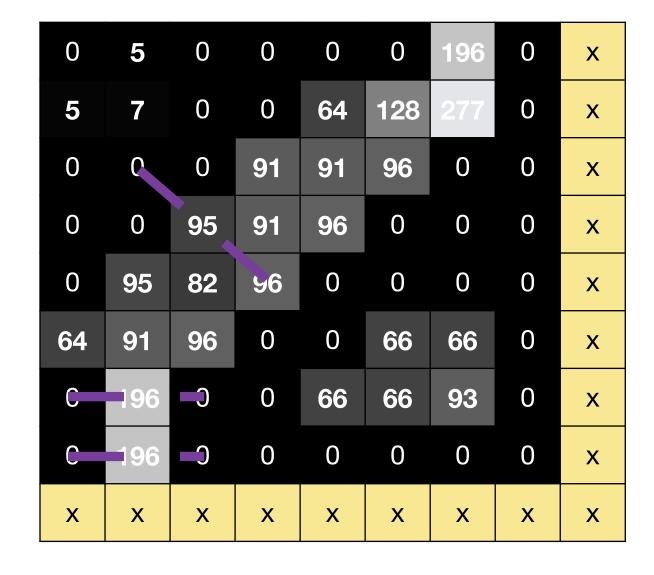
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 48 | 45 | 45  | 0   | 0   | 0 | х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | х |
| 0 |      | 0  | 0  | 180 | 90  | 45  | 0 | Х |
| 0 |      | 0  | 0  | 0   | 0   | 0   | 0 | х |
| Х | X    | Х  | X  | X   | X   | X   | X | х |

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| X  | x   | X  | X  | X  | X   | X   | X | Х |

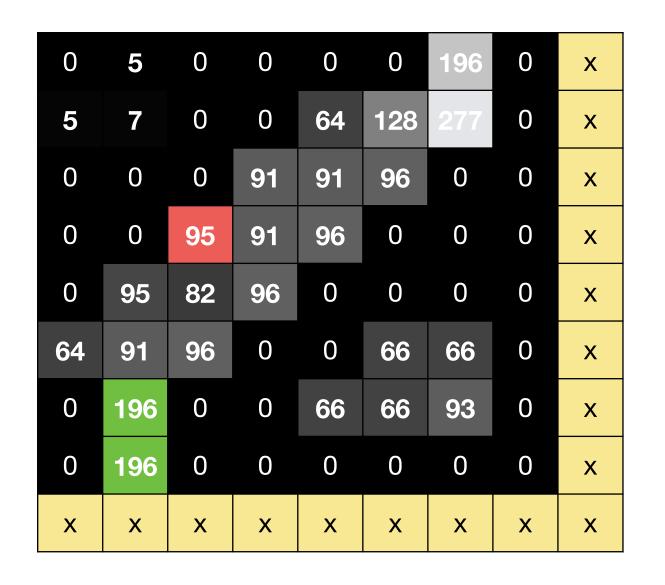
No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



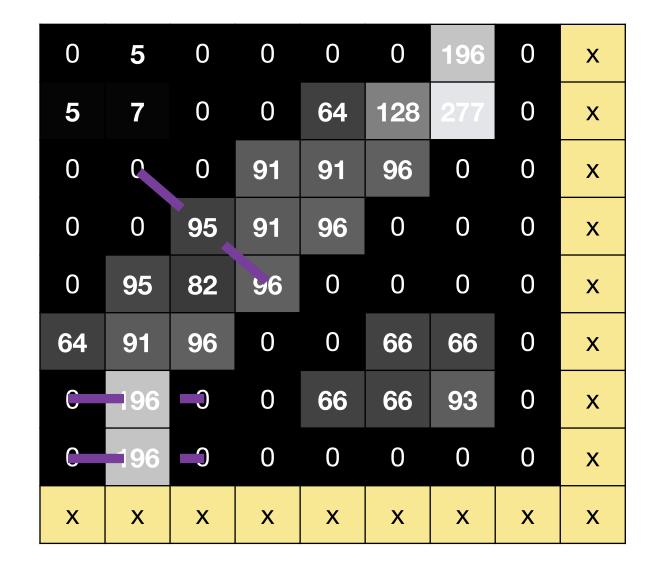
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 90 | 45 | 45  | 0   | 0   | 0 | х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | х |
| 0 |      | 0  | 0  | 180 | 90  | 45  | 0 | х |
| 0 |      | 0  | 0  | 0   | 0   | 0   | 0 | х |
| X | X    | X  | X  | X   | X   | X   | X | х |



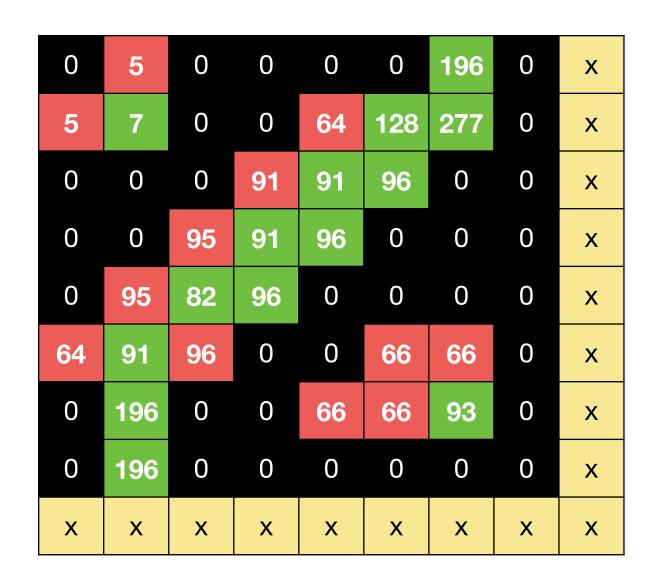
No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



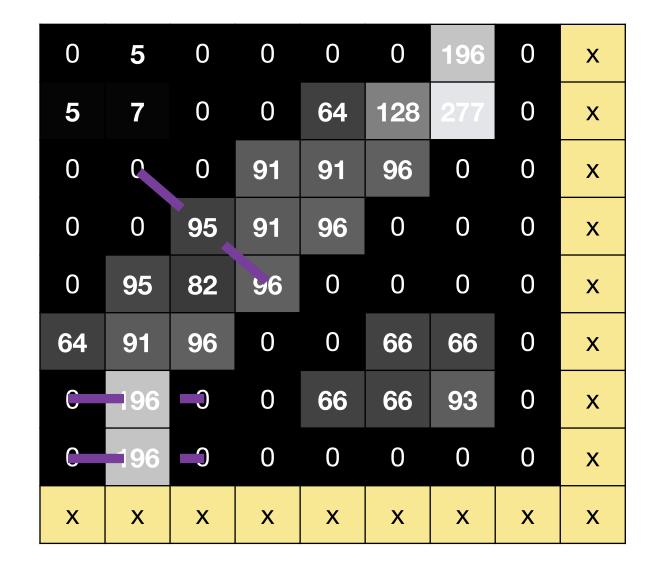
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 90 | 45 | 45  | 0   | 0   | 0 | X |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | Х |
| 0 |      | 0  | 0  | 180 | 90  | 45  | 0 | х |
| 0 |      | 0  | 0  | 0   | 0   | 0   | 0 | х |
| X | X    | X  | X  | X   | X   | X   | X | х |



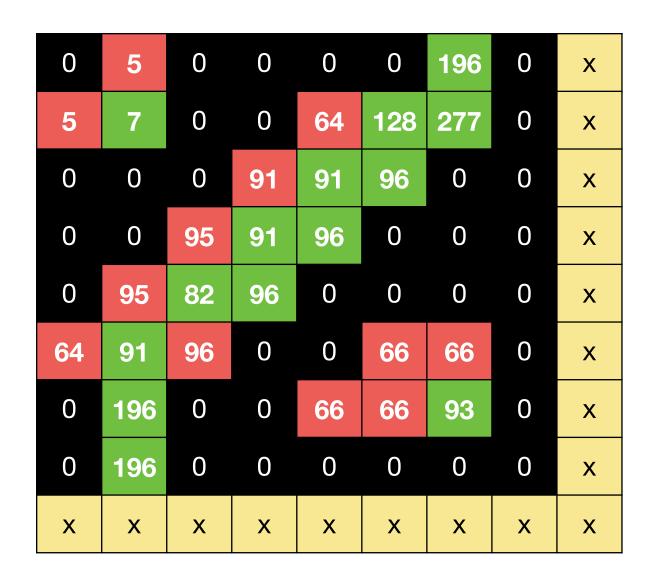
No longer considered as possible edge points

Can still be edge points

### Gradient **Magnitude**



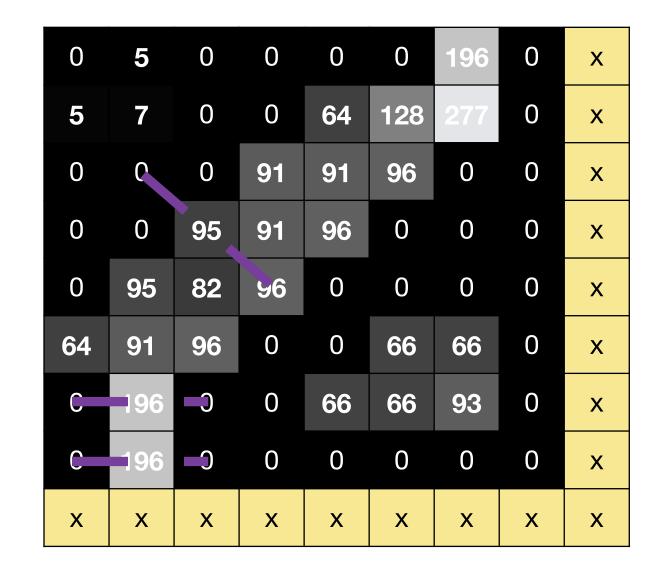
| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | Х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | Х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 93 | 45 | 45  | 0   | 0   | 0 | Х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | х |
| 0 |      | 0  | 0  | 180 | 90  | 45  | 0 | х |
| 0 | -0   | 0  | 0  | 0   | 0   | 0   | 0 | х |
| X | X    | X  | X  | X   | X   | X   | X | х |

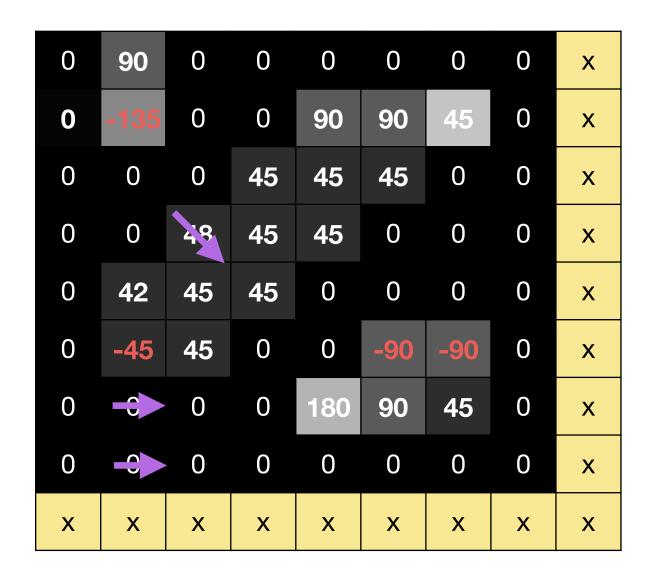


# Goal:

- Identify local maxima, which can be edge points
- Thin edges, so we can improve localization

### Gradient Magnitude





# 0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0</

### **Linking** Edge Points

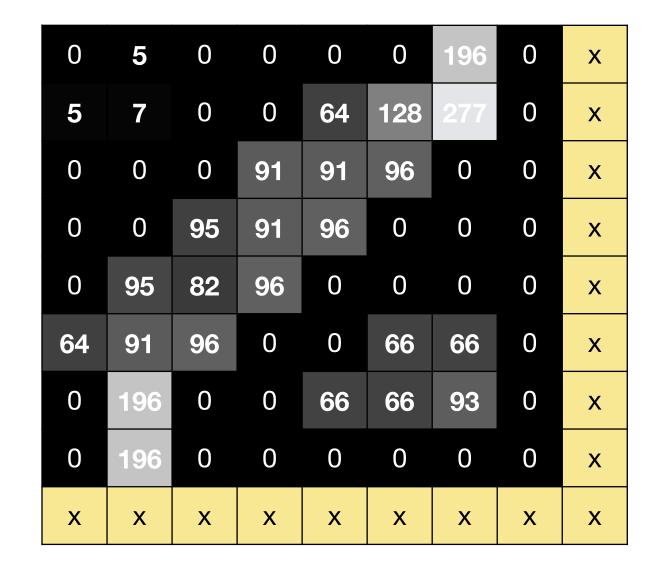
| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | X |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | Х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | X |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| X  | X   | X  | X  | X  | X   | X   | X | X |

gradient magnitude  $> \mathbf{k}_{high}$  =100

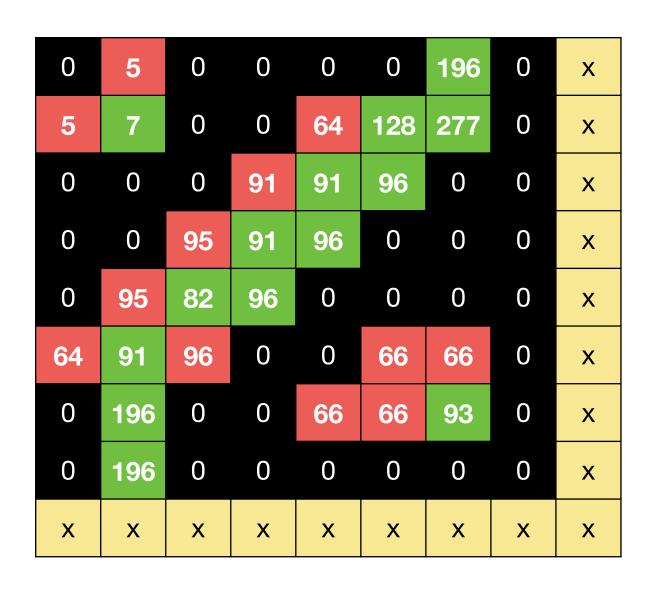
 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$ 

gradient magnitude <  $\mathbf{k}_{low} = 50$ 

### Gradient **Magnitude**



| 0 | 90   | 0  | 0  | 0   | 0   | 0   | 0 | х |
|---|------|----|----|-----|-----|-----|---|---|
| 0 | -135 | 0  | 0  | 90  | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 45 | 45  | 45  | 0   | 0 | Х |
| 0 | 0    | 48 | 45 | 45  | 0   | 0   | 0 | х |
| 0 | 42   | 45 | 45 | 0   | 0   | 0   | 0 | х |
| 0 | -45  | 45 | 0  | 0   | -90 | -90 | 0 | х |
| 0 | 0    | 0  | 0  | 180 | 90  | 45  | 0 | х |
| 0 | 0    | 0  | 0  | 0   | 0   | 0   | 0 | х |
| X | X    | X  | X  | X   | X   | Х   | X | х |



### **Linking** Edge Points

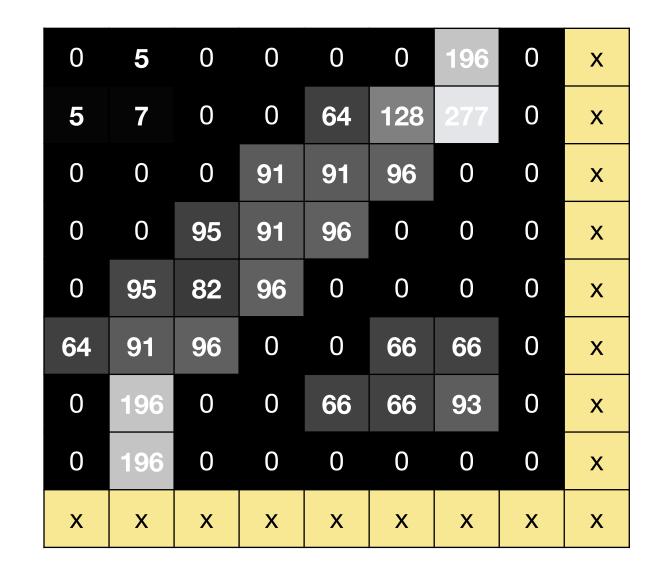
| 0  | 5   | 0  | 0  | 0  | 0   | 196 | 0 | Х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | Х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | Х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| X  | х   | х  | X  | Х  | X   | х   | X | х |

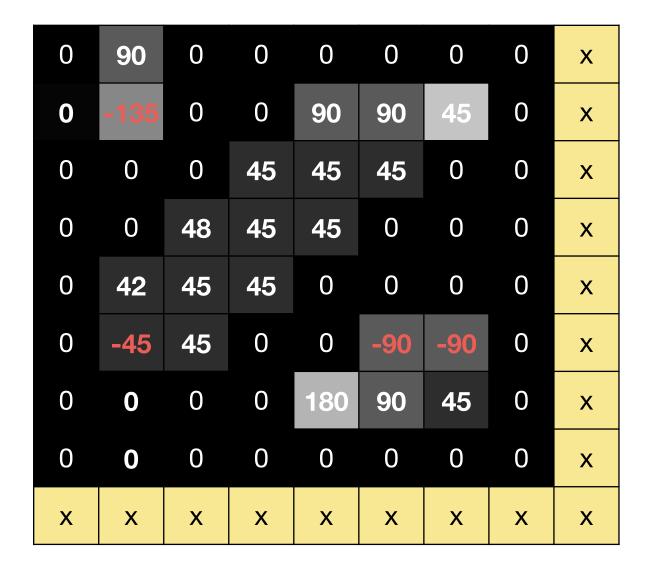
gradient magnitude  $> \mathbf{k}_{high}$  =100

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$ 

gradient magnitude <  $\mathbf{k}_{low} = 50$ 

### Gradient **Magnitude**





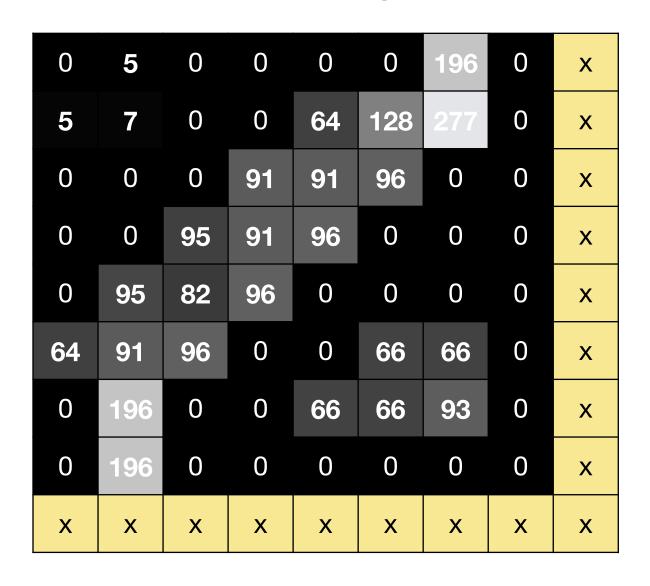
# 0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 0 x x x x x x x x x

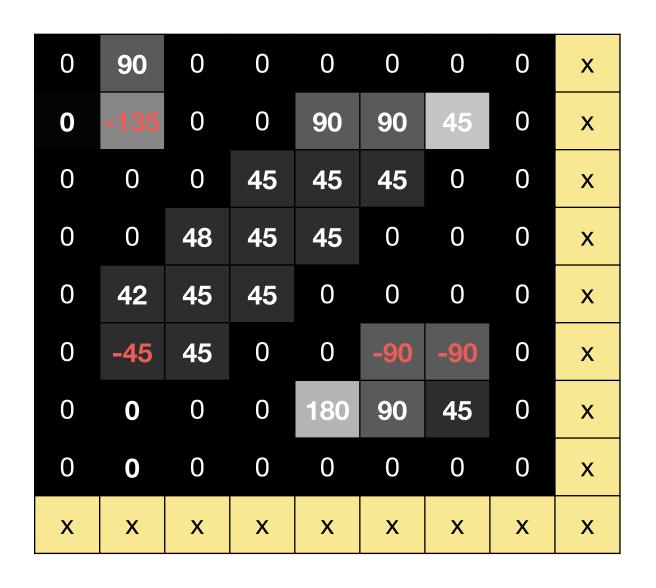
### **Linking** Edge Points

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | O | Х |
|----|-----|----|----|----|-----|-----|---|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0 | Х |
| 0  | 0   | 0  | 91 | 91 | 96  | 0   | 0 | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0 | Х |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0 | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0 | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0 | Х |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0 | Х |
| Х  | Х   | X  | Х  | Х  | Х   | Х   | Х | х |

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$ 

### Gradient **Magnitude**





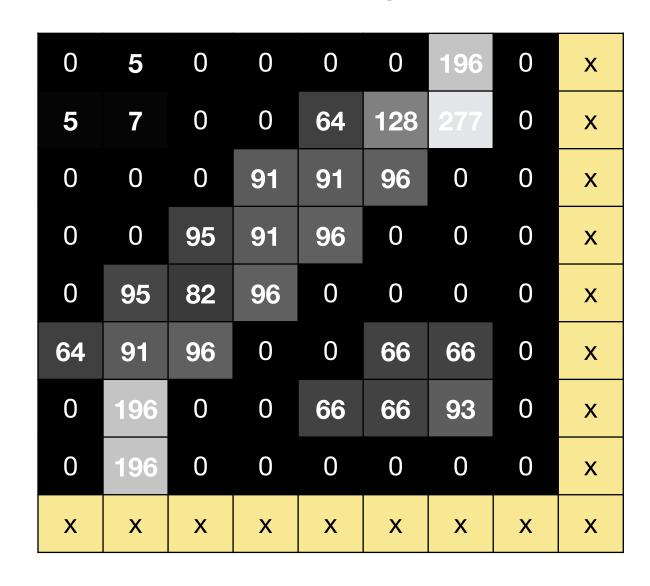
# 0 5 0 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 82 96 0 0 0 0 x 64 91 96 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0 0 0 196 0 0 0 0</

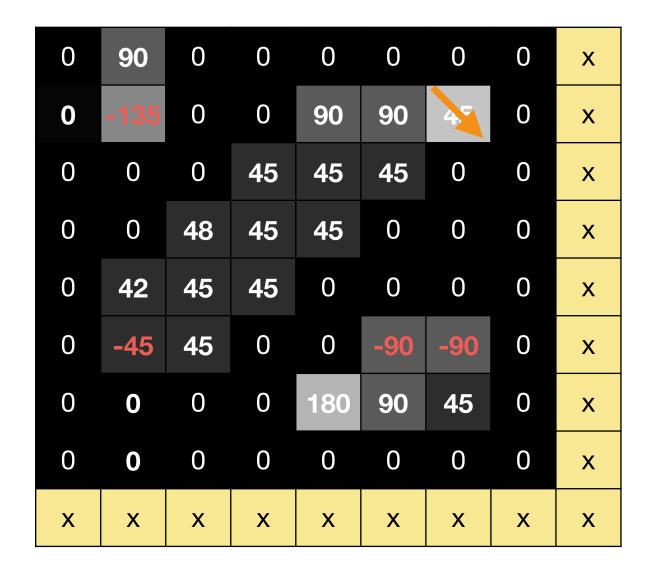
### **Linking** Edge Points

| 0  | 5   | 0  | 0  | 0  | 0   | 196 | <b>O</b> | Х |
|----|-----|----|----|----|-----|-----|----------|---|
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0        | X |
| 0  | 0   | 0  | 91 | 91 | 93  | 0   | 0        | X |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0        | X |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0        | X |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0        | Х |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0        | X |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0        | Х |
| Х  | Х   | Х  | Х  | Х  | Х   | Х   | Х        | Х |

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$ 

### Gradient **Magnitude**





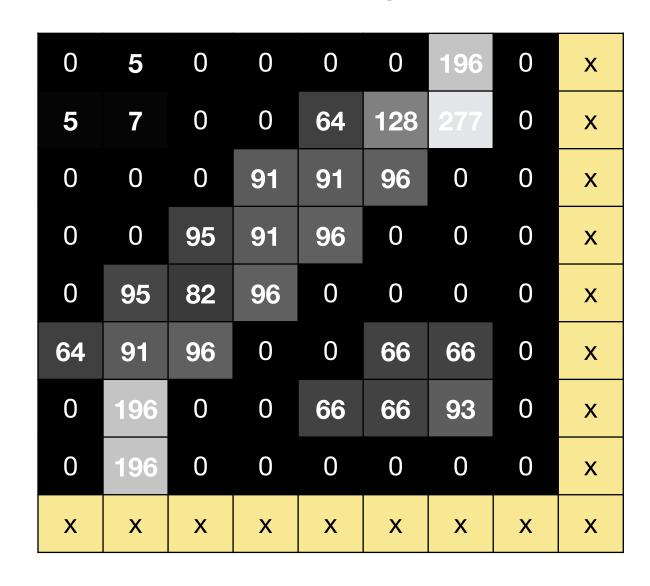
# 0 5 0 0 0 196 0 x 5 7 0 0 64 128 277 0 x 0 0 0 91 91 96 0 0 x 0 95 91 96 0 0 0 x 64 91 96 0 0 0 0 x 0 196 0 0 66 66 0 x 0 196 0 0 66 66 93 0 x 0 196 0 0 0 0 0 x x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 x 0 196 0 0 0 0 0 0 0 0 196 0 0 0 0 0 0 0

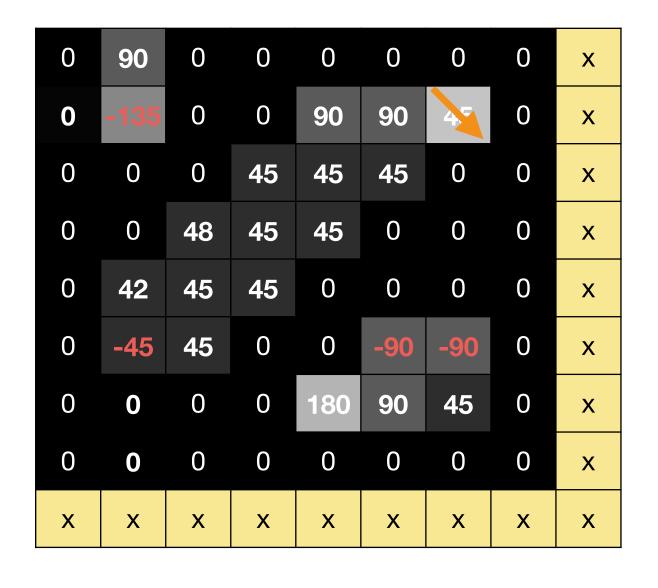
### **Linking** Edge Points

|    |     |    |    |    | _   |     |          |   |
|----|-----|----|----|----|-----|-----|----------|---|
| 0  | 5   | 0  | 0  | 0  | 0   | 196 | <b>0</b> | X |
| 5  | 7   | 0  | 0  | 64 | 128 | 277 | 0        | X |
| 0  | 0   | 0  | 91 | 91 | 95  | 0   | 0        | Х |
| 0  | 0   | 95 | 91 | 96 | 0   | 0   | 0        | X |
| 0  | 95  | 82 | 96 | 0  | 0   | 0   | 0        | Х |
| 64 | 91  | 96 | 0  | 0  | 66  | 66  | 0        | X |
| 0  | 196 | 0  | 0  | 66 | 66  | 93  | 0        | X |
| 0  | 196 | 0  | 0  | 0  | 0   | 0   | 0        | X |
| Х  | х   | Х  | Х  | X  | Х   | X   | Х        | Х |

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$ 

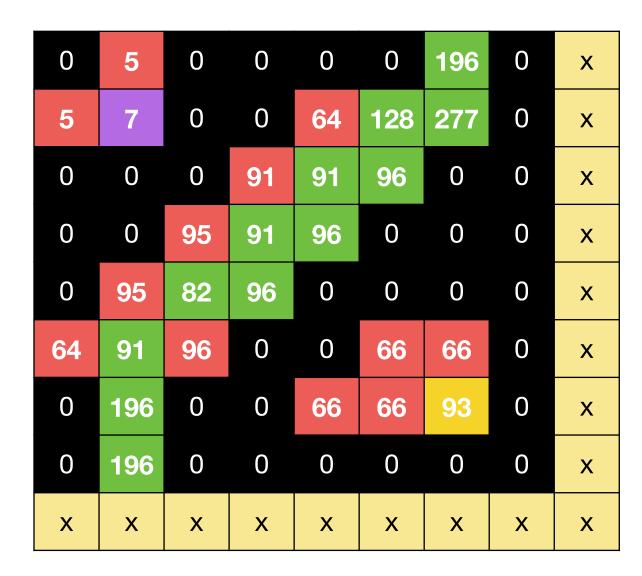
### Gradient **Magnitude**



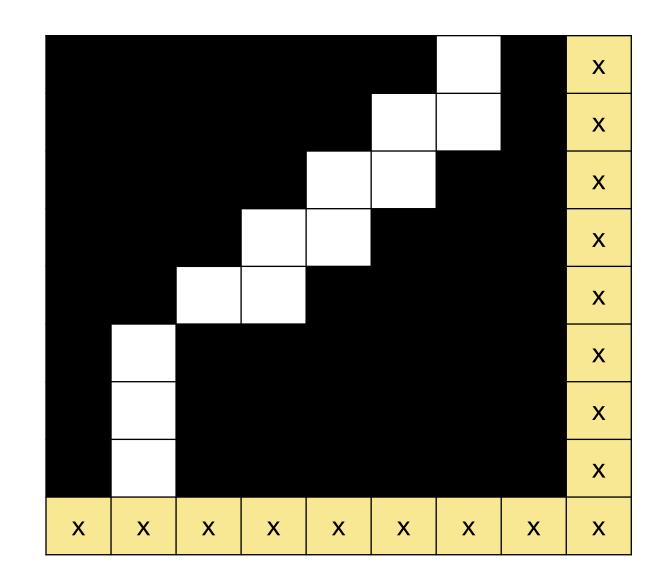


### 196 128 277 91 96 0 91 96 0 66 66 93 0 X X X Χ

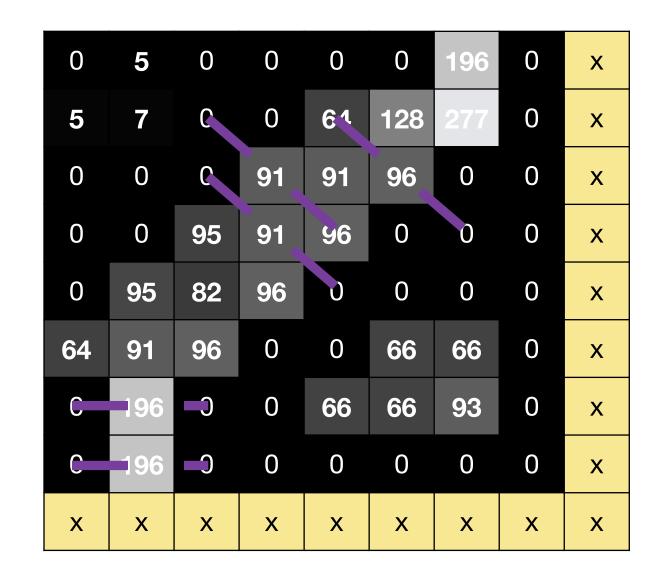
### **Linking** Edge Points

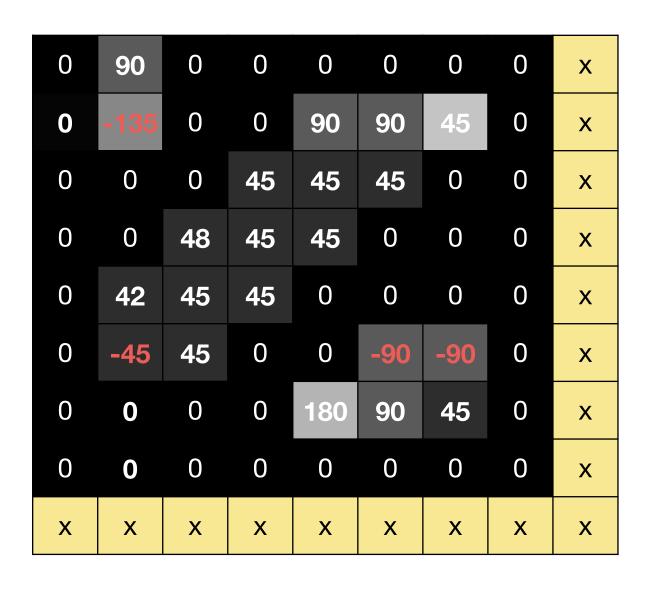


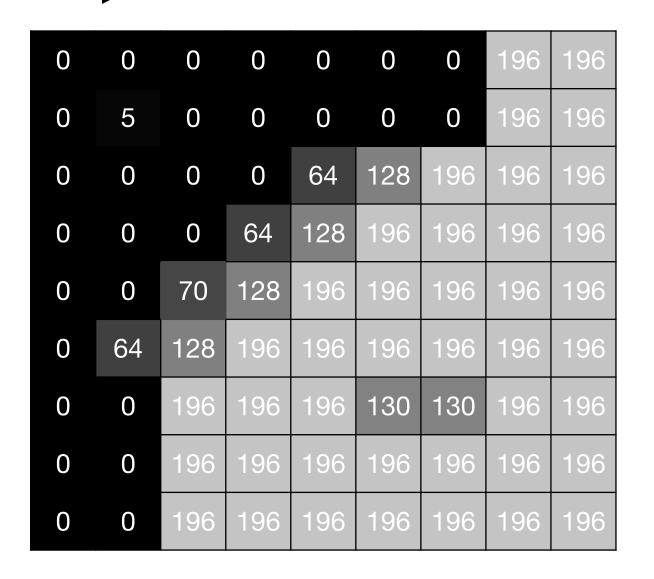
### **Canny** Edge Detector



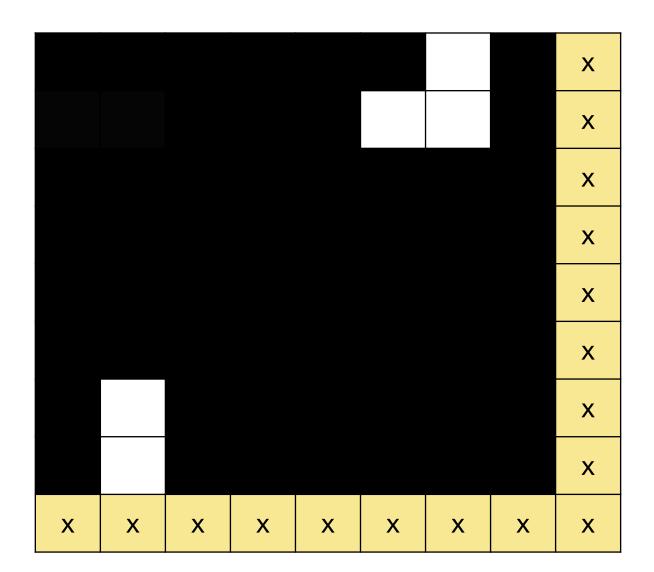
### Gradient **Magnitude**



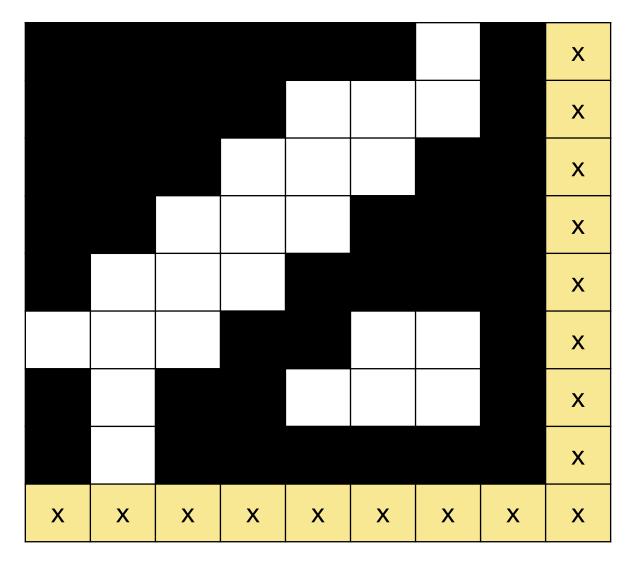




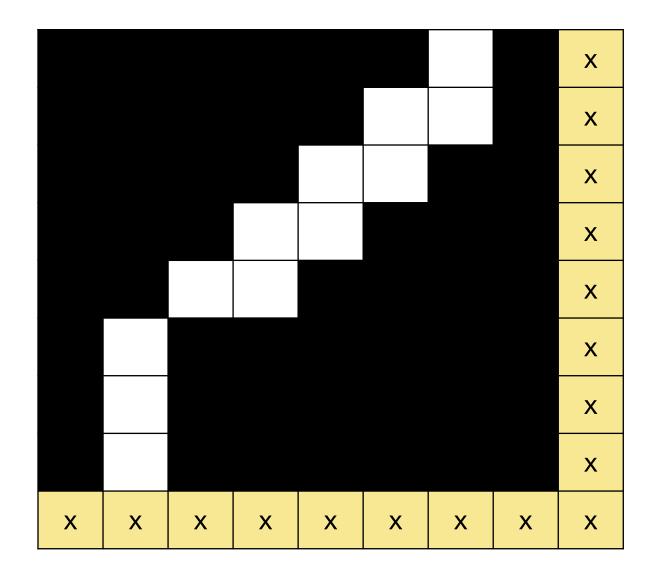
### **Sobel** (threshold = 100)



**Sobel** (threshold = 50)



### **Canny** Edge Detector



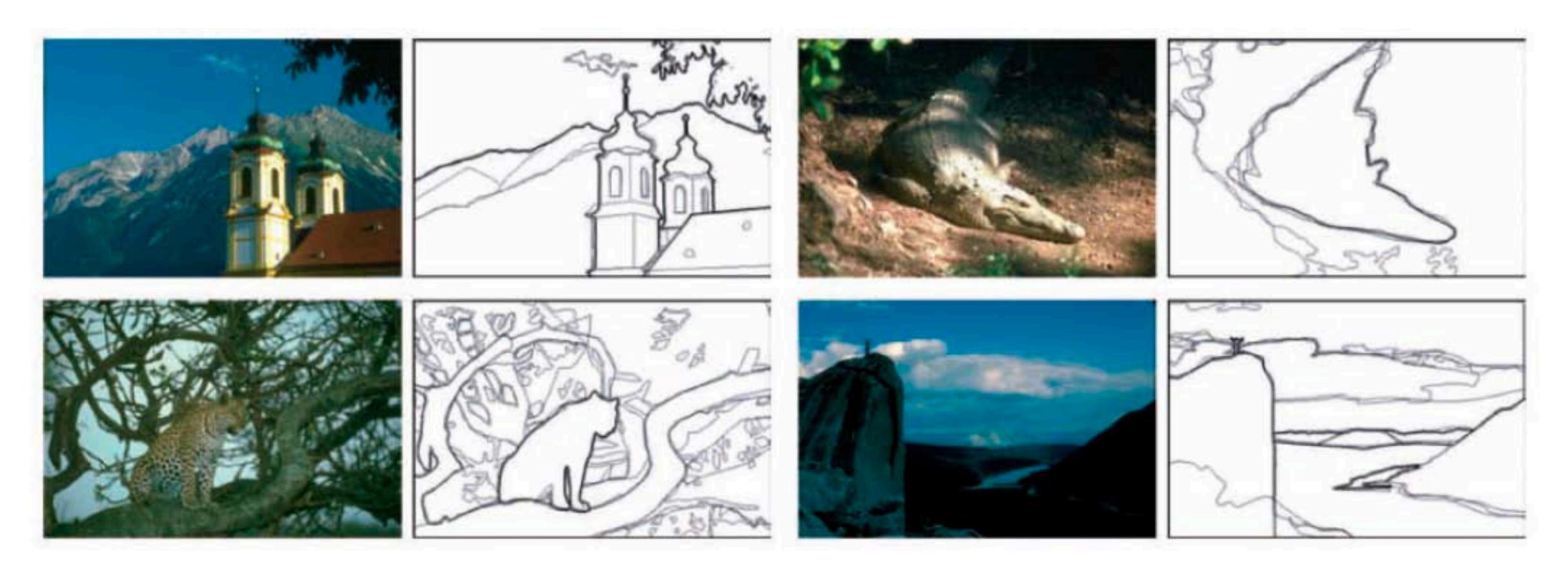
The fact that the edge is shifted can be addressed by better derivative filter (central difference)

# How do humans perceive boundaries?

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to boundaries that humans perceive to be salient or significant?

# How do humans perceive boundaries?



Each image shows multiple (4-8) human-marked boundaries. Pixels are darker where more humans marked a boundary.

# **Boundary** Detection

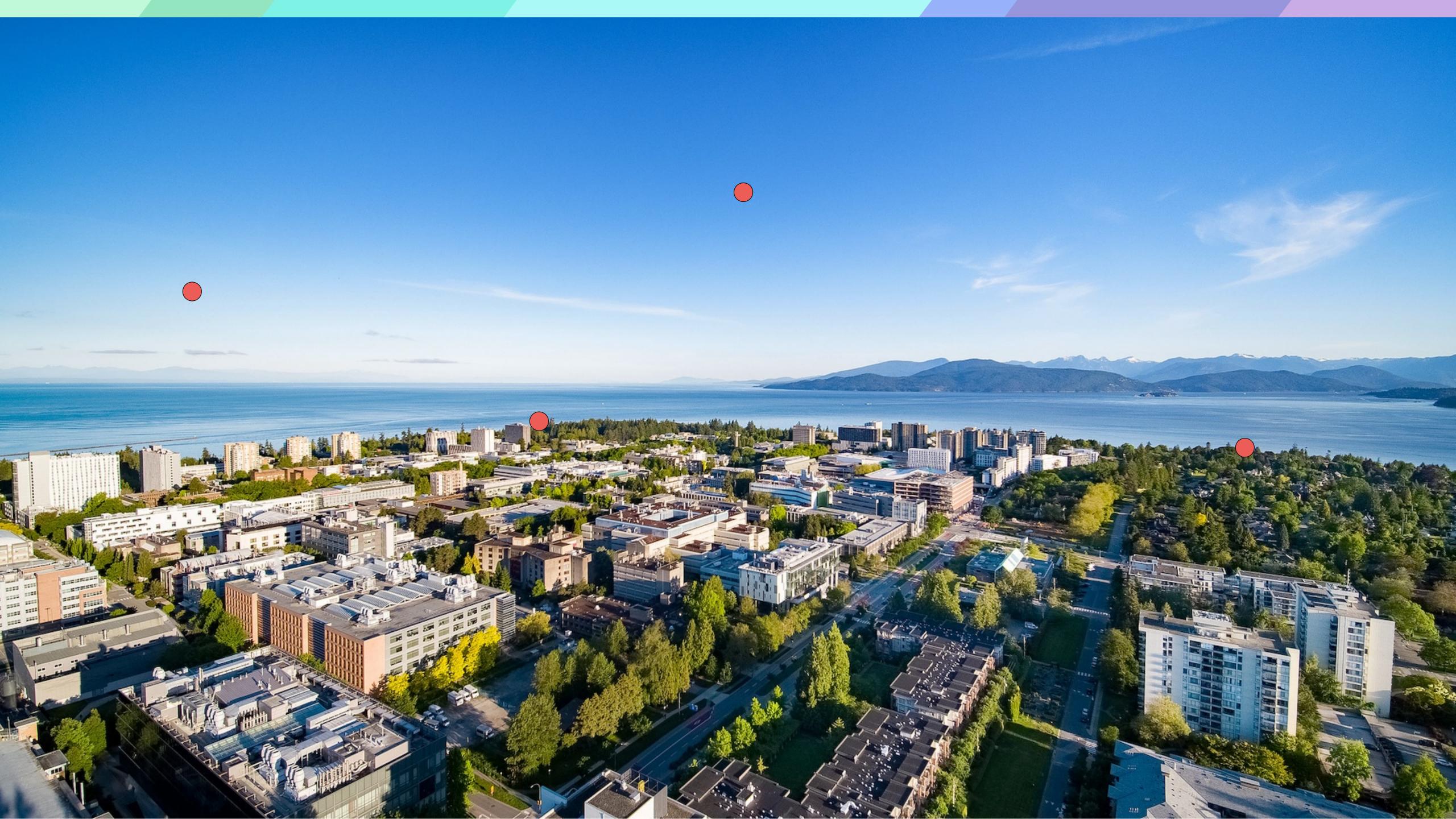
We can formulate boundary detection as a high-level recognition task

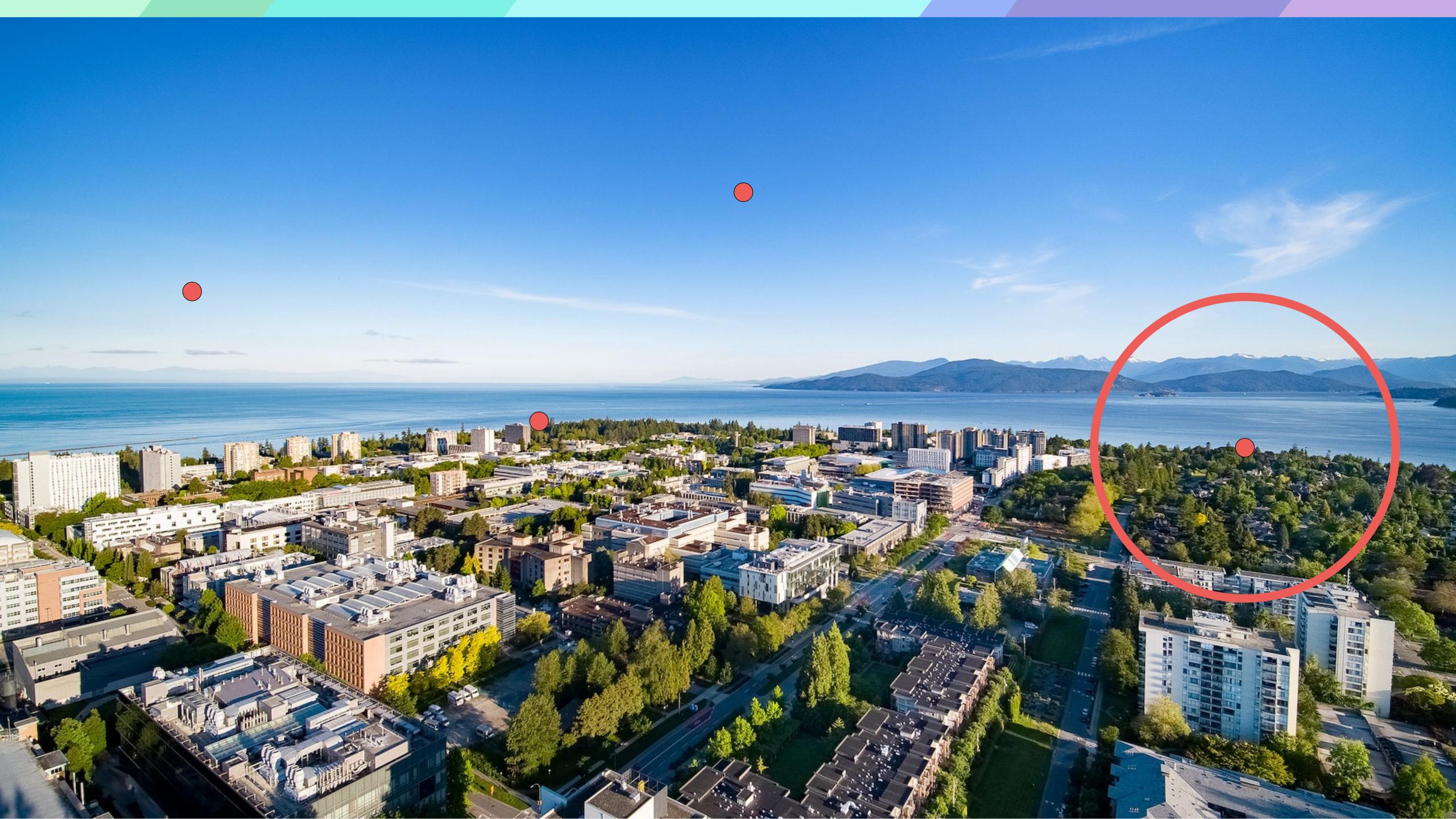
— Try to learn, from sample human-annotated images, which visual features or cues are predictive of a salient/significant boundary

Many boundary detectors output a **probability or confidence** that a pixel is on a boundary























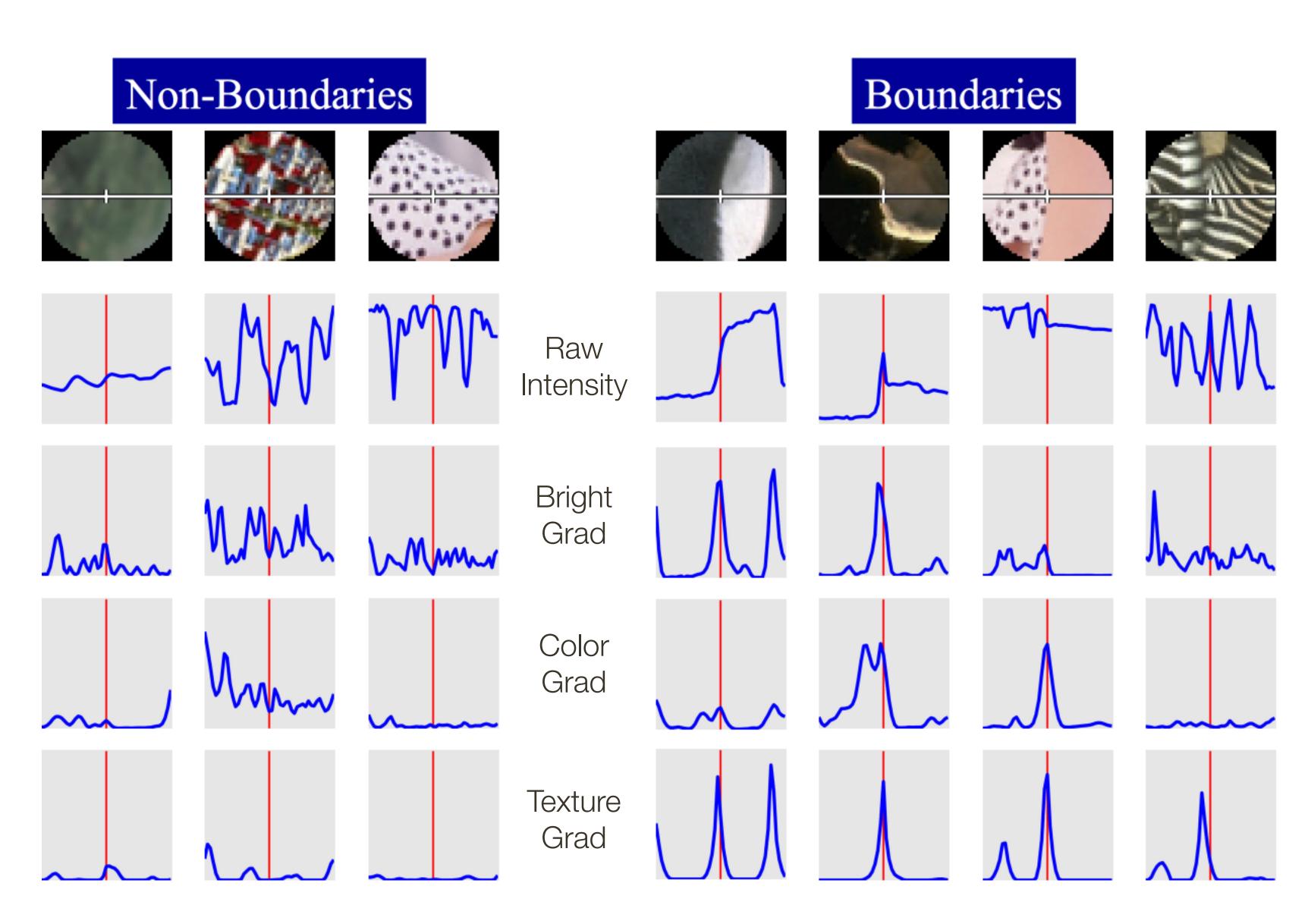




#### **Boundary** Detection:

#### Features:

- Raw Intensity
- Orientation Energy
- Brightness Gradient
- Color Gradient
- Texture gradient



#### **Boundary** Detection:

#### For each **feature** type

- Compute non-parametric distribution (histogram) for left side
- Compute non-parametric distribution (histogram) for right side
- Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that outputs probabilities (Logistic Regression, SVM, etc.)

## Boundary Detection: Example Approach



Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

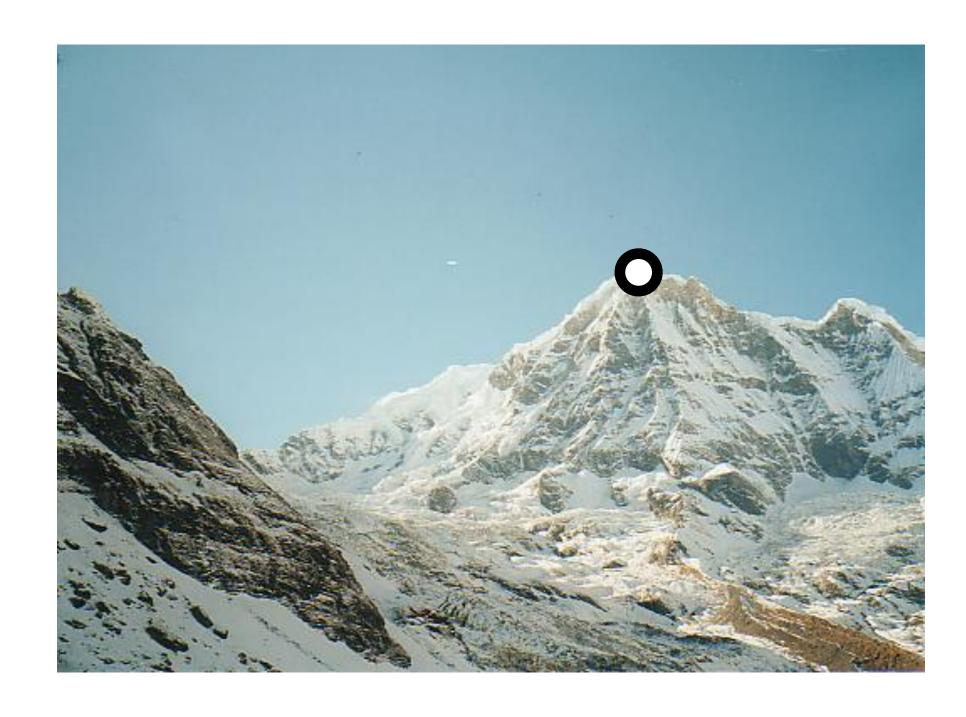
### Learning Goals

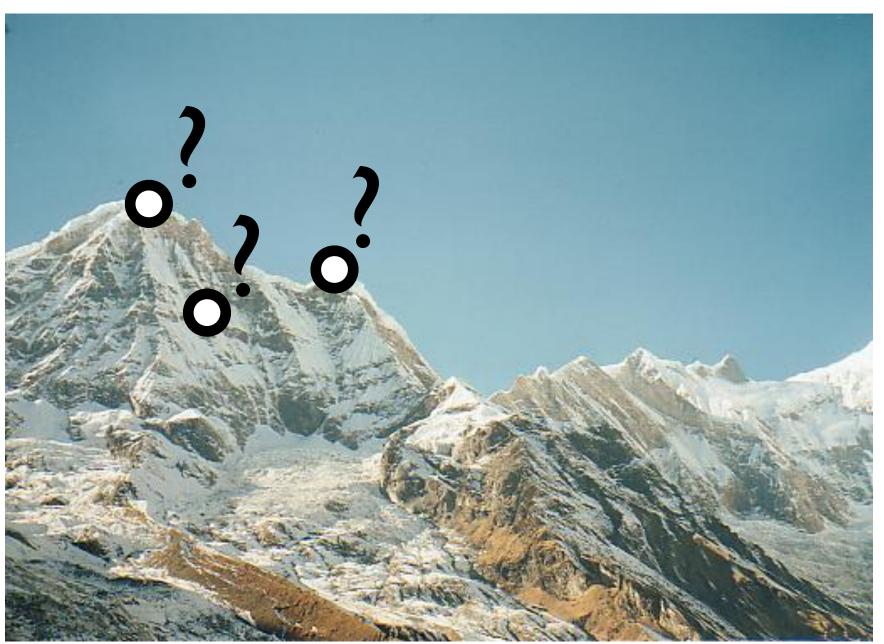
Why corners (blobs)?
What are corners (blobs)?

#### Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) between images

This has **many** applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...





## Motivation: Template Matching

#### When might template matching fail?

Different scales





Different orientation



Lighting conditions



Left vs. Right hand





Partial Occlusions



Different Perspective

When might template matching in scaled representation fail?



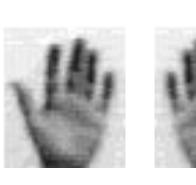
Different orientation



Lighting conditions



Left vs. Right hand

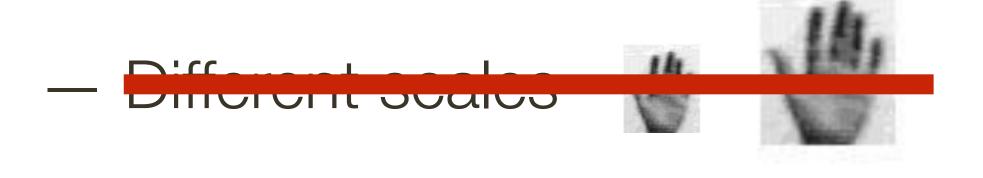


Partial Occlusions



Different Perspective

When might edge matching in scaled representation fail?



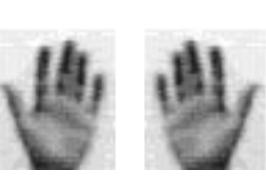
Different orientation



- <del>Lighting conditions</del>



Left vs. Right hand

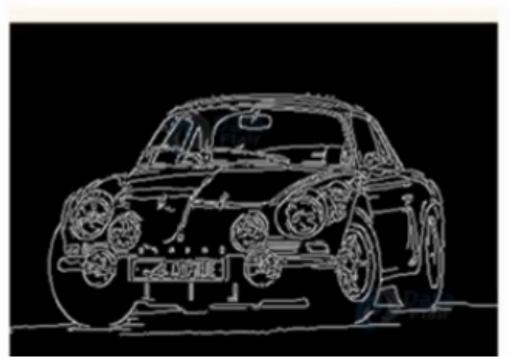


— Partial Occlusions

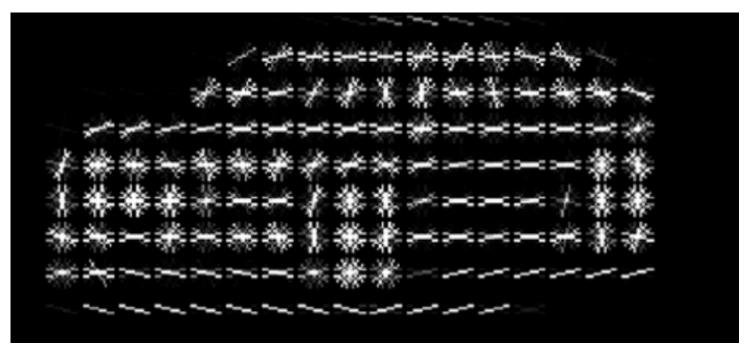


Different Perspective

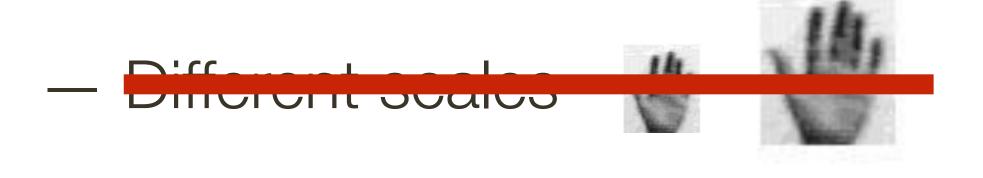








When might edge matching in scaled representation fail?



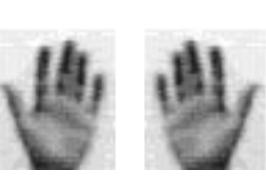
Different orientation



- <del>Lighting conditions</del>



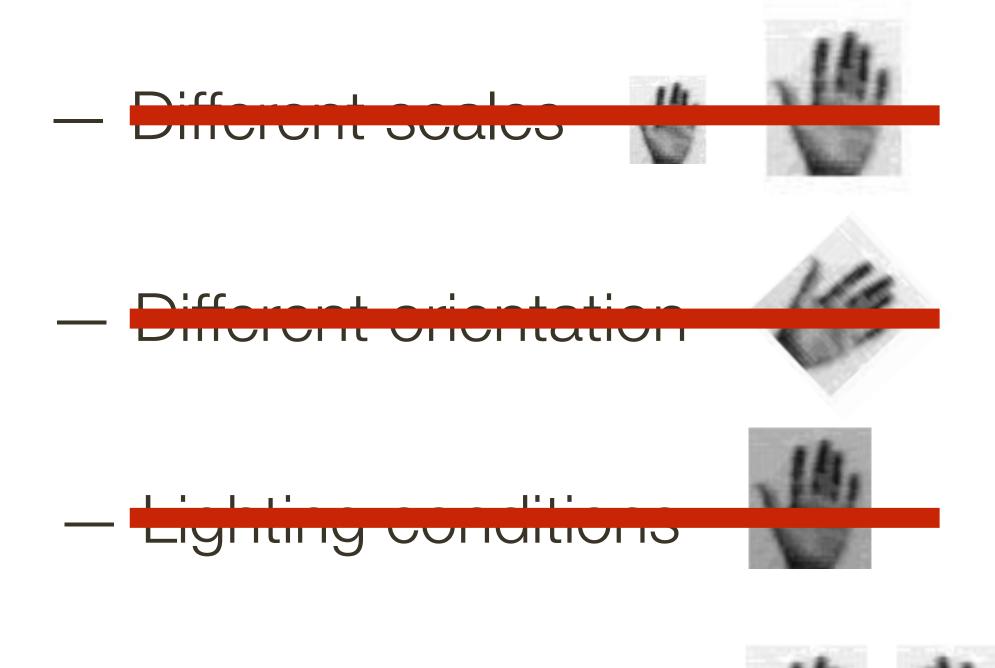
Left vs. Right hand



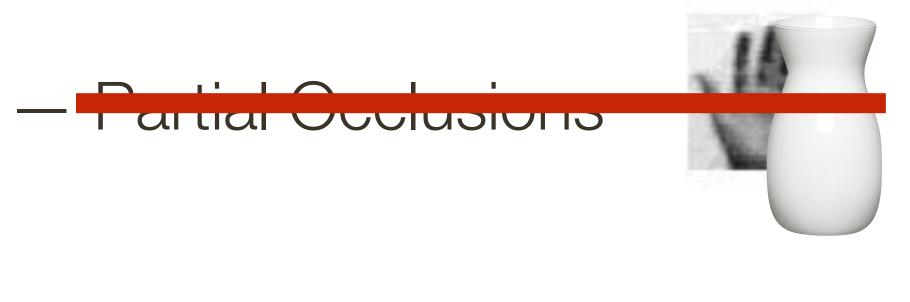
— Partial Occlusions



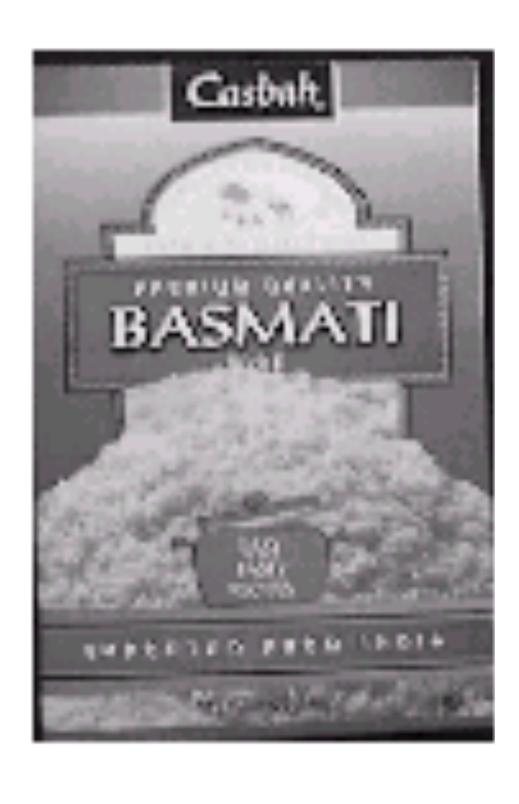
Different Perspective



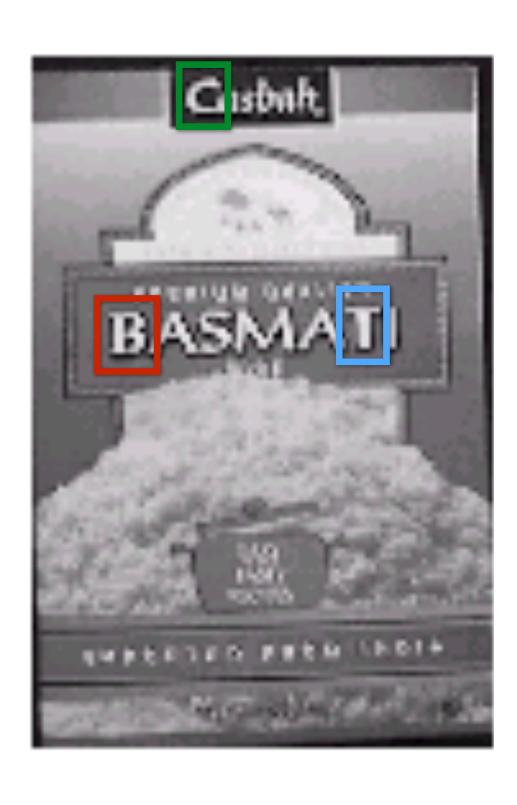
Left vs. Right hand



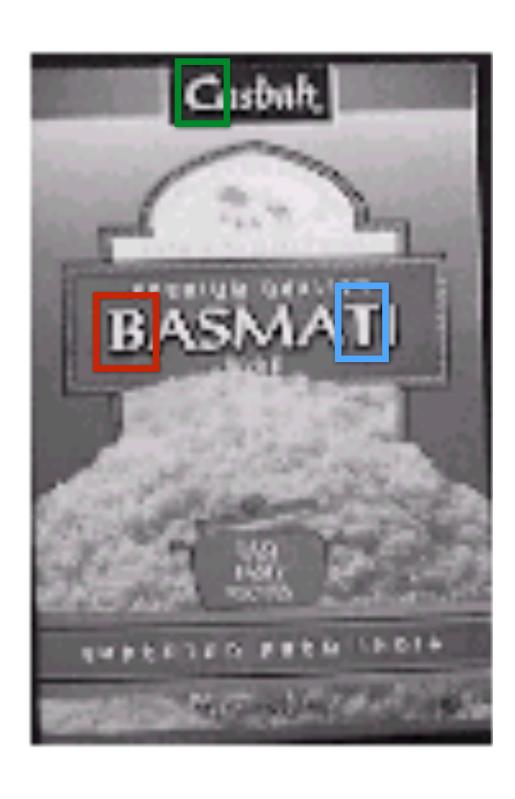
- Different Deropootive



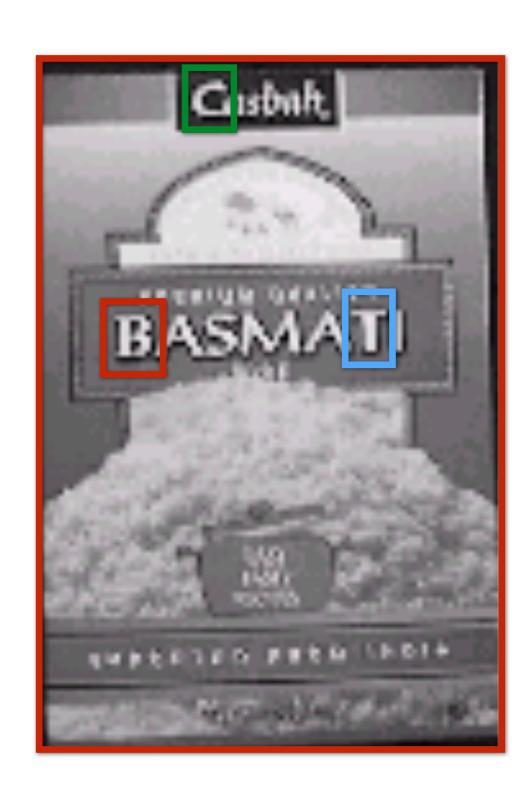




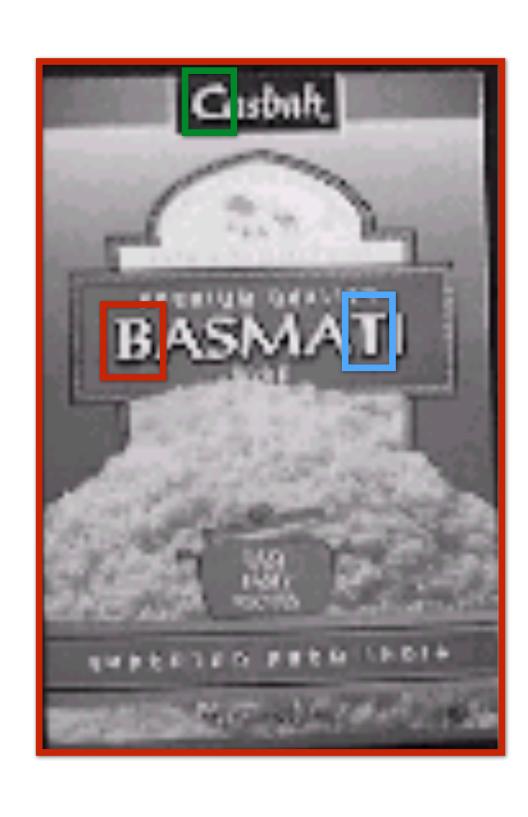




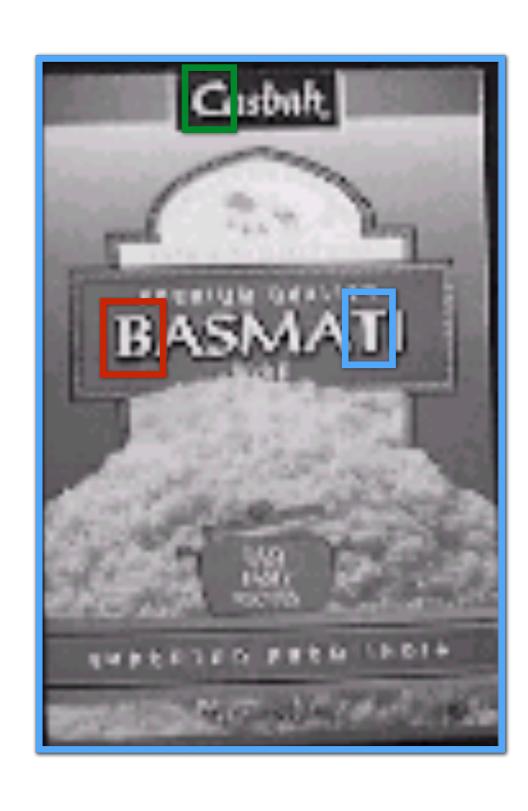








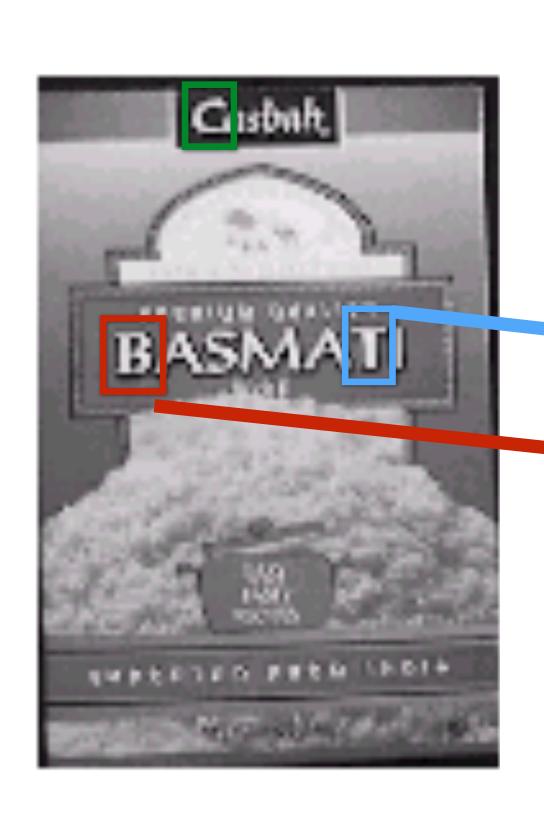


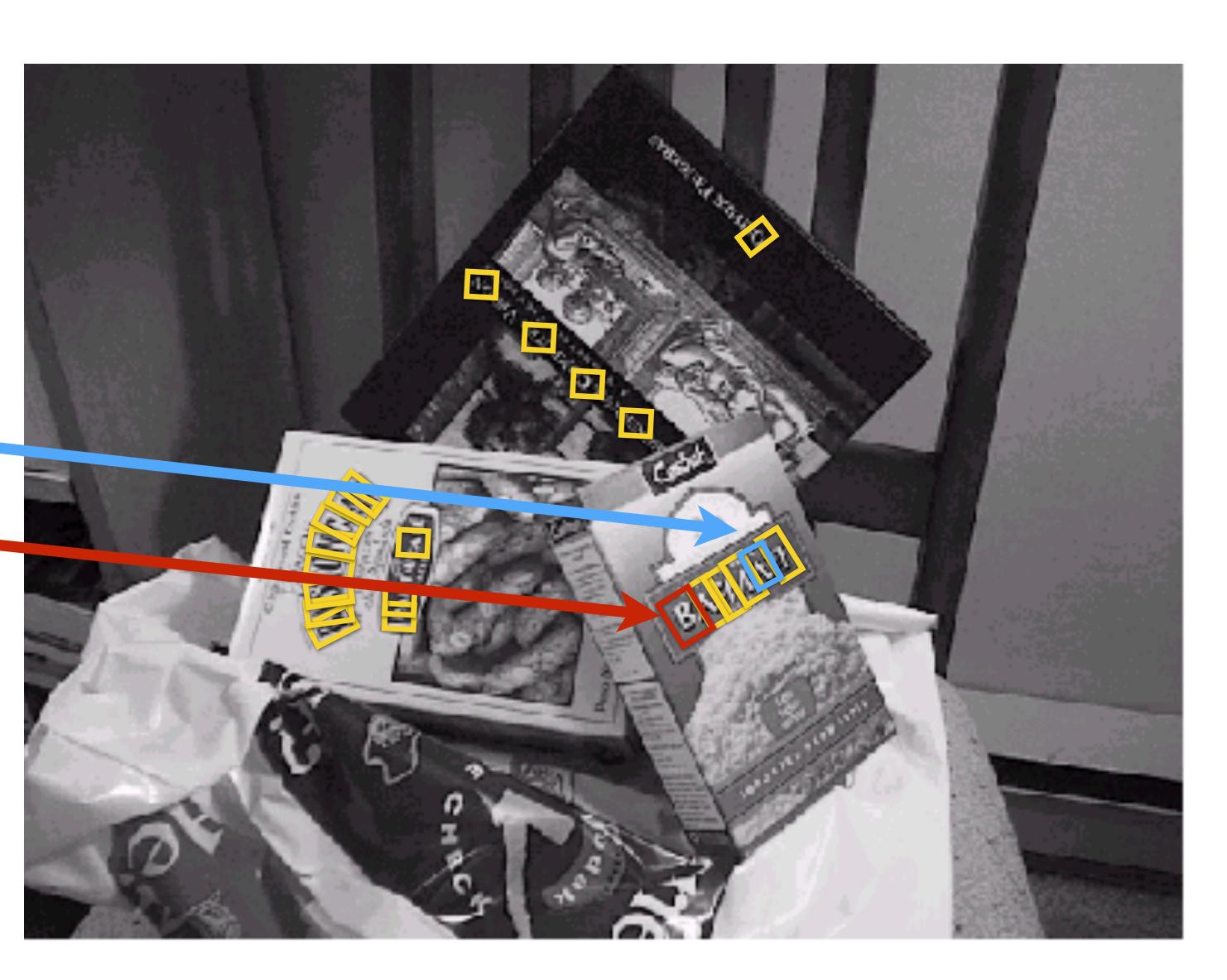






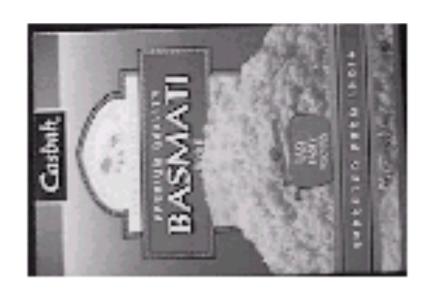






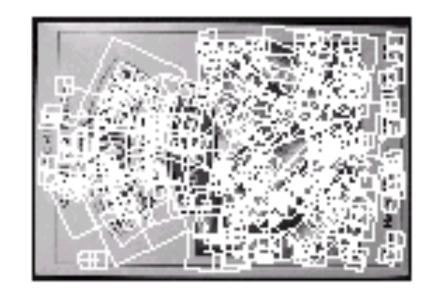
## Planar Object Instance Recognition

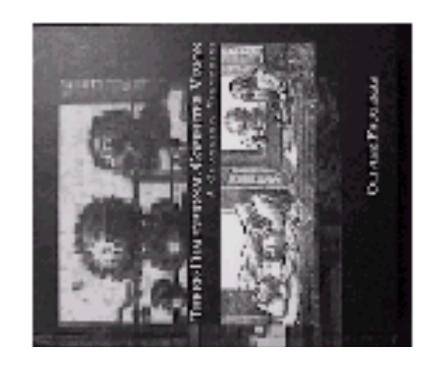
#### Database of planar objects

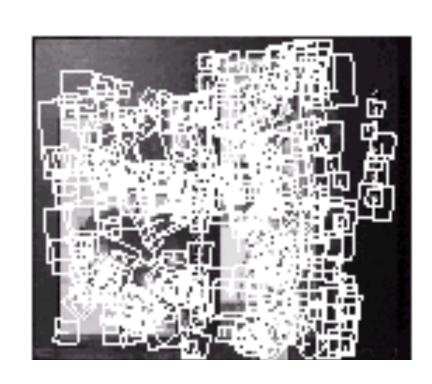










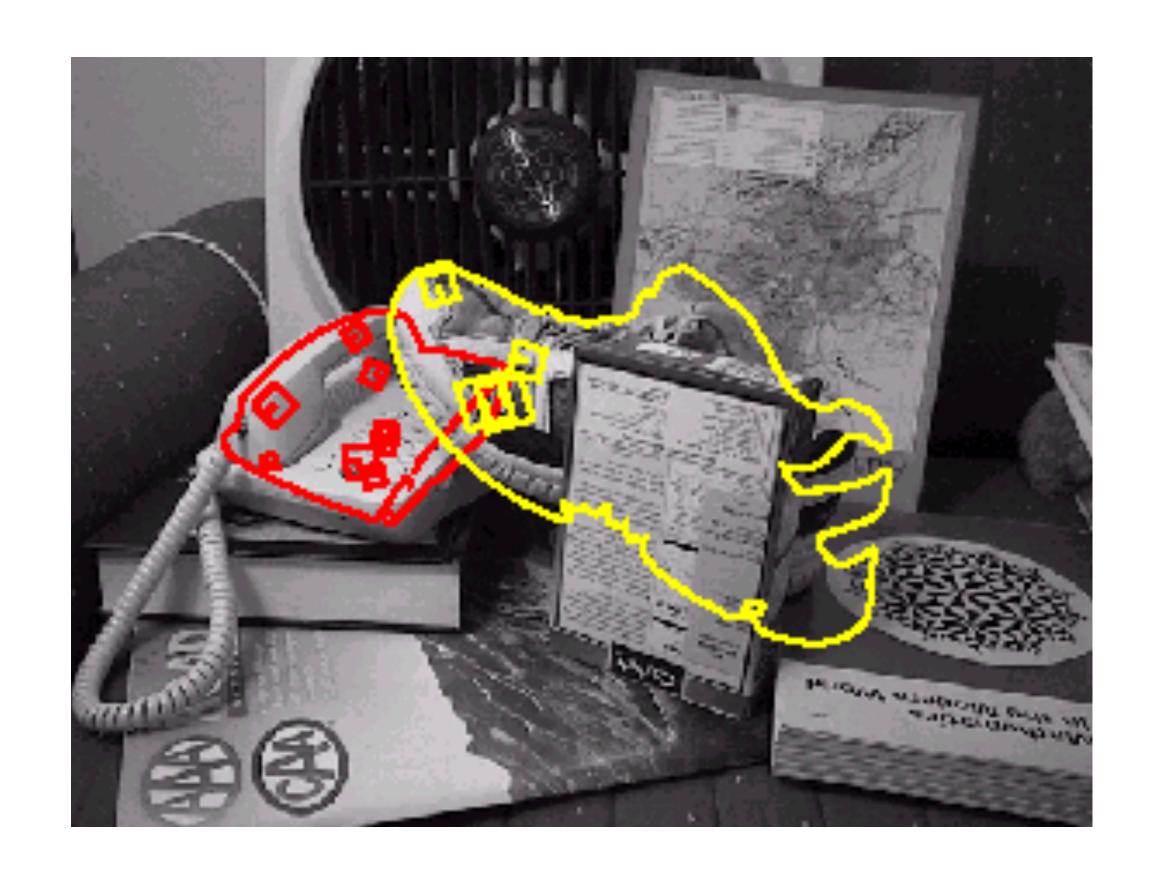


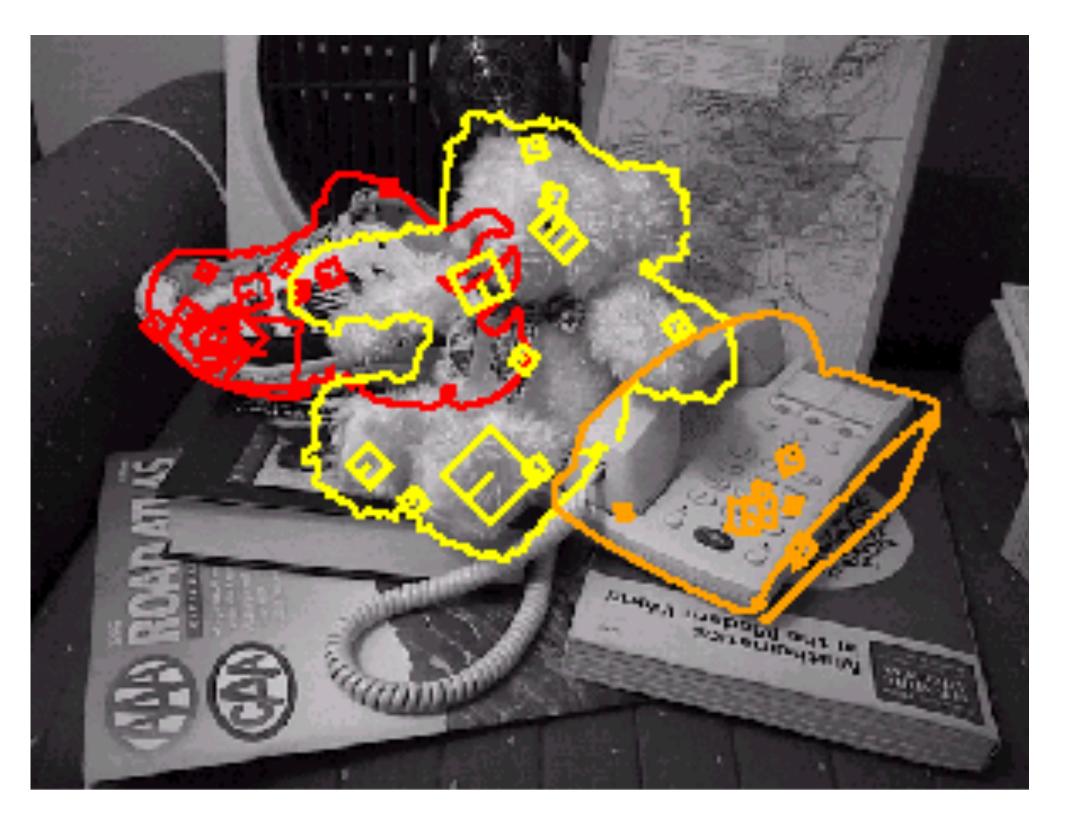
#### Instance recognition





## Recognition under Occlusion



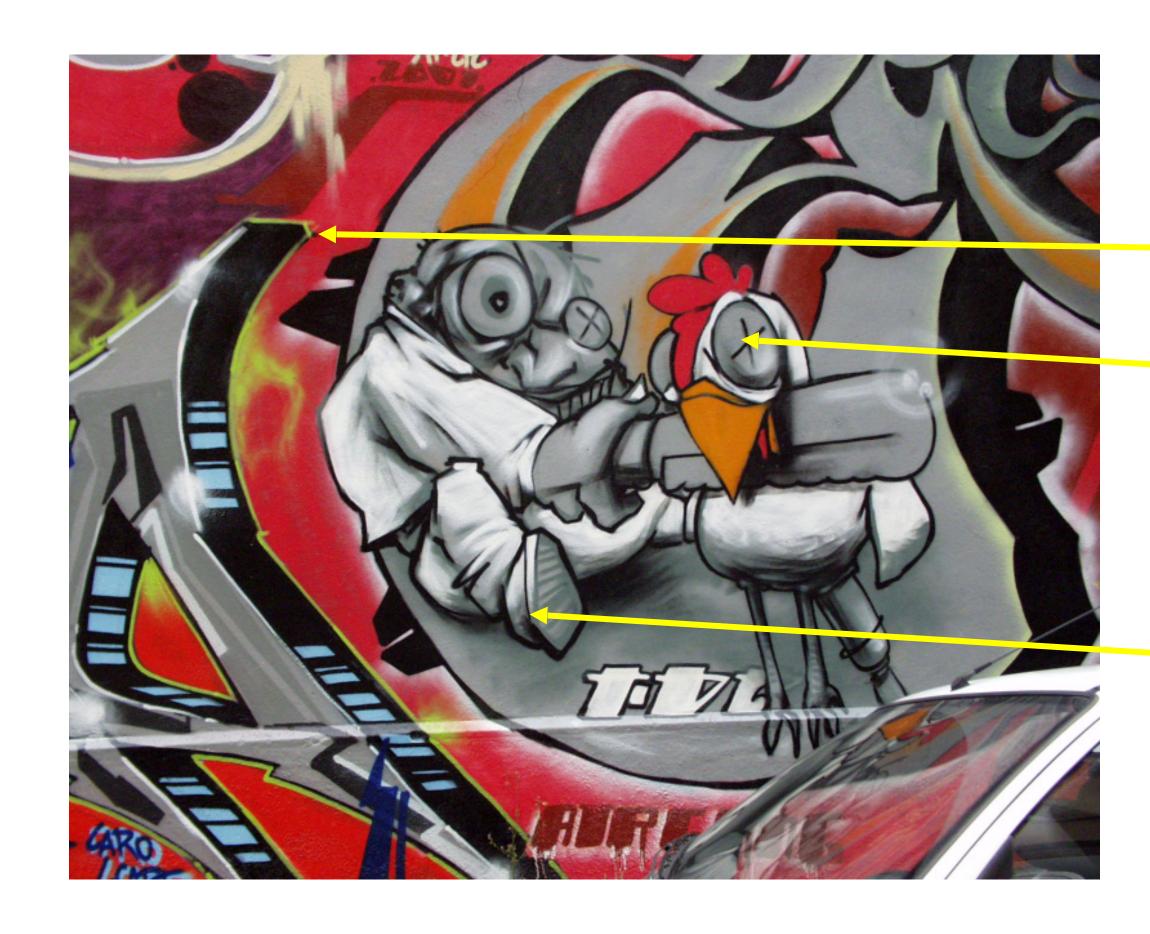


# Image Matching





# Image Matching





#### Feature Detectors



Corners/Blobs



Edges







Regions



Straight Lines

#### Feature Descriptors

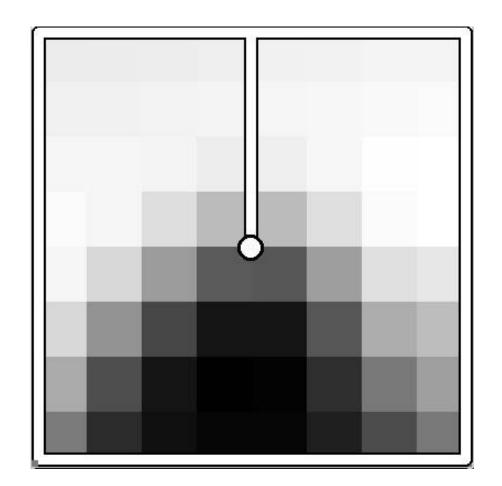
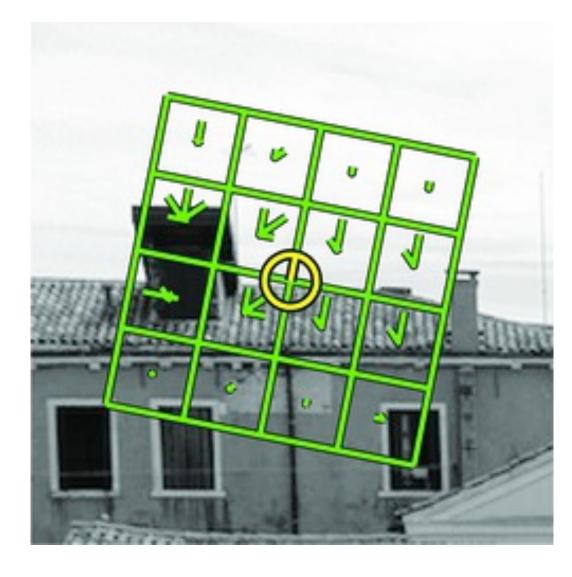
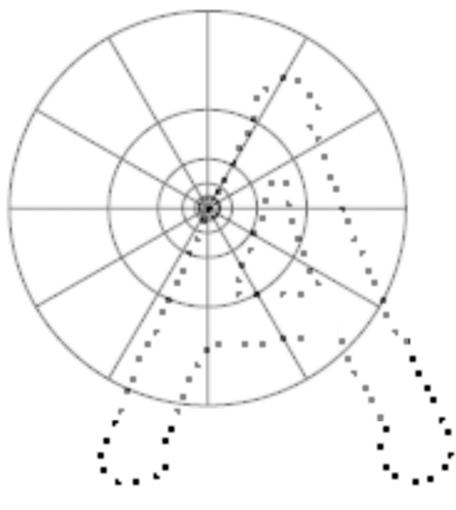


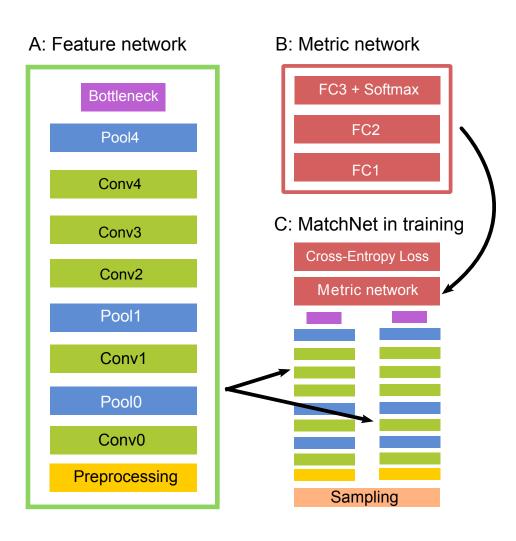
Image Patch



SIFT



Shape Context



Learned Descriptors

#### What is a Good Feature?

Local: features are local, robust to occlusion and clutter

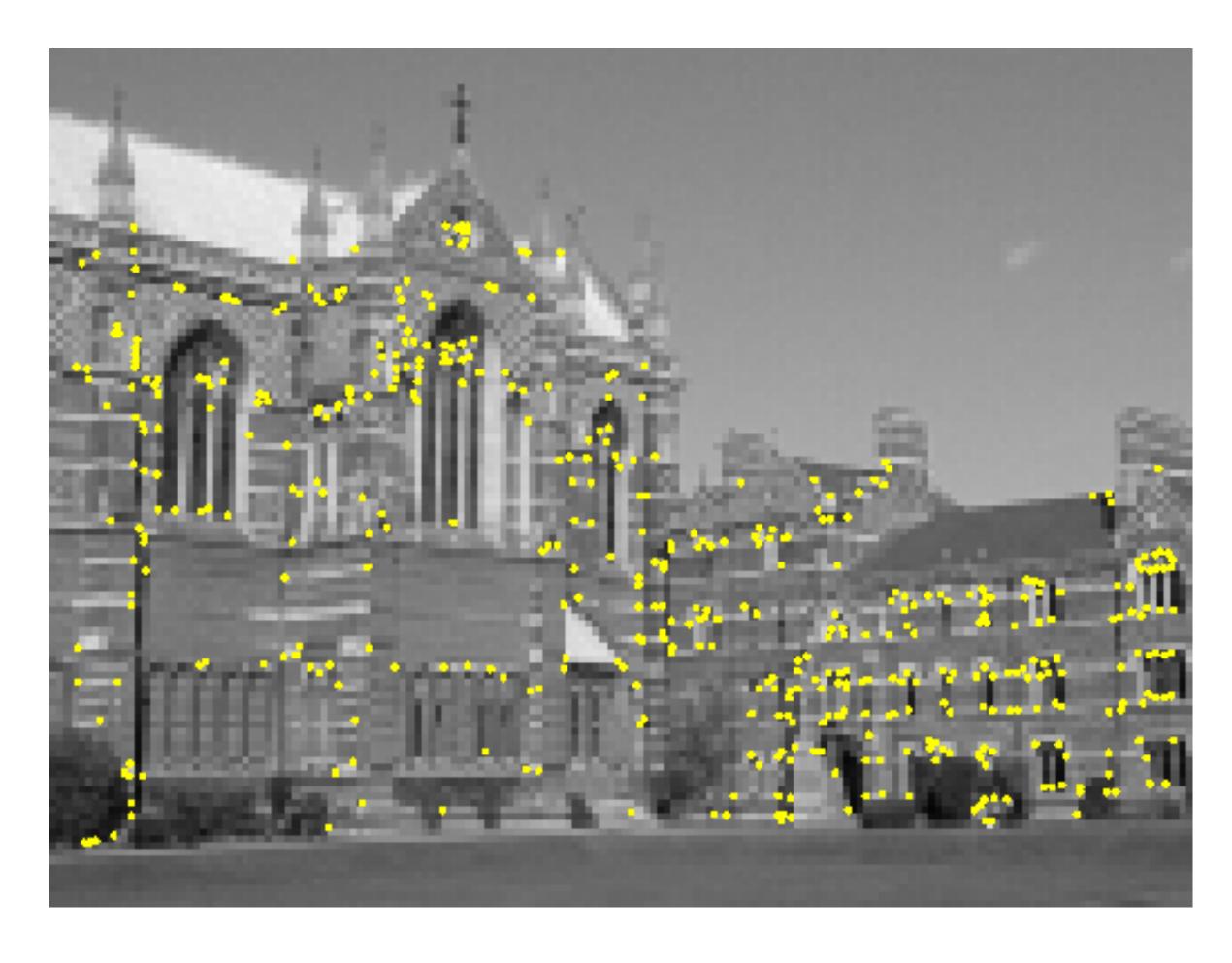
Accurate: precise localization

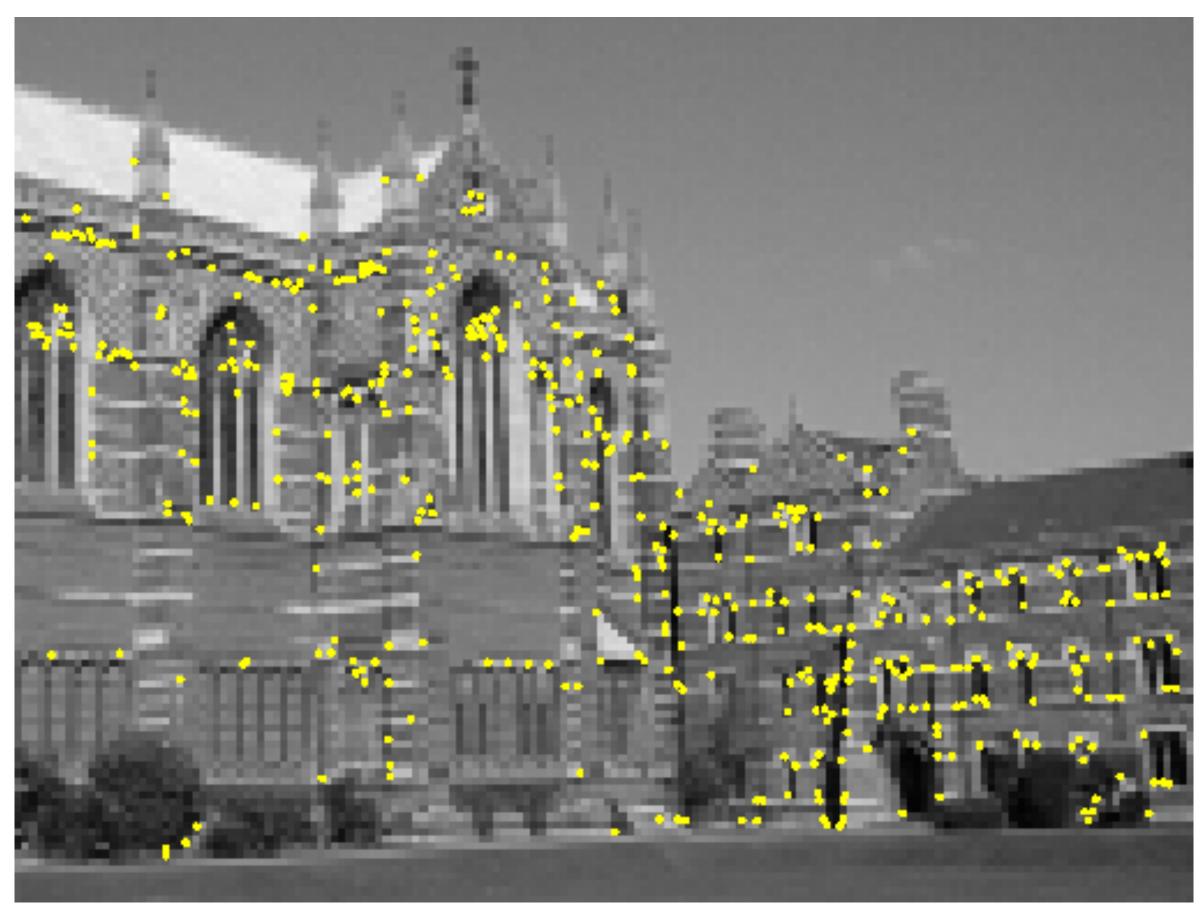
Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

#### What is a Good Feature?





#### What is a corner?



Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

#### What is a corner?

#### Corner

**Interest** Point



Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

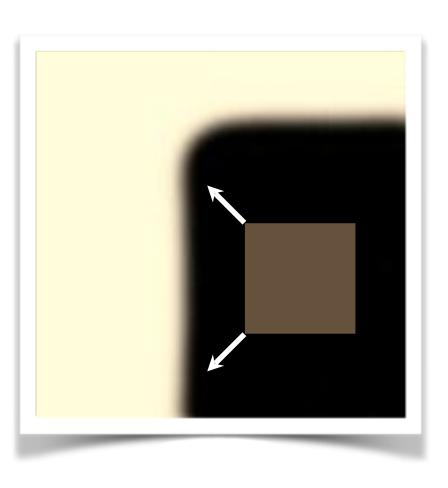
A corner can be localized reliably.

Thought experiment:

A corner can be localized reliably.

Thought experiment:

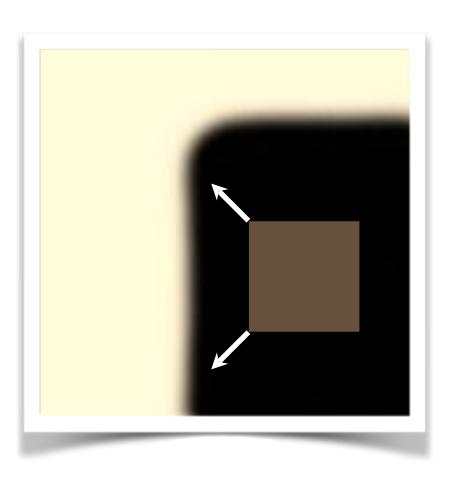
- Place a small window over a patch of constant image value.



"flat" region:

A corner can be localized reliably.

Thought experiment:

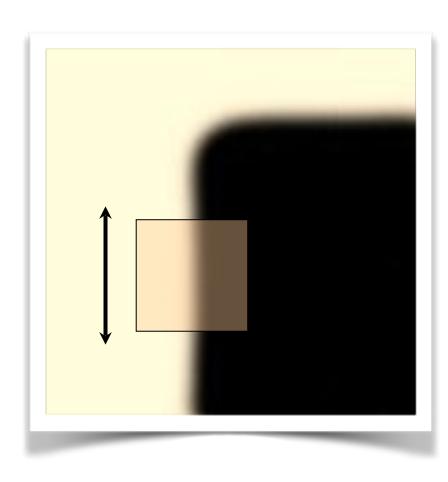


"flat" region:
no change in all
directions

A corner can be localized reliably.

#### Thought experiment:

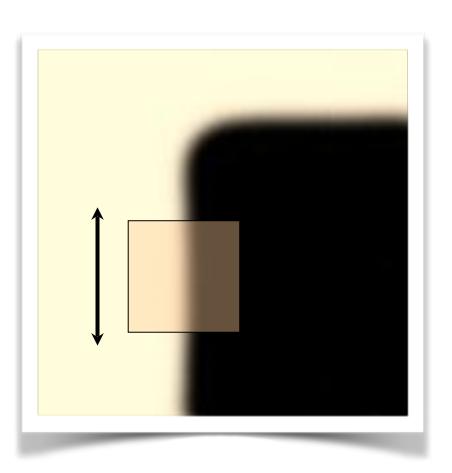
- Place a small window over a patch of constant image value.
   If you slide the window in any direction, the image in the window will not change.
- Place a small window over an edge.



"edge":

A corner can be localized reliably.

Thought experiment:

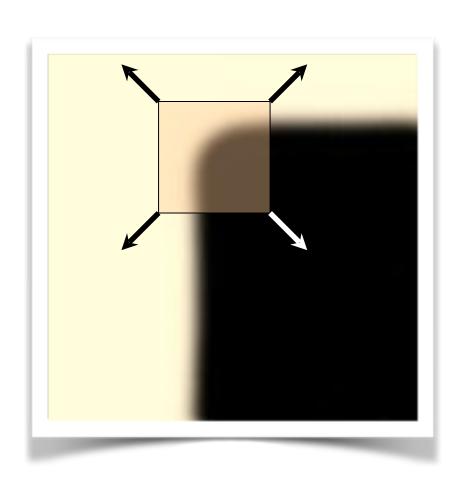


"edge":
no change along
the edge direction

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
  - → Cannot estimate location along an edge (a.k.a., aperture problem)

A corner can be localized reliably.

#### Thought experiment:

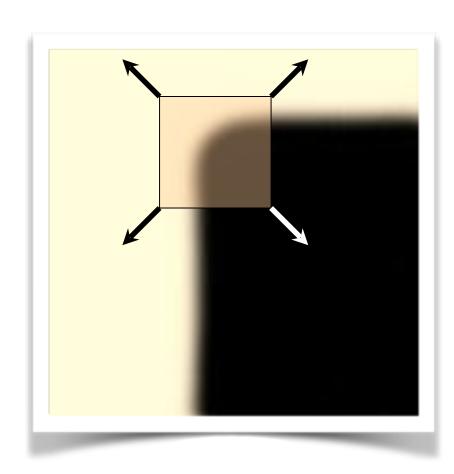


"corner":

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
  - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner.

A corner can be localized reliably.

Thought experiment:

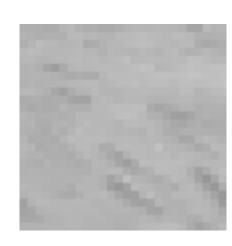


"corner":
significant change
in all directions

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
  - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner. If you slide the window in any direction, the image in the window changes.

What kind of structures are present in the image locally?

What kind of structures are present in the image locally?

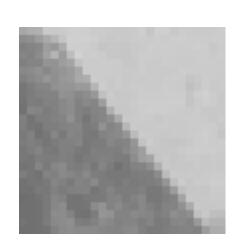


**OD Structure**: not useful for matching

What kind of structures are present in the image locally?



**OD Structure**: not useful for matching

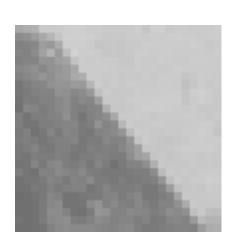


1D Structure: edge, can be localized in one direction, subject to the "aperture problem"

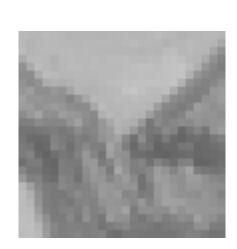
What kind of structures are present in the image locally?



**OD Structure**: not useful for matching



1D Structure: edge, can be localized in one direction, subject to the "aperture problem"

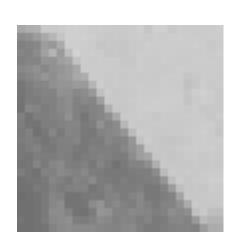


2D Structure: corner, or interest point, can be localised in both directions, good for matching

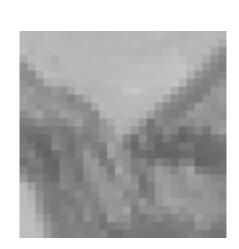
What kind of structures are present in the image locally?



**OD Structure**: not useful for matching



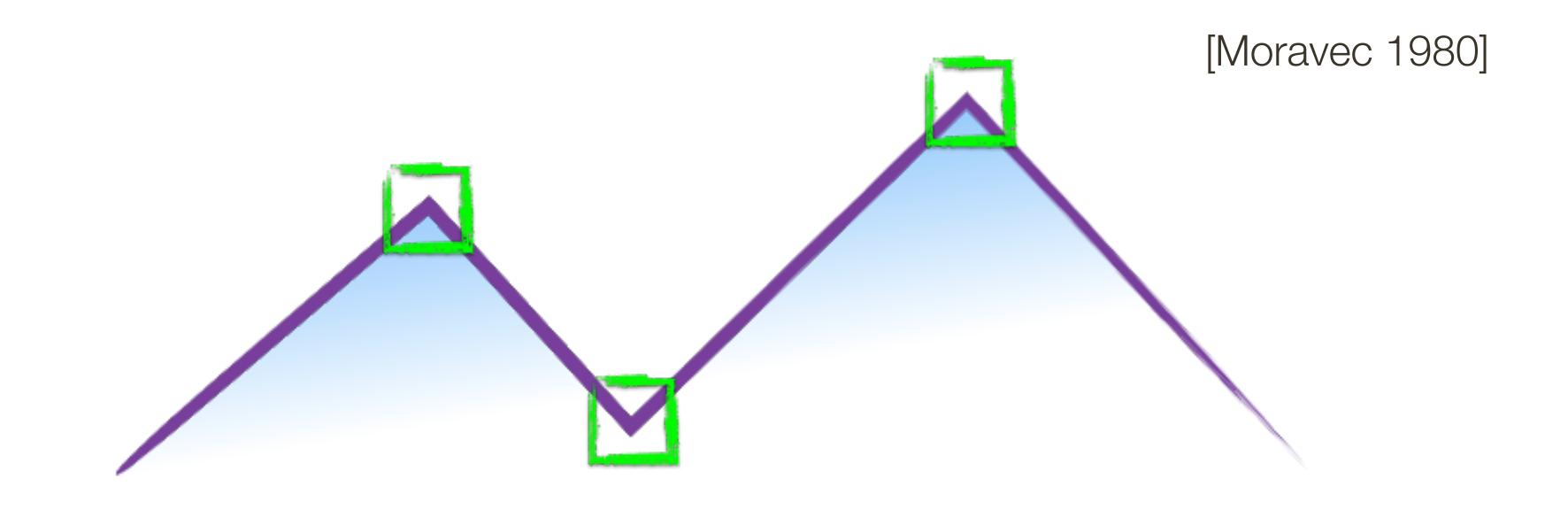
1D Structure: edge, can be localized in one direction, subject to the "aperture problem"



2D Structure: corner, or interest point, can be localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or Interest point detectors find points with 2D structure.

### How do you find a corner?

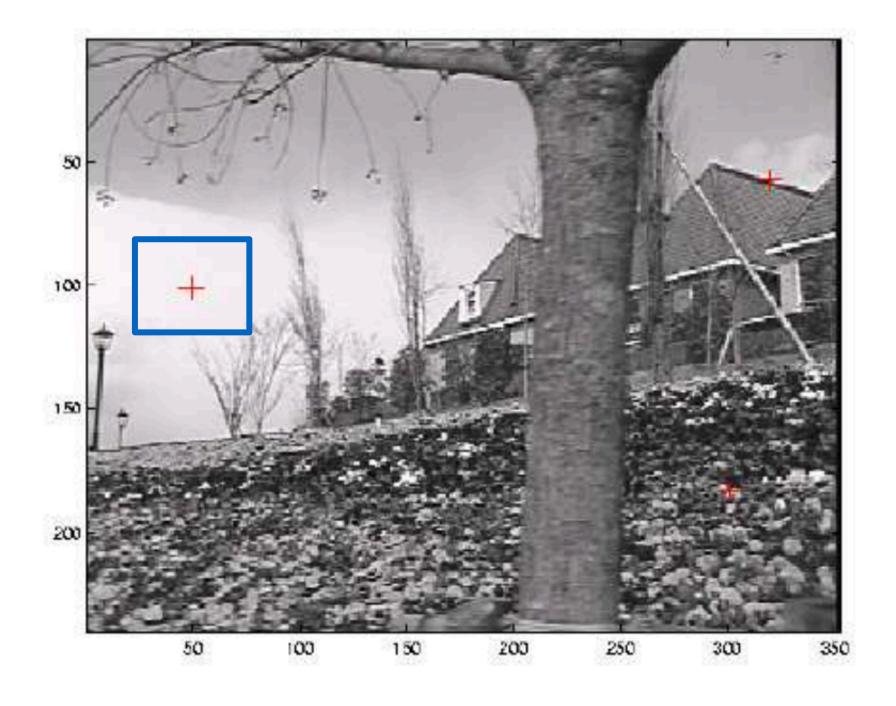


Easily recognized by looking through a small window

Shifting the window should give large change in intensity

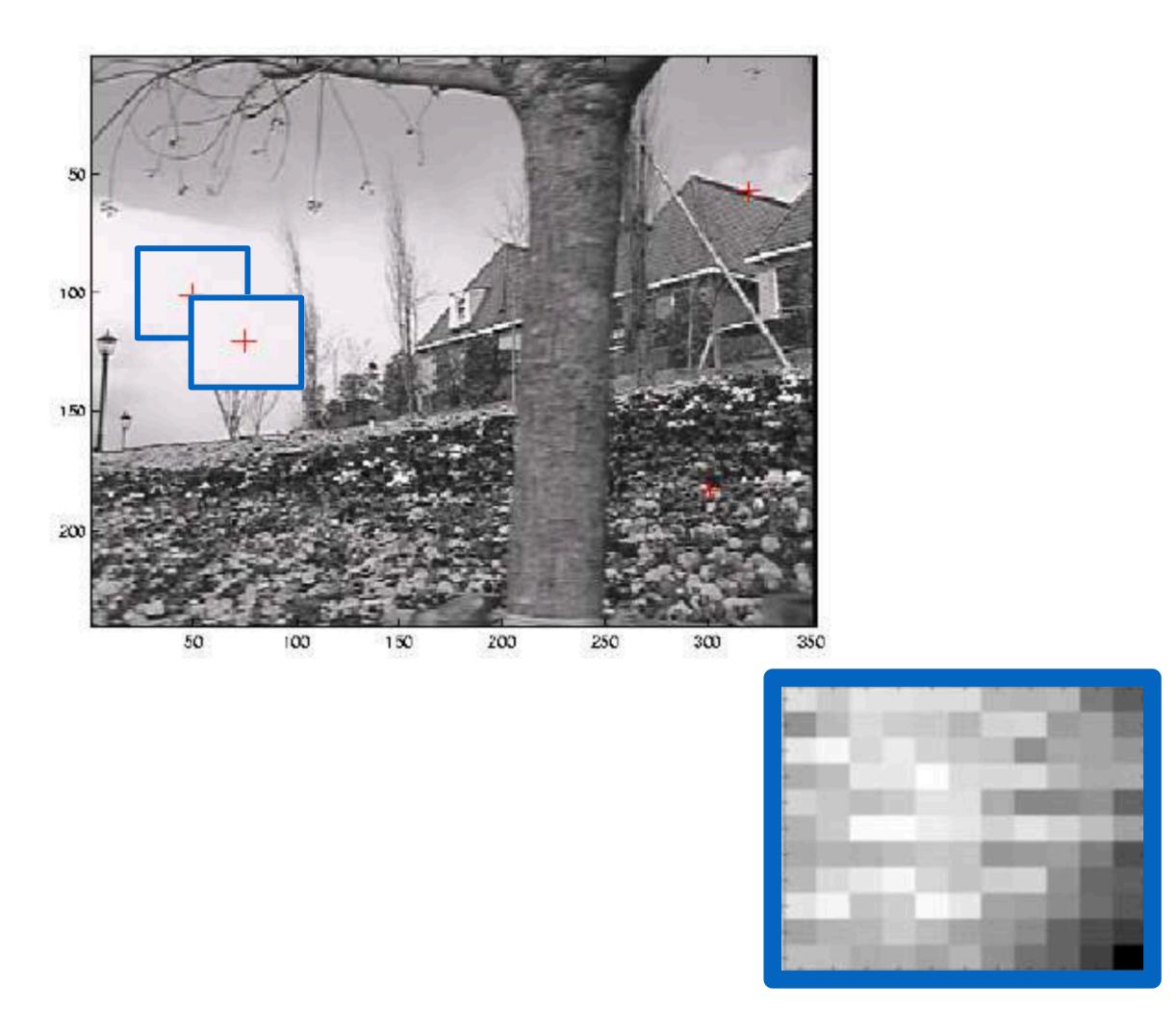
Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

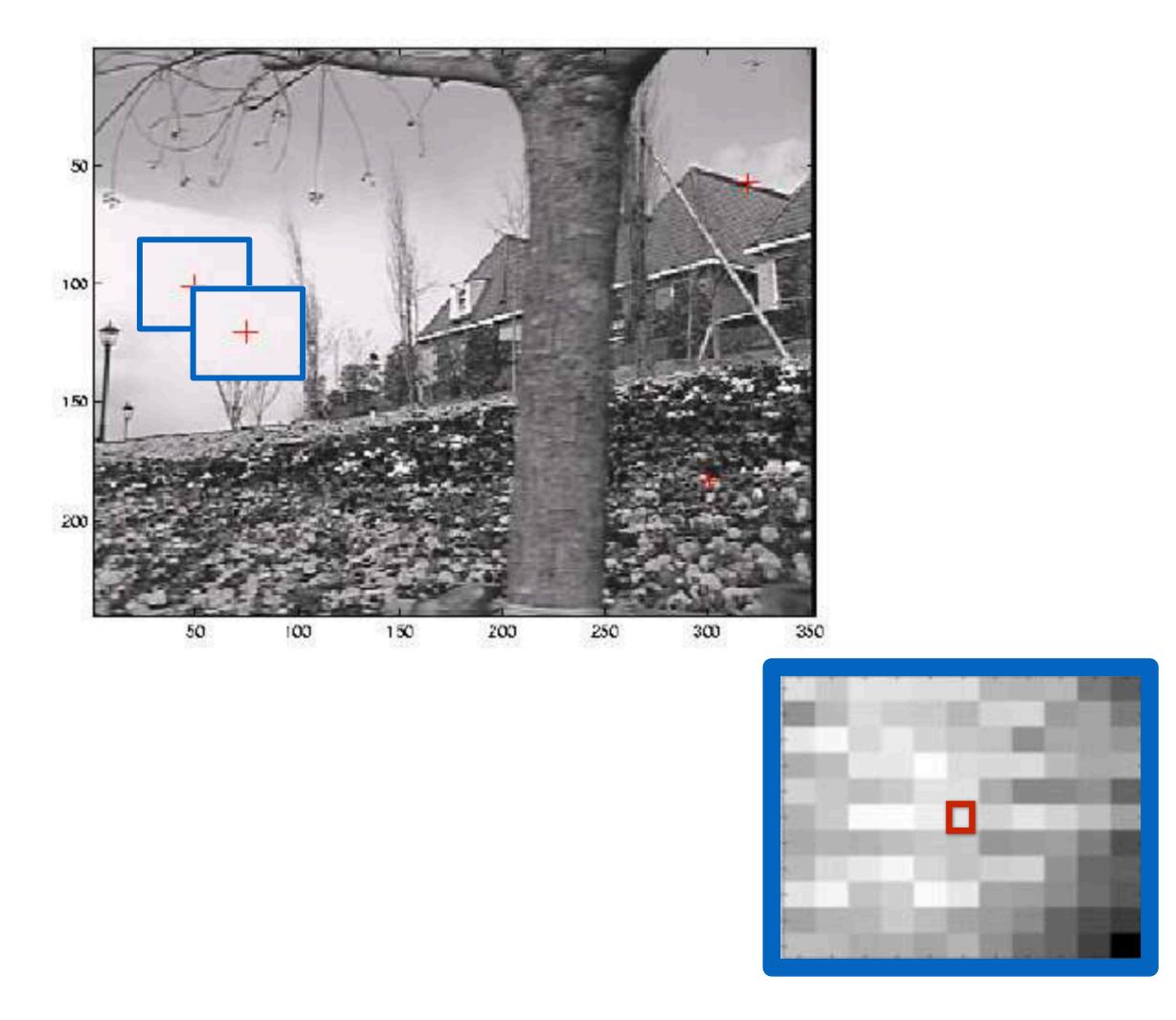




Szeliski, Figure 4.5



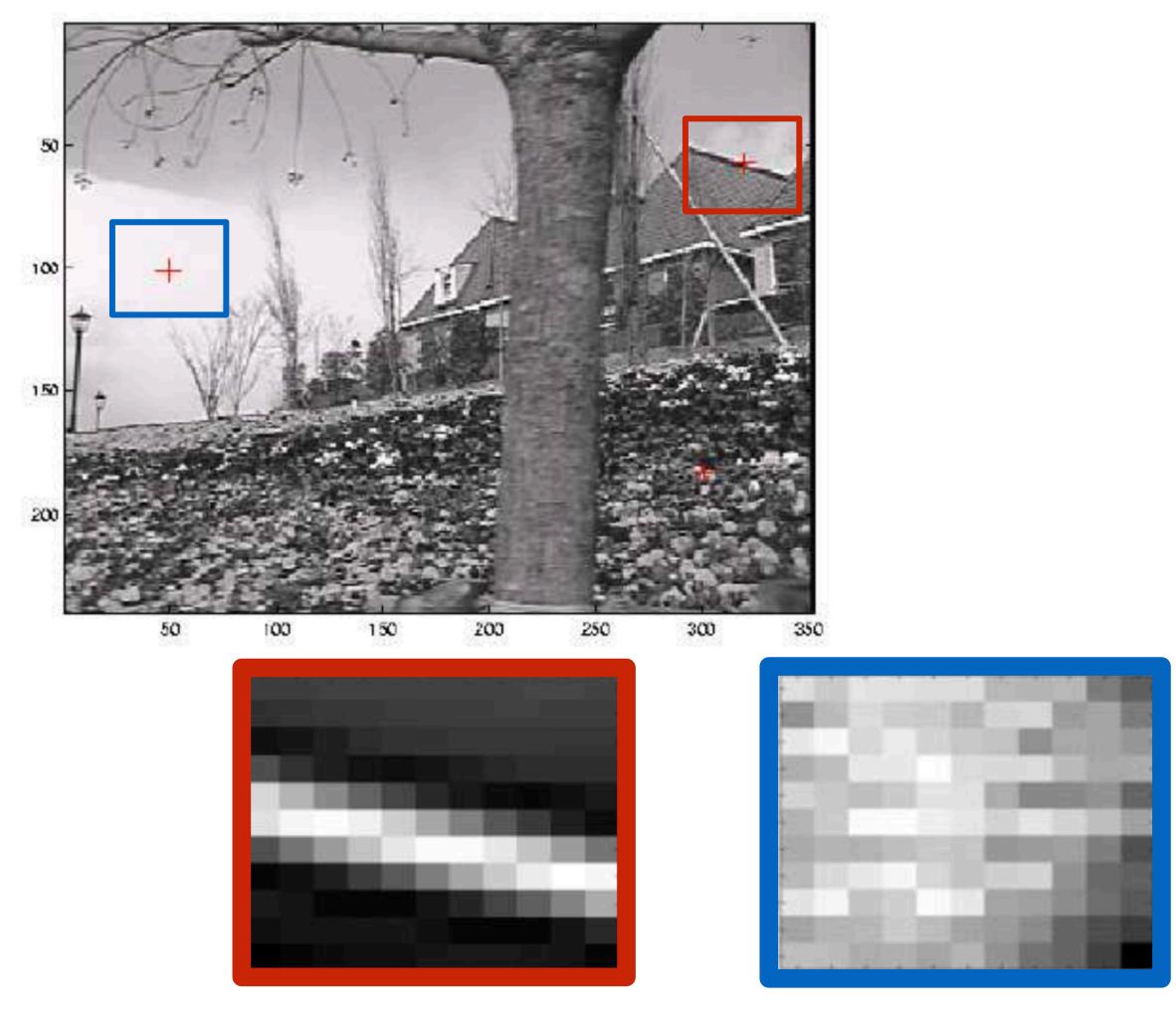
Szeliski, Figure 4.5



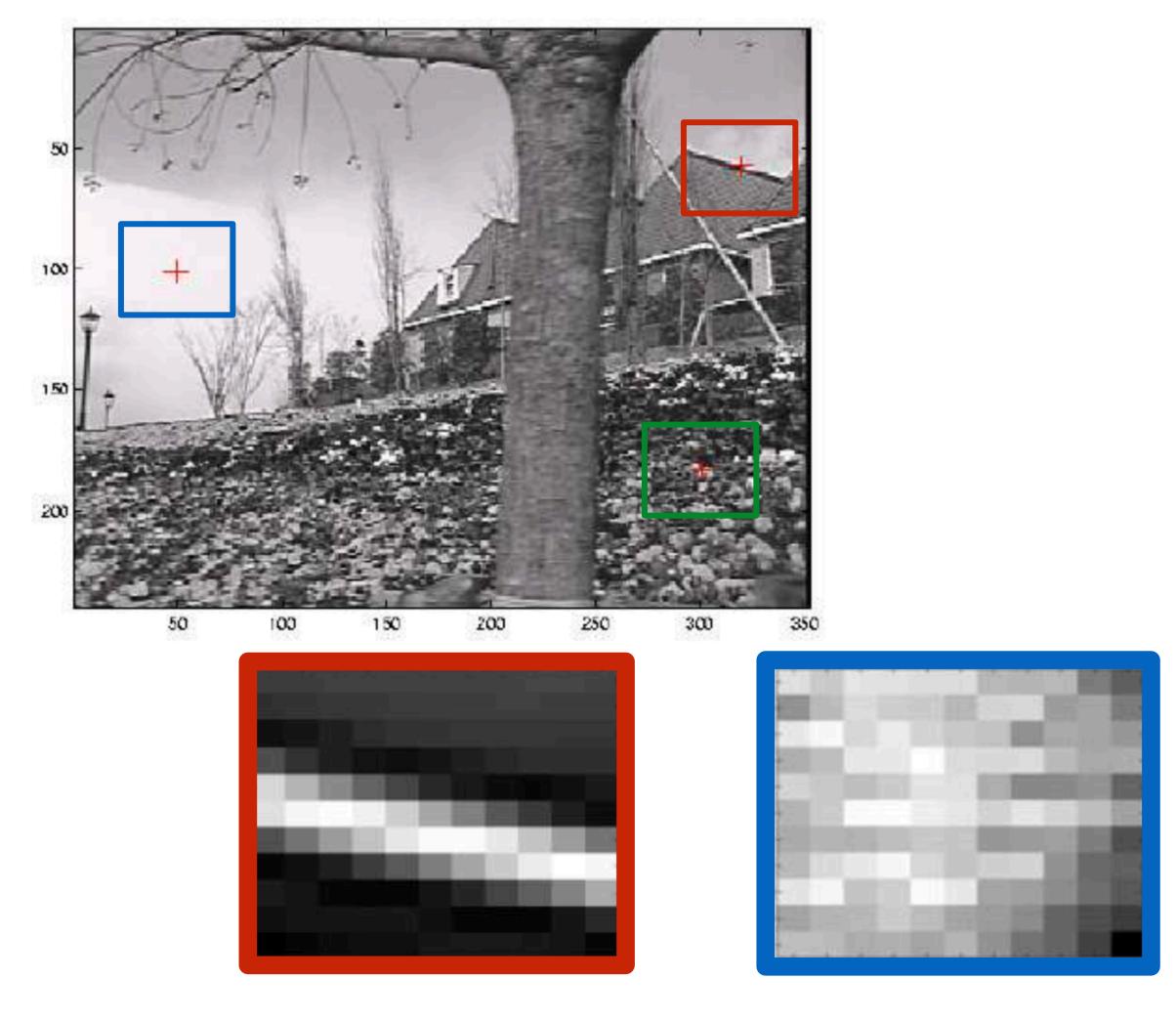
Szeliski, Figure 4.5



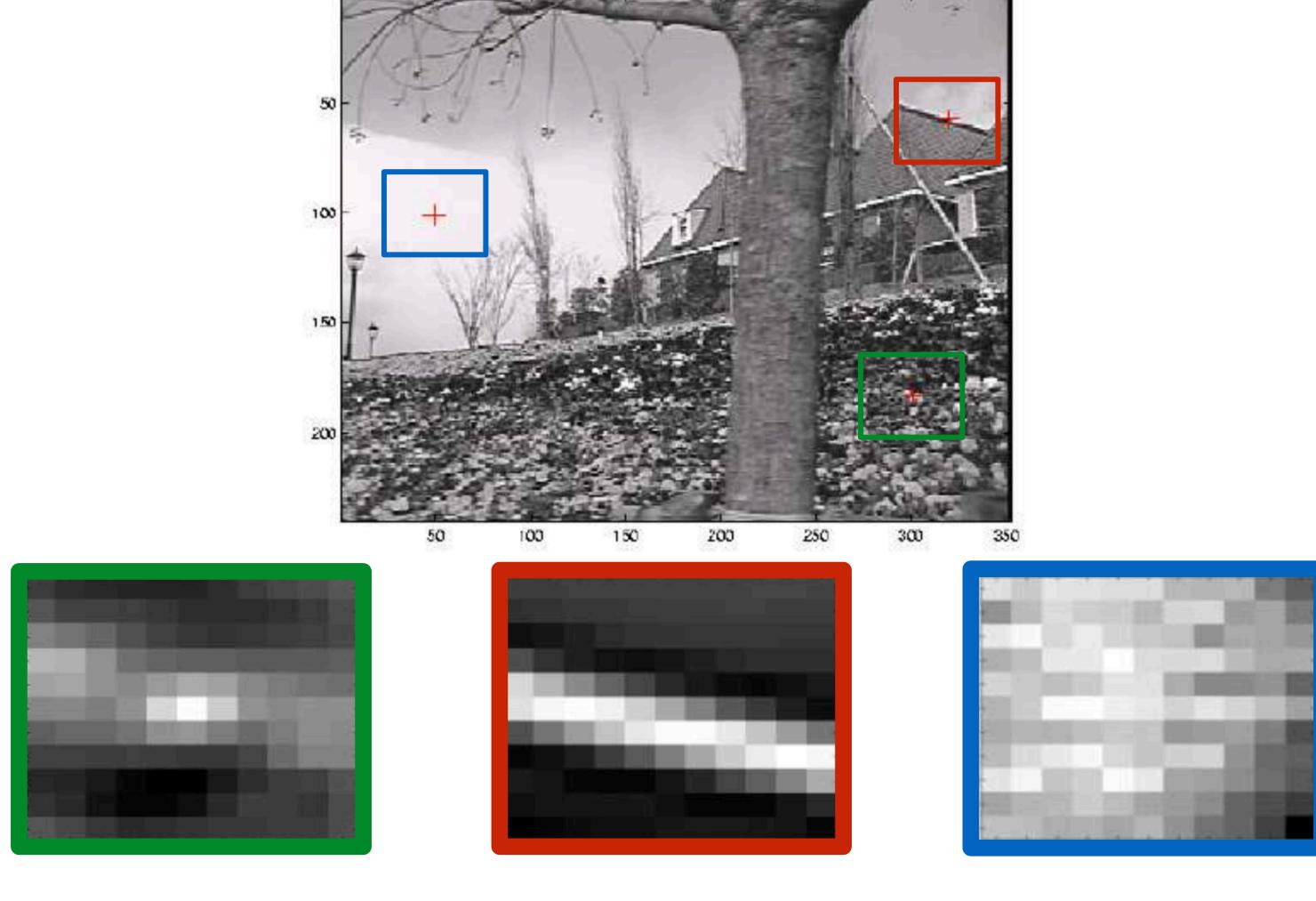
Szeliski, Figure 4.5



Szeliski, Figure 4.5



Szeliski, Figure 4.5



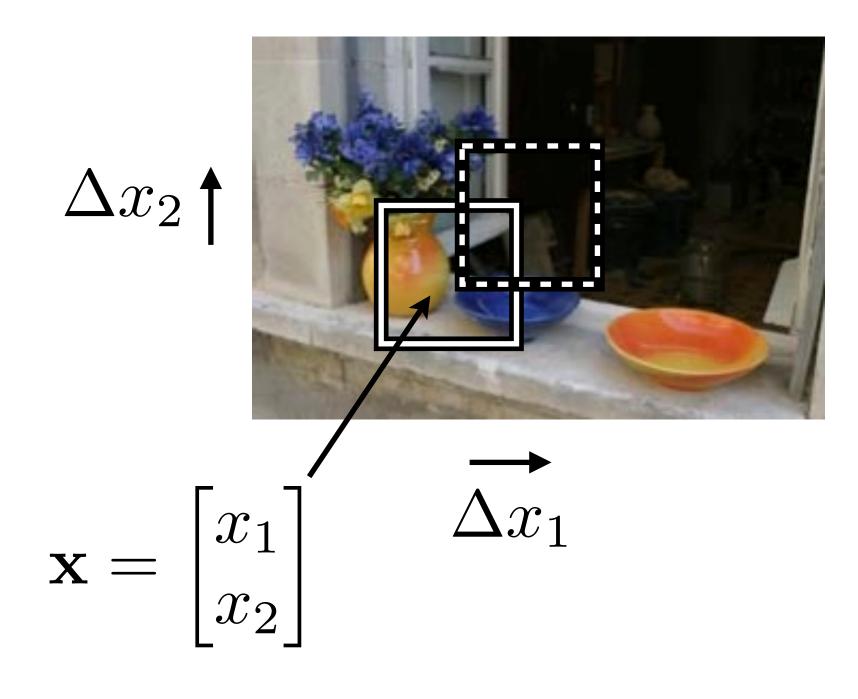
Szeliski, Figure 4.5

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

#### Local SSD Function

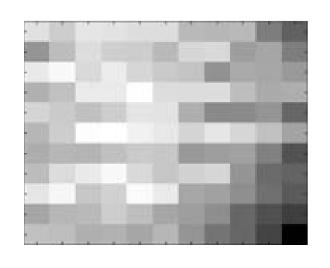
Consider the sum squared difference (SSD) of a patch with its local neighbourhood

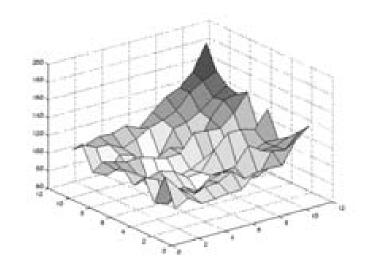


$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

#### Local SSD Function

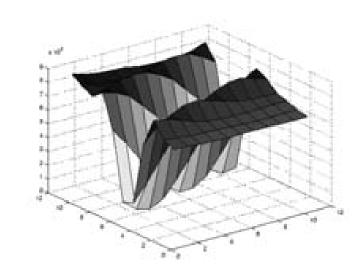
Consider the local SSD function for different patches





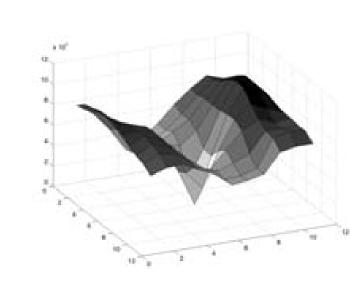
High similarity locally





High similarity along the edge





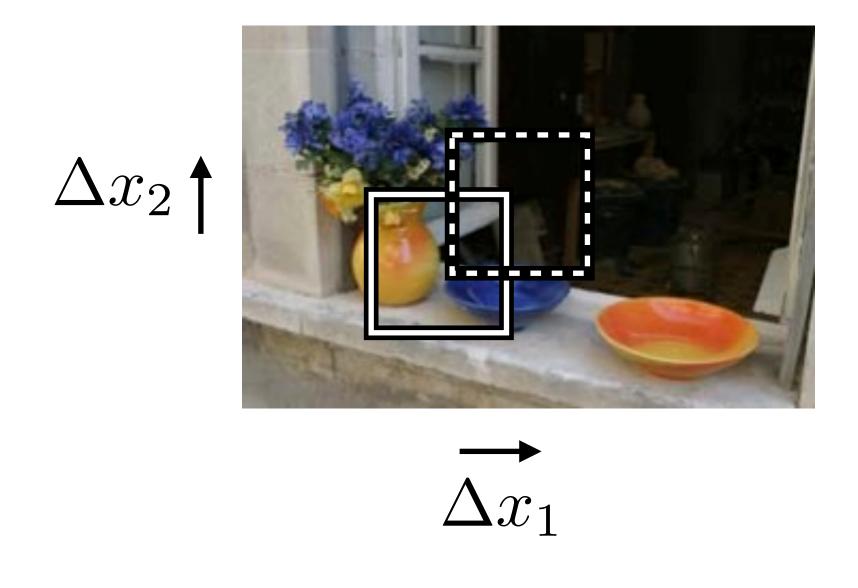
Clear peak in similarity function

Harris corners are peaks of a local similarity function



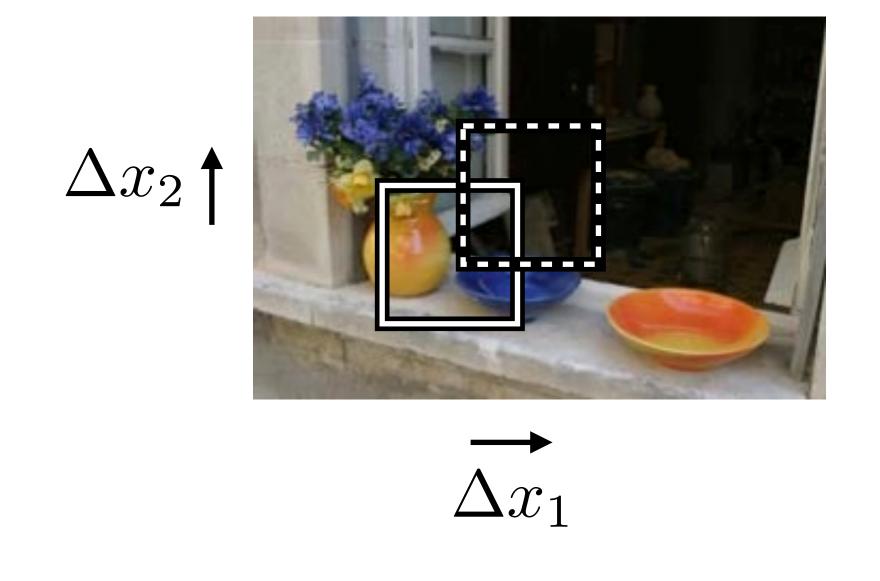


We will use a first order approximation to the local SSD function



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

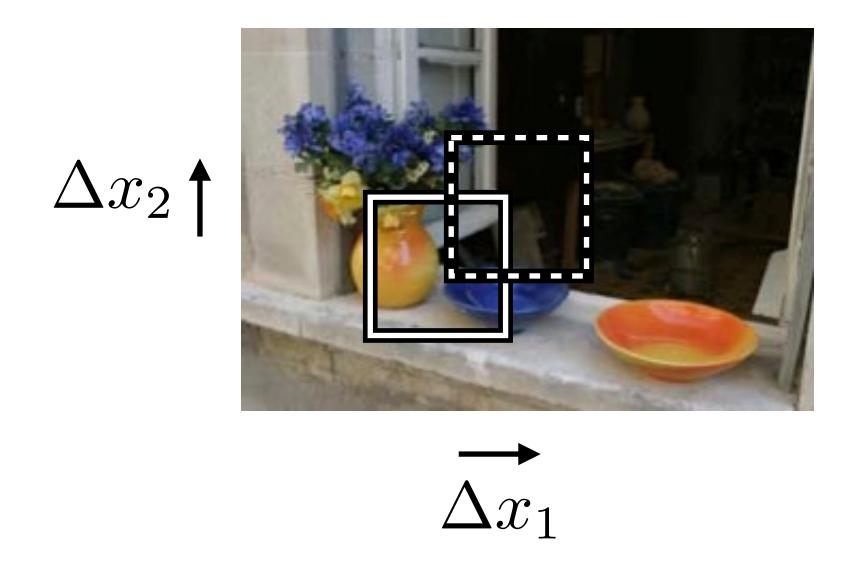
We will use a first order approximation to the local SSD function



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^{2}$$

$$= \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}$$

$$\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$$



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$
$$= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

$$\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

SSD function must be large for all shifts  $\Delta {f x}$  for a corner / 2D structure

This implies that both eigenvalues of  $\, \, H \,$  must be large

Note that H is a 2x2 matrix

#### Harris Corner Detection

- 1.Compute image gradients over small region
- 2. Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$



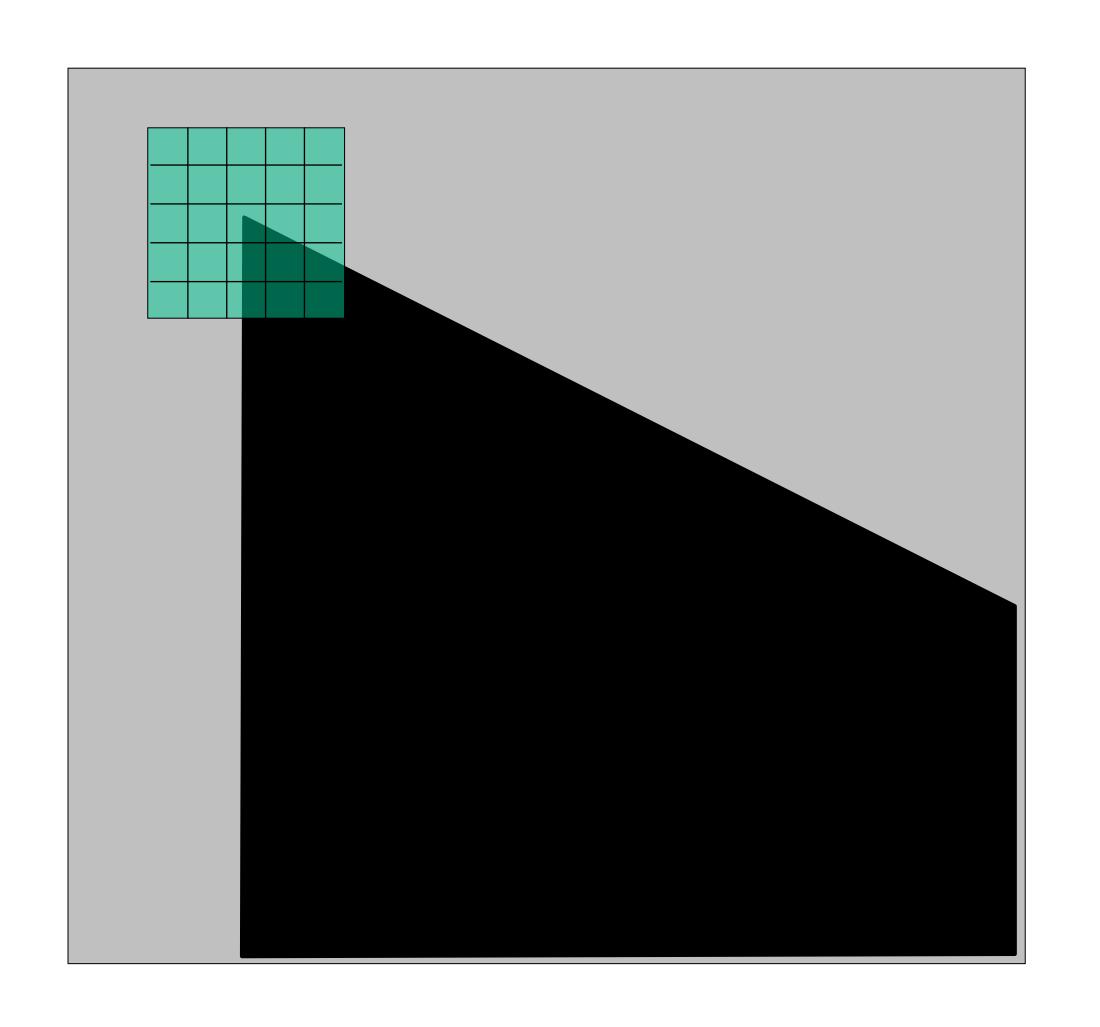
$$I_y = \frac{\partial I}{\partial y}$$



$$\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

### 1. Compute image gradients over a small region

(not just a single pixel)



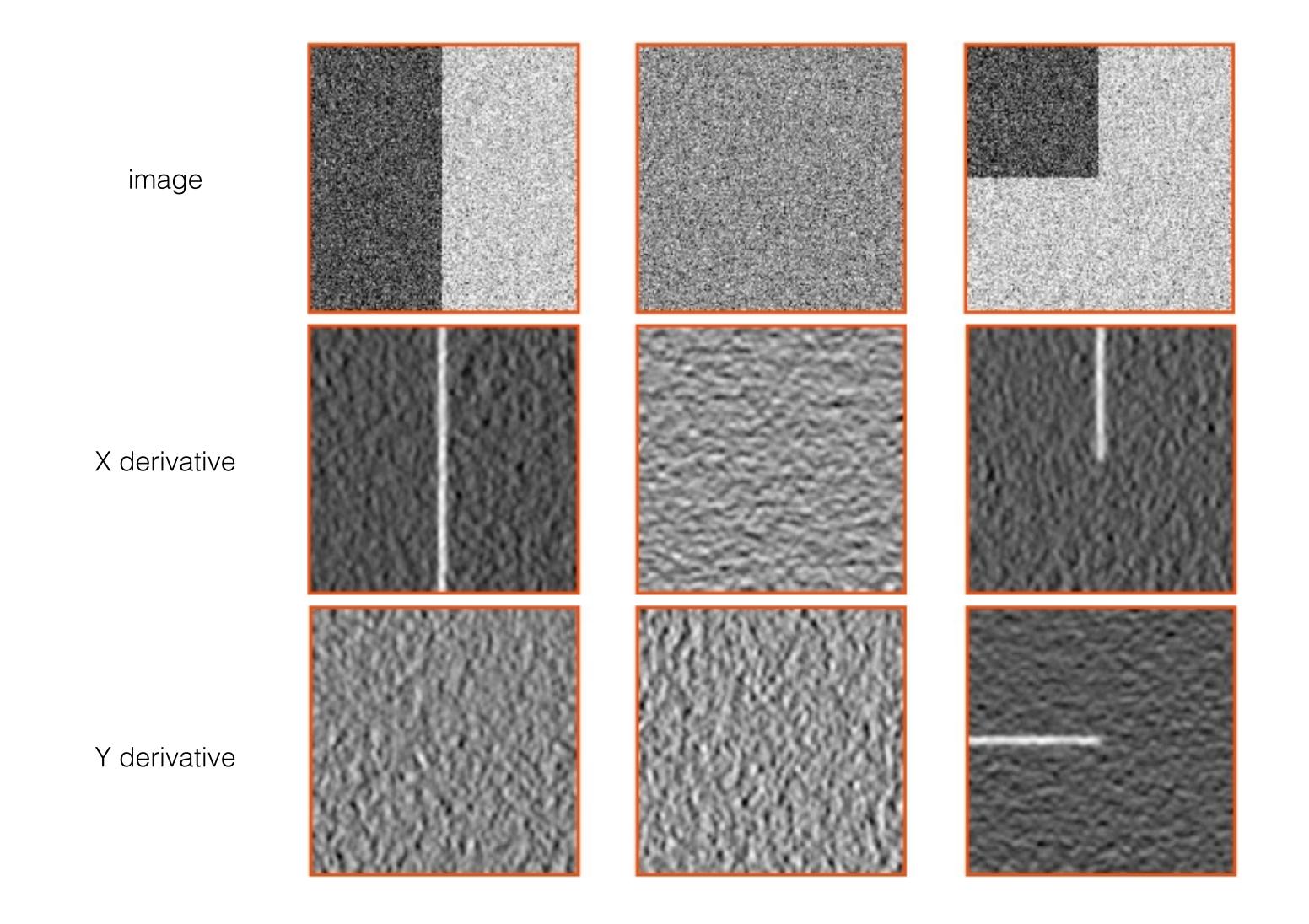
array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

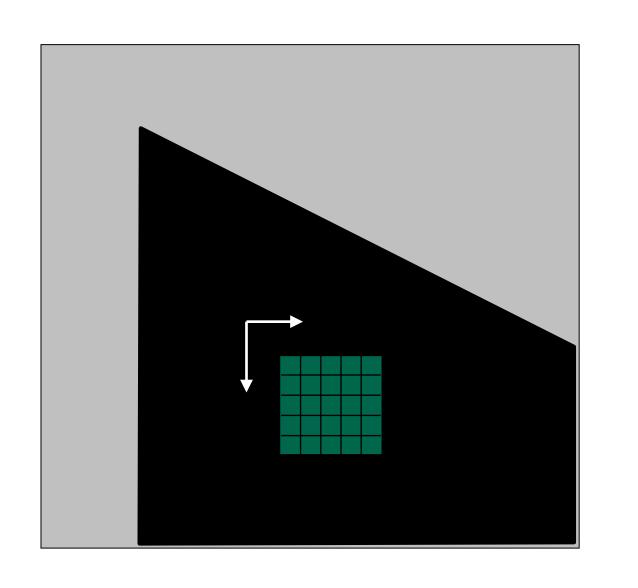
array of y gradients

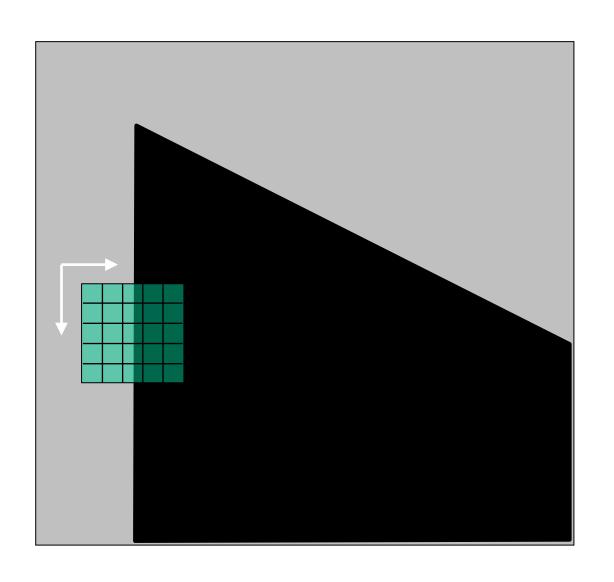
$$I_y = \frac{\partial I}{\partial y}$$

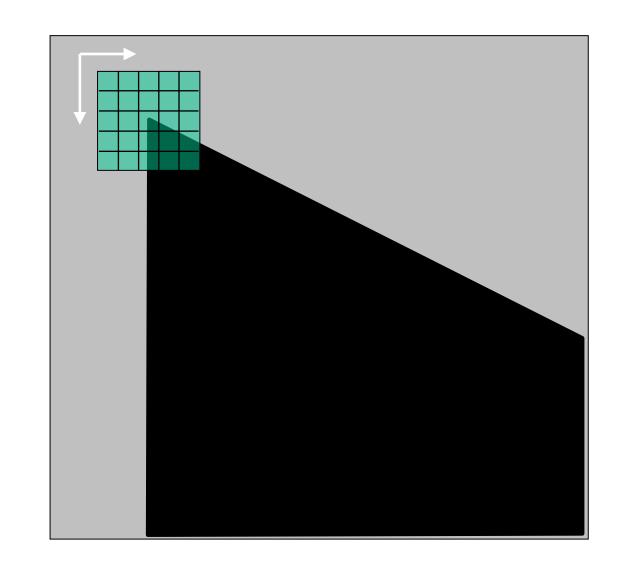
#### Visualization of Gradients

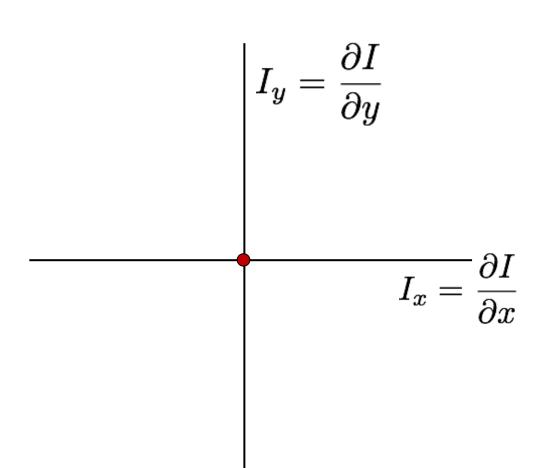


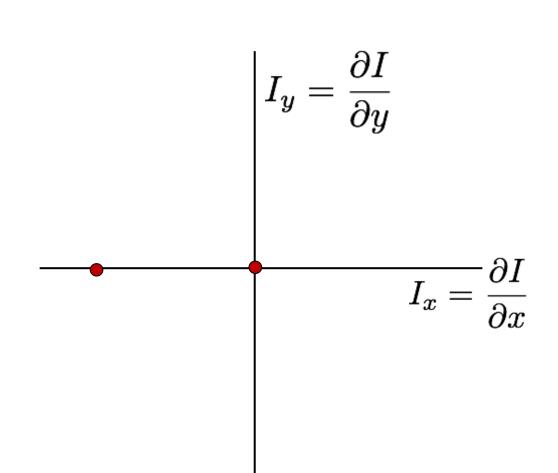
## What Does a **Distribution** Tells You About the **Region**?

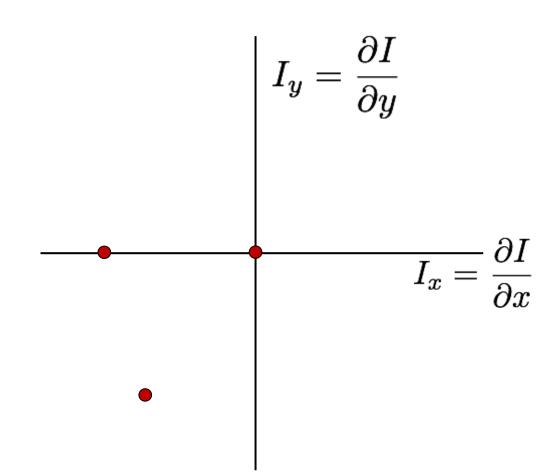


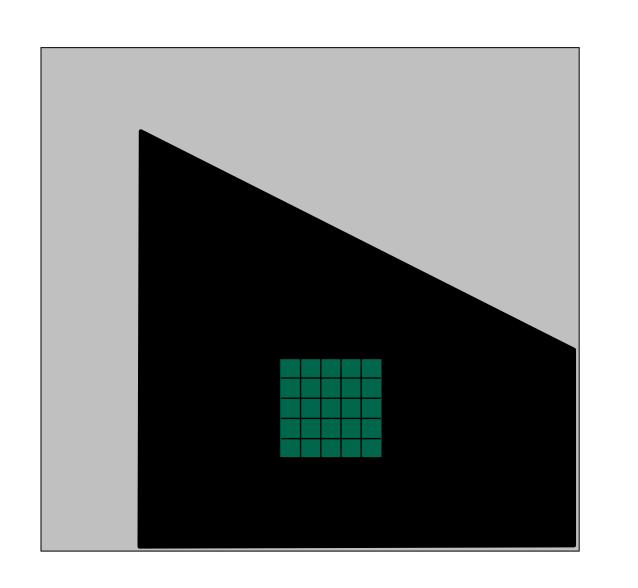


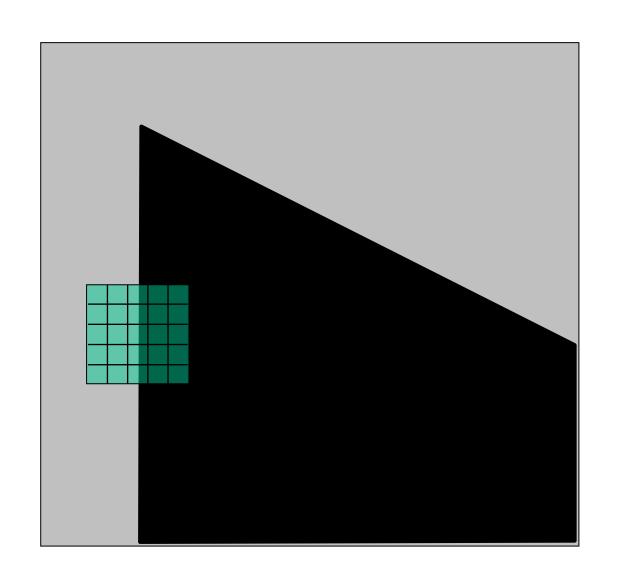


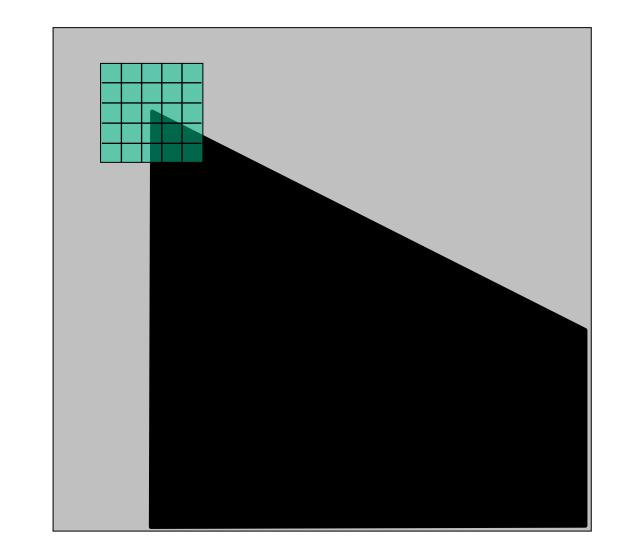


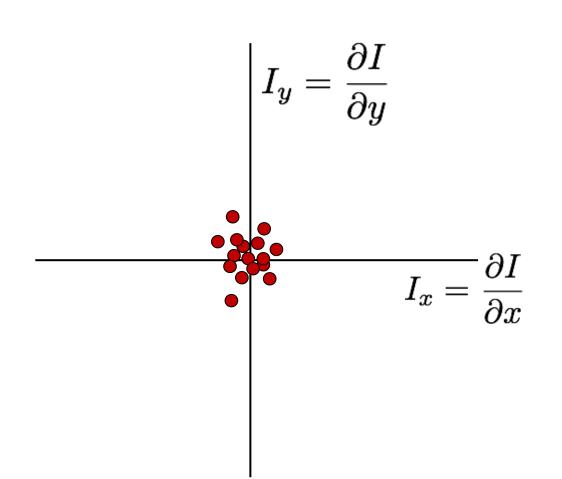


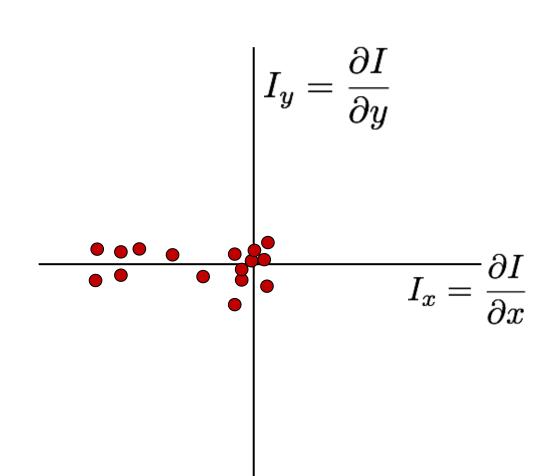


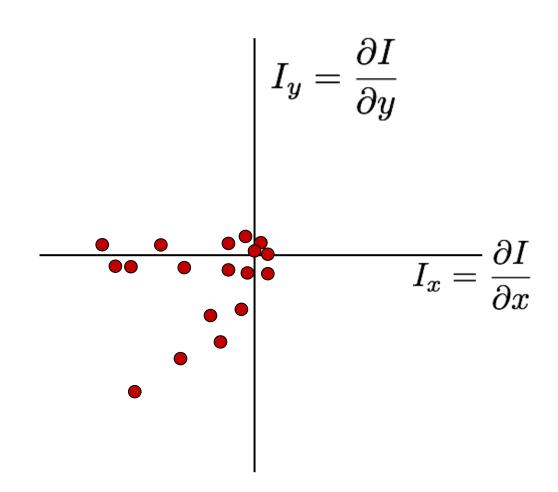


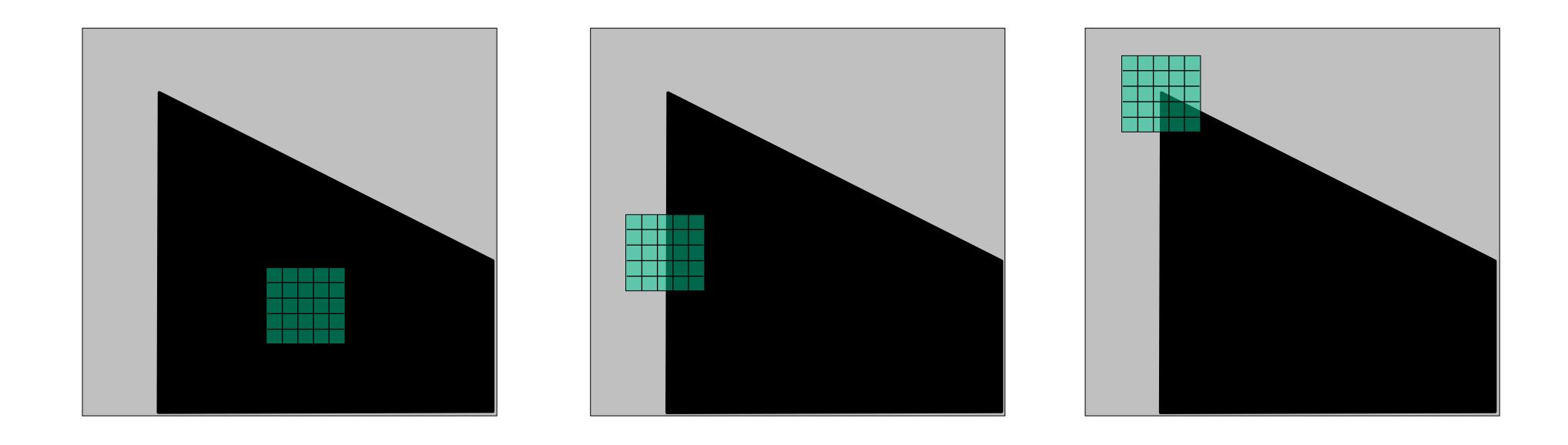




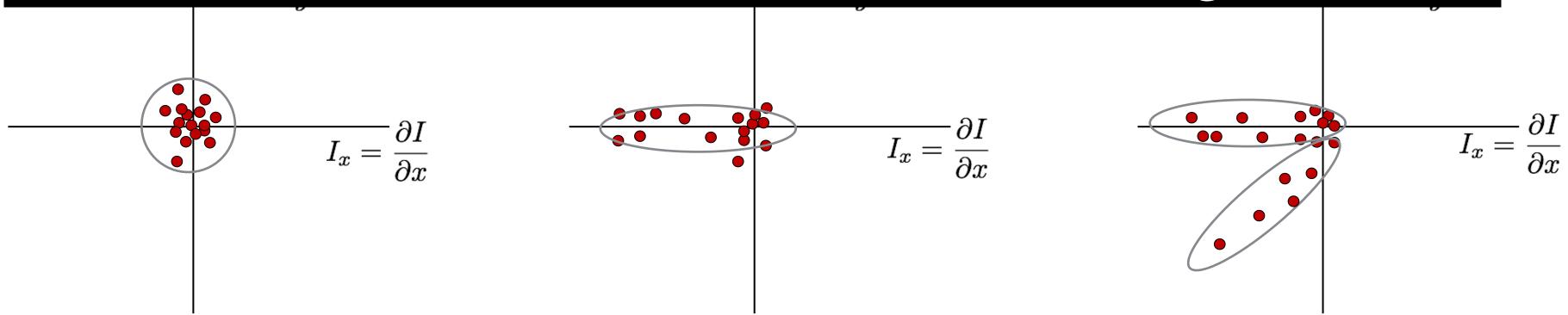


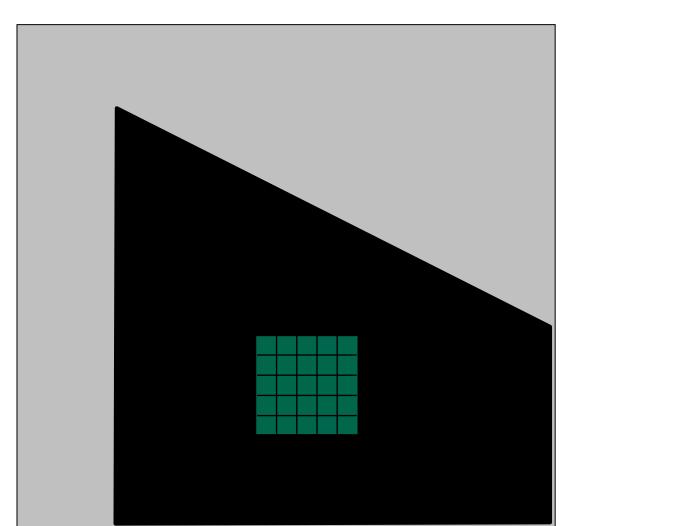


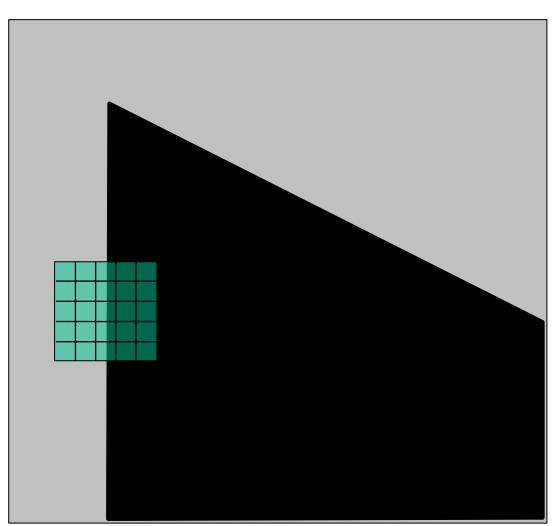


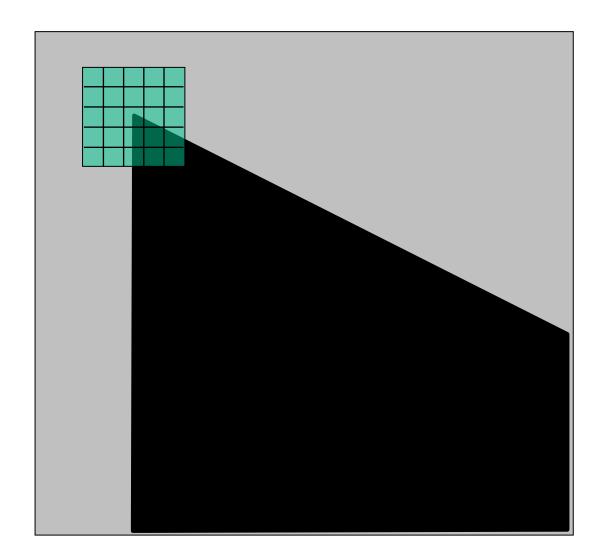




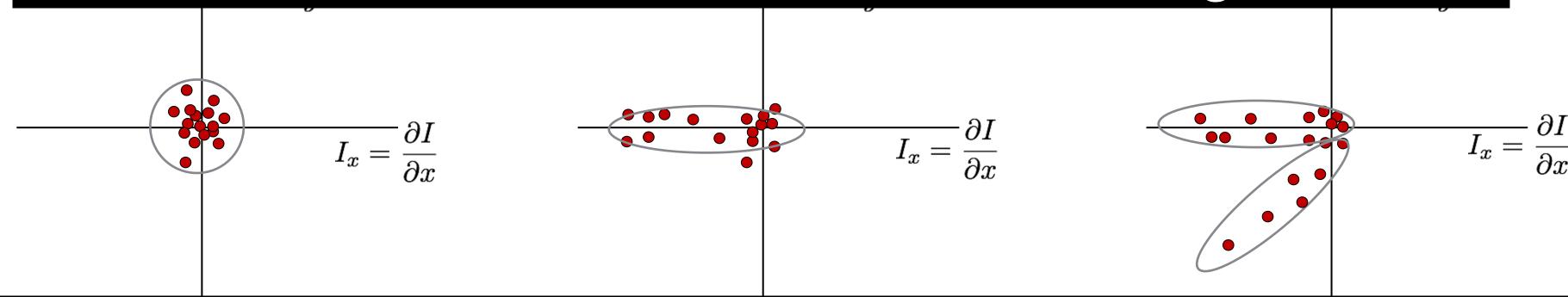




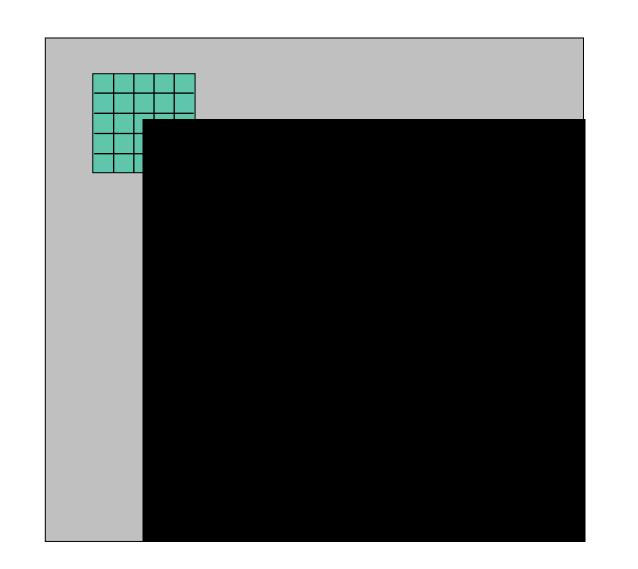


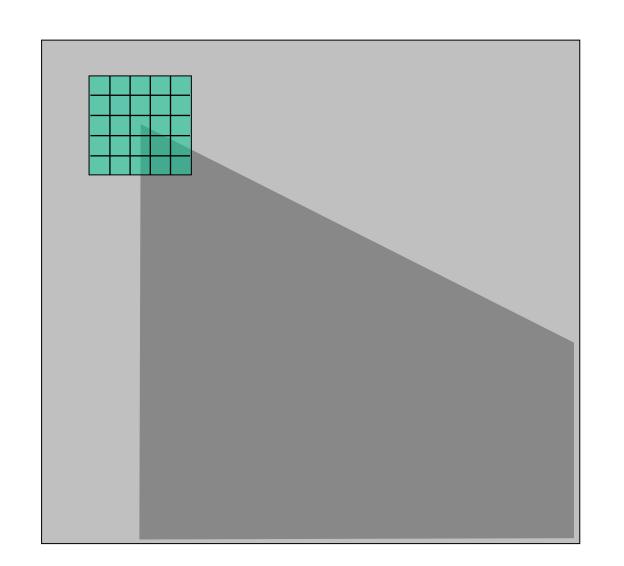


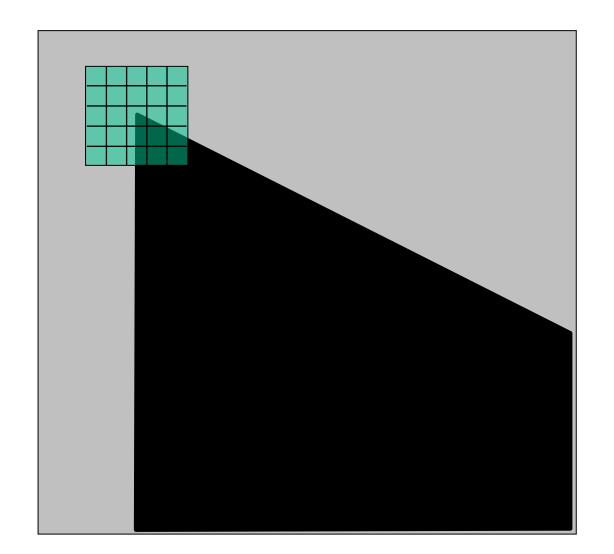
#### Distribution reveals the orientation and magnitude



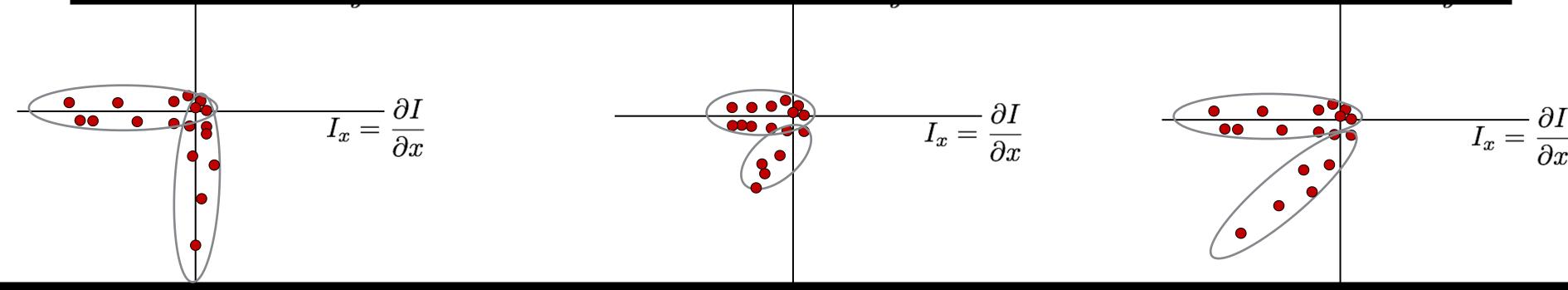
How do we quantify the orientation and magnitude?







#### Distribution reveals the orientation and magnitude



How do we quantify the orientation and magnitude?

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

**Sum** over small region around the corner

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

**Sum** over small region around the corner

**Gradient** with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

**Sum** over small region around the corner

**Gradient** with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$I_x=rac{\partial I}{\partial x}$$
  $I_y=rac{\partial I}{\partial y}$   $\sum_{m p\in P}I_xI_y$  =Sum( .\* ) array of x gradients

**Sum** over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

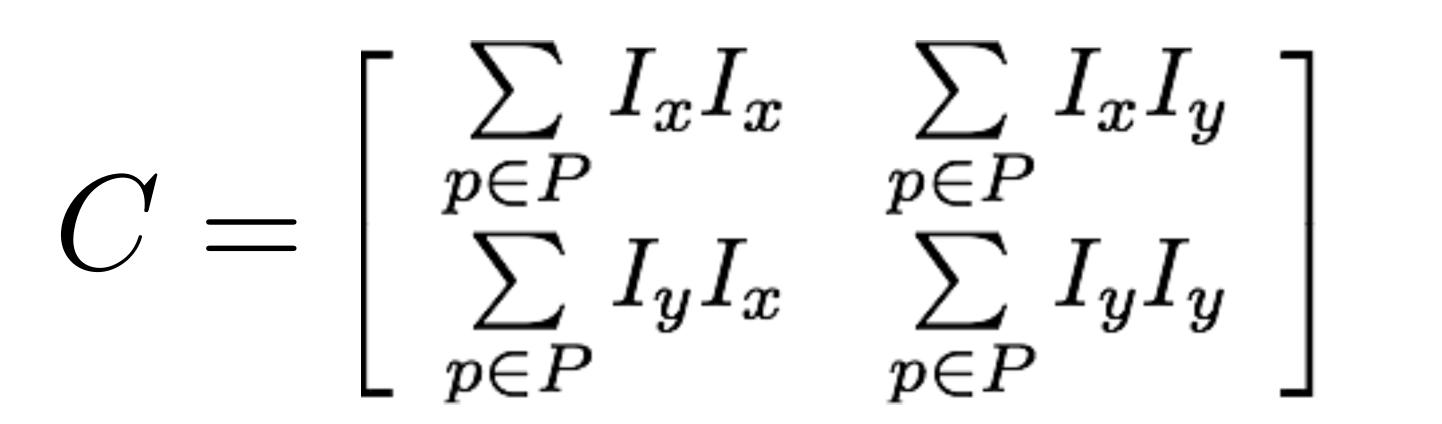
Matrix is **symmetric** 

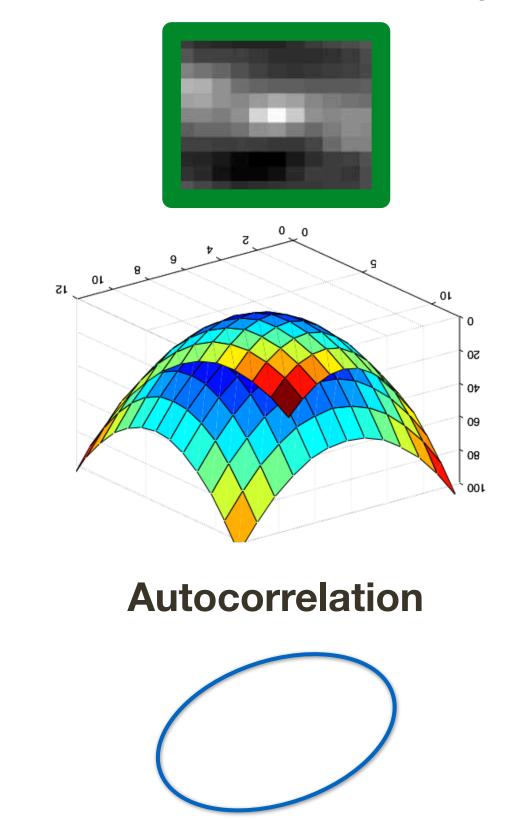
By computing the gradient covariance matrix ...

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

we are fitting a quadratic to the gradients over a small image region

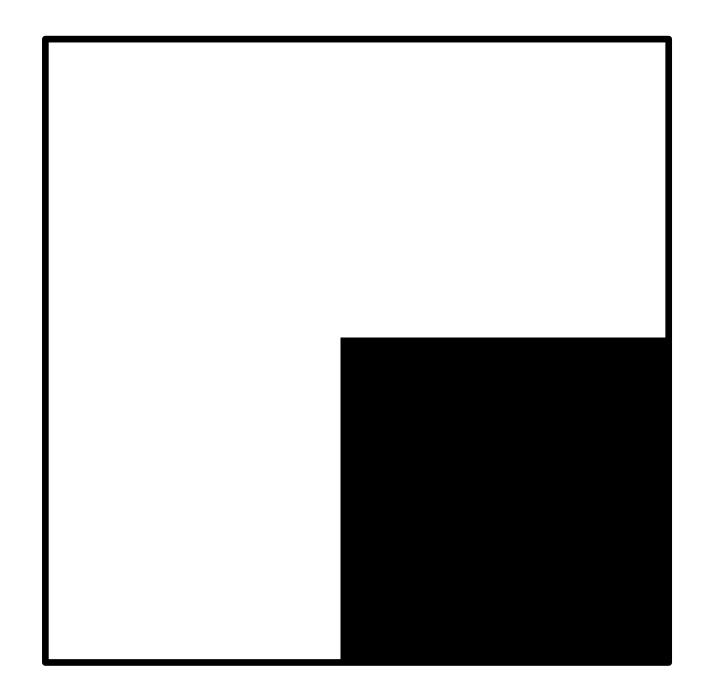
By computing the gradient covariance matrix ...





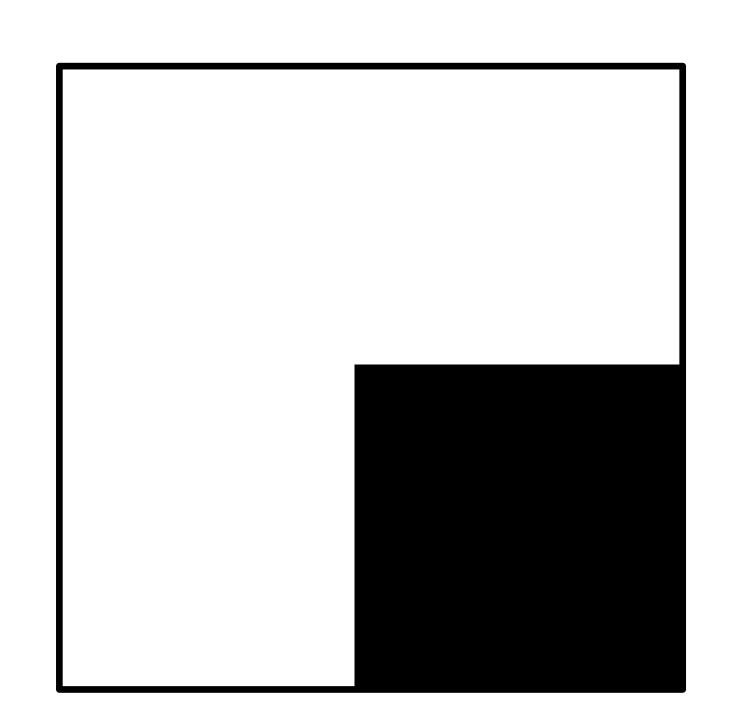
**Covariance** matrix

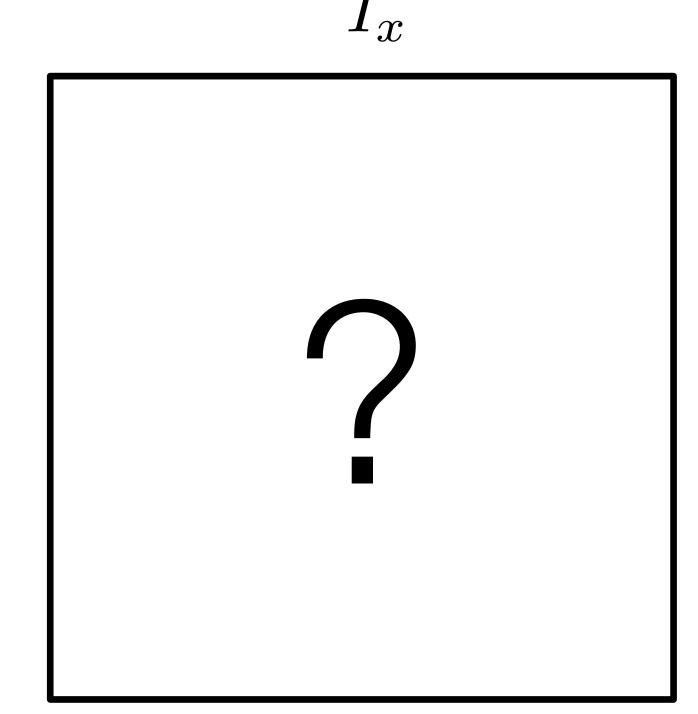
we are fitting a quadratic to the gradients over a small image region

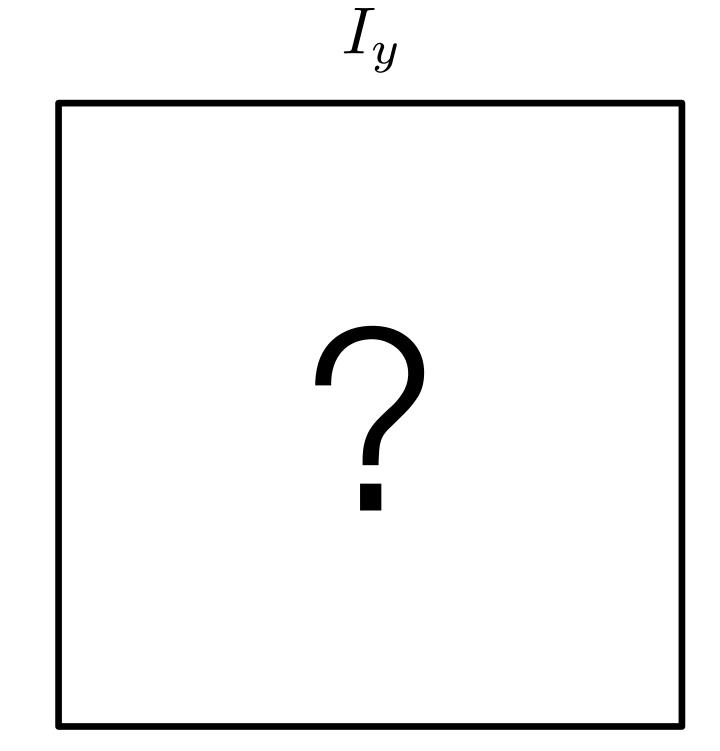


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

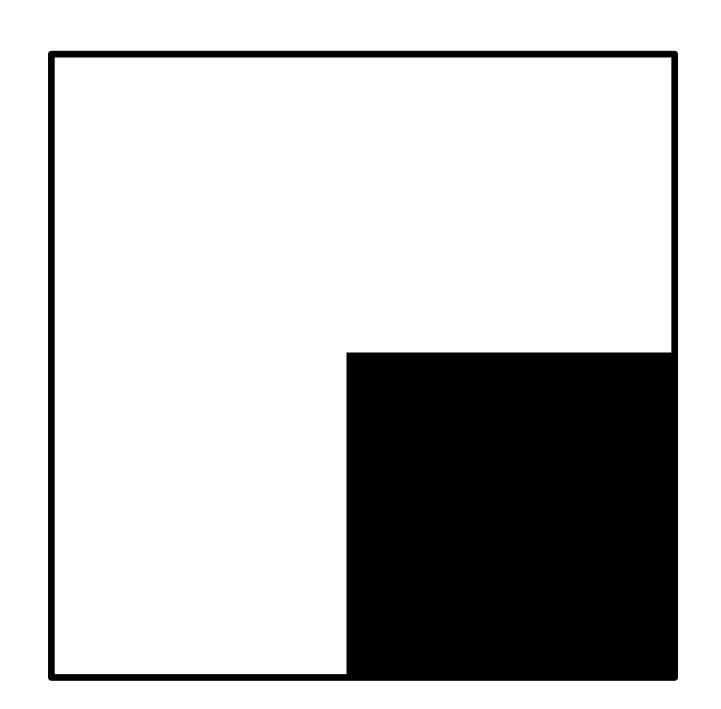




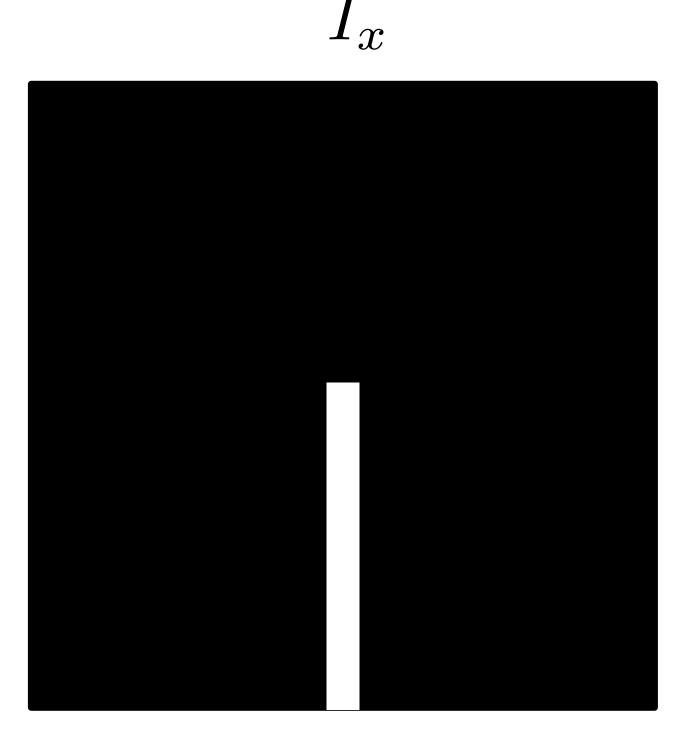


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

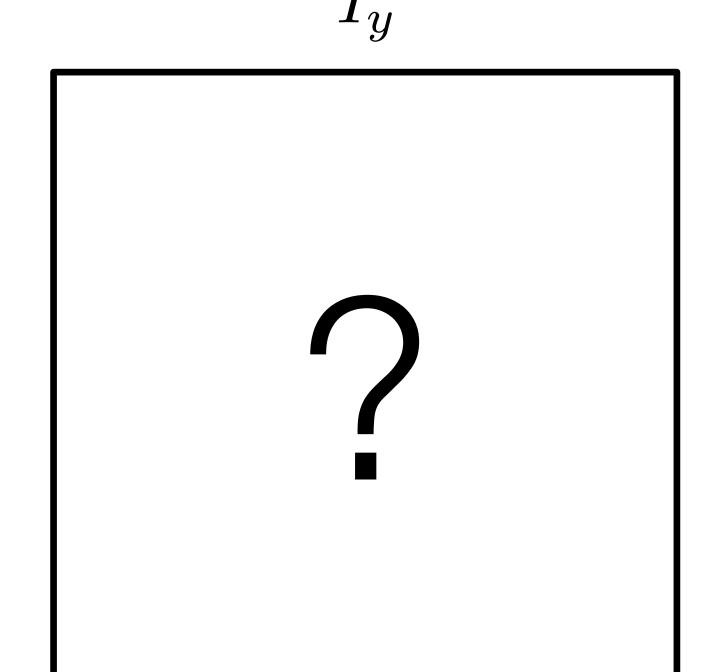


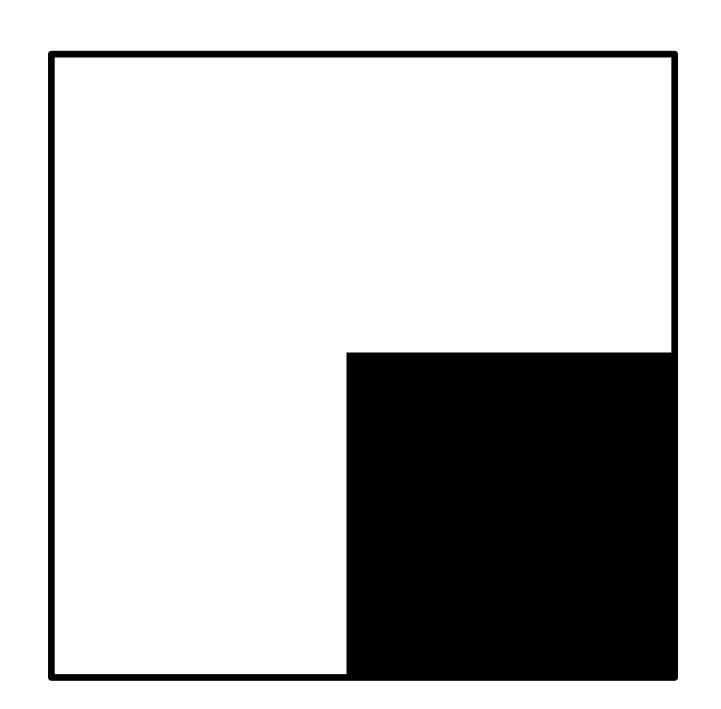
Local Image Patch



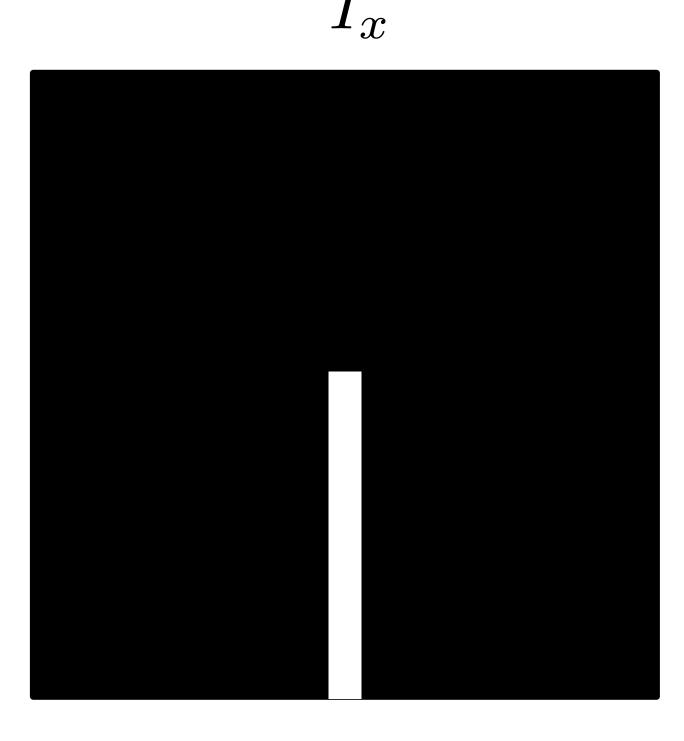
high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$





Local Image Patch



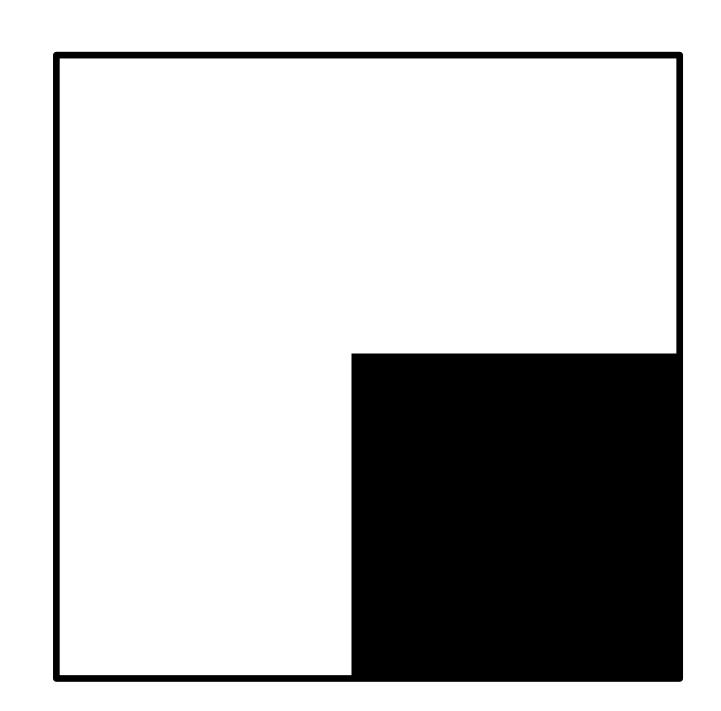
high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{bmatrix} = ?$$

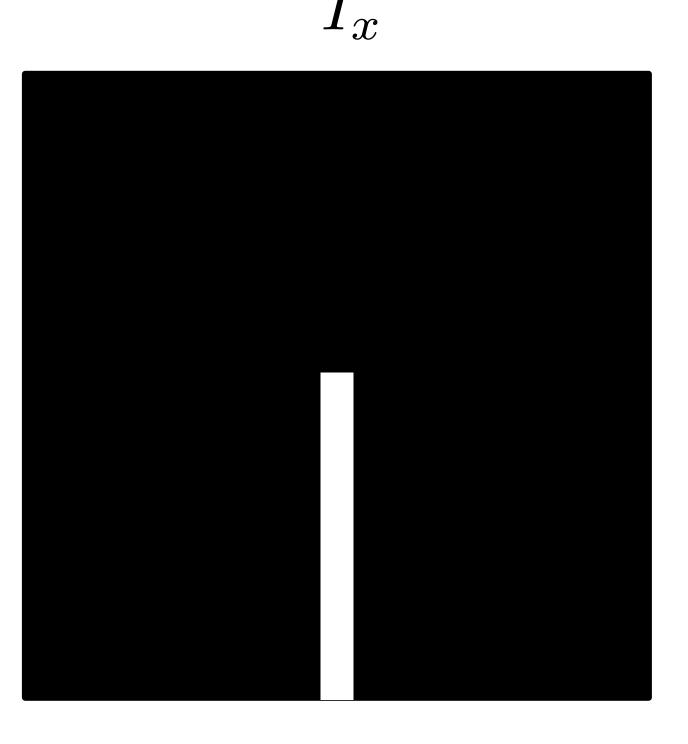




high value along horizontal strip of pixels and 0 elsewhere



Local Image Patch



high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 $I_y$ 



high value along horizontal strip of pixels and 0 elsewhere

#### General Case



$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

#### General Case

It can be shown that since every C is symmetric:



$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

... so general case is like a rotated version of the simple one



# Quick Eigenvalue/Eigenvector Review

Given a square matrix  $\bf A$ , a scalar  $\lambda$  is called an **eigenvalue** of  $\bf A$  if there exists a nonzero vector  $\bf v$  that satisfies

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

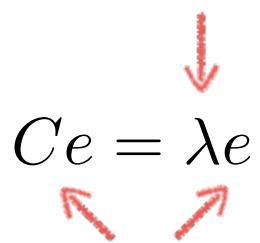
The vector  ${f v}$  is called an **eigenvector** for  ${f A}$  corresponding to the eigenvalue  $\lambda$  .

The eigenvalues of A are obtained by solving (characteristic equation)

$$\det(\mathbf{A} - \lambda I) = 0$$

eigenvalue  $Ce = \lambda e \qquad \qquad (C - \lambda I)e = 0$  eigenvector

eigenvalue



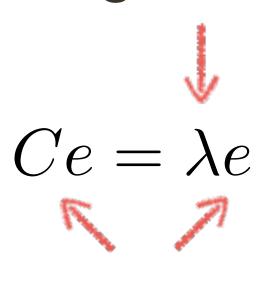
eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

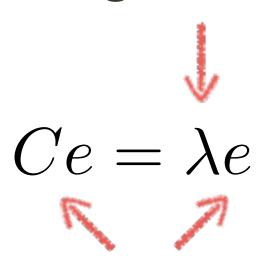
1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[ egin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} 
ight]$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$C = \left[ egin{array}{ccc} 2 & 1 \ 1 & 2 \end{array} 
ight] \qquad \det \left( \left[ egin{array}{ccc} 2 - \lambda & 1 \ 1 & 2 - \lambda \end{array} 
ight] 
ight)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left( \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left( \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$

 $(2 - \lambda)(2 - \lambda) - (1)(1)$ 

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left( \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$
$$\lambda^{2} - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$
$$\lambda_{1} = 1, \lambda_{2} = 3$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

# Visualization as Ellipse

Since C is symmetric, we have  $C=R^{-1}\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R$ 

We can visualize  ${\cal C}$  as an ellipse with axis lengths determined by the eigenvalues and orientation determined by  ${\cal R}$ 

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$

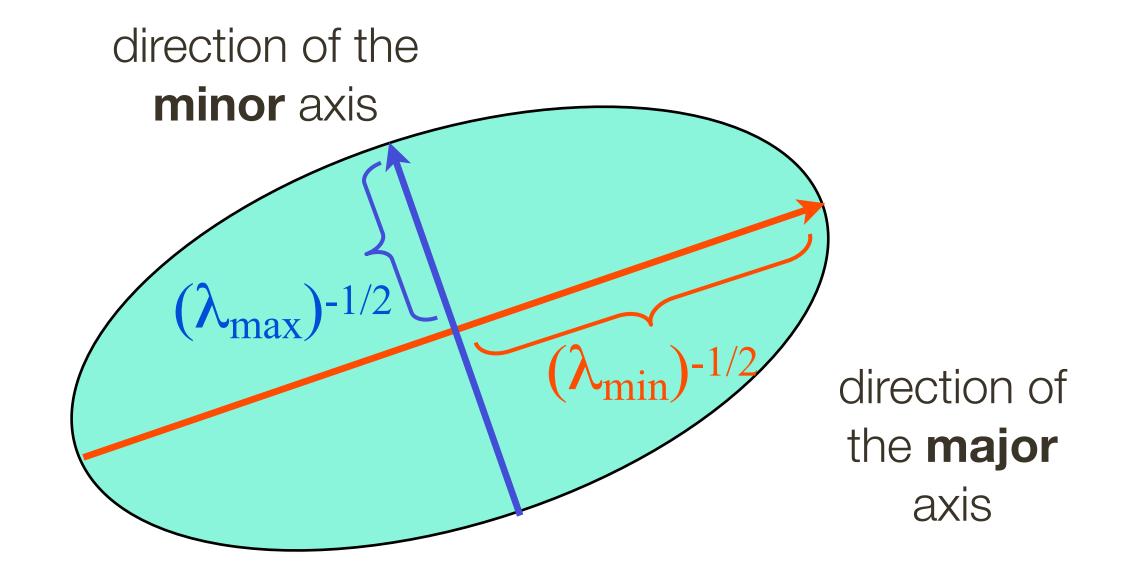
# Visualization as Ellipse

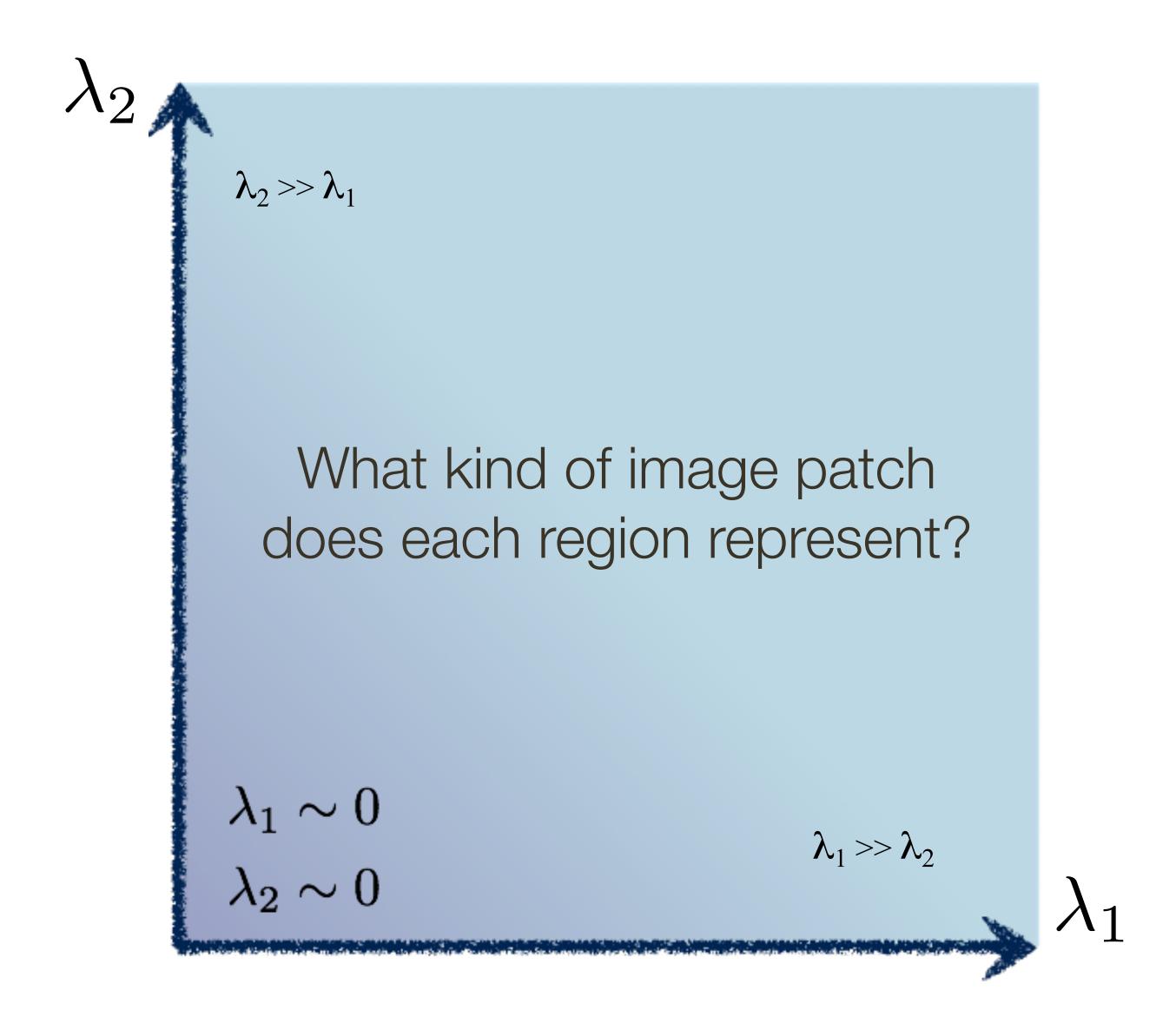
Since C is symmetric, we have  $C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$ 

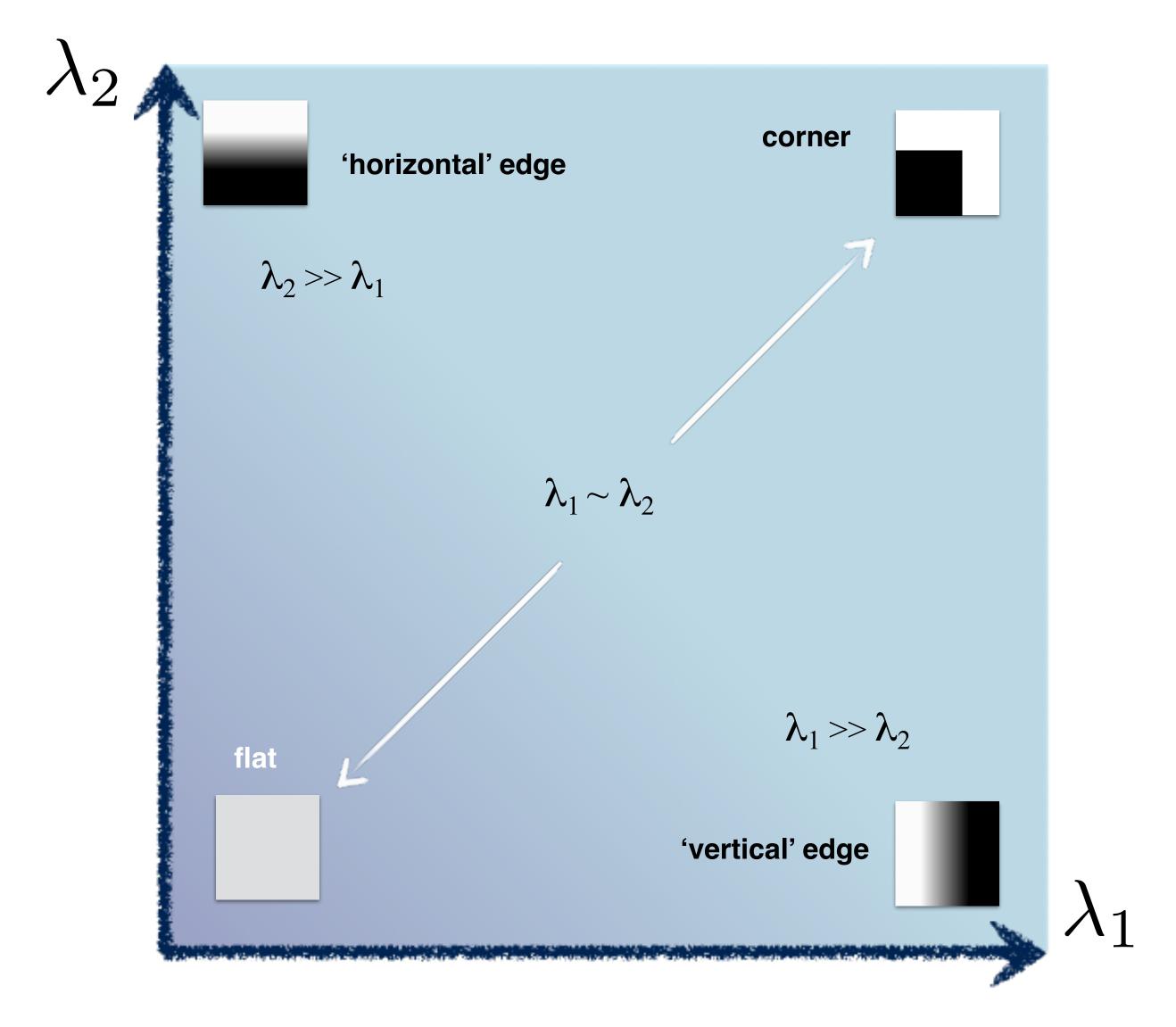
We can visualize  ${\cal C}$  as an ellipse with axis lengths determined by the eigenvalues and orientation determined by  ${\cal R}$ 

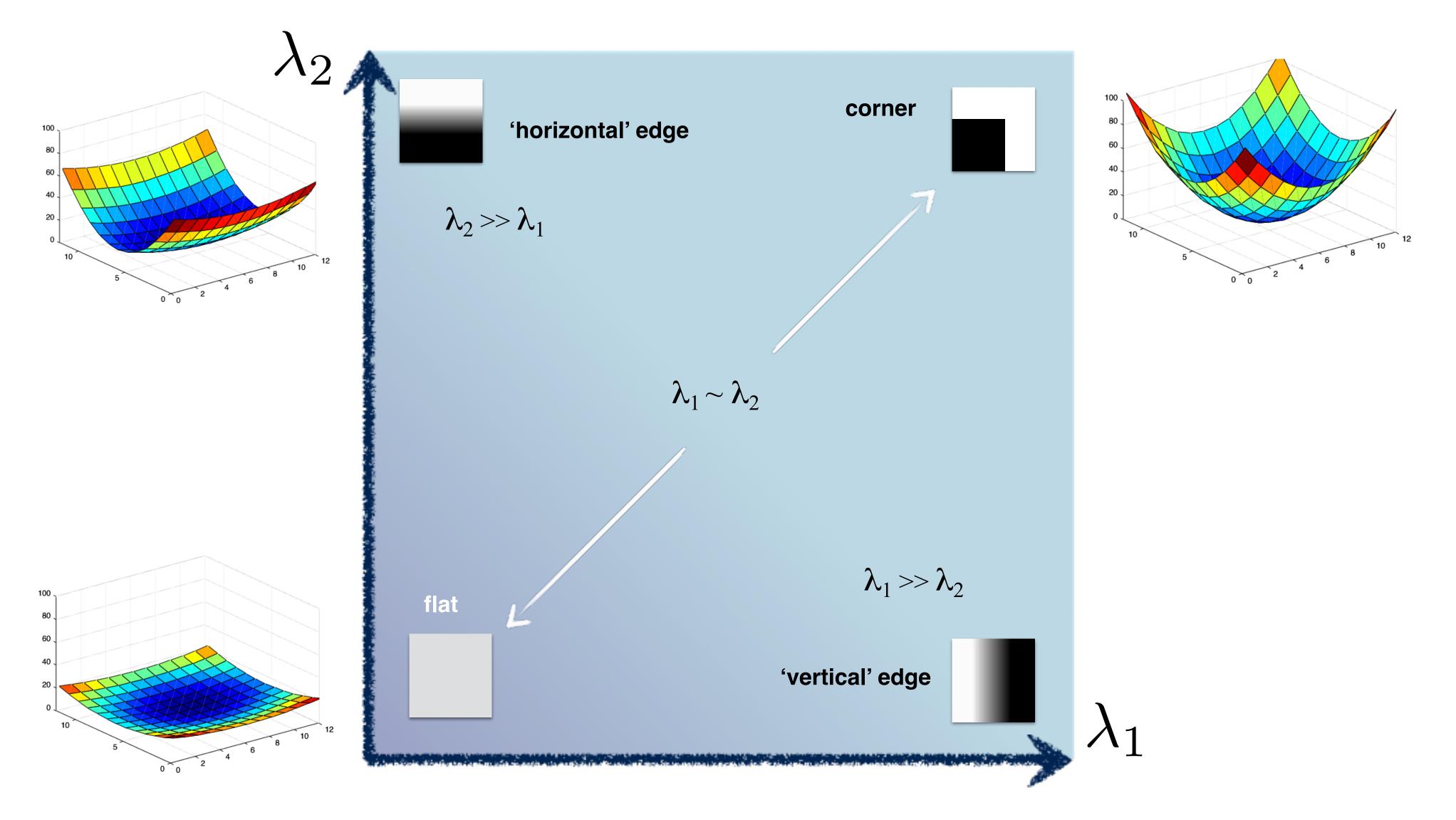
Ellipse equation:

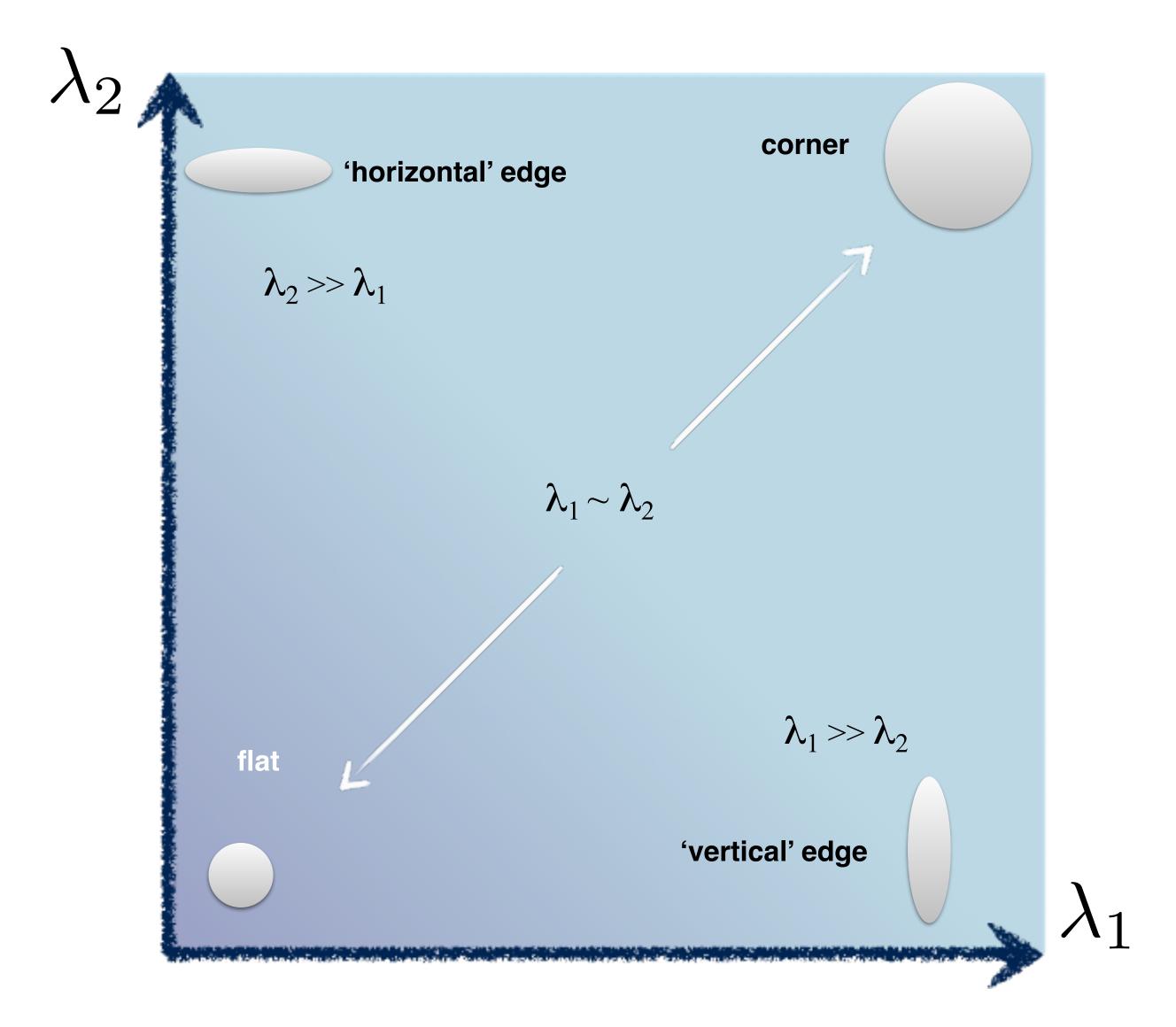
$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$











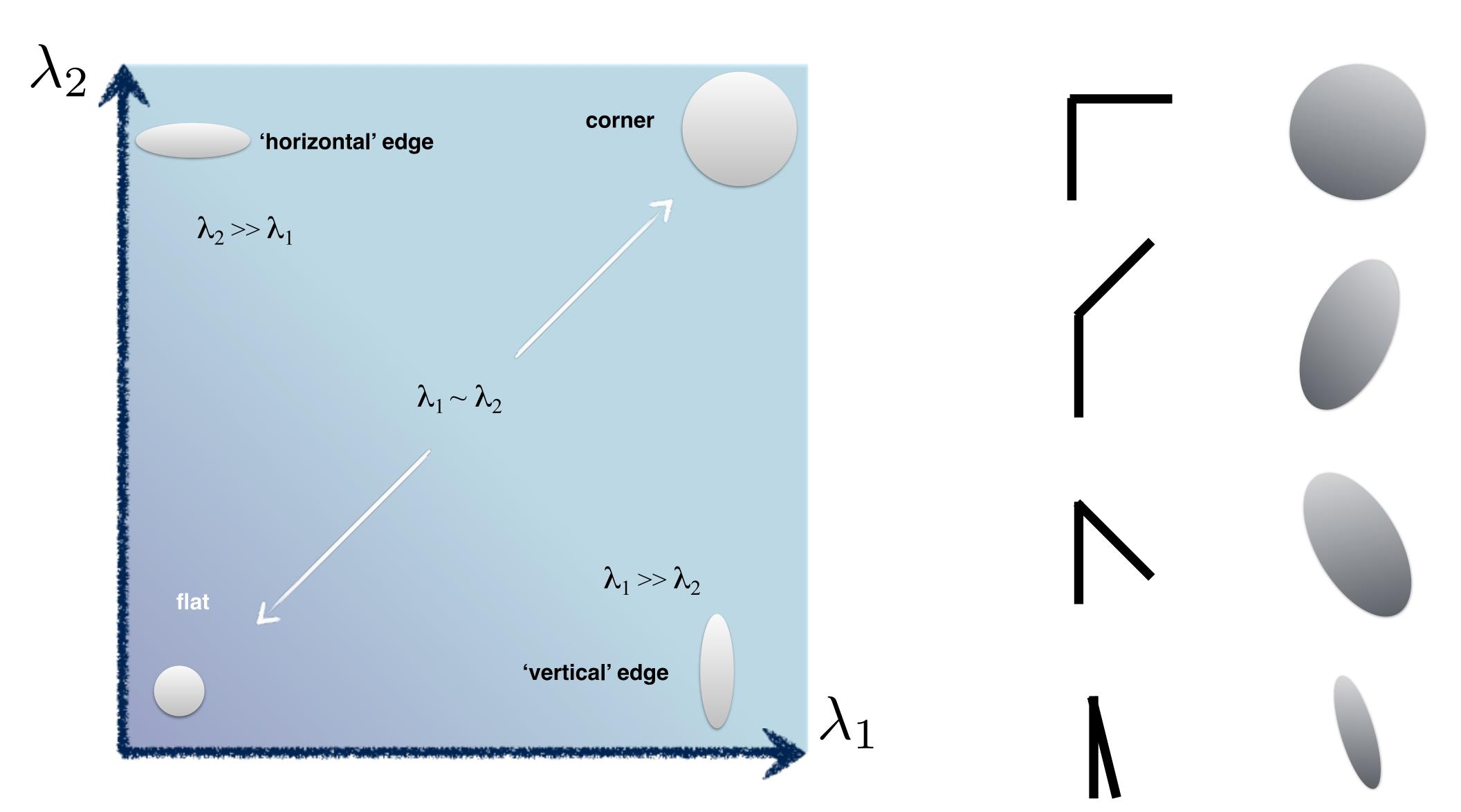
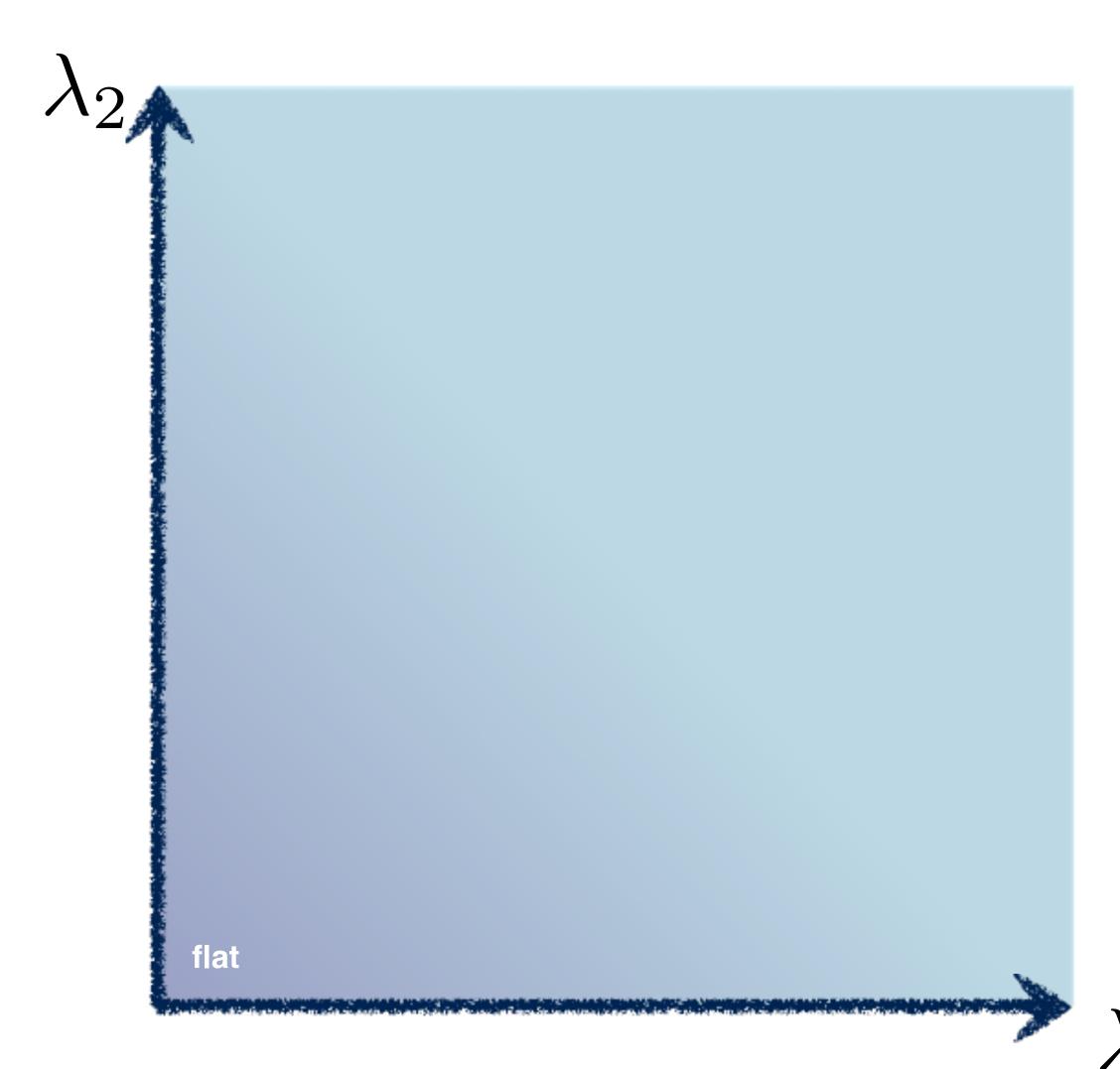


Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

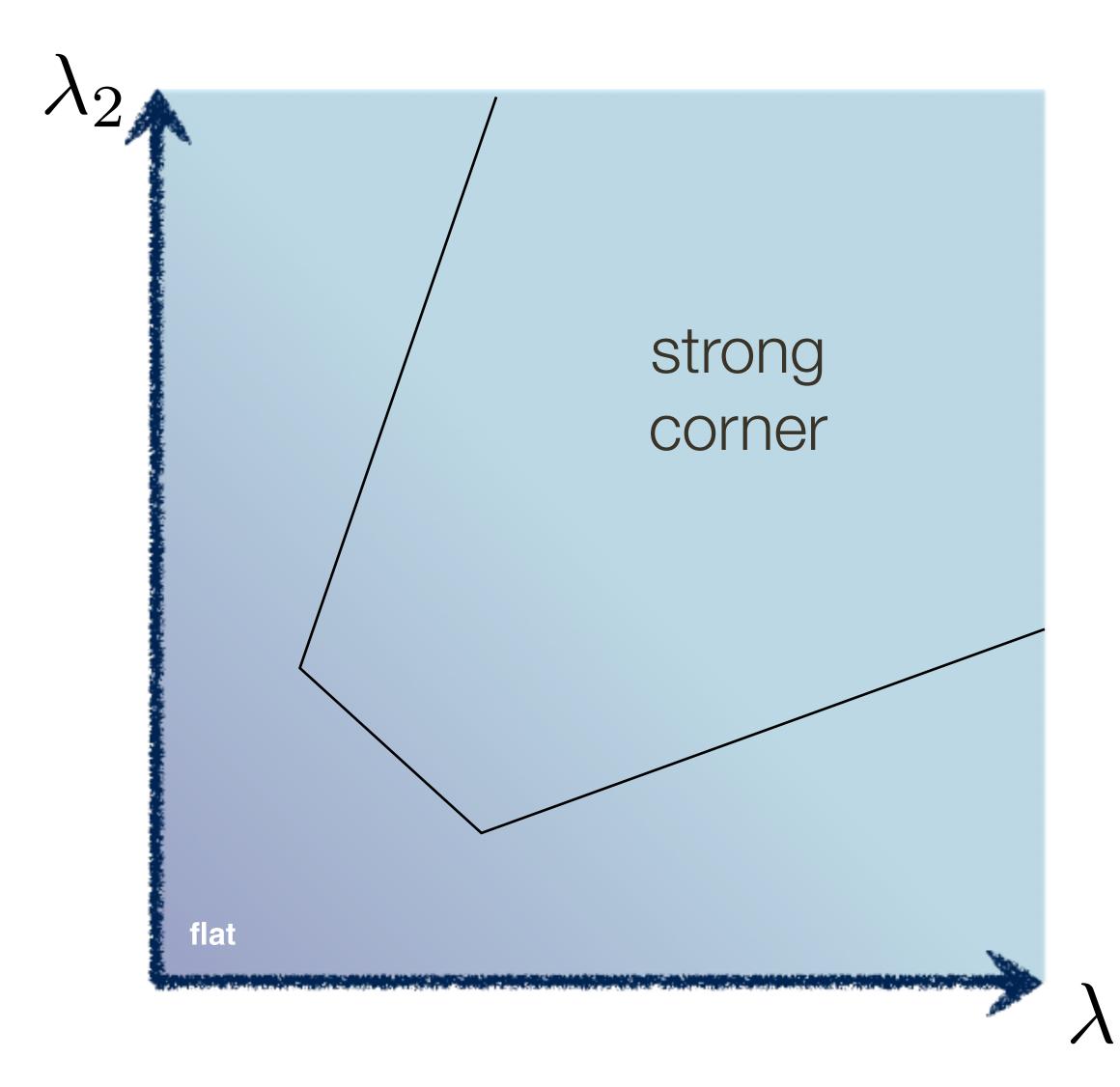


(a function of)



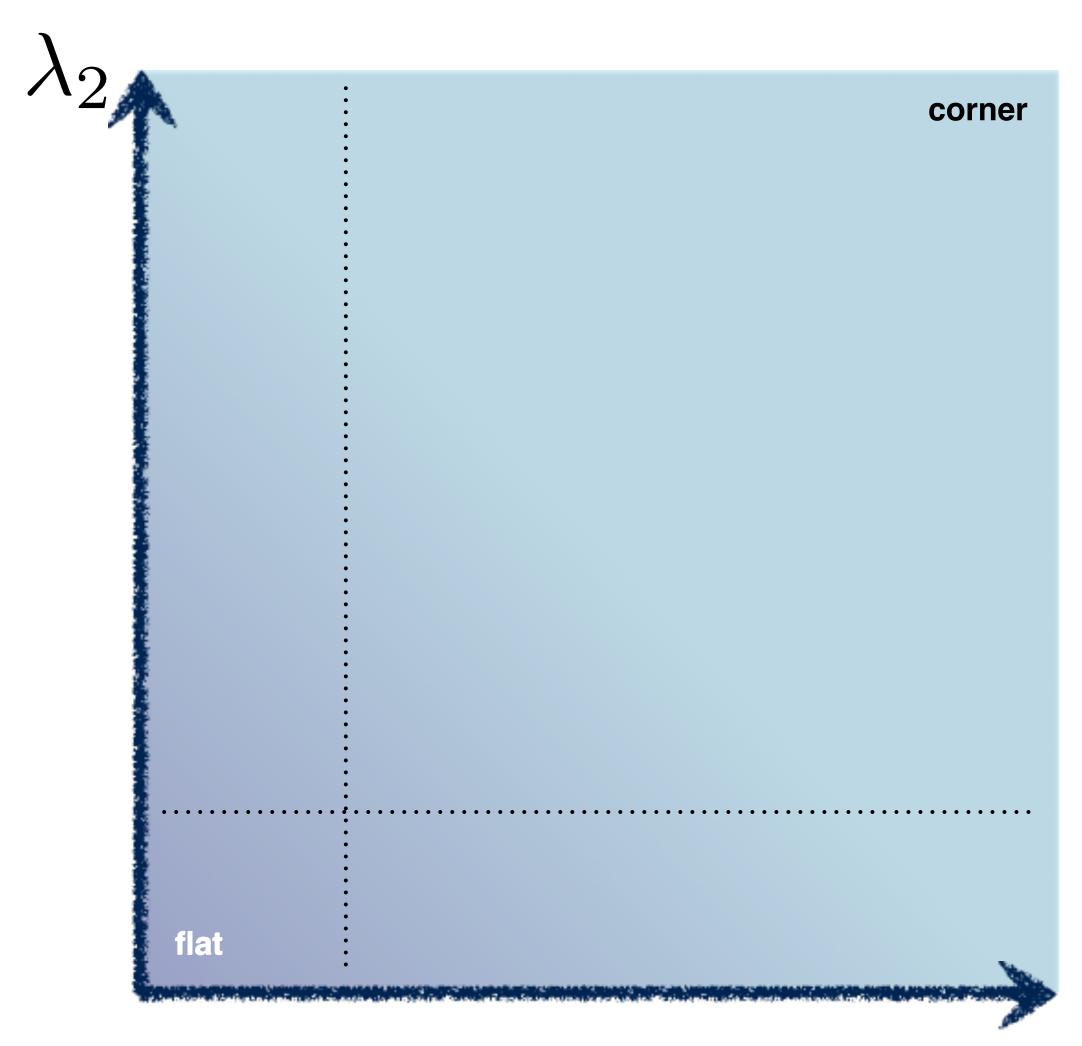
Think of a function to score 'cornerness'

(a function of)



Think of a function to score 'cornerness'

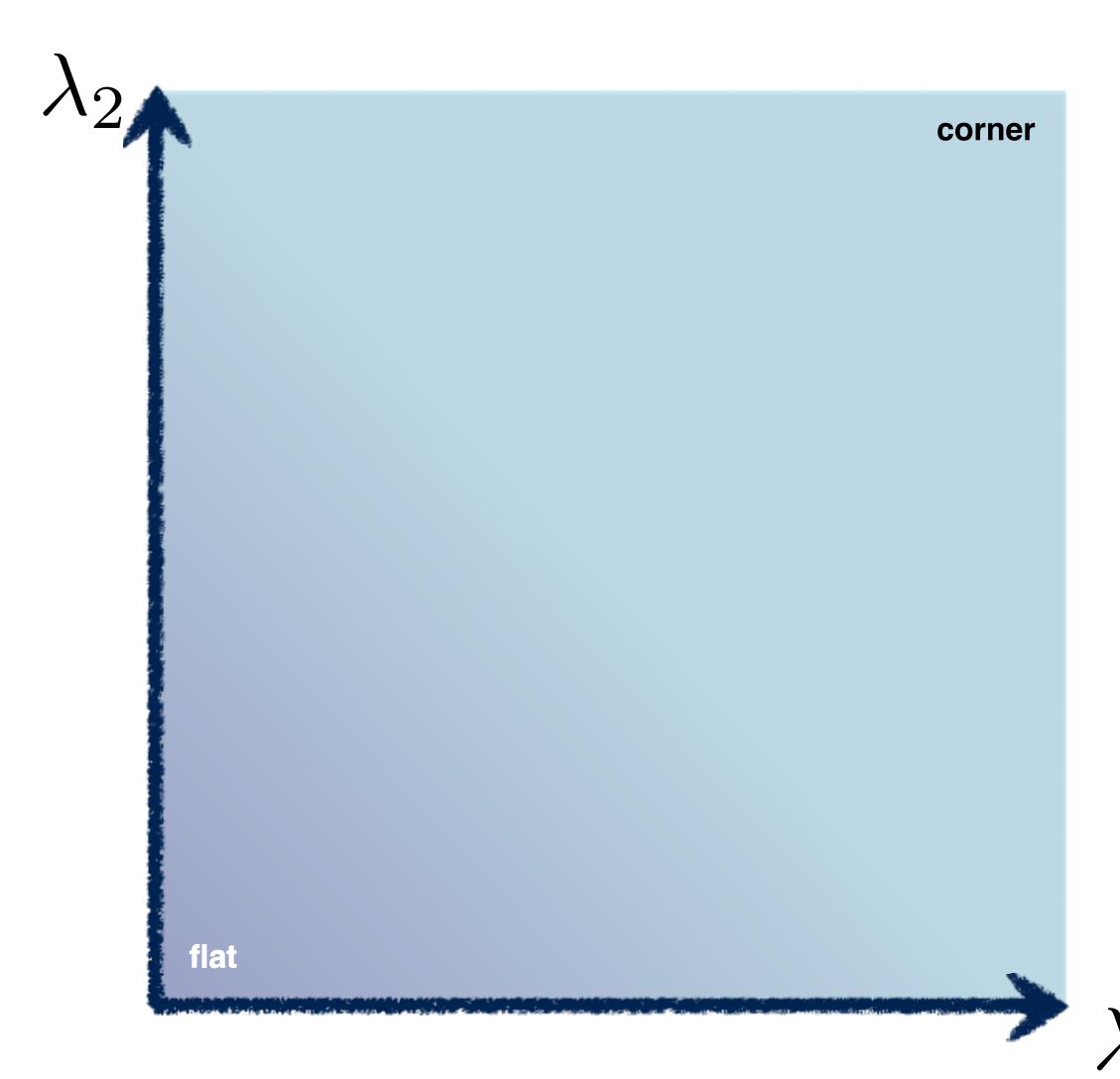
(a function of)



Use the **smallest eigenvalue** as the response function

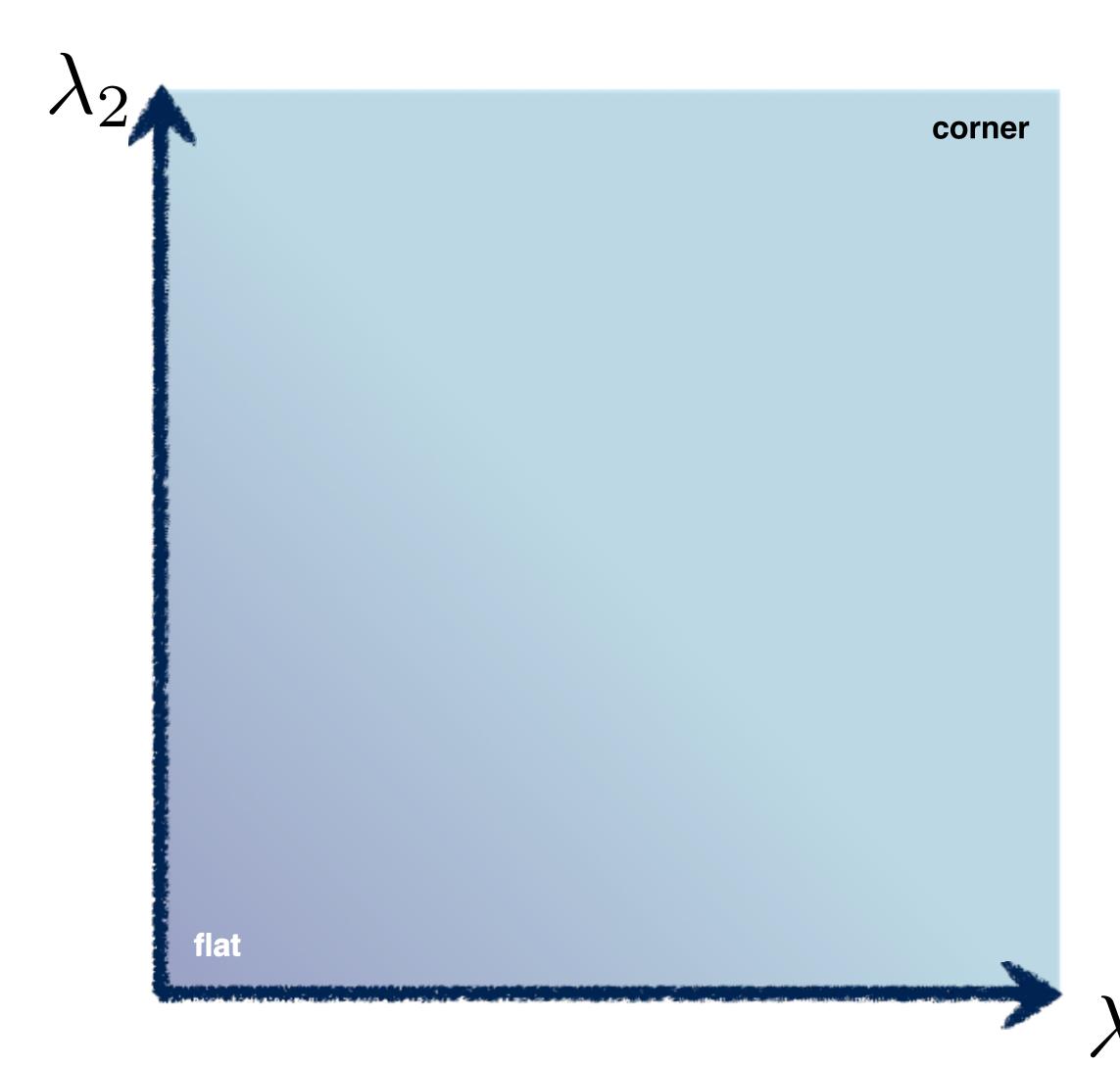
$$\min(\lambda_1, \lambda_2)$$

(a function of)



$$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$$

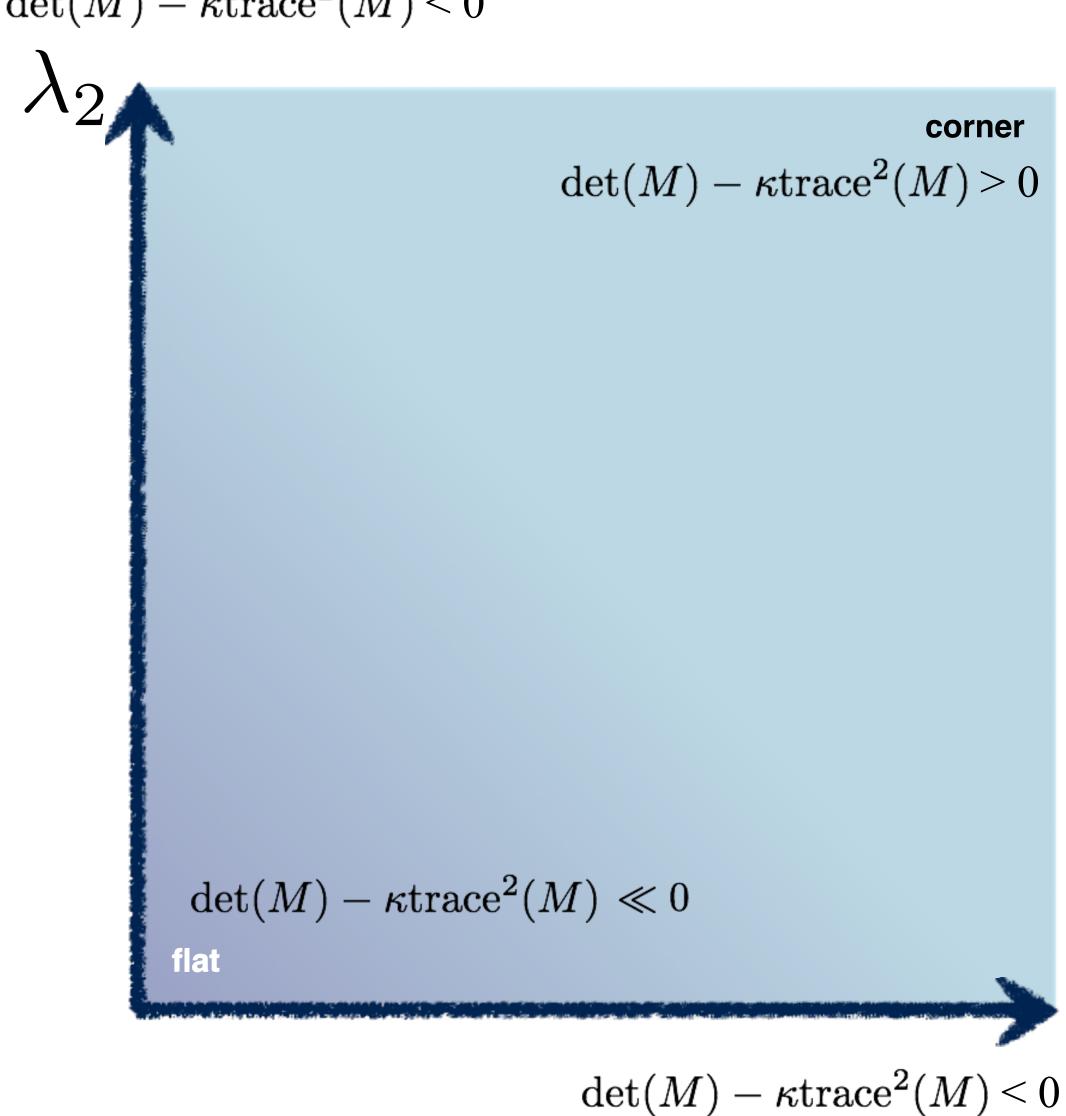
(a function of)



$$\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$= \det(C) - \kappa \operatorname{trace}^2(C)$$
(more efficient)

 $\det(M) - \kappa \operatorname{trace}^2(M) < 0$  (a function of )



$$\det(C) - \kappa \operatorname{trace}^2(C)$$
 (more efficient)

 $\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$ 

(a function of)

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

Kanade & Tomasi (1994)

$$\min(\lambda_1,\lambda_2)$$

Nobel (1998)

$$\frac{\det(C)}{\operatorname{trace}(C) + \epsilon}$$

#### Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
  - Harris uses a Gaussian window
- Solve for product of the  $\lambda$ 's
- If  $\lambda$ 's both are big (product reaches local maximum above threshold) then we have a corner
  - Harris also checks that ratio of λs is not too high

#### Compute the Covariance Matrix

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

#### Compute the Covariance Matrix

 $E(u,v) = \sum_{x,y} w(x,y) \Big[ I(x+u,y+v) - I(x,y) \Big]^{2}$ Error Window Shifted Intensity function function

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures change of intensity for small shifts ... remember AutoCorrelation)

#### Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
  - Harris uses a Gaussian window
- Solve for product of the  $\lambda$ 's

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

- If  $\lambda$ 's both are big (product reaches local maximum above threshold) then we have a corner
  - Harris also checks that ratio of  $\lambda s$  is not too high

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

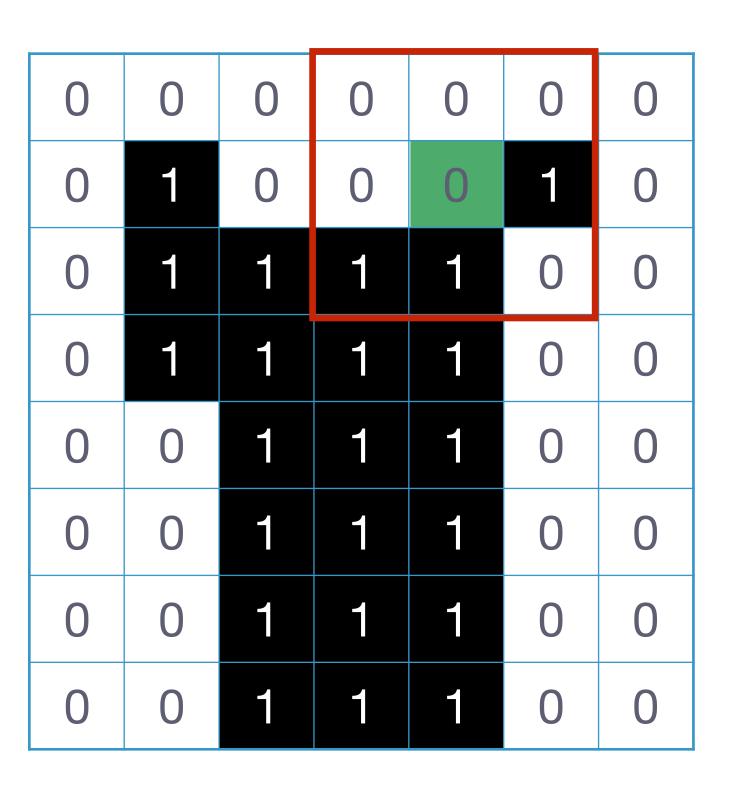
$$I_x = \frac{\partial I}{\partial x}$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$

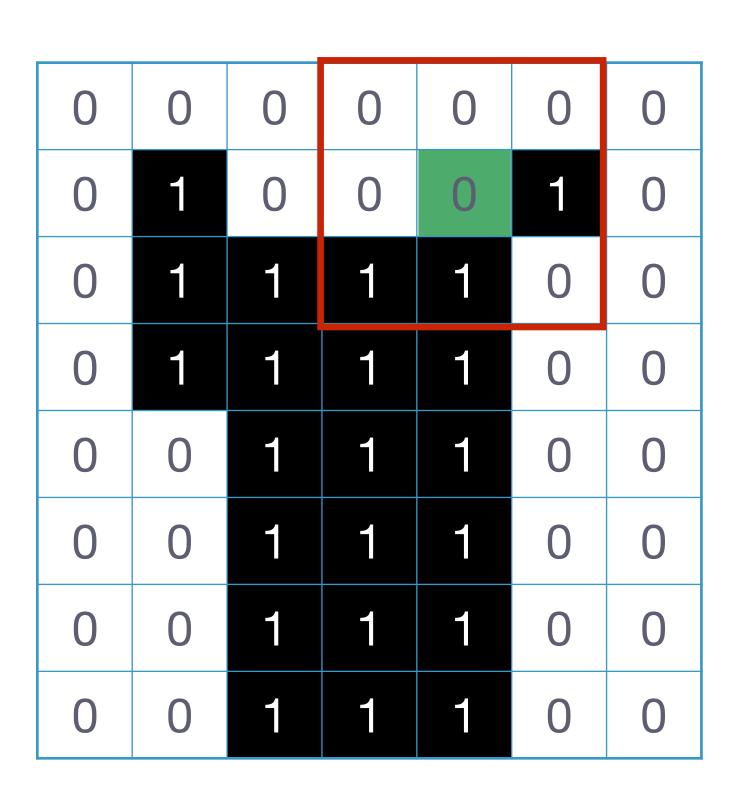


$$\sum \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

| 0 | -1 | 0  | 0  | 0  | -1 | 0 |
|---|----|----|----|----|----|---|
| 0 | 0  | -1 | -1 | -1 | 1  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 1  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
|   |    |    |    |    |    |   |

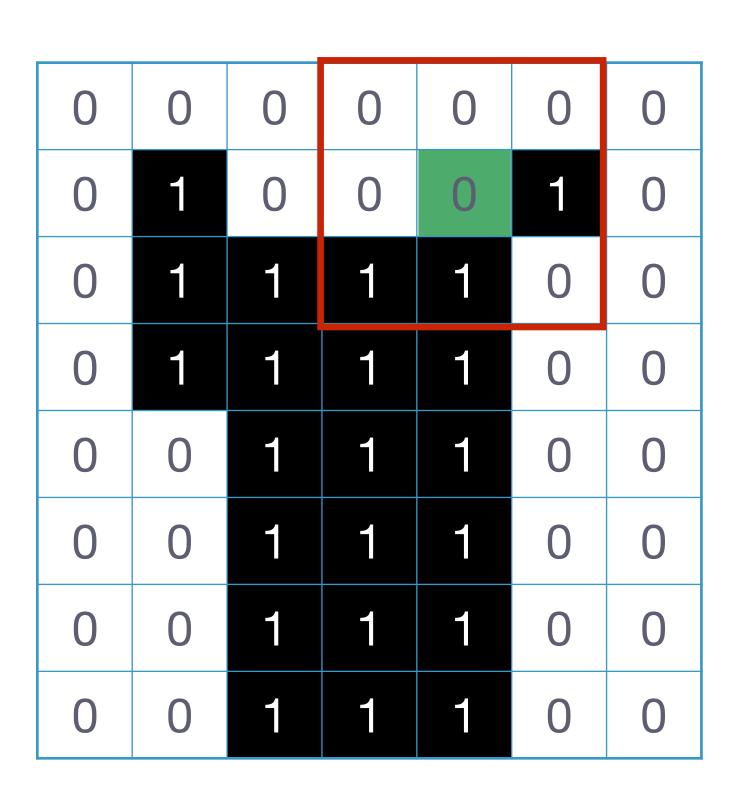
$$I_x = \frac{\partial I}{\partial x}$$



$$\mathbf{C} = \left[ \begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$$

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

$$I_x = \frac{\partial I}{\partial x}$$

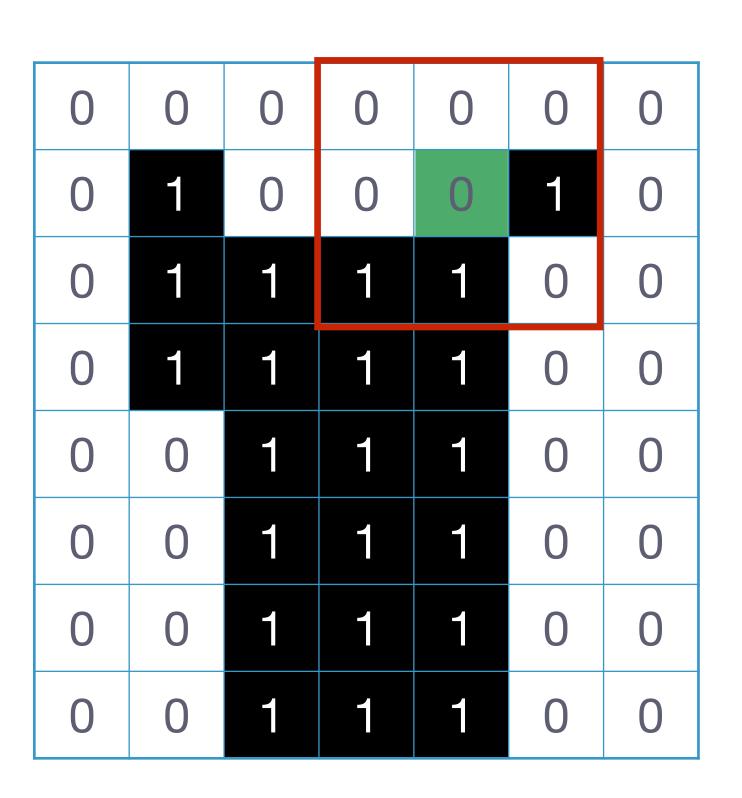


$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial u}$$



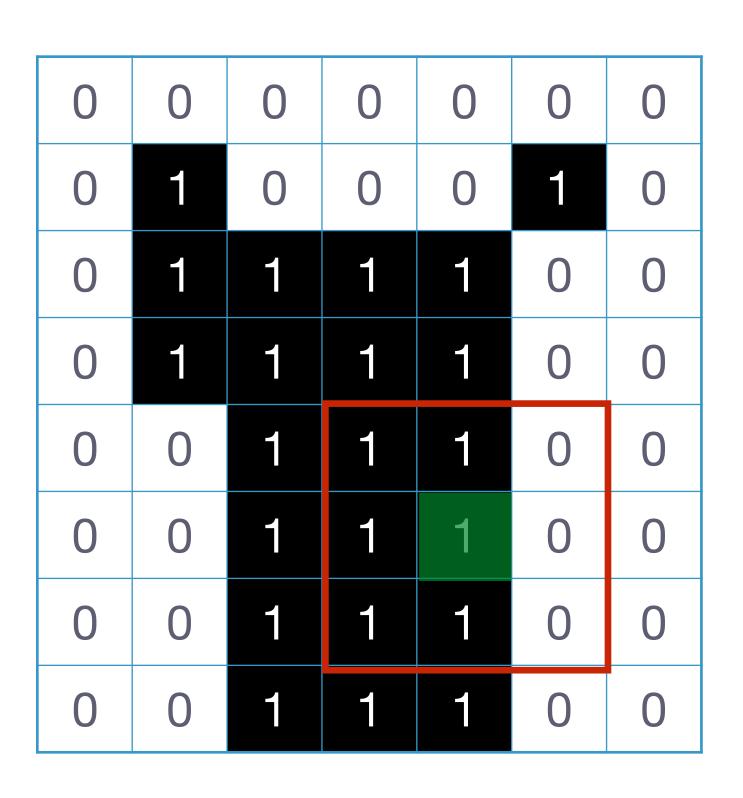
$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$
  
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$ 

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

| 0 | -1 | 0  | 0  | 0  | -1 | 0 |
|---|----|----|----|----|----|---|
| 0 | 0  | -1 | -1 | -1 | 1  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 1  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
|   |    |    |    |    |    |   |

$$I_x = \frac{\partial I}{\partial x}$$

Lets compute a measure of "corner-ness" for the green pixel:



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \Longrightarrow \lambda_1 = 3; \lambda_2 = 0$$

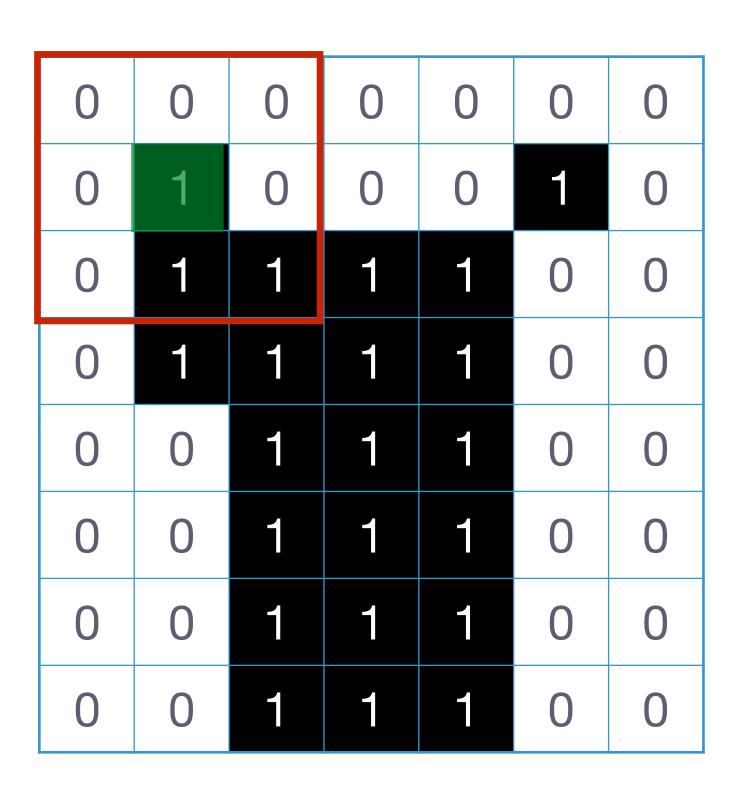
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^{2}(\mathbf{C}) = -0.36$ 

| 0  | 0  | 0 | 0 | 0  | 0 |  |
|----|----|---|---|----|---|--|
| -1 | 1  | 0 | 0 | -1 | 1 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| -1 | 0  | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |
| 0  | -1 | 0 | 0 | 1  | 0 |  |

| 0 | -1 | 0  | 0  | 0  | -1 | 0 |
|---|----|----|----|----|----|---|
| 0 | 0  | -1 | -1 | -1 | 1  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 1  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
| 0 | 0  | 0  | 0  | 0  | 0  | 0 |
|   |    |    |    |    |    |   |

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$

|    |    |   |   |    |   | - |
|----|----|---|---|----|---|---|
| 0  | 0  | 0 | 0 | 0  | 0 |   |
| -1 | 1  | 0 | 0 | -1 | 1 |   |
| -1 | 0  | 0 | 0 | 1  | 0 |   |
| -1 | 0  | 0 | 0 | 1  | 0 |   |
| 0  | -1 | 0 | 0 | 1  | 0 |   |
| 0  | -1 | 0 | 0 | 1  | 0 |   |
| 0  | -1 | 0 | 0 | 1  | 0 |   |
| 0  | -1 | 0 | 0 | 1  | 0 |   |

$$I_x = \frac{\partial I}{\partial x}$$

#### Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
  - Harris uses a Gaussian window
- Solve for product of the  $\lambda$ 's
- If  $\lambda$ 's both are big (product reaches local maximum above threshold) then we have a corner
  - Harris also checks that ratio of λs is not too high

#### Properties: Rotational Invariance



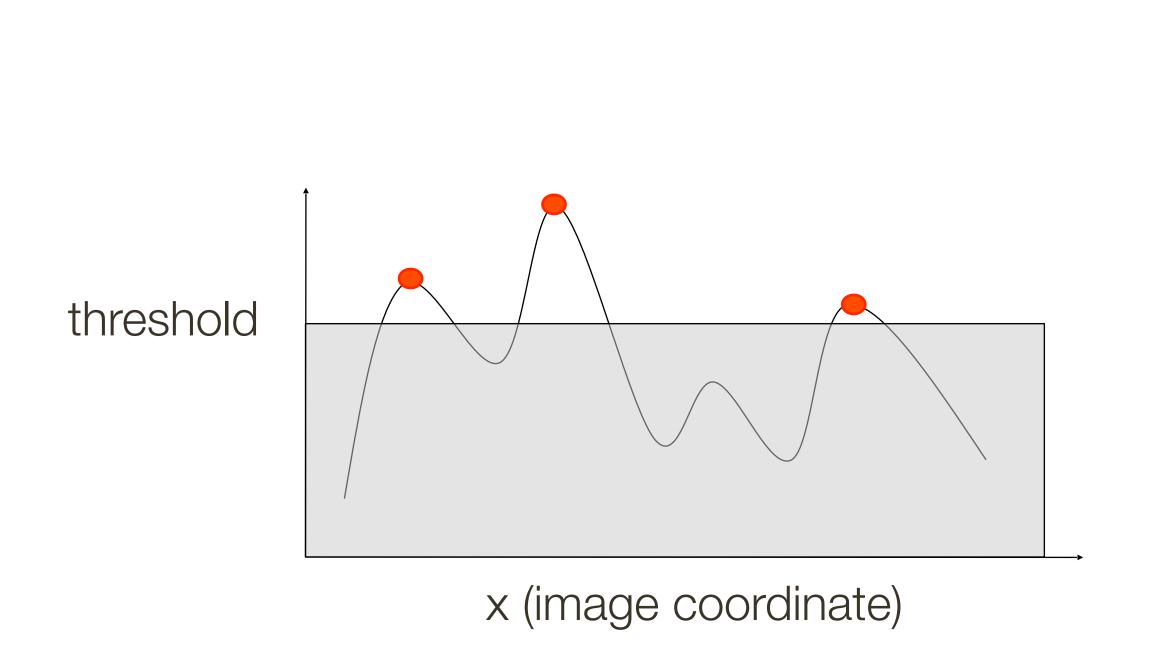
Ellipse rotates but its shape (eigenvalues) remains the same

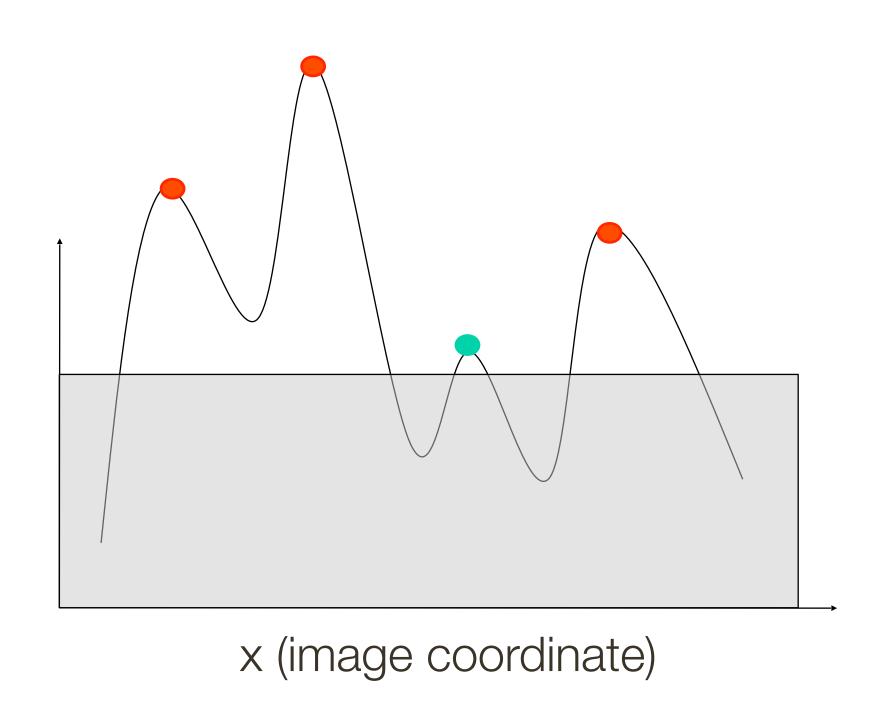
Corner response is invariant to image rotation

### Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance



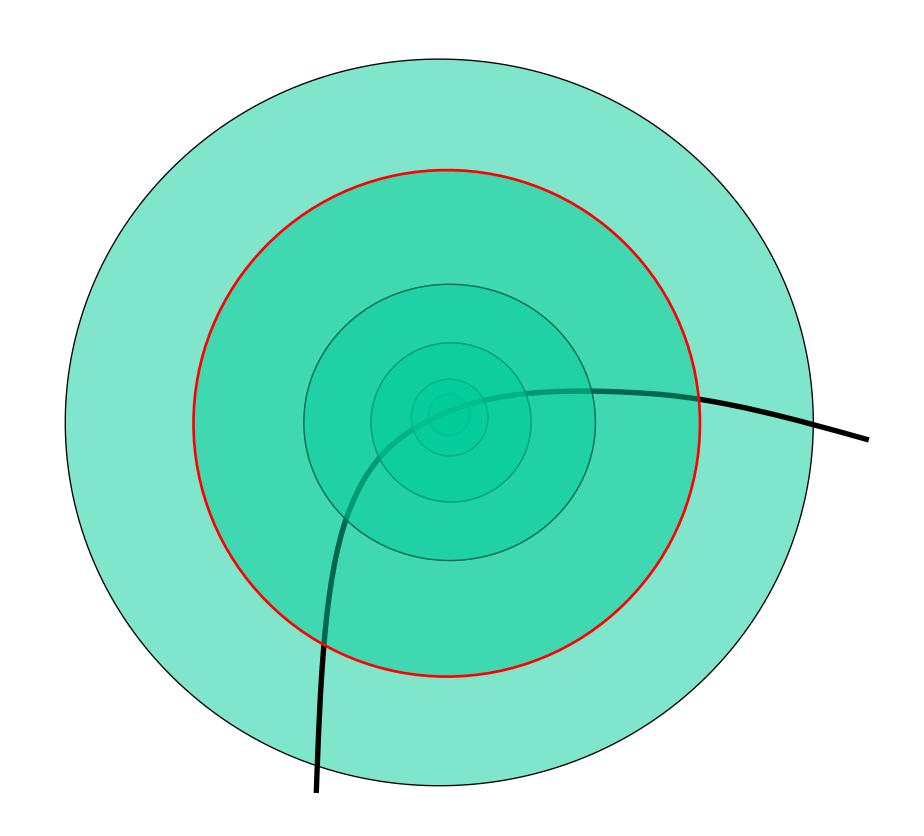


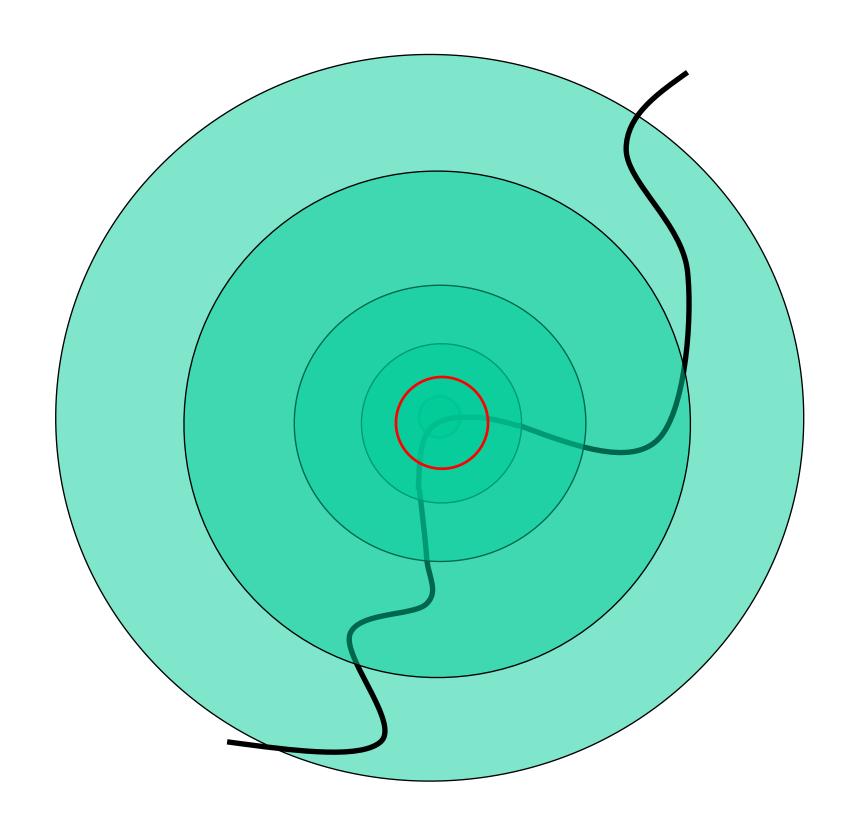
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

### Properties: NOT Invariant to Scale Changes



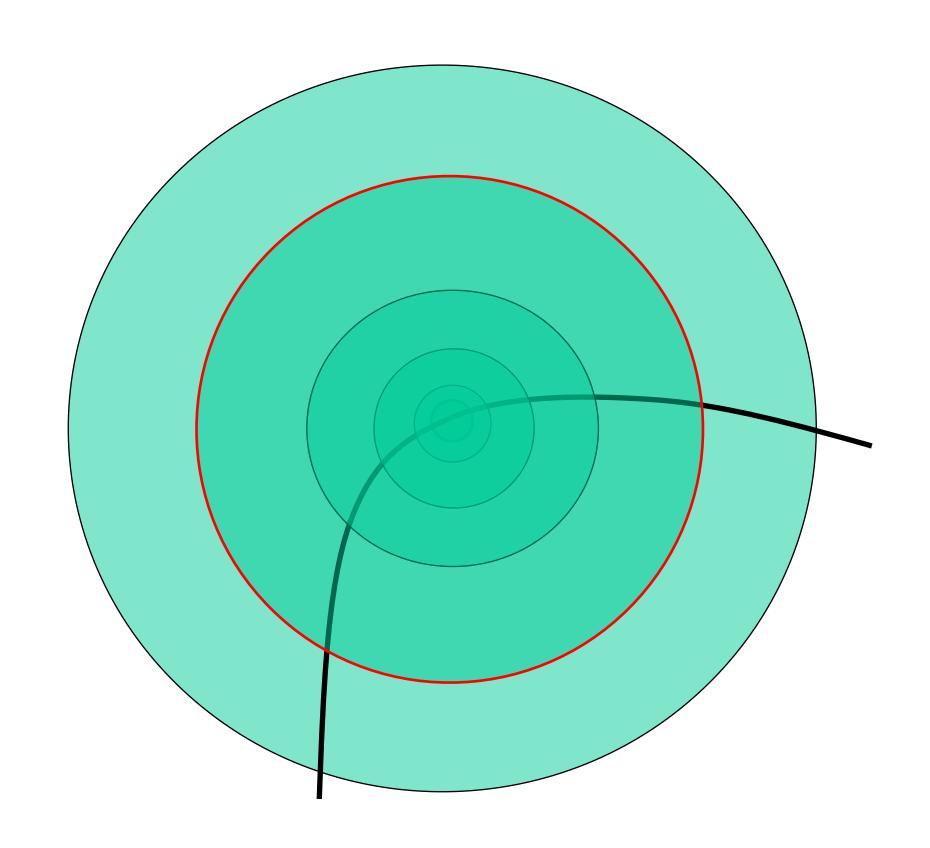
# Intuitively ...

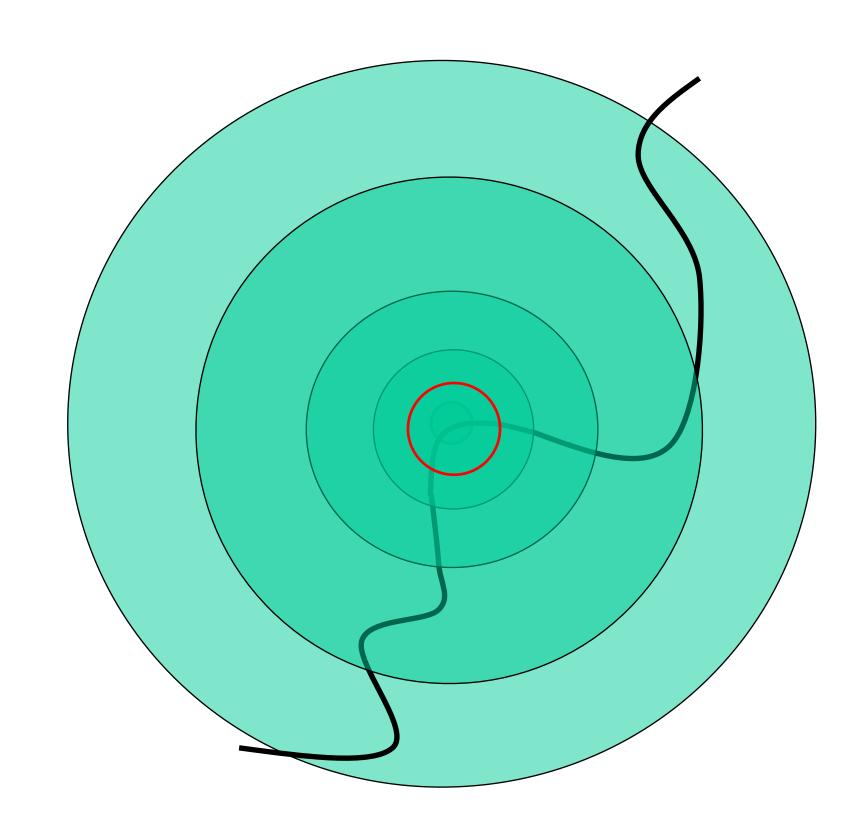




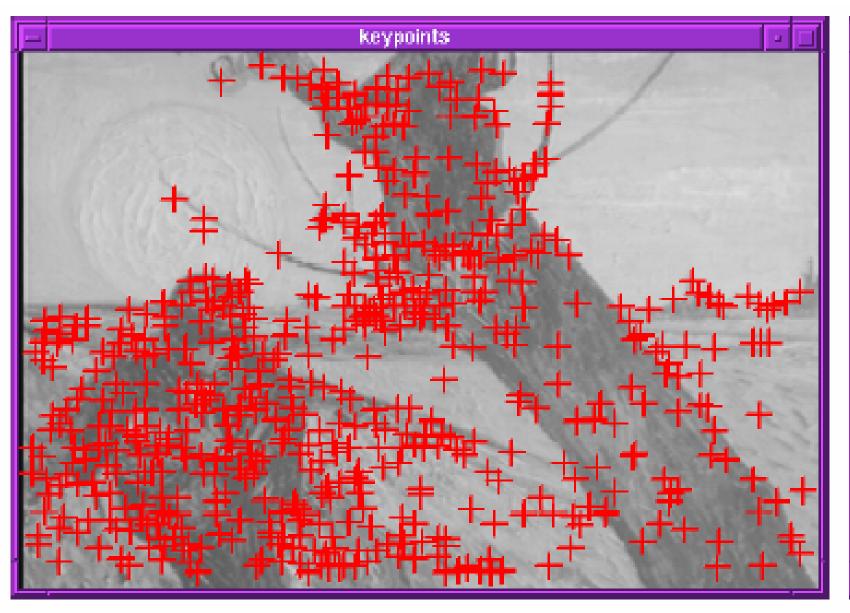
## Intuitively ...

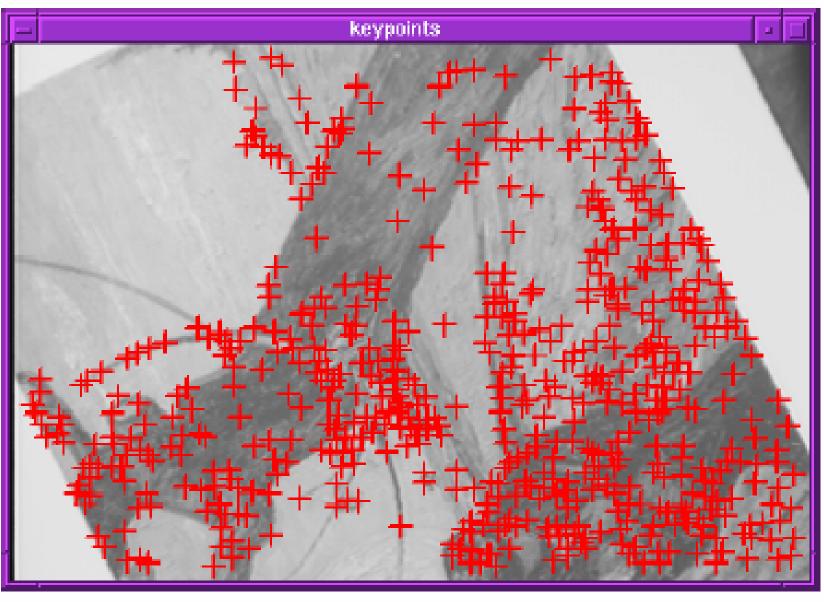
Find local maxima in both position and scale





# Example 1:





#### Example 2: Wagon Wheel (Harris Results)



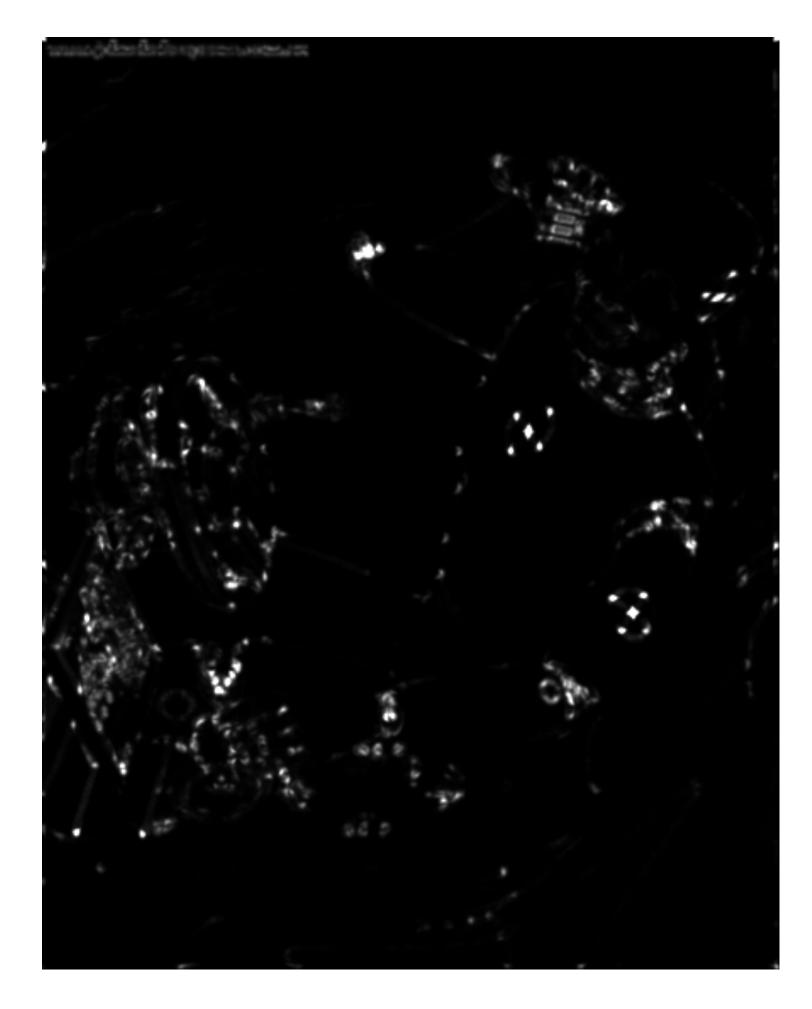
 $\sigma=1$  (219 points)  $\sigma=2$  (155 points)  $\sigma=3$  (110 points)  $\sigma=4$  (87 points)







#### Example 3: Crash Test Dummy (Harris Result)



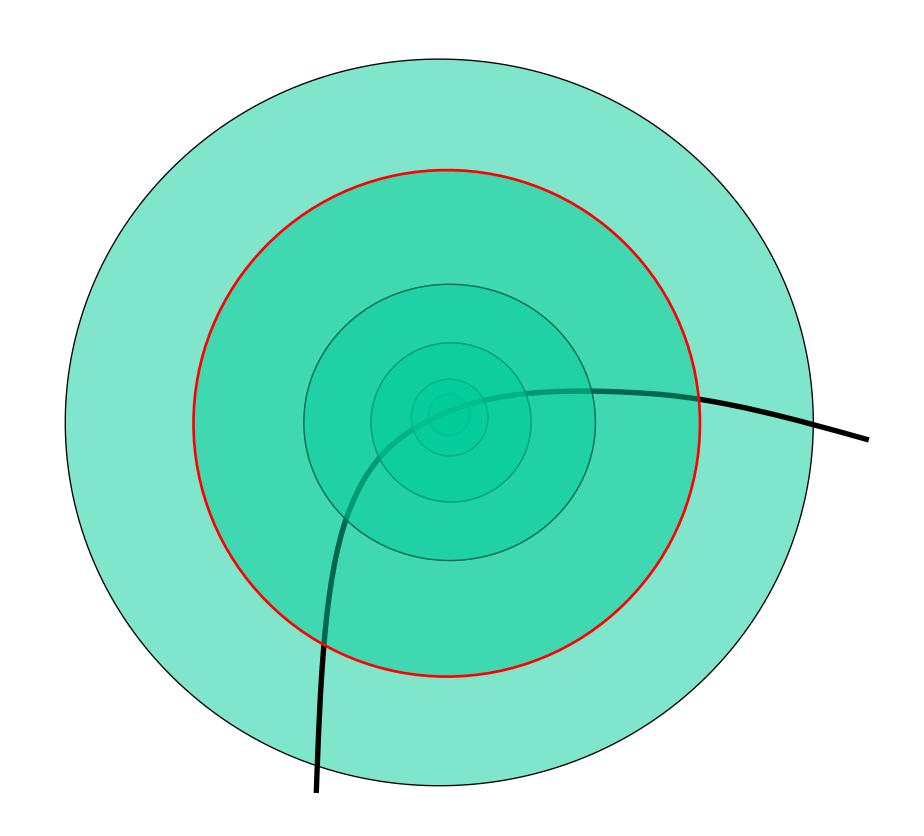
corner response image

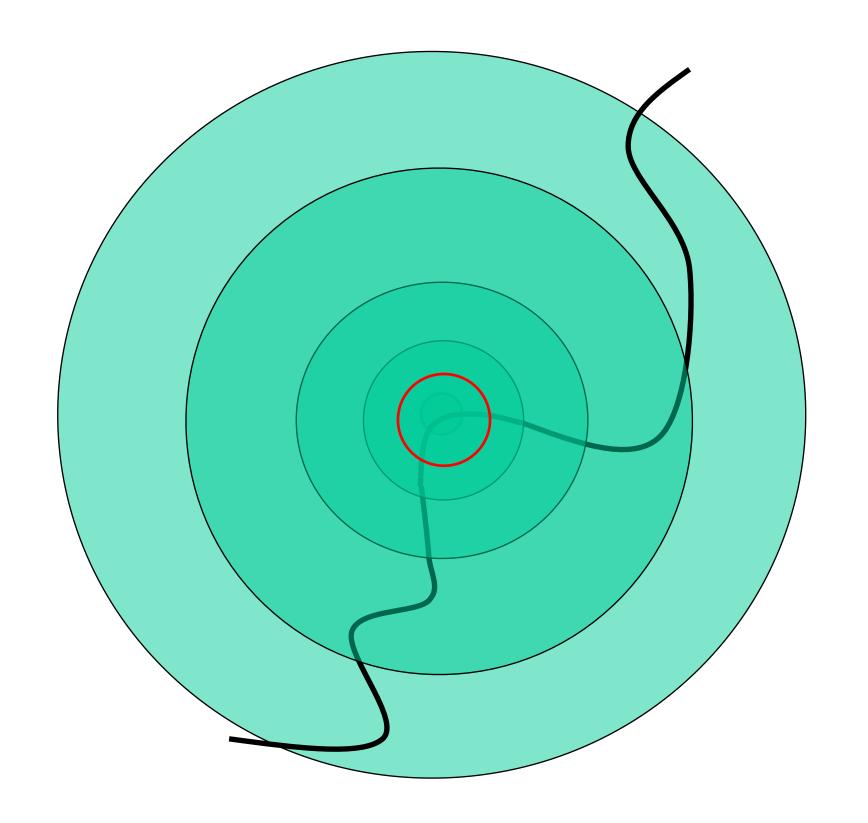


 $\sigma = 1$  (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald

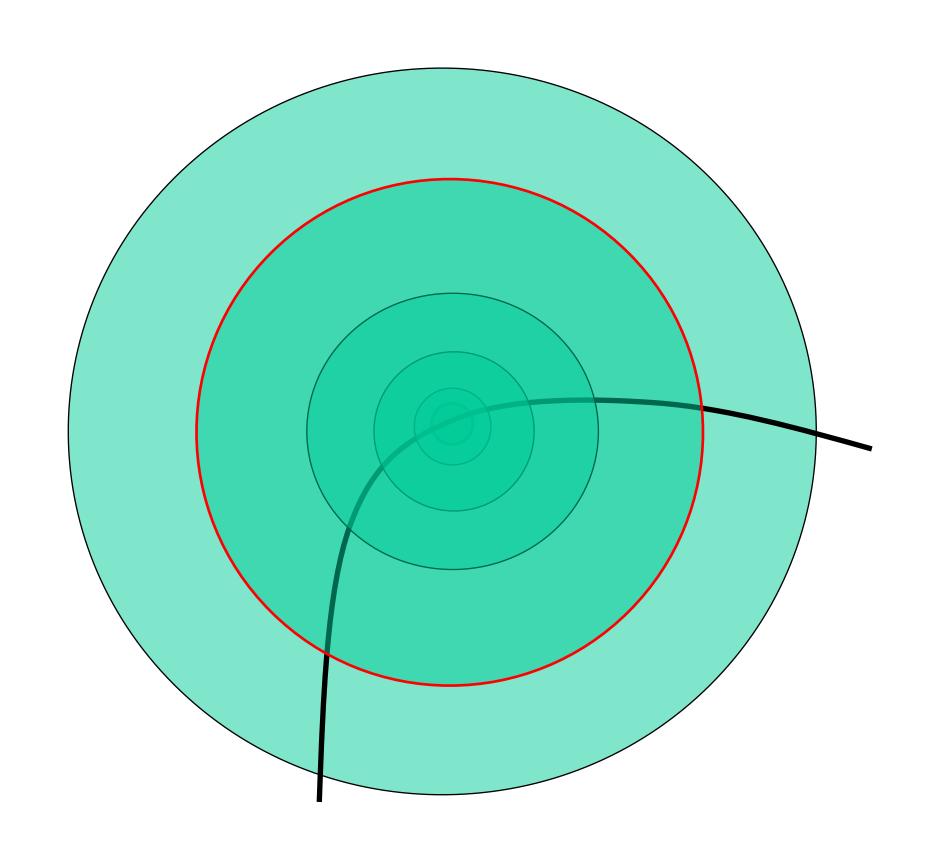
# Intuitively ...

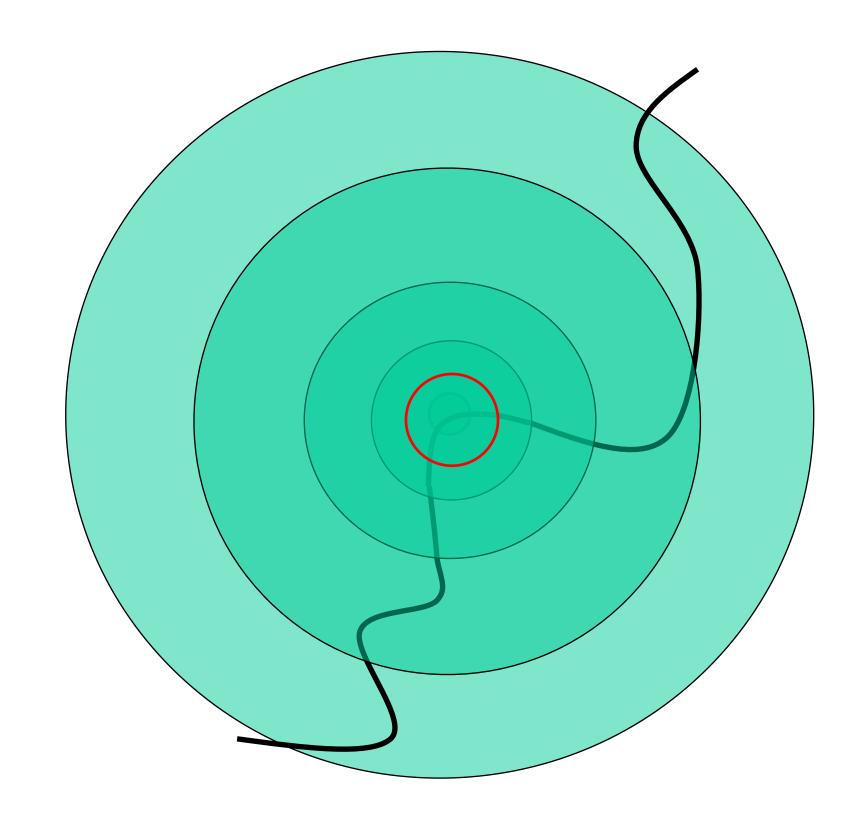




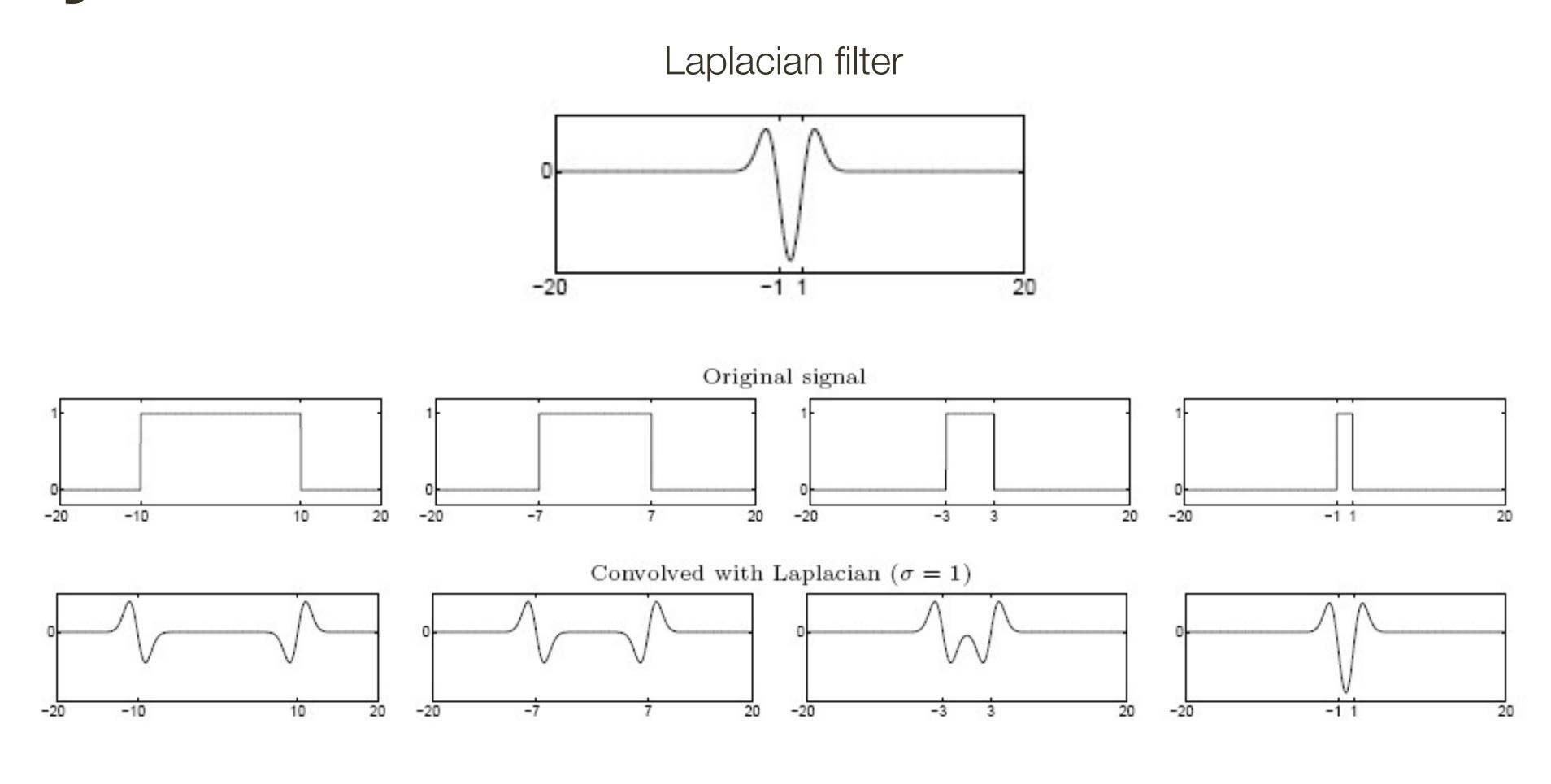
### Intuitively ...

Find local maxima in both position and scale





#### Formally ...

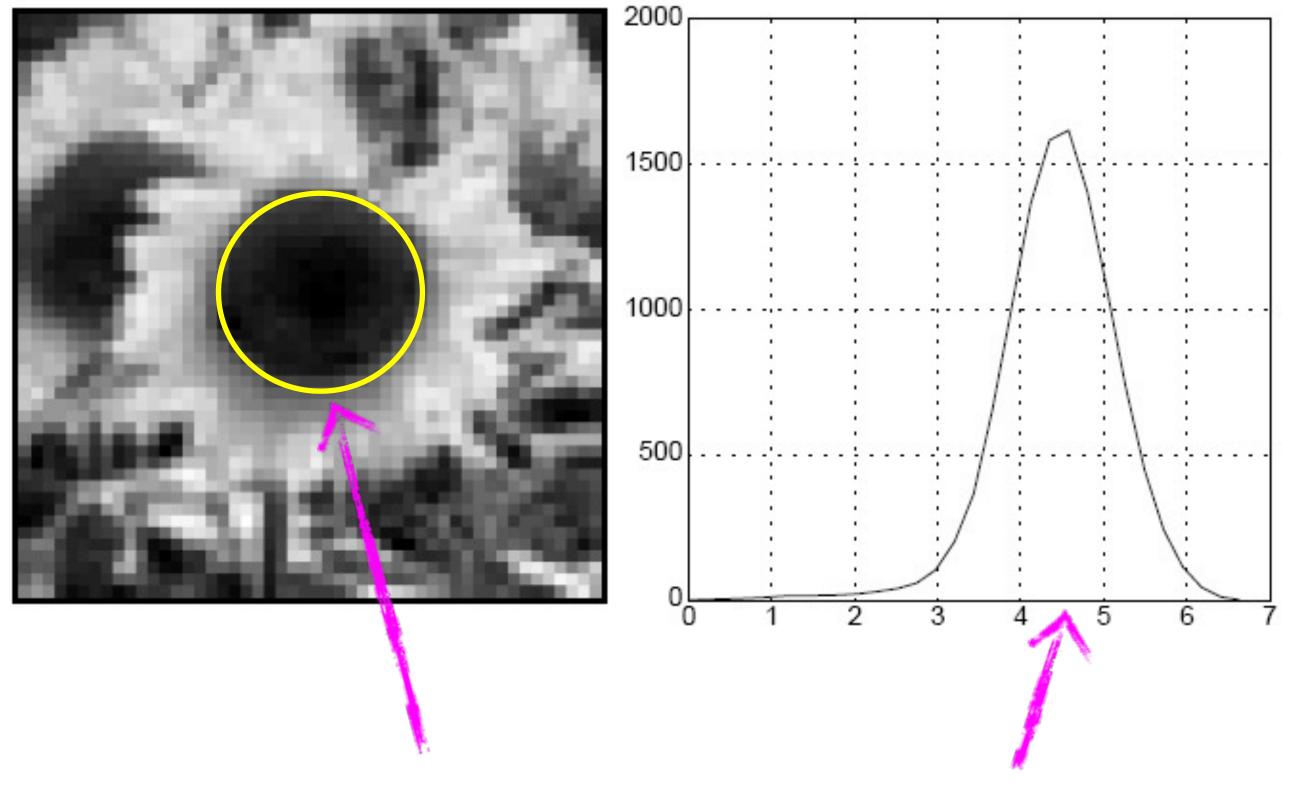


Highest response when the signal has the same **characteristic scale** as the filter



#### Characteristic Scale

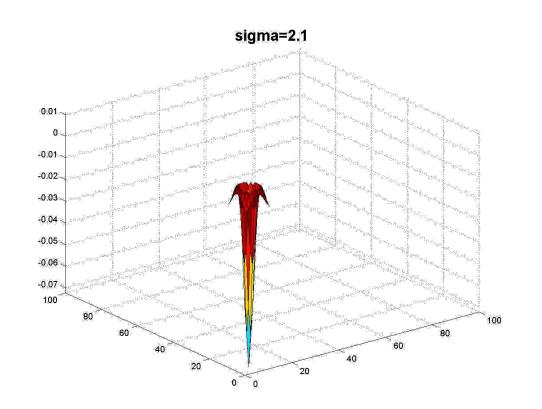
characteristic scale - the scale that produces peak filter response



characteristic scale

we need to search over characteristic scales

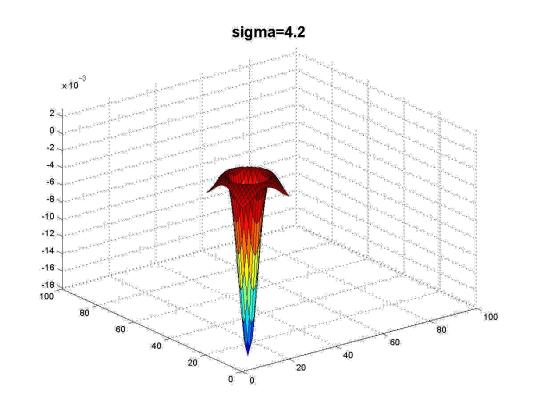






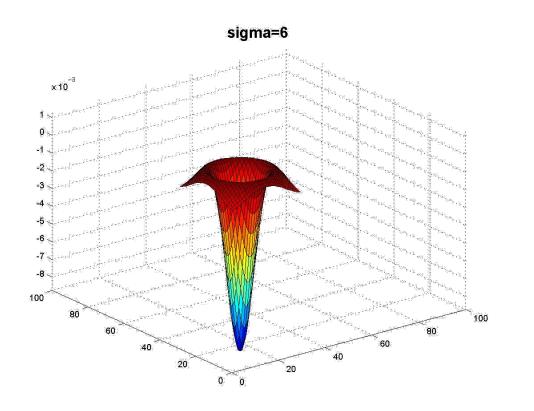


jet color scale blue: low, red: high



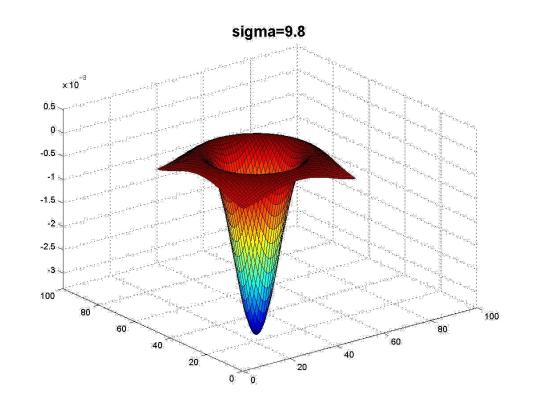






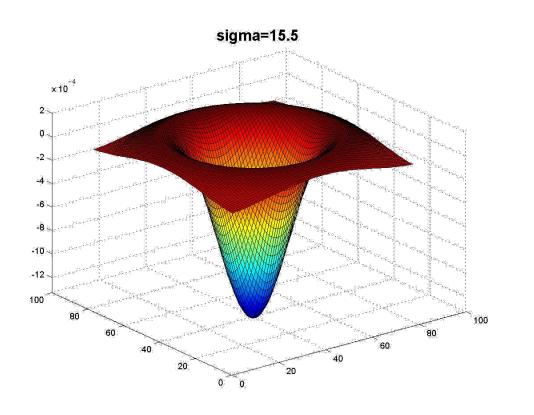






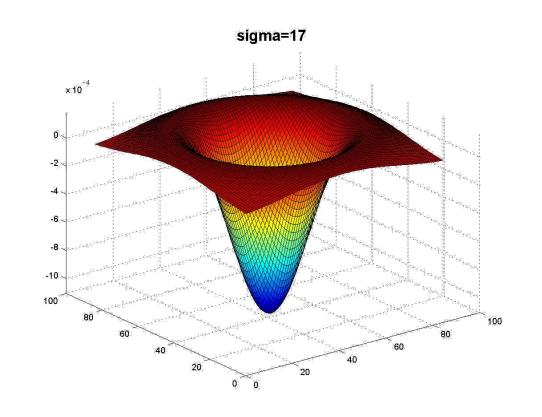














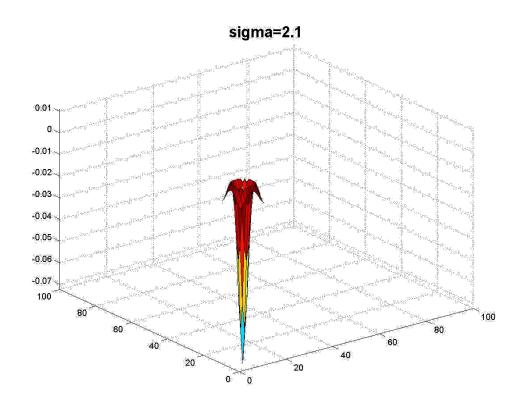


Full size



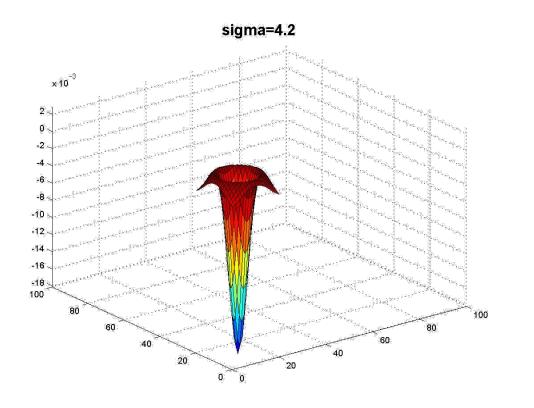
3/4 size



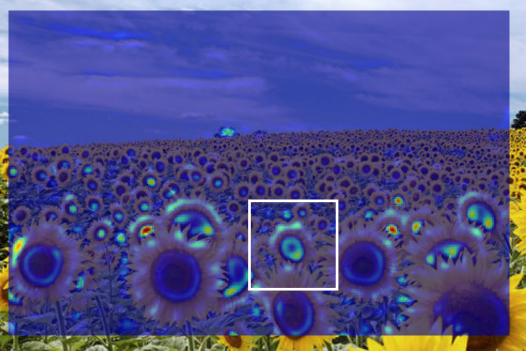


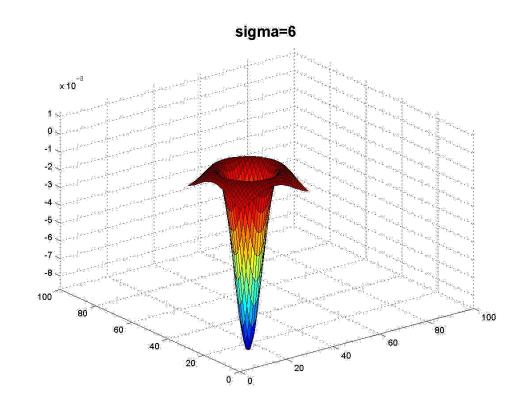


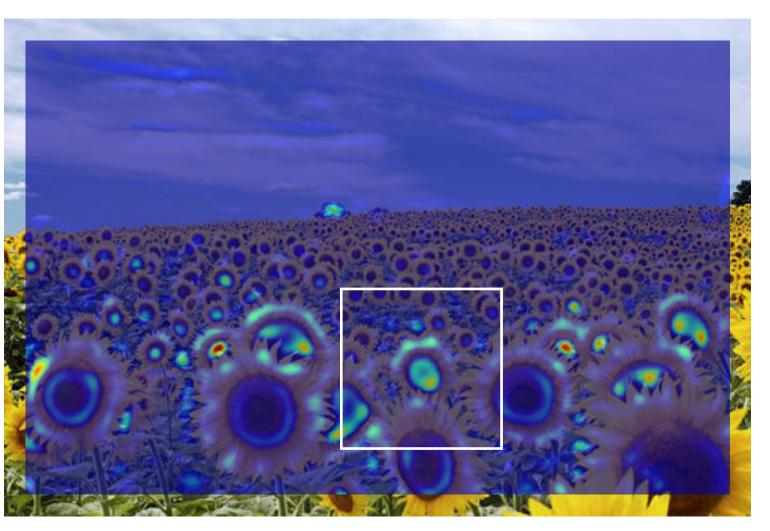




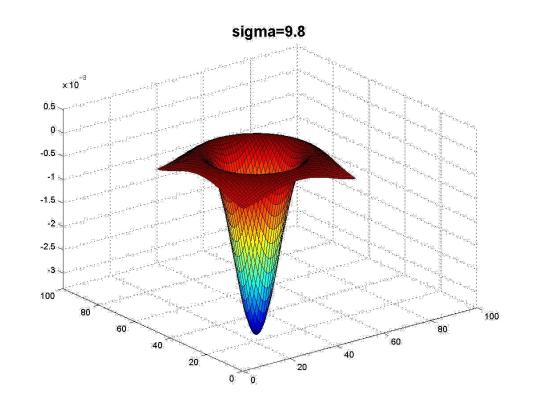


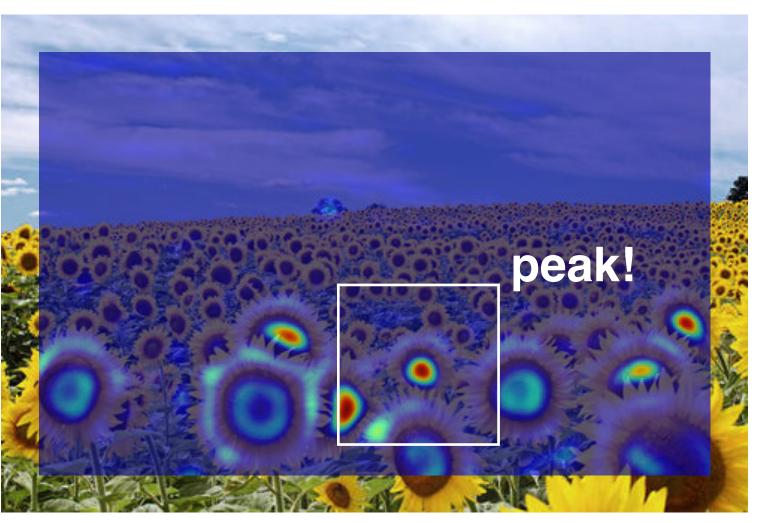


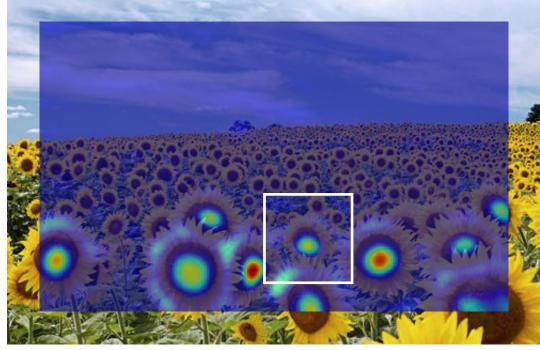


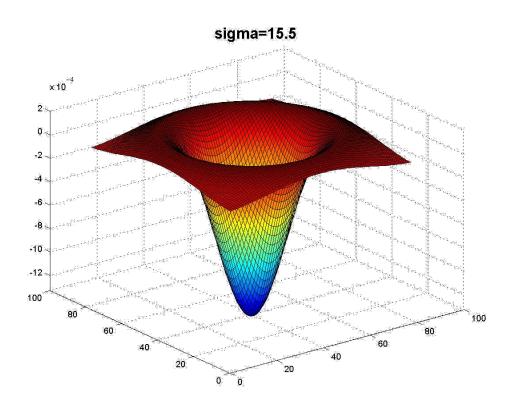


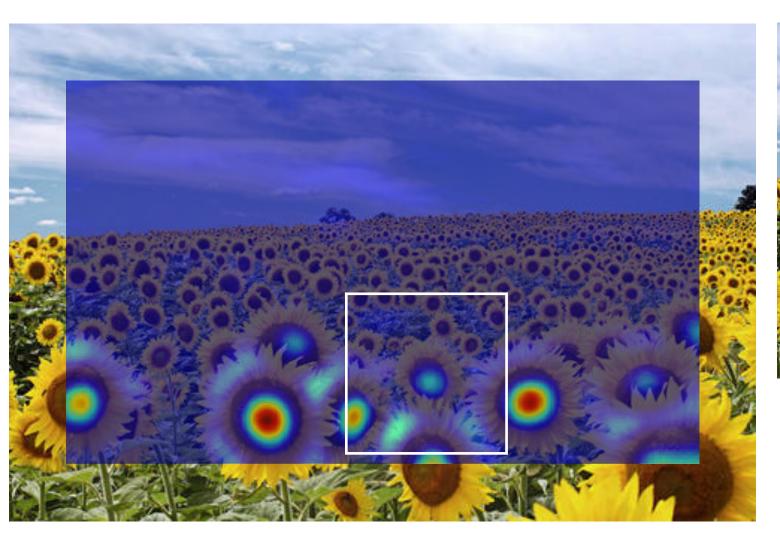


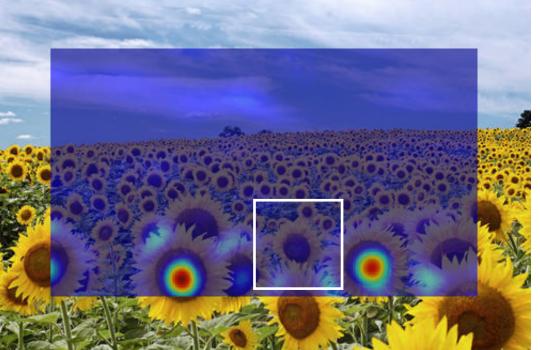


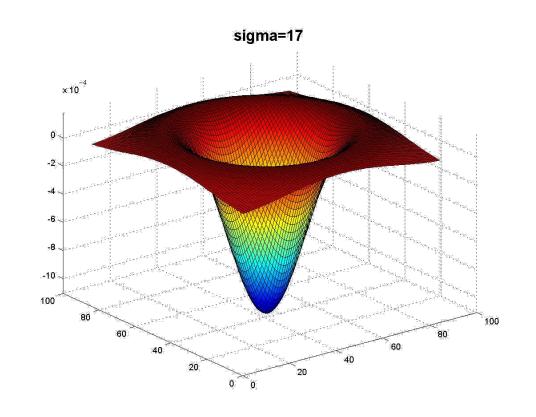


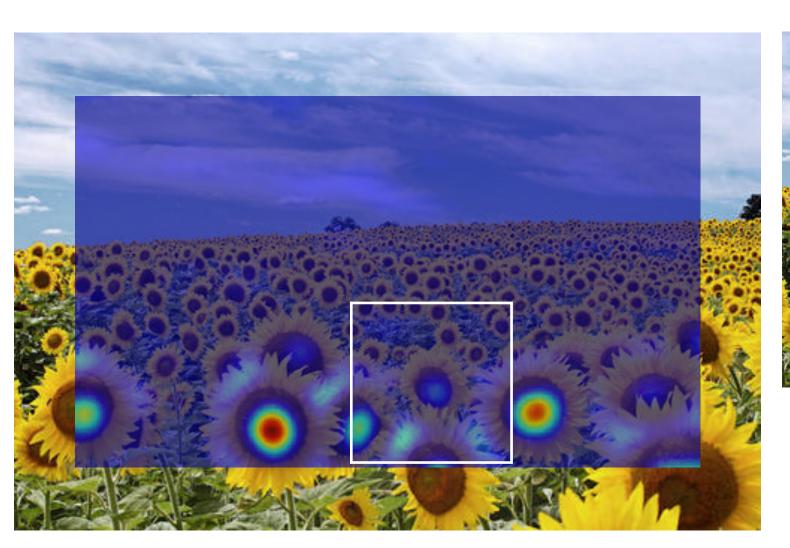


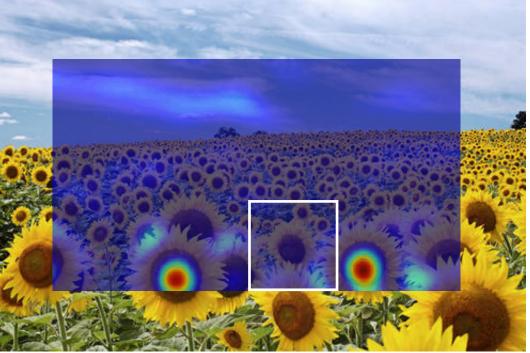










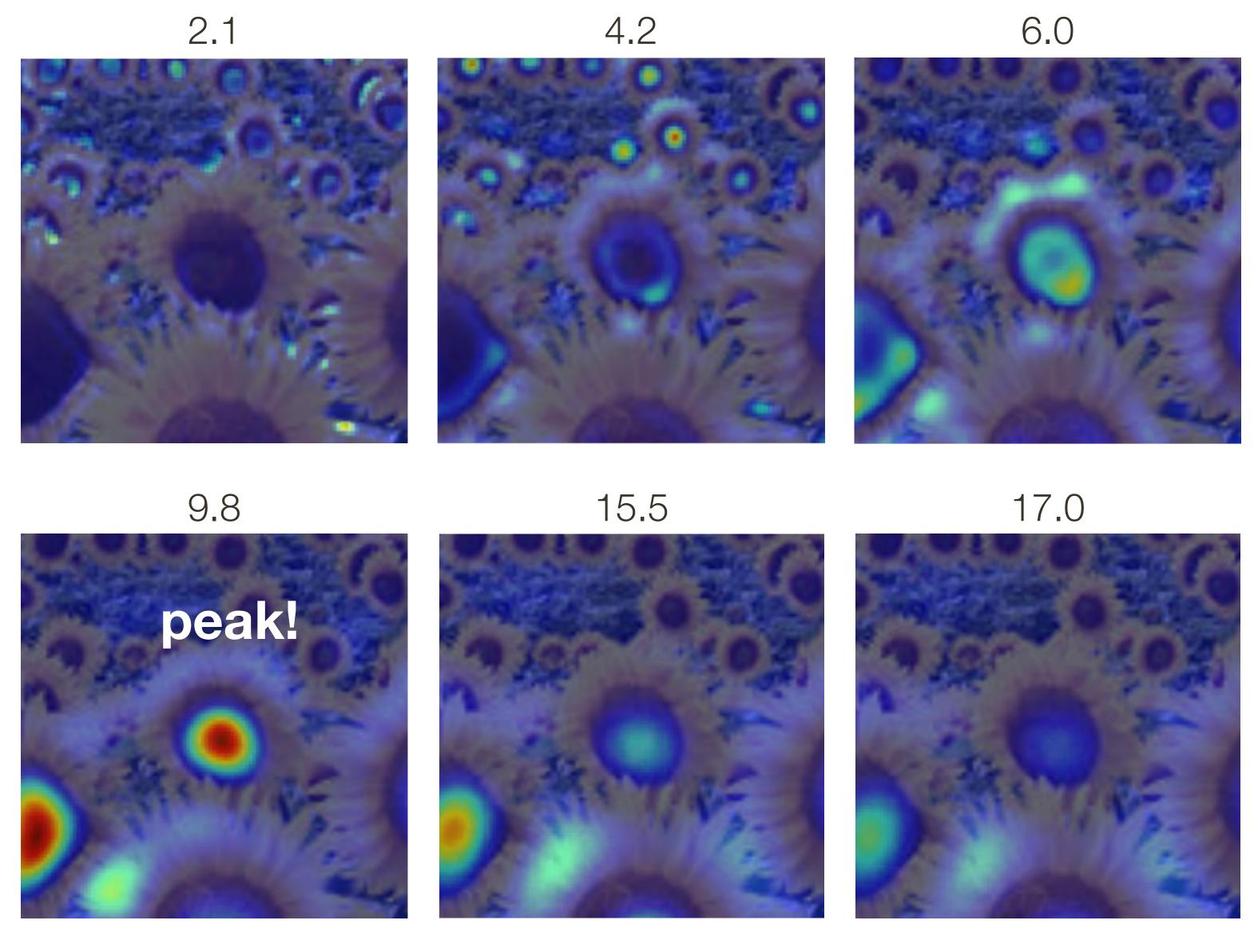


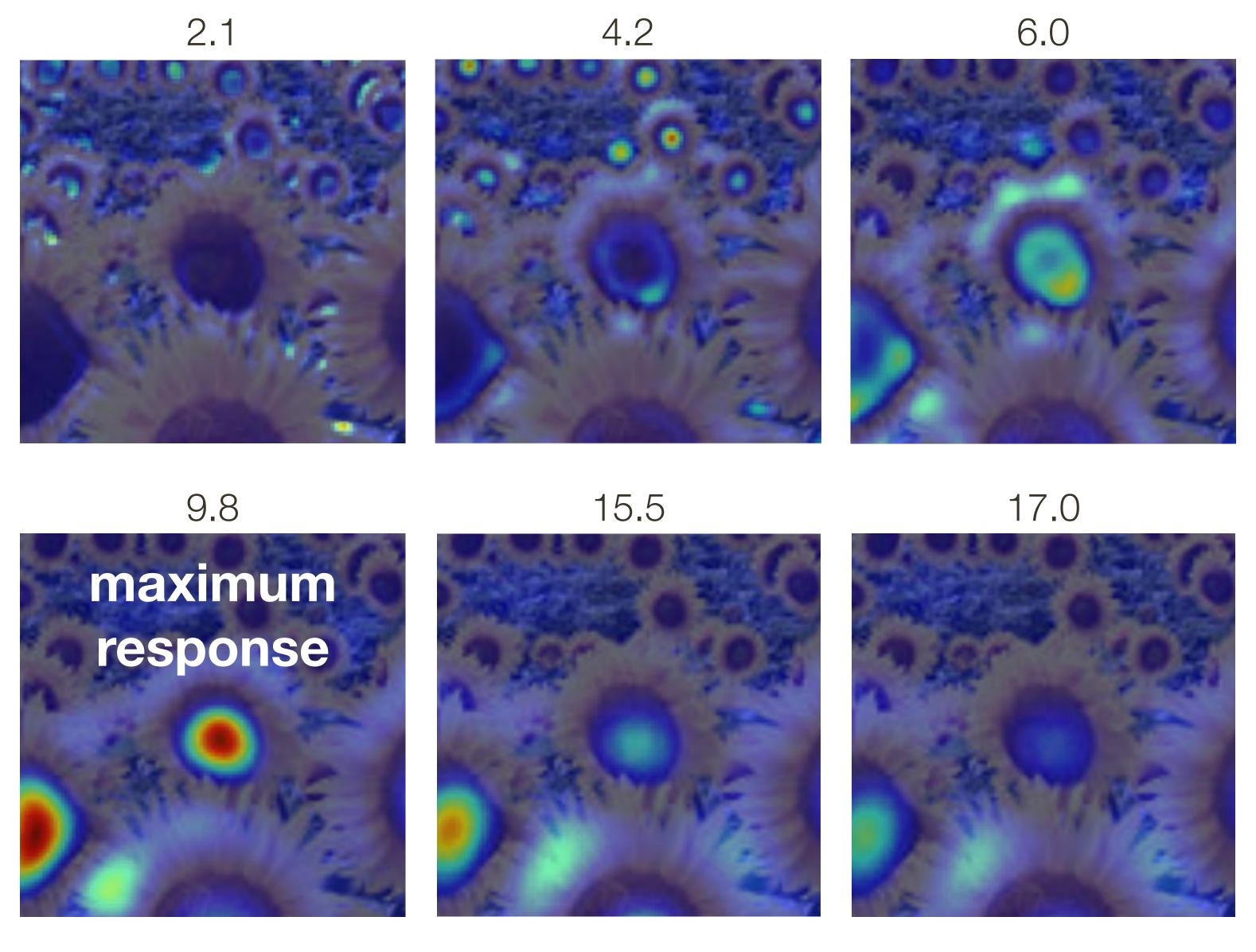
Full size



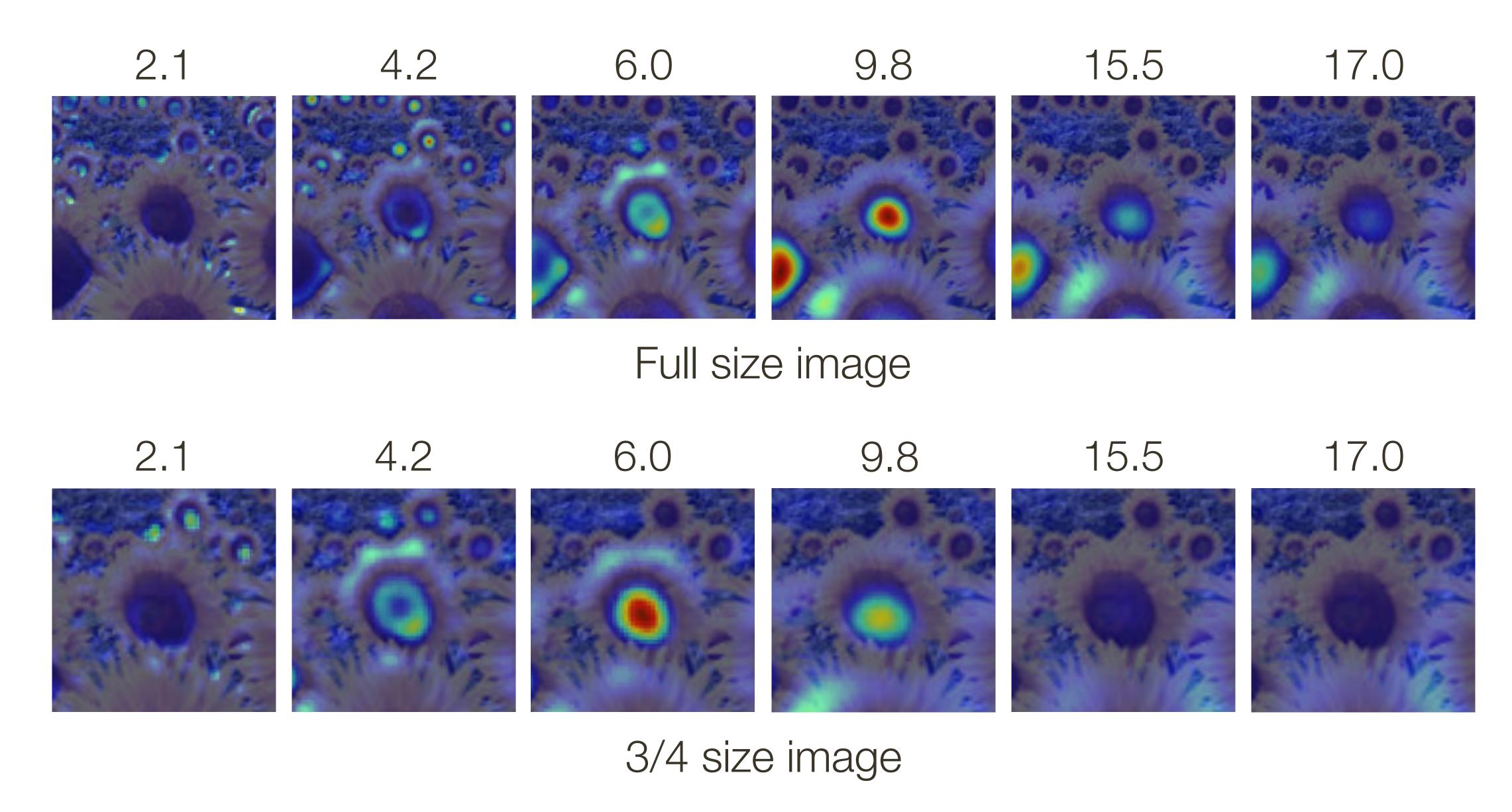
3/4 size





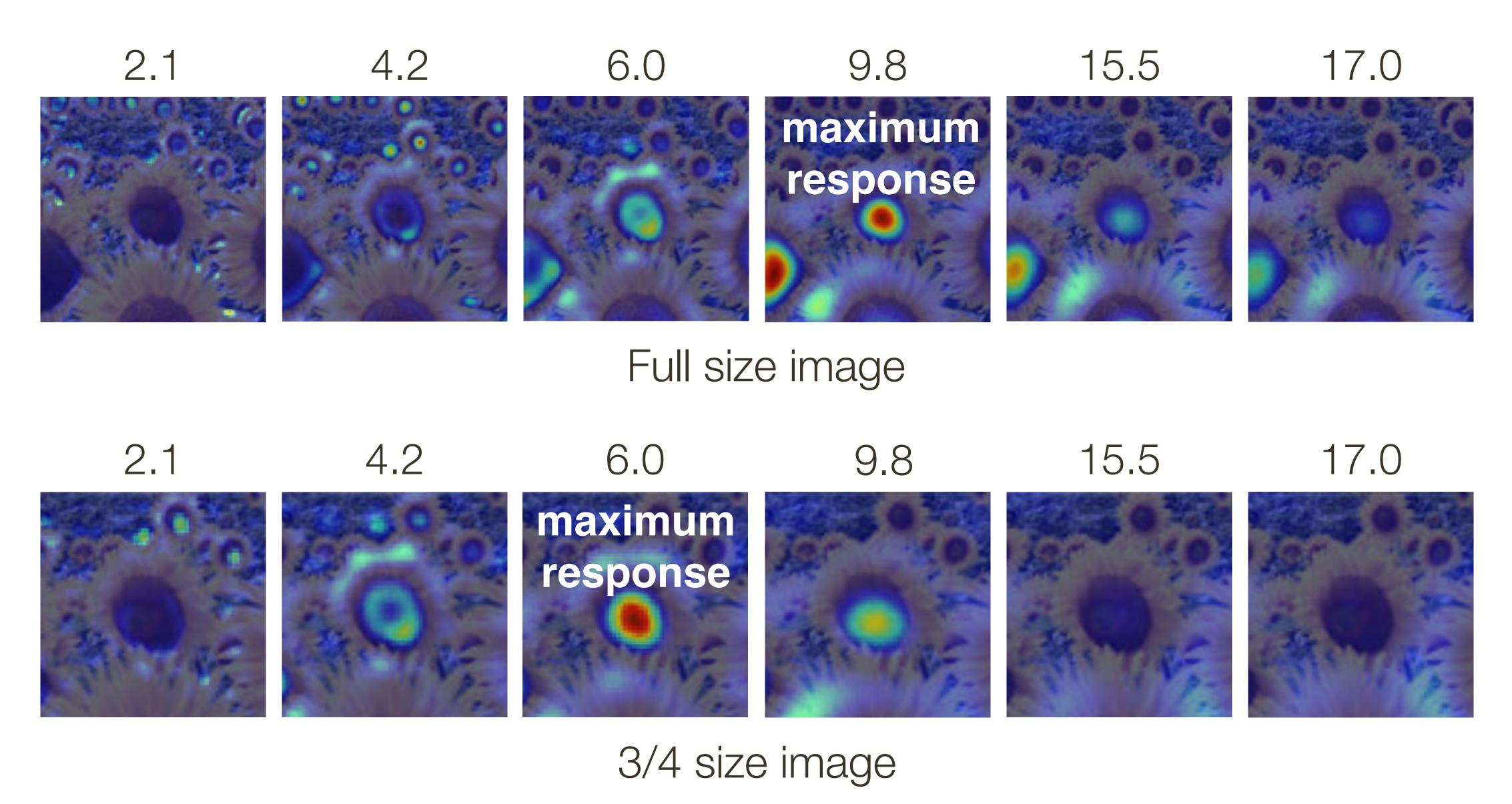


# Optimal Scale



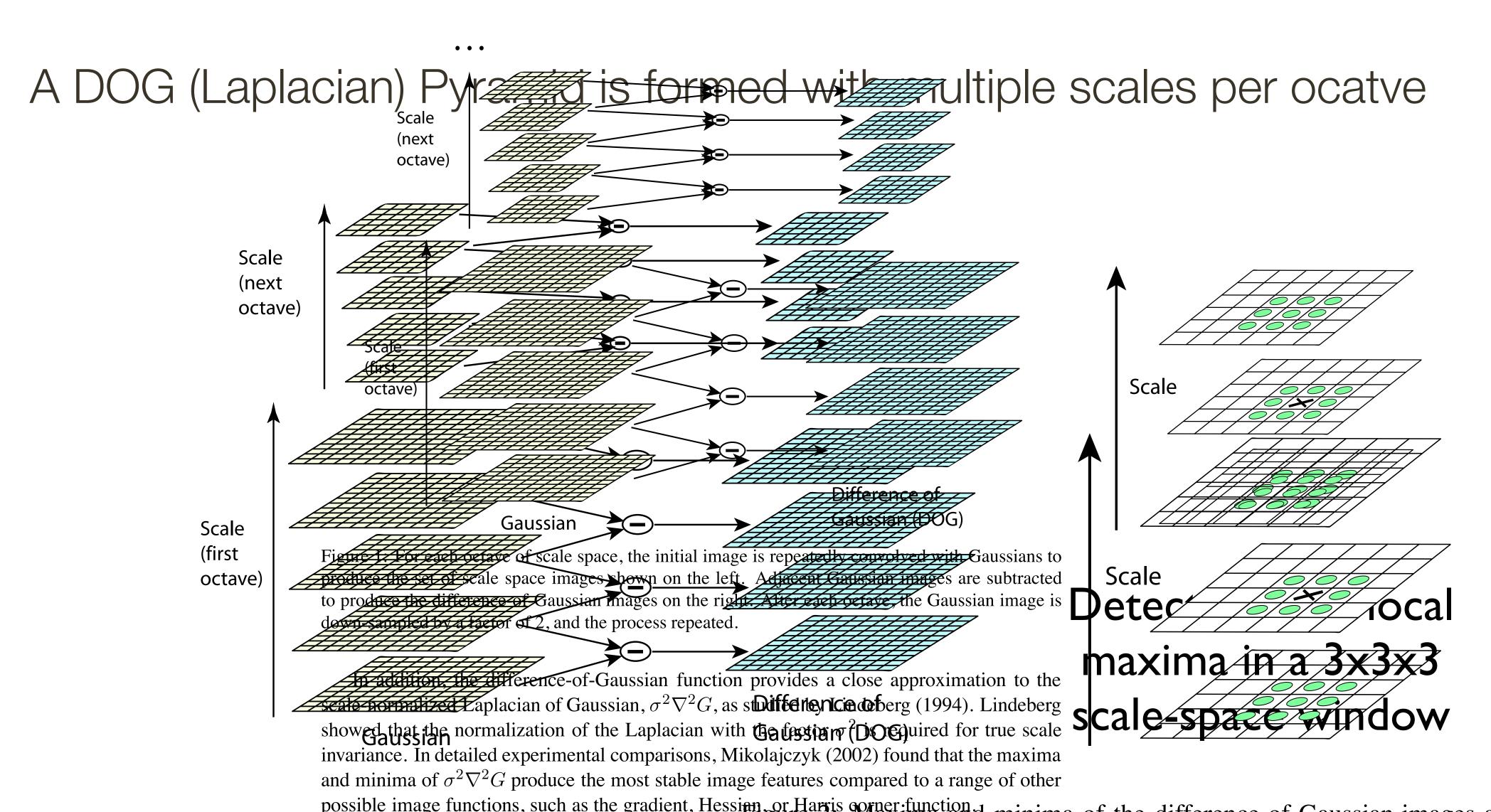
179

# Optimal Scale



180

#### Scale Selection



possible image functions, such as the gradient, Hessian or Harris corner function of the difference-of-Gaussian images are detected by comparing the relationship between D and  $\sigma^2 \nabla^2 G$  can be understood from the heat diffusion equation (parameterized in terms of  $\sigma$  rather than the more usual t = 0):

with circles).

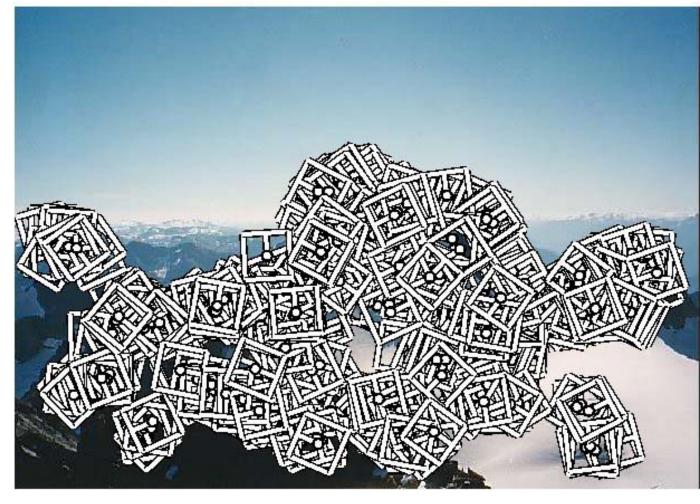
#### Implementation

```
For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)
```

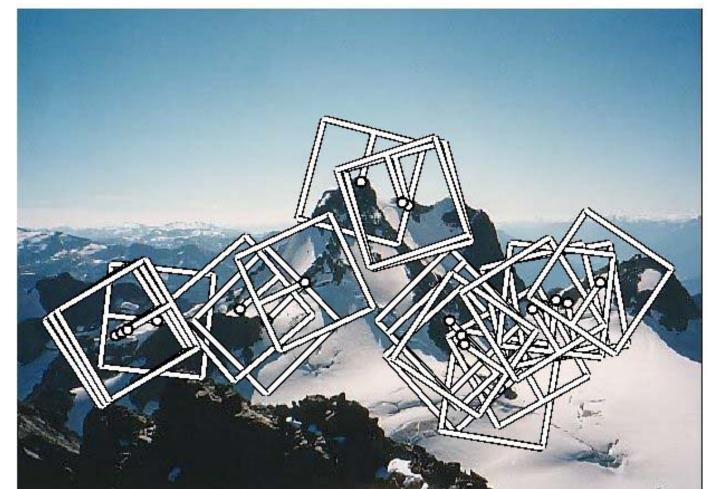
For each level of the Gaussian pyramid  $\begin{tabular}{l} if local maximum and cross-scale \\ \begin{tabular}{l} save scale and location of feature $(x,y,s)$ \\ \end{tabular}$ 

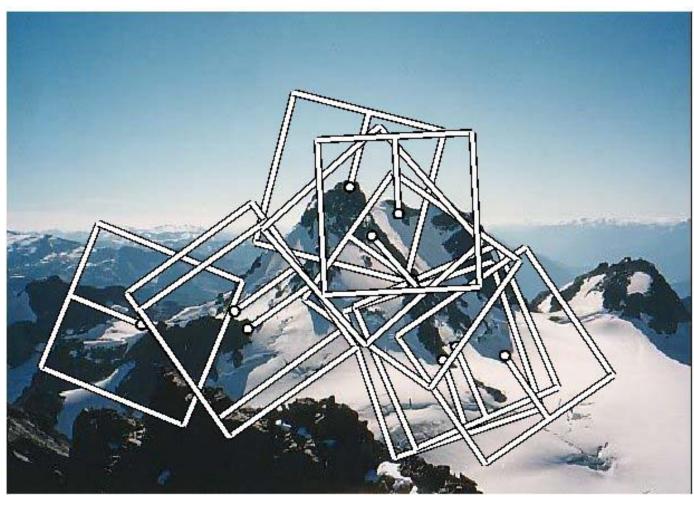
### Multi-Scale Harris Corners

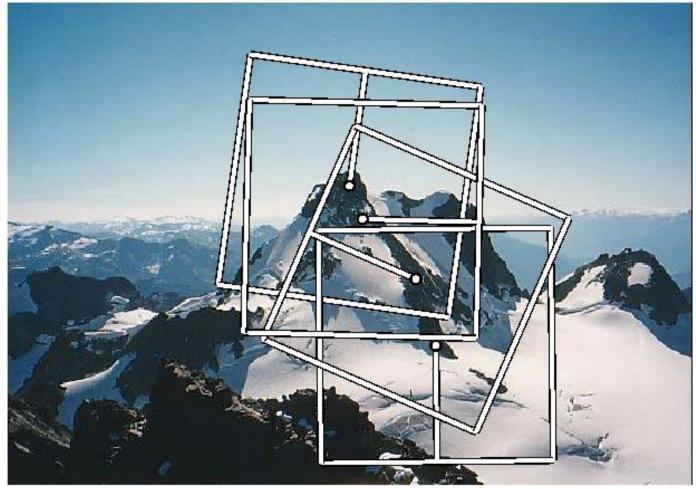












## Summary Table

Summary of what we have seen so far:

| Representation | Result is         | Approach                  | Technique                   |
|----------------|-------------------|---------------------------|-----------------------------|
| intensity      | dense             | template<br>matching      | (normalized)<br>correlation |
| edge           | relatively sparse | derivatives               |                             |
| corner         | sparse            | locally distinct features | Harris                      |

#### Summary

**Edges** are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

**Corners / Interest Points** have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function

**DoG** maxima can be reliably located in scale-space and are useful as interest points