
Lecture 12: Color

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on 

— Lightening condition 

— Scene geometry 

— Surface properties  

— Camera optics 

Sensor (or eye) captures amount of light reflected from the object

source

surface 
element

normal

sensor

eye



Colour 

— Light is produced in different amounts at 
different wavelengths by each light source  

— Light is differentially reflected at each 
wavelength, which gives objects their natural 
colour (surface albedo)  

— The sensation of colour is determined by the 
human visual system, based on the product of 
light and reflectance  



Relative Spectral Power of Two Illuminants 

Sunlight

Incandescent  
Light Bulb

Forsyth & Ponce (2nd ed.) Figure 3.4

Relative spectral power plotted against wavelength in nm



(small) Graphics Review
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Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 
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⇡

(✓v,�v) = (✓r,�r)
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Question: What are the simplifying assumptions we are making here? 
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L =
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Question: What are the simplifying assumptions we are making here? 

1. Light spectra is absorbed uniformly by the 
surface (no change in color)



Spectral Albedo of Natural Surfaces

Forsyth & Ponce (2nd ed.) Figure 3.6



Colour Appearance 

Reflected light at each wavelength is the product of illumination and surface 
reflectance at that wavelength  

Surface reflectance often is modeled as having two components:  
— Lambertian reflectance: equal in all directions (diffuse) 
— Specular reflectance: mirror reflectance (shiny spots) 



Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 
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Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 

(small) Graphics Review
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Color Matching Experiments

Show a split field to subjects. One side shows the light whose colour one wants 
to match. The other a weighted mixture of three primaries (fixed lights)  

T = w1P1 + w2P2 + w3P3

Forsyth & Ponce (2nd ed.) Figure 3.2



Recall: Color is an Artifact of Human Perception
“Color” is not an objective physical property of light (electromagnetic radiation). 
Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very small 

range of these wavelengths.

electromagnetic 
spectrum

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Color Matching Experiments

Show a split field to subjects. One side shows the light whose colour one wants 
to match. The other a weighted mixture of three primaries (fixed lights)  

T = w1P1 + w2P2 + w3P3

Forsyth & Ponce (2nd ed.) Figure 3.2

Test Light



Maxwell Colour Matching Experiments

88 https://designblog.rietveldacademie.nl/?p=68422

Maxwell mixed colours by rapidly spinning a top with different fractions of 
primaries, e.g., to match a central colour



Color Matching Experiments

Figure Credit: Brian Wandell, Foundations of Vision,  
Sinauer Associates, 1995 
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Example 2: Color Matching Experiment

Example Credit: Bill Freeman

We say a “negative” 
amount of       was 
needed to make a 
match , because 
we added it to the test 
color side

P2

The primary color amount 
needed to match: 

<latexit sha1_base64="teKiNIwFOsjdYXfP8AyitKybGRA=">AAACB3icbZDLSsNAFIYn9dJab1GXYhksgiCUpBV1IxTcqKsIvUEbwmQ6aYdOLsxMLCV058ZXceNCEbe+gjufwYfQSduFVn848PGfc5g5vxsxKqRhfGiZhcWl5WxuJb+6tr6xqW9tN0QYc0zqOGQhb7lIEEYDUpdUMtKKOEG+y0jTHVyk/eYt4YKGQU2OImL7qBdQj2IkleXohRo8gkOnbDlleK7AhJaq1Kooqjh60SgZE8G/YM6gWC18fWavh3uWo793uiGOfRJIzJAQbdOIpJ0gLilmZJzvxIJECA9Qj7QVBsgnwk4md4zhgXK60Au5qkDCiftzI0G+ECPfVZM+kn0x30vN/3rtWHpndkKDKJYkwNOHvJhBGcI0FNilnGDJRgoQ5lT9FeI+4ghLFV1ehWDOn/wXGuWSeVI6vlFpXIGpcmAX7INDYIJTUAWXwAJ1gMEdeABP4Fm71x61F+11OprRZjs74Je0t28m/Jiy</latexit>

T + w2P2 = w1P1 + w3P3



Important Implication 

Most televisions and monitors that are tri-chromatic cannot produce the full 
spectrum of colors we as humans can perceive (e.g., there are natural colors in bluish-
greenish range that we cannot generally produce using RGB)

Sharp aquos



— Many colours can be represented as a positive weighted sum of A, B, C  

— Write  

where the = sign should be read as “matches”  

— This is additive matching  

— Defines a colour description system 
      — two people who agree on A, B, C need only supply (a, b, c) 

Color Matching Experiments

M = aA+ bB + cC



— Some colours can’t be matched this way  

— Instead, we must write  

 
where, again, the = sign should be read as “matches”  

— This is subtractive matching  

— Interpret this as (−a, b, c)  

M + aA = bB + cC

Color Matching Experiments



— Some colours can’t be matched this way  

— Instead, we must write  

 
where, again, the = sign should be read as “matches”  

— This is subtractive matching  

— Interpret this as (−a, b, c)  

Problem for designing displays: Choose phosphors R, G, B so that positive 
linear combinations match a large set of colours 

M + aA = bB + cC

Color Matching Experiments



Principles of Trichromacy 

Experimental facts:  

Three primaries work for most people, provided we allow subtractive matching 
— Exceptional people can match with two or only one primary 
— This likely is caused by biological deficiencies  

Most people make the same matches 
— There are some anomalous trichromats, who use three primaries but match 
with different combinations  



Grassman’s Laws

For colour matches:  
— symmetry: 
— transitivity: 
— proportionality: 
— additivity: if any two of the statements are true, then so is the third  

These statements mean that colour matching is, to an accurate approximation, 
linear. 

U = V , V = U

U = V and V = W ) U = W

U = V , tU = tV

U = V,
W = X,

(U +W ) = (V +X)

U = V , V = U

U = V and V = W ) U = W

U = V , tU = tV

U = V,
W = X,

(U +W ) = (V +X)

U = V , V = U

U = V and V = W ) U = W

U = V , tU = tV

U = V,
W = X,

(U +W ) = (V +X)

U = V , V = U

U = V and V = W ) U = W

U = V , tU = tV

U = V,
W = X,

(U +W ) = (V +X)



Additive vs. Subtractive Color 



Human Cone Sensitivity

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colcon.html



Representing Colour 

— Describing colours accurately is of practical importance (e.g. Manufacturers 
are willing to go to a great deal of trouble to ensure that different batches of 
their product have the same colour) 

— This requires a standard system for representing colour.  



Color Spaces

— RGB: Primaries are monochromatic energies, say 645.2 nm, 526.3 nm, 
444.4 nm, standard colour space related to displays 

— CIE XYZ: Primaries are imaginary, but have other convenient properties. 
Colour coordinates are (X , Y , Z), where X is the amount of the X primary, etc.  

—CIE LAB: Equal distances in space correspond to perceptually uniform  
colour differences 

—HSV: Hue, Saturation, Value a useful colour space for artists and colour 
selection applications 

—YCbCr: Separates luminance (Y) and opponent colours (CbCr) which are 



RGB Colour Matching Functions

— Primaries monochromatic  

— Wavelengths 645.2, 526.3 and 
444.4 nm  

— Negative parts means some 
colours can be matched only 
subtractively  

Forsyth & Ponce (2nd ed.) Figure 3.9



RGB Color Space 
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RGB Colour Matching Functions

CIE XYZ: Colour matching functions 
are positive everywhere, but 
primaries are imaginary. Usually 
draw x, y, where  

Overall brightness is ignored  

Forsyth & Ponce (2nd ed.) Figure 3.8

x = X/(X + Y + Z)
y = Y/(X + Y + Z)



Geometry of Colour (CIE)
— White is in the center, with 
saturation increasing towards the 
boundary  

— Mixing two coloured lights 
creates colours on a straight line  

— Mixing 3 colours creates colours 
within a triangle  

— Curved edge means there are no 
3 actual lights that can create all 
colours that humans perceive! 



RGB Colour Space

The sub-space of CIE colours that 
can be displayed on a typical 
computer monitor (phosphor 
limitations keep the space quite 
small) 



RGB Colour Space

Adding red to the green color 
outside of the region brings it back 
to where it can be matched  by 
green and blue RGB primaries 



Uniform Colour Spaces

Usually one cannot reproduce colours exactly  

This means it is important to know whether a colour difference would be 
noticeable to a human viewer 



Uniform Colour Spaces

Forsyth & Ponce (2nd ed.) Figure 3.14
10 times actual size Actual Size

McAdam Ellipses: Each ellipse shows colours perceived to be the same 



Uniform Colour Space CIE-LAB

Ren NgCS184/284A

CIELAB Aims for Perceptual Uniformity

From Henrich et al. 2011 
https://iovs.arvojournals.org/article.aspx?articleid=2187751

McAdam Ellipses: Each ellipse shows colours perceived to be the same 



Uniform Colour Spaces

McAdam ellipses demonstrate that differences in x , y are a poor guide to 
differences in perceived colour  

A uniform colour space is one in which differences in coordinates are a good 
guide to differences in perceived colour 
— example: CIE LAB  



Why should you care about all this? 
bicubic SRResNet SRGAN original
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Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
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perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

[ Ledig et al 2017 ]

A state of the art super-res network trained with L2 loss is 
good at sharpening edges, but results lack realistic texture 



Why should you care about all this? 

[ Yang et al., Eurographics 2023 ]



YCbCr Color Space 

Y 0 = 16 + 65.5R0 + 128.6G0 + 25.0B0

Cb = 128� 37.8R0 � 74.2G0 + 112B0

Cr = 128 + 112.0R0 � 93.8G0 � 18.2B0

— Separates luminance (Y) from chrominance (Cr, Cb)  
— Chrominance can be compressed more (e.g. 1/2 size in JPG)

Linear transform of RGB

YCrCb is used for image and video coding. Human vision uses a similar transform 
(opponent colours) and we have more rods than cones



RGB Color Space 

Red

BlueGreen



YCbCr Color Space 

Y

CbCr



Blurring CbCr

sigma = 1.0



Blurring CbCr

sigma = 2.0



Blurring CbCr

sigma = 4.0



Blurring CbCr

sigma = 8.0



Blurring CbCr

sigma = 16.0



Blurring CbCr

sigma = 32.0



Blurring Y

sigma = 1.0



Blurring Y
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Blurring Y
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Blurring Y

sigma = 8.0



Blurring Y

sigma = 16.0



Subsampling CbCr vs Y

Original

Chrominance 
1/8 scale

Luminance 
1/8 scale



Compressibility …

Note that human vision uses a similar transform to this (opponent colours), 
also we have fewer cones than rods

Cb+Cr are transmitted at 1/2 size for JPEG



Colour Constancy

Image colour depends on both light colour and surface colour  

Colour constancy: determine perceived colour under different colours of lighting  

It is surprisingly difficult to predict what colours a human will perceive in a 
complex scene 
— depends on context, other scene information  

Humans can usually perceive 
— the colour a surface would have under white light 



Environmental Effects

Chromatic adaptation: If the human visual system is exposed to a certain 
colour light for a while, colour perception starts to skew  

Contrast effects: Nearby colours affect what is perceived  



Summary

— Human colour perception 
         — principle of trichromacy 

— colour matching experiments 

— Colour reproduction 
—linear colour spaces  
—colour matching functions 

— Colour spaces  

—multiple objectives: art/design orientation, perceptually uniform, image 
coding etc. 

141


