
Lecture 10: Corner Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today
Topics: 

— Edge Detection (review) 
— Corner Detection 
— Harris Corner Detection

Readings: 

— Today’s Lecture:  Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1 

— Image Structure 
— Blob Detection 

Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending 



Goal: Identify sudden changes in image 
intensity  

This is where most shape information is 
encoded  

Example: artist’s line drawing (but artist 
also is using object-level knowledge)  

Lecture 9: Re-cap Edge Detection



Good detection: minimize probability of false positives/negatives (spurious/missing) edges 

Good localization: found edges should be as close to true image edge as possible 

Single response: minimize the number of edge pixels around a single edge 

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good

Lecture 9: Re-cap Edge Detection
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Sobel issues: 
    — Brittle = result depends on threshold 
    — Thick edges = poor localization
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3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 

Canny Edge Detector
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No longer considered as possible edge points 

Can still be edge points 
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Goal: 
    — Identify local maxima, which can be edge points  
    — Thin edges, so we can improve localization
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The fact that the edge is shifted  
can be addressed by better 

derivative filter (central difference)



How do humans perceive boundaries? 

Edges are a property of the 2D image.  

It is interesting to ask: How closely do image edges correspond to 
boundaries that humans perceive to be salient or significant?  



Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Boundary Detection

We can formulate boundary detection as a high-level recognition task  
— Try to learn, from sample human-annotated images, which visual features or 
cues are predictive of a salient/significant boundary  

Many boundary detectors output a probability or confidence that a pixel is 
on a boundary  















✓

r

(x, y)



✓

r

(x, y)



✓

r

(x, y)



✓

r

(x, y)



✓

r

(x, y)



✓

r

(x, y)

An edge exists if there is a large difference  
between the distributions



✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)



Features: 
— Raw Intensity 
— Orientation Energy 
— Brightness Gradient 
— Color Gradient  
— Texture gradient

Raw 
Intensity

Bright 
Grad

Color 
Grad

Texture 
Grad

Boundary Detection:



For each feature type  

— Compute non-parametric distribution (histogram) for left side 
— Compute non-parametric distribution (histogram) for right side 
— Compare two histograms, on left and right side, using statistical test 

Use all the histogram similarities as features in a learning based approach that 
outputs probabilities (Logistic Regression, SVM, etc.) 

Boundary Detection:



Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



Learning Goals

Why corners (blobs)? 
What are corners (blobs)?



Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences) 
between images 

This has many applications: rigid/non-rigid tracking, object recognition, image 
registration, structure from motion, stereo...

? ??



When might template matching fail? 

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching
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Planar Object Instance Recognition
Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Matching

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Matching

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Feature Detectors

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.
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Feature Descriptors

Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch

SIFT

Shape Context

 Learned Descriptors



What is a Good Feature?

Local: features are local, robust to occlusion and clutter 

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched 

Efficient: close to real-time performance 



What is a Good Feature?



What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully) 
corresponds to a distinct position on an 3D object of interest in the scene. 

Image Credit: John Shakespeare, Sydney Morning Herald 
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Corner 

Interest Point 
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A corner can be localized reliably.  

Thought experiment:  
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Why are corners distinct?

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner. If you slide the window in any direction, 
the image in the window changes. 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Structure

What kind of structures are present in the image locally?
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Image Structure

What kind of structures are present in the image locally?

0D Structure: not useful for matching

1D Structure: edge, can be localized in one 
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be 
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or 
Interest point detectors find points with 2D structure.



How do you find a corner? 

Easily recognized by looking through a small window 

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  



Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  



Local SSD Function

Consider the sum squared difference (SSD) of a patch with its local 
neighbourhood

�x1

�x2

x =


x1

x2

�

SSD =
X

R
|I(x)� I(x+�x)|2



Local SSD Function

Consider the local SSD function for different patches4.1 Points and patches 211
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�u.
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Clear peak in similarity function

High similarity along the edge

High similarity locally



Harris Corners

Harris corners are peaks of a local similarity function
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We will use a first order approximation to the local SSD function
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Harris Corners

We will use a first order approximation to the local SSD function

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

SSD = �x
T
H�x

1

SSD = �x
T
H�x

H =
X

R


I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1



SSD function must be large for all shifts            for a corner / 2D structure 

This implies that both eigenvalues of          must be large 

Note that         is a 2x2 matrix 

Harris Corners

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

SSD = �x
T
H�x

1

SSD = �x
T
H�x

H =
X

R


I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R


I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R


I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R


I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1



Harris Corner Detection

1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



1. Compute image gradients over a small region

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Visualization of Gradients

image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Distribution reveals the orientation and magnitude 
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Distribution reveals the orientation and magnitude 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude? 



What Does a Distribution Tells You About the Region? 

Distribution reveals the orientation and magnitude 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude? 



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

C =
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2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Gradient with respect to x, times 
gradient with respect to y
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2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum( )



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a  small image region

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a  small image region

C = Autocorrelation

Covariance matrix
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Simple Case

high value along vertical  
strip of pixels and 0 elsewhere

high value along horizontal  
strip of pixels and 0 elsewhere

Ix Iy
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General Case

C =
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General Case

C =

2

4
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p2P
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It can be shown that since every C is symmetric: 

… so general case is like a rotated version of the simple one



3. Computing Eigenvalues and Eigenvectors

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Quick Eigenvalue/Eigenvector Review

Given a square matrix    , a scalar    is called an eigenvalue of     if there exists 
a nonzero vector    that satisfies  

 
The vector    is called an eigenvector for     corresponding to the eigenvalue   .  

The eigenvalues of     are obtained by solving (characteristic equation) 

Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A



3. Computing Eigenvalues and Eigenvectors

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)
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Since     is symmetric, we have

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse
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We can visualize     as an ellipse with axis lengths determined by the eigenvalues 
and orientation determined by 

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1


�1 0
0 �2

�
R

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1


�1 0
0 �2

�
R



Since     is symmetric, we have

direction of 
the major 

axis

direction of the 
minor axis

(λmax)-1/2

(λmin)-1/2

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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We can visualize     as an ellipse with axis lengths determined by the eigenvalues 
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Interpreting Eigenvalues

λ2 >> λ1

λ1 >> λ2

What kind of image patch 
does each region represent?

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Interpreting Eigenvalues



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Interpreting Eigenvalues



4. Threshold on Eigenvalues to Detect Corners

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

Think of a function to 
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of )

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

strong 
corner Think of a function to 

score ‘cornerness’
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(a function of )
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flat

corner

Use the smallest eigenvalue as the 
response function

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of )

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of )

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



det(C)� trace2(C)

flat

corner

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of )

^

=

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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4. Threshold on Eigenvalues to Detect Corners
(a function of )

^
 < 0

 > 0

 < 0

=

det(C)� trace2(C)

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

4. Threshold on Eigenvalues to Detect Corners
(a function of )

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  



Compute the Covariance Matrix

Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  



Compute the Covariance Matrix

Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  

(has to do with bilinear Taylor expansion of 2D function that measures 
change of intensity for small shifts … remember AutoCorrelation)

IntensityShifted 
intensity

Window 
function

Error 
function



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  

Harris & Stephens (1988)

det(C)� trace2(C)



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 
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Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36



Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
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Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  



Properties: Rotational Invariance

Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 1: 

Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to 

tracking every pixel
• Translation and rotation invariant (but not scale invariant)



Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 3: Crash Test Dummy (Harris Result)

� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Intuitively …

158 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …

158

Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



160 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
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characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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jet color scale 
blue: low, red: high

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 
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2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales 

maximum  
response



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 
response

maximum 
response



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

181

Detections are local
maxima in a 3x3x3
scale-space window
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):
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and therefore,
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This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant
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Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 2

1/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.



Implementation
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For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Multi-Scale Harris Corners

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly



Summary Table
Summary of what we have seen so far:



Summary

Edges are useful image features for many applications, but suffer from the 
aperture problem 

Canny Edge detector combines edge filtering with linking and hysteresis steps 

Corners / Interest Points have 2D structure and are useful for 
correspondence 

Harris corners are minima of a local SSD function 
DoG maxima can be reliably located in scale-space and are useful as interest 
points


