
Lecture 11: Corner Detection (cont.)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection

Menu for Today (October 10, 2024)
Topics:

— Harris Corner Detector (review)

— Blob Detection

Readings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Assignment 2: Face Detection in a Scaled Representation is due today

— Assignment 3: Texture Synthesis is out next Wednesday

— (practice) Quiz 1 and Quiz 2 are out; Quiz 3 will be out Monday

— Searching over Scale

— Texture Synthesis & Analysis

Menu for Today (October 10, 2024)
Topics:

— Harris Corner Detector (review)

— Blob Detection

Readings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Study questions for Midterm will be up on Canvas over the weekend

— Extra office hours next week (Friday)
— Review lecture next Thursday

— Searching over Scale

— Texture Synthesis & Analysis

https://en.wikipedia.org/wiki/File:Camouflage.jpg

Today’s “fun” Example: Texture Camouflage

http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals

Today’s “fun” Example: Texture Camouflage

Lecture 10: Re-cap (Correspondence Problem)
A basic problem in Computer Vision is to establish matches (correspondences)
between images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...

? ??

Lecture 10: Re-cap (Feature Detectors [last time and today])

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

Corners/Blobs Regions

Edges Straight Lines

Lecture 10: Re-cap (Feature Descriptors [later — after midterm])

Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch

SIFT

Shape Context

 Learned Descriptors

Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

Lecture 10: Re-cap (General Setup)

Lecture 10: Recap (What is a Good Feature?)

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Lecture 10: Recap (What is a Good Feature?)

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

 Non-distinctive

Lecture 10: Recap (What is a Good Feature?)

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

 Locally distinctive

 Non-distinctive

Lecture 10: Recap (What is a Good Feature?)

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

 Locally distinctive

 Globally distinctive

 Non-distinctive

Lecture 10: Re-cap (Harris Corner Detection)

1.Compute image gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eigenvalues

4.Use threshold on eigenvalues to
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 10: Re-cap (compute image gradients at patch)

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region

around the corner

Gradient with respect to x, times

gradient with respect to y

Matrix is symmetric

C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

Lecture 10: Re-cap

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1


�1 0
0 �2

�
R

It can be shown that since every C is symmetric:

Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

1. Compute the determinant of

(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial

(returns eigenvalues)

3. For each eigenvalue, solve

(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 10: Re-cap (interpreting eigenvalues)

flat

strong
corner Think of a function to

score ‘cornerness’

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:
C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel

 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner

 — Harris also checks that ratio of λs is not too high

Harris & Stephens (1988)

det(C)� trace2(C)

Compute the Covariance Matrix

Sum can be implemented as an

(unnormalized) box filter with

C =

Harris uses a Gaussian weighting instead

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

Properties: Rotational Invariance

Ellipse rotates but its shape

(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Properties: (partial) Invariance to Intensity Shifts and Scaling

x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

Properties: NOT Invariant to Scale Changes

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)

Example 3: Crash Test Dummy (Harris Result)

� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald

Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)

Intuitively …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …
Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blobs features

Blobs are circular regions in the image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blobs features

Blobs are circular regions in the image

 Corners

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blobs features

Blobs are circular regions in the image

 Corners

 Blobs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blobs features

Blobs are circular regions in the image

 Corners

 Blobs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blobs features

Blobs are circular regions in the image

 Corners

 Blobs

 MANY Blobs !!!

Here’s a 3D plot of the Laplacian of the Gaussian ()

. . . with its characteristic “Mexican hat” shape

Recall: Marr / Hildreth Laplacian of Gaussian

r2G

Laplacian of Gaussian

operator

Where is the edge? Zero-crossings of bottom graph

r2G
@G

@x
⌦ I(X,Y)

I(X, 245)

r2G

Lets consider a row of pixels in an image:

Recall: Marr / Hildreth Laplacian of Gaussian

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Highest response when the signal has the same characteristic scale as
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Highest response when the signal has the same characteristic scale as
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Characteristic Scale
characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search for characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Full size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales

Full size

2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales

Full size

maximum
response

Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image
9.8 * 3 / 4 = 7.35 (close to 6.0)

Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image
9.8 * 3 / 4 = 7.35 (close to 6.0)6 * 3 / 4 = 4.5 (close to 4.2)

Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum
response

maximum
response

Recall: Template matching
Image Pyramid (s) Template

. . .

Level

0

1

L

Template Pyramid

(1/s)

Image

. . .

Both allow search over scale

Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Detections are local
maxima in a 3x3x3
scale-space window

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 2

1/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Detections are local
maxima in a 3x3x3
scale-space window

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 2

1/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

Scale Selection

Maximising the DOG function in scale as well as space performs scale selection
12 Lindeberg

original image scale-space maxima of (�2
normL)2

(traceHnormL)2 (detHnormL)2

Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.

(traceHnormL)2 (detHnormL)2

Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).

[T. Lindeberg]

Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature

Multi-Scale Harris Corners

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly

Re-cap
Summary of what we have seen so far:

Representation Results in Approach Technique

intensity dense template matching (normalized) correlation

edge relatively sparse derivatives Sobel, LoG, Canny

corner sparse locally distinct features Harris (and variants)

blob sparse locally distinct features LoG

Re-cap
Summary of what we have seen so far:

Representation Results in Approach Technique

intensity dense template matching (normalized) correlation

edge relatively sparse derivatives Sobel, LoG, Canny

corner sparse locally distinct features Harris (and variants)

blob sparse locally distinct features LoG

Re-cap
Summary of what we have seen so far:

Representation Results in Approach Technique

intensity dense template matching (normalized) correlation

edge relatively sparse derivatives Sobel, LoG, Canny

corner sparse locally distinct features Harris (and variants)

blob sparse locally distinct features LoG

Re-cap
Summary of what we have seen so far:

Representation Results in Approach Technique

intensity dense template matching (normalized) correlation

edge relatively sparse derivatives Sobel, LoG, Canny

corner sparse locally distinct features Harris (and variants)

blob sparse locally distinct features LoG

Course Re-cap

 Course Beginning

 Course End

Course Re-cap

 Robustness
Brittle
(failure in many conditions)

Robust
(works with noise, complex images, clutter)

 Course Beginning

 Course End

Course Re-cap

 Image Representations
Global
(templates)

Local
(edges, corners, blobs, patches) Compositional

(local + flexible global)

 Robustness
Brittle
(failure in many conditions)

Robust
(works with noise, complex images, clutter)

 Course Beginning

 Course End

Course Re-cap

 Image Representations
Global
(templates)

Local
(edges, corners, blobs, patches) Compositional

(local + flexible global)

 Robustness
Brittle
(failure in many conditions)

Robust
(works with noise, complex images, clutter)

 Course Beginning

 Course End

 Method of Obtaining Image Representations

Hand defined

(filters, thresholds)

Statistical
(means, covariances, histograms)

Learned
(SVMs, Neural Networks)

Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
points

Lecture 11: Texture

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Texture

Texture is widespread, easy to recognize, but hard to define

Views of large numbers of small objects are often considered textures

— e.g. grass, foliage, pebbles, hair

Patterned surface markings are considered textures

— e.g. patterns on wood

What is texture?

Figure Credit: Alexei Efros and Thomas Leung

Definition of Texture

(Functional) Definition:

Texture is detail in an image that is at a scale too small to be resolved into its
constituent elements and at a scale large enough to be apparent in the spatial
distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated
instances of one (or more) identifiable elements, called textons.

— e.g. bricks in a wall, spots on a cheetah

Definition of Texture

(Functional) Definition:

Texture is detail in an image that is at a scale too small to be resolved into its
constituent elements and at a scale large enough to be apparent in the spatial
distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated
instances of one (or more) identifiable elements, called textons.

— e.g. bricks in a wall, spots on a cheetah

Uses of Texture

Texture can be a strong cue to object identity if the object has distinctive
material properties

Texture can be a strong cue to an object’s shape based on the deformation of
the texture from point to point.

— Estimating surface orientation or shape from texture is known as “shape
from texture"

Texture

We will look at two main questions:

1. How do we represent texture?  
→ Texture analysis  

2. How do we generate new examples of a texture?  
→ Texture synthesis  

We begin with texture synthesis to set up Assignment 3

Texture Synthesis

Texture Synthesis

Why might we want to synthesize texture?

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.
— We need to find something to put in place of the pixels that were removed

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.
— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.
— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics

Texture Synthesis

Why might we want to synthesize texture?

1. To fill holes in images (inpainting)
— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.
— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics
— Good textures make object models look more realistic  

Texture Synthesis

Szeliski, Fig. 10.49

Texture Synthesis

Photo Credit: Associated Pres

Photo Credit (right): Reuters/Larry Downing

Cover of “The Economist,” June 19, 2010

Texture Synthesis

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Assignment 3 Preview: Texture Synthesis
Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Texture Synthesis

Objective: Generate new examples of a texture. We take a “data-driven"
approach

Idea: Use an image of the texture as the source of a probability model

— Draw samples directly from the actual texture

— Can account for more types of structure

— Very simple to implement

— Success depends on choosing a correct “distance”

Texture Synthesis by Non-parametric Sampling

Alexei Efros and Thomas Leung

UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

wood granite

white bread brick wall

Efros and Leung

Like Copying, But not Just Repetition

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p

Efros and Leung: Synthesizing One Pixel

p

p

Efros and Leung: Synthesizing One Pixel

p

p

Efros and Leung: Synthesizing One Pixel

p(dark gray) = 0.5

p(light gray) = 0.5

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25

Efros and Leung: Synthesizing One Pixel

p

pixel value

probability

0 255

0.25

0.75

20 23040 190

Conditional distribution of p

given known neighborhood

light gray dark gray

p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25

Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood
window?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p

— To synthesize p, pick one match at random

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not
be present

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not
be present

— Find the best match using SSD error, weighted by Gaussian to emphasize
local structure, and take all samples within some distance from that match

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

Efros and Leung: Synthesizing One Pixel

Similarity (cos)

Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

best match

Efros and Leung: Synthesizing One Pixel

Similarity (cos)

Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel

Similarity (cos)

Infinite sample image

SAMPLE

p

Ranked List Similarity (cos)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel

Infinite sample image

SAMPLE

p

Ranked List Similarity (cos)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it

Infinite sample image

SAMPLE

p

Ranked List Similarity (ssd)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.13

0.25

0.28

0.36
x = 4, y = 57 0.40

threshold = best match * 2.5 = 0.325

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it

For multiple pixels, "grow" the texture in layers

— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see

 https://una-dinosauria.github.io/efros-and-leung-js/

(written by Julieta Martinez, a previous CPSC 425 TA)

Efros and Leung: Synthesizing Many Pixels

https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Texturing a Sphere

2D

3D

Sample image

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Forsyth & Ponce (2nd ed.) Figure 6.12

Efros and Leung: More Synthesis Results
Window Size

Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

“Big Data” Meets Inpainting

“Big Data" enables surprisingly simple non-parametric, matching-based
techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million
images. What could you do?

“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007

Figure Credit: Hays and Efros 2007

Scene MatchesInput Output

“Big Data” Meets Inpainting

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

10 nearest neighbors from a collection of 20,000 images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

10 nearest neighbors from a collection of 2 million images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007

Algorithm sketch (Hays and Efros 2007):

1. Create a short list of a few hundred “best matching" images based on global
image statistics

2. Find patches in the short list that match the context surrounding the image
region we want to fill

3. Blend the match into the original image  

Purely data-driven, requires no manual labeling of images

“Big Data” Meets Inpainting

“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting

Optional subtitle

136

Texture

We will look at two main questions:

1. How do we represent texture?  
→ Texture analysis  

2. How do we generate new examples of a texture?  
→ Texture synthesis  

Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.

Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.

There is a “chicken–and–egg” problem. Texture segmentation can be done by
detecting boundaries between regions of the same (or similar) texture. Texture
boundaries can be detected using standard edge detection techniques applied
to the texture measures determined at each point

Features:

— Raw Intensity

— Orientation Energy

— Brightness Gradient

— Color Gradient

— Texture gradient

Image Raw

Intensity

Orient

Energy

Bright

Grad

Color

Grad

Texture

Grad

Recall: Boundary Detection

Figure Credit: Martin et al. 2004

Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.

There is a “chicken–and–egg” problem. Texture segmentation can be done by
detecting boundaries between regions of the same (or similar) texture. Texture
boundaries can be detected using standard edge detection techniques applied
to the texture measures determined at each point

We compromise! Typically one uses a local window to estimate texture
properties and assigns those texture properties as point properties of the
window’s center row and column

Texture Representation

Question: How many degrees of freedom are there to texture?

(Mathematical) Answer: Infinitely many

(Perceptual Psychology) Answer: There are perceptual constraints. But, there
is no clear notion of a “texture channel” like, for example, there is for an RGB
colour channel

Texture Representation

Question: How many degrees of freedom are there to texture?

(Mathematical) Answer: Infinitely many

(Perceptual Psychology) Answer: There are perceptual constraints. But, there
is no clear notion of a “texture channel” like, for example, there is for an RGB
colour channel

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Texture Representation

Figure Credit: Leung and Malik, 2001

First derivative of Gaussian at 6 orientations and 3 scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Second derivative of Gaussian at 6 orientations 3 scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Laplacian of the Gaussian filters at different scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Gaussian filters at different scales

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4

Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5

Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4–9.5

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

Forsyth & Ponce (2nd ed.) Figure 4.17

Gaussian Pyramid

Laplacian Pyramid

Oriented Pyramids

Laplacian pyramid is orientation independent

Idea: Apply an oriented filter at each layer

— represent image at a particular scale and orientation

— Aside: We do not study details in this course

Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.13

Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.14

Oriental Filters

Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”

Texture Representation

Slide Credit: Trevor Darrell

Texture Representation

Slide Credit: Trevor Darrell

A Short Exercise: Match the texture to the response

Slide Credit: James Hays

Slide Credit: James Hays

A Short Exercise: Match the texture to the response

Texture Representation

Slide Credit: Trevor Darrell

Slide Credit: Trevor Darrell

Texture Representation

i

j

k Chi-square
0.1

0.8

}
}

Texture Representation

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

• Texture is characterized by the repetition of basic elements or textons

• For stochastic textures, it is the identity of the textons, not their spatial
arrangement, that matters

Texture representation and recognition

Texture representation and recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture representation and recognition

Universal texton dictionary

histogram

Relevant modern Computer Vision example

[Rombach et al., 2022] — https://github.com/CompVis/stable-diffusion

https://github.com/CompVis/stable-diffusion

Relevant modern Computer Vision example

[Rombach et al., 2022] — https://github.com/CompVis/stable-diffusion

https://github.com/CompVis/stable-diffusion

Summary

Texture representation is hard

— difficult to define, to analyze

— texture synthesis appears more tractable

Objective of texture synthesis is to generate new examples of a texture

— Efros and Leung: Draw samples directly from the texture to generate one
pixel at a time. A “data-driven" approach.

Approaches to texture embed assumptions related to human perception

