THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 11: Corner Detection (cont.)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today (october 10, 2024)

Topics:
— Harris Corner Detector (review) — Searching over Scale
— Blob Detection — Texture Synthesis & Analysis

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Assignment 2: Face Detection in a Scaled Representation is due today

— Assignment 3: Texture Synthesis is out next Wednesday

— (practice) Quiz 1 and Quiz 2 are out; Quiz 3 will be out Monday



Menu for Today (october 10, 2024)

Topics:
— Harris Corner Detector (review) — Searching over Scale
— Blob Detection — Texture Synthesis & Analysis

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Study questions for Midterm will be up on Canvas over the weekend

— Extra office hours next week (Friday)

— Review lecture next Thursday



Today’s “fun” Example: Texture Camouflage

https://en.wikipedia.org/wiki/File:Camouflage.jpg



Today’s “fun” Example: Texture Camouflage

Cuttlefish on gravel seabed Seconds later. . .

http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals



Lecture 10: Re-cap (Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between iImages

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Lecture 10: Re-cap (Feature Detectors [ast time and today])

-
[

Regions

Straight Lines



Lecture 10: Re-cap (Feature Descriptors [ater — after midterm)

Shape Context

Bottleneck FC3 + Softmax
nv.
g

Conv3 C: MatchNet in trainin

| earned Descriptors




Use small neighborhoods of pixels to do feature detection — find locations

Lecture 10: Re-cap (General Setup

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)
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Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)

O\./.M/ﬂ o@'e

SN N
e 8-t
Ny mnmxu

oooooo%ooﬂoo :
000000600 () W w
X

\ o‘ooomo(ao 00

e ¢ 0/0 0 ooo oow,,
ooooooi oooooo__
,000000 oooool.

..QC.‘ Q..QQ\.C

..C...Q \.Q..¢%‘0\00
JQ..C\..Q....Q. ® O

E.oooooooooo\ooo o0

0. 00050 .\0\\.0 .\.
a LI IO R 2 O o,
E fe

.00..‘00@0\9 o/®




Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)




Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)




Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)




Lecture 10: Recap (What is a Good Feature”)

Local:; features are local, robust to occlusion and clutter

Accurate: precise localization

| Cashnh

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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Lecture 10: Recap (What is a Good Feature”)

Local:; features are local, robust to occlusion and clutter

Accurate: precise localization

Globally distinctive
| Cnl > [Mh

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance




Lecture 10: Re-cap (Harris Corner Detection)

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute image gradients at patch)
(not just a single pixel)

array of x gradients

o
- Oz

Iy

array of y gradients

ol
Iyza_y

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region
around the corner

> 11,
C o peEP

2.

pEP

2. Iyl
pEP




Computing Covariance Matrix Efficiently ._[=2"" &""
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Computing Covariance Matrix Efficiently ._[="" =™
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Computing Covariance Matrix Efficiently _|= = ="
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Computing Covariance Matrix Efficiently . _[ & &

Convolve
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Computing Covariance Matrix Eff

Convolve




Lecture 10: Re-cap

't can be shown that since every C Is symmetric:




Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

eigenvalue

|

Ce = e (C'—X)e=0
N/

elgenvector

1. Compute the determinant of O — \]
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Lecture 10: Re-cap (interpreting eigenvalues)
Ao |

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

oy

Strong

SO Think of a function to
score ‘cornerness’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)

IIliIl()\l, Ag)

Nobel (1998)
det(C)
trace(C') + ¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Harris Corner Detection
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
6.04

—0.36




Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s | |

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

>, I.1, > I.I,

C o pEP peP
R EPIR I IR 7
pE P pEP

Harris uses a Gaussian weighting instead
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Computing Covariance Matrix Eff

Convolve




Computing Covariance Matrix Efficiently . _[ &7 &

Convolve




Properties: Rotational Invariance

> > 4
— =

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

threshold //'\\//\\_/\/ﬂ\ / vxv/’\\

X (image coordinate) X (image coordinate)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Wagon Wheel (Harris Results

’
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Example 3: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)
Original Image Credit: John Shakespeare, Sydney Morning Herald



Example 2: Wagon Wheel (Harris Results
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Intuitively ...

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Intuitively ...

Find local maxima in both position and scale

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

= 163 Blobs are circular regions in the image
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recall: Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V4G )

... with 1ts characteristic “Mexican hat” shape



Recall: Marr / Hildreth Laplacian of Gaussian

Lets consider a row of pixels In an iImage:

T(X,245) Bl o _

| | |

1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. ............ ... 1 . . i, a
v 2 G 2 operator
10_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) I T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge” /ero-crossings of bottom graph



Formally ...

Laplacian filter

-l

=20 =13 20

=20 -10 10 20

-20 =10 10 20

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

0"‘ /\/\ -

=20 =13 20

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
0 0 0 0

-20 -10 10 20 =20 -7 7 20 =20 -3 3 20 -20 -1 1 20

Convolved with Laplacian (o = 1)
0__% \/L_ : H : J\/\/\ : ﬂ/\
0 =10 10 2

-2

0 -20 = 7 20 -20 -3 3 20 -20 11 20

Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
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Convolved with Laplacian (o = 1)
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Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500} - - - - - s R e el e SN

| 1000}----- — R .

characteristic scale

we need to search for characteristic scales
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=9.8
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5

A0

100

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Scales

Applying Laplacian Filter at Different

sigma=9.8
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il

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5
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100

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales

2.1

-ull size

4.2 0.0

15.5 17.0

maximum
response

-



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

3/4 size image
0.8~ 3/4 /.35 (close to 6.0)



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

6"3/4=4

5 (close to 4.2)

3/4 size image

08"~ 3/4 /.35 (close to 6.0)



Optimal Scale

2.1 4.2
2.1 4.2

6.0 15.5 17.0

maximum
response

.
Full size Image

6.0 9.8

maximum
response

15.5 17.0

3/4 size image



Recall: Template matching

Level Image Pyramid (s) Template Template Pyramid Image

(1/9)
JUDYBATS JUDYBATS

W paln makes you beauiful
.. : 1
A 3
- 4
.?- - b -

J Urn%! BA wou beautiful
gt
!cv’ ‘
&- 1N |
|
# A\

Both allow search over scale



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
(first
octave)

Z Z 2 Z 2 2 2 2 2 2 Z

A T T T 7 7 7
ST T
T e 7
T 7
T e e 7
ST T

T T 7 7 7
e
Scale T 757

£ Z 2 Z 2 Z Z Z Z 2 Z

Jl S L L L LS

Detections are local

£ Z Z Z Z Z Z Z Z Z Z

Gaussian

£ _Z
£ 2 2 2 Z 2 Z 2 Z 2 Z

maxima in a 3x3x3

Difference of

Gaussian (DOG) scale-space window



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
(next

octave)

Scale
(first
octave)

Z 2 2 Z Z 2 2 2 2 2 2
< Z Z <2 2 2 2 2 2 2 2

Gaussian

Z 2
£ 2 2 2 Z 2 Z 2 Z 2 Z
&L L 2L 2L 2L 2L 2L 2 2 2 2

Difference of
Gaussian (DOG)
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iy a4

, ~ -~ 7 7 7
s s s S S S
Scale T
S S oS
g o S
s /-~ 7~ 7 7 S 7

A A Ayayd
S S S

Jl S L L L LS

Detections are local
maxima in a 3x3x3
scale-space window



Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

[ T. Lindeberg ]



Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

det(C) — ktrace®(C)

Kanade & Tomasi (1994)

min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + €




Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

det(C) — ktrace®(C)

J

Kanade & Tomasi (1994)

min()\l, )\2)

Nobel (1998)
det(C)

trace(C) + €

. /




Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

~ det(C) — ktrace*(C)

/

Kanade & Tomasi (1994)

.

min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + €

/
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Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)



Multi-Scale Harris Corners




Re-cap

Summary of what we have seen so far:

Representation Results in Approach Technique
intensity dense template matching (hormalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG
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edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG
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Representation Results in Approach Technique
intensity dense template matching (hormalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
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Course End

Course Beginning



Course Re-cap

Brittle Robust

(failure In many conditions) (works with noise, complex images, clutter)
Robustness
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Course Re-cap

Brittle Robust

(failure In many conditions) (works with noise, complex images, clutter)
Robustness

Local _,
Global (edges, corners, blobs, patches) Composmonal

(templates) . (local + flexible global)
Image Representations

pbuluuIbag 8SIN0N

Hand defined Statistical Learned

(filters, thresholds) (Means, covariances, histograms) (SVMs, Neural Networks)

Method of Obtaining Image Representations



Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
pDoINtS



THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 11: lexture

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Texture

What is texture”?

Figure Credit: Alexei Efros and Thomas Leung

lexture Is widespread, easy to recognize, but hard to define

Views of large numbers of small objects are often considered textures
— e.0g. grass, foliage, pebbles, hair

Patterned surface markings are considered textures
— e.g. patterns on wood



Definition of Texture

(Functional) Definition:

Texture is detail iIn an image that Is at a scale too small to be resolved Iinto its

constituent elements and at a scale large enough to be apparent in the spatial
distribution of iImage measurements




Definition of Texture

(Functional) Definition:

Texture is detail iIn an image that Is at a scale too small to be resolved Iinto its
constituent elements and at a scale large enough to be apparent in the spatial

distribution of iImage measurements

Sometimes, textures are thought of as patterns composed of repeated
iInstances of one (or more) identifiable elements, called textons.

— e.g. bricks in a wall, spots on a cheetah



Uses of Texture

JTexture can be a strong cue to object identity If the object has distinctive
material properties

Texture can be a strong cue to an object’s shape based on the deformation of
the texture from point to point.

— Estimating surface orientation or shape from texture is known as “shape
from texture’



Texture

We will look at two main questions:

1. How do we represent texture?
— [exture analysis

2. How do we generate new examples of a texture?
— [exture synthesis

We begin with texture synthesis to set up Assignment 3



Texture Synthesis
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Texture Synthesis

Why might we want to synthesize texture®

1. To fill holes in images (inpainting)

— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.

— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics
— Good textures make object models look more realistic



Texture Synthesis

radishes

lots more radishes

Szeliski, Fig. 10.49



Texture Synthesis

A |

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling
of the
duplication

of soldiers.

Original photograph

Photo Credit: Associated Pres



Texture Synthesis

Cover of “The Economist,” June 19, 2010

The .
Economist

The damage

nd
?heg(s)pill

Photo Credit (right): Reuters/Larry Downing



Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish
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Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box



Texture Synthesis

Objective: Generate new examples of a texture. We take a “data-driven”
approach

Idea: Use an image of the texture as the source of a probability model
— Draw samples directly from the actual texture

— Can account for more types of structure

— Very simple to implement

— Success depends on choosing a correct “distance”



Texture Synthesis by Non-parametric Sampling

Alexel Efros and Thomas Leung
UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

WOOO granite



Efros and Leung

i £ . .
G ’f v, e ':"‘"‘n.,

white bread brick wall



L ike Copying, But not Just Repetition
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window"?



Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p
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Efros and Leung: Synthesizing One Pixel

p(dark gray) = 0.5
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Efros and Leung: Synthesizing One Pixel

r—==n

r— ==

p(dark gray) = 0.75

o(light gray) = 0.25

r= ==




Efros and Leung: Synthesizing One Pixel

Conditional distribution of p

probability , .
given known neighlborhood

0.75

0.25 I

0 20 40 ® oo 190 230 255

pixel value

light gray dark gray



Efros and Leung: Synthesizing One Pixel

r—==n

r— ==

p(dark gray) = 0.75

o(light gray) = 0.25

r= ==




Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p

— o synthesize p, pick one match at random



Efros and Leung: Synthesizing One Pixel

— Since the sample image is finite, an exact neighbournhood match might not
be present



Efros and Leung: Synthesizing One Pixel

— Since the sample image is finite, an exact neighbournhood match might not
be present

— Find the best match using SSD error, weighted by Gaussian to emphasize
local structure, and take all samples within some distance from that match



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=0,y=17 0.87
X=063,y=4 0.75
X=3,Yy =44 0.72
X=123,y=254 0.64 -
X=4,y=5/ 0.60
® [
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Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87 <€ pest match
X=063,y=4 0.75
X=3,y=44 0.72
X=123,y =54 0.64 —
X=4,y=05/ 0.60
® [
® ®



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87 <€ pest match
X=03,y=4 0.75
X=3,y=44 0.72
X =123,y = 54 064— threshold = best match *ﬁz 0.696
X=4,y=095/ 0.60
® [



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87 €< pest match
X=063,y=4 0.75
X=3,y=44 0.72
X =123,y = 54 064— threshold = best match *ﬁz 0.696
X=4,y=095/ 0.60
® [



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87
X=063,y=4 0.75 - - -
pick one at random and copy target pixel from it

X=3,y=44 0.72
X =123,y = 54 oo threshold = best match * 0.8 = 0.696
X = 4, Yy = 57 0.60

o o

o o



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (ssd)
X=5y=17 0.13
X=063,y=4 0.25 - - -
pick one at random and copy target pixel from it

X=3,y=44 0.28
X =123,y = 54 Do threshold = best match * 2.5 = 0.325
X = 4, Yy = 57 0.40

o o

o o



Efros and Leung: Synthesizing Many Pixels

For multiple pixels, "grow" the texture in layers
— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see
https://una-dinosauria.github.io/efros-and-leung-js/
(written by Julieta Martinez, a previous CPSC 425 TA)



https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Texturing a Sphere

Sample image

C O
L™

C o

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99. ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung: More Synthesis Results

Forsyth & Ponce (2nd ed.) Figure 6.12



Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

‘Big Data” Meets Inpainting

‘Big Data" enables surprisingly simple non-parametric, matching-lbased
techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive datalbase of a million
images. What could you do”



‘Big Data” Meets Inpainting

Original Image INnput

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

Scene Matches

Figure Credit: Hays and Efros 2007



Effectiveness of "Big Data”

Figure Credit: Hays and Efros 2007



Effectiveness of "Big Data”

10 nearest neighbors from a collection of 20,000 images
Figure Credit: Hays and Efros 2007



Effectiveness of "Big Data”

10 nearest neighbors from a collection of 2 million images
Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

Hays and Efros 2007

Figure Cred



‘Big Data” Meets Inpainting

Algorithm sketch (Hays and Efros 2007):

1. Create a short list of a few hundred “best matching" images based on global
image statistics

2. Find patches in the short list that match the context surrounding the image
region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images



‘Big Data” Meets Inpainting

Original Image INnput

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

L ele =
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&
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Figure Credit: Hays and Efros 2007
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Texture

We will look at two main questions:

1. How do we represent texture”
— [exture analysis

2. How do we generate new examples of a texture?
— [exture synthesis



Texture Segmentation

Question: Is texture a property of a point or a property of a region?
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Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: \We need a region to have a texture.

There Is a “chicken—and—-egg” problem. Texture segmentation can be done by
detecting boundaries between regions of the same (or similar) texture. Texture
boundaries can be detected using standard edge detection technigues applied
to the texture measures determined at each point



Recall: Boundary Detection

Raw  Orient Bright Color Texture
Intensity Energy Grad  Grad Grad

Features: ) e J\.. \ L JVL ,/\\,
— Raw Intensity 1= )UW\JL N/ i A

— Orientation Energy

Boundaries

— Brightness Gradient

— Color Gradient

— Jexture gradient

Figure Credit: Martin et al. 2004



Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: \We need a region to have a texture.

There Is a “chicken—and—-egg” problem. Texture segmentation can be done by
detecting boundaries between regions of the same (or similar) texture. Texture
boundaries can be detected using standard edge detection technigues applied
to the texture measures determined at each point

We compromise! Typically one uses a local window to estimate texture
properties and assigns those texture properties as point properties of the
window’s center row and column



lexture Representation

Question: How many degrees of freedom are there to texture”



lexture Representation

Question: How many degrees of freedom are there to texture”

(Mathematical) Answer: Infinitely many

(Perceptual Psychology) Answer: There are perceptual constraints. But, there
IS NO clear notion of a “texture channel” like, for example, there is for an RGB
colour channel



lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region




lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: \What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales



lexture Representation

Figure Credit: Leung and Malik, 2001



lexture Representation

First derivative of Gaussian at 6 orientations and 3 scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Second derivative of Gaussian at 6 orientations 3 scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Laplacian of the Gaussian filters at different scales

Figure Credit: Leung and Malik, 2001



lexture Representation

(Gaussian filters at different scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3-9.4



Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5




Comparison of Results
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Forsyth & Ponce (1st ed.) Figures 9.4-9.5




lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



Gaussian Pyramid

@\\@// ‘/%“'

512 256 128

?f

Forsyth & Ponce (2nd ed.) Figure 4.17



Laplacian Pyramid

512 256 128 64 32 16 8




Oriented Pyramids

Laplacian pyramid is orientation independent

Idea: Apply an oriented filter at each layer
— represent Image at a particular scale and orientation
— Aside: We do not study details In this course



Oriented Pyramids

Filter Kernels

Coarsest scalen
I

Image

Finest scale

Forsyth & Ponce (1st ed.) Figure 9.13



Oriented Pyramids

Oriental Filters

Laplacian
Pyramid —— ———————»

Layer

Forsyth & Ponce (1st ed.) Figure 9.14

S[QAQT PruIRIAJ PIuLI()



lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



lexture Representation

original image

derivative filter
responses, squared

Win. #1

statistics to summarize

patterns in small
windows

Slide Credit: Trevor Darrell



lexture Representation

Win. #1 4 10
Win.#2 18 7
Win.#9 20 20

original image

statistics to summarize

derivative filter patterns in small
responses, squared windows

Slide Credit: Trevor Darrell



Filters
Mean abs responses

A Short Exercise: Match the texture to the response

Slide Credit: James Hays



A Short Exercise: Match the texture to the response

Filters

Mean abs responses
Slide Credit: James Hays



lexture Representation

Win. #1 4 10
Win.#2 18 7
Win.#9 20 20

original image

statistics to summarize

derivative filter patterns in small
responses, squared windows

Slide Credit: Trevor Darrell



lexture Representation

Win. #1
Win.#2 18 7
ures

Win.#9 20 20

Dimension 2 (mean d/dy value)

Dimension 1 (mean d/dx value)

statistics to summarize
patterns in small
windows

Slide Credit: Trevor Darrell



lexture Representation

L,

Chi-square
0.8




Texture representation and recognition

e [exture Is characterized by the repetition of basic elements or textons

e [or stochastic textures, it is the identity of the textons, not their spatial

arrangement, that matters
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Texture representation and recognition

CEXNY

histogram
i

]

Universal texton dictionary

JEECE XN

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Relevant modern Computer Vision example

ION

//aithub.com/CompVis/stable-diffus

'[Rombach et al., 2022] — https


https://github.com/CompVis/stable-diffusion

Relevant modern Computer Vision example
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Infinite sample image . o



https://github.com/CompVis/stable-diffusion

Summary

Texture representation Is haro
— difficult to define, to analyze
— texture synthesis appears more tractable

Objective of texture synthesis is to generate new examples of a texture

— Efros and Leung: Draw samples directly from the texture to generate one
pixel at a time. A “data-driven” approach.

Approaches to texture embed assumptions related to human perception



