THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 11: Corner Detection (cont.)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today (october 10, 2024)

Topics:
— Harris Corner Detector (review) — Searching over Scale
— Blob Detection — Texture Synthesis & Analysis

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Assignment 2: Face Detection in a Scaled Representation is due today

— Assignment 3: Texture Synthesis is out next Wednesday

— (practice) Quiz 1 and Quiz 2 are out; Quiz 3 will be out Monday



Menu for Today (october 10, 2024)

Topics:
— Harris Corner Detector (review) — Searching over Scale
— Blob Detection — Texture Synthesis & Analysis

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Study questions for Midterm will be up on Canvas over the weekend

— Extra office hours next week (Friday)

— Review lecture next Thursday



Today’s “fun” Example: Texture Camouflage

https://en.wikipedia.org/wiki/File:Camouflage.jpg



Today’s “fun” Example: Texture Camouflage

Cuttlefish on gravel seabed Seconds later. . .

http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals



Lecture 10: Re-cap (Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between iImages

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Lecture 10: Re-cap (Feature Detectors [ast time and today])

Straight Lines




Lecture 10: Re-cap (Feature Descriptors [ater — after midterm)

Shape Context

Bottleneck FC3 + Softmax
nv.
g

Conv3 C: MatchNet in trainin

| earned Descriptors




Use small neighborhoods of pixels to do feature detection — find locations

Lecture 10: Re-cap (General Setup

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)
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Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)
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Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)




Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)




Lecture 10: Re-cap (General Setup)

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)




Lecture 10: Recap (What is a Good Feature”)

Local:; features are local, robust to occlusion and clutter

Accurate: precise localization

| Cashnh

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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Lecture 10: Recap (What is a Good Feature”)

Local:; features are local, robust to occlusion and clutter

Accurate: precise localization

Globally distinctive
| Cnl > [Mh

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance




Lecture 10: Re-cap (Harris Corner Detection)

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute image gradients at patch)
(not just a single pixel)

array of x gradients

o
- Oz

Iy

array of y gradients

ol
Iyza_y

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region
around the corner

> 11,
C o peEP

2.

pEP

2. Iyl
pEP




Computing Covariance Matrix Efficiently ._[=2"" &""
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Computing Covariance Matrix Efficiently _[=2"" 2"
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Computing Covariance Matrix Efficiently ._[="" =™
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Computing Covariance Matrix Efficiently _|= = ="
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Computing Covariance Matrix Efficiently . _[ & &
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Computing Covariance Matrix Eff

Convolve




Lecture 10: Re-cap

't can be shown that since every C Is symmetric:




Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

eigenvalue

|

Ce = e (C'—X)e=0
N/

elgenvector

1. Compute the determinant of O — \]
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Lecture 10: Re-cap (interpreting eigenvalues)
Ao |

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

oy

Strong

SO Think of a function to
score ‘cornerness’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)

IIliIl()\l, Ag)

Nobel (1998)
det(C)
trace(C') + ¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Harris Corner Detection
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
6.04

—0.36




Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s | |

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

>, I.1, > I.I,

C o pEP peP
R EPIR I IR 7
pE P pEP

Harris uses a Gaussian weighting instead
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Computing Covariance Matrix Eff

Convolve




Computing Covariance Matrix Efficiently . _[ &7 &

Convolve




Properties: Rotational Invariance

> > 4
— =

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

threshold //'\\//\\_/\/ﬂ\ / vxv/’\\

X (image coordinate) X (image coordinate)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Wagon Wheel (Harris Results

’
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Example 3: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)
Original Image Credit: John Shakespeare, Sydney Morning Herald



Example 2: Wagon Wheel (Harris Results
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Intuitively ...

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Intuitively ...

Find local maxima in both position and scale

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

= 163 Blobs are circular regions in the image
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recall: Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V4G )

... with 1ts characteristic “Mexican hat” shape



Recall: Marr / Hildreth Laplacian of Gaussian

Lets consider a row of pixels In an iImage:

T(X,245) Bl o _

| | |

1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. ............ ... 1 . . i, a
v 2 G 2 operator
10_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) I T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge” /ero-crossings of bottom graph



Formally ...

Laplacian filter

-l

=20 =13 20

=20 -10 10 20

-20 =10 10 20

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

0"‘ /\/\ -

=20 =13 20

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
0 0 0 0

-20 -10 10 20 =20 -7 7 20 =20 -3 3 20 -20 -1 1 20

Convolved with Laplacian (o = 1)
0__% \/L_ : H : J\/\/\ : ﬂ/\
0 =10 10 2

-2

0 -20 = 7 20 -20 -3 3 20 -20 11 20

Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\
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[ r x - A\ r " - [ r r T [ H
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the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500} - - - - - s R e el e SN

| 1000}----- — R .

characteristic scale

we need to search for characteristic scales
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales

sigma=9.8
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5

A0

100

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Scales

Applying Laplacian Filter at Different

sigma=9.8
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5
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100

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales

2.1

-ull size

4.2 0.0

15.5 17.0

maximum
response

-



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

3/4 size image
0.8~ 3/4 /.35 (close to 6.0)



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

6"3/4=4

5 (close to 4.2)

3/4 size image

08"~ 3/4 /.35 (close to 6.0)



Optimal Scale

2.1 4.2
2.1 4.2

6.0 15.5 17.0

maximum
response

.
Full size Image

6.0 9.8

maximum
response

15.5 17.0

3/4 size image



Recall: Template matching

Level Image Pyramid (s) Template Template Pyramid Image

(1/9)
JUDYBATS JUDYBATS

W paln makes you beauiful
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Both allow search over scale



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
(first
octave)

Z Z 2 Z 2 2 2 2 2 2 Z

A T T T 7 7 7
ST T
T e 7
T 7
T e e 7
ST T

T T 7 7 7
e
Scale T 757

£ Z 2 Z 2 Z Z Z Z 2 Z

Jl S L L L LS

Detections are local

£ Z Z Z Z Z Z Z Z Z Z

Gaussian

£ _Z
£ 2 2 2 Z 2 Z 2 Z 2 Z

maxima in a 3x3x3

Difference of

Gaussian (DOG) scale-space window



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
(next

octave)

Scale
(first
octave)

Z 2 2 Z Z 2 2 2 2 2 2
< Z Z <2 2 2 2 2 2 2 2

Gaussian

Z 2
£ 2 2 2 Z 2 Z 2 Z 2 Z
&L L 2L 2L 2L 2L 2L 2 2 2 2

Difference of
Gaussian (DOG)
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, ~ -~ 7 7 7
s s s S S S
Scale T
S S oS
g o S
s /-~ 7~ 7 7 S 7

A A Ayayd
S S S

Jl S L L L LS

Detections are local
maxima in a 3x3x3
scale-space window



Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

[ T. Lindeberg ]



Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

det(C) — ktrace®(C)

Kanade & Tomasi (1994)

min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + €




Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

det(C) — ktrace®(C)

J

Kanade & Tomasi (1994)

min()\l, )\2)

Nobel (1998)
det(C)

trace(C) + €
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Difference of Gaussian blobs in 2020

Harris & Stephens (1988)

~ det(C) — ktrace*(C)

/

Kanade & Tomasi (1994)

.

min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + €

/
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Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)



Multi-Scale Harris Corners




Re-cap

Summary of what we have seen so far:

Representation Results in Approach Technique
intensity dense template matching (hormalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG
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corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG
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Course Re-cap

Course End

Course Beginning
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Brittle Robust

(failure In many conditions) (works with noise, complex images, clutter)
Robustness
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Course Re-cap

Brittle Robust

(failure In many conditions) (works with noise, complex images, clutter)
Robustness

Local _,
Global (edges, corners, blobs, patches) Composmonal

(templates) . (local + flexible global)
Image Representations

pbuluuIbag 8SIN0N

Hand defined Statistical Learned

(filters, thresholds) (Means, covariances, histograms) (SVMs, Neural Networks)

Method of Obtaining Image Representations



Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
pDoINtS



