

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 16: Stereo

Menu for Today (November 4, 2024)

Topics:

- **Stereo** Vision, Epipolar Geometry

Readings:

- Today's Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

- Assignment 4: RANSAC and Panoramas due November 7th -> 8th - Assignment 5: NEW - Stereo and Optical Flow

— Midterms are graded (Mean/Median: 72 (after scale); 67 (before scale))

38 A's (80+), 54 B's (>=68), 44 C's and below

Today's "fun" Example: Omnimatte 360

Inputs RGB

Depth

Masks

Layer 2 (RGBA)

BG (RGBD)

Inputs RGB

Depth

Masks

Layer 2 (RGBA)

BG (RGBD)

Summary of Hough Transform

Idea of **Hough transform**:

 For each token vote for all models to which the token could belong Return models that get many votes e.g., For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Advantages:

- Can handle high percentage of outliers: each point votes separately Can detect multiple instances of a model in a single pass

Disadvantages:

- Search time increases exponentially with the number of model parameters Can be tricky to pick a good bin size

Lines: Normal form

$x\cos(\theta) + y\sin(\theta) = \rho$

Forsyth/Ponce convention

 $x\cos(\theta) + y\sin(\theta) + r = 0$ r > 0 $0 < \theta < 2\pi$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Hough Transform: Lines

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

four points become?

Example: Hough Transform for Lines

Example: Hough Transform for Lines

"Training" images of cows

lmage Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid
lmage 1 Image 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 1	265	 [x, y, s, Theta]	 []	[x,y]
lmage 2 Image 2	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 2	645	 [x, y, s, Theta]	···· []	[x,y]
lmage K Image K	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image K	134	 [x, y, s, Theta]	···· []	[x,y]

Visual Words

- Visual vocabulary (we saw this for retrieval)

• Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

Index displacements by "visual codeword"

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

"Training" images of cows

Imag Imag

. Imag

Imag Imag Imag

Imac Imac

Imag

ge ex	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid	Se
ge 1 ge 1 	1 2 265	[x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta]	[] [] []	[x,y] [x,y] [x,y]	
ge 2 ge 2 ge 2	1 2 645	[x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y] [x,y]	
ge K ge K ge K	1 2 134	[x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta]	[] [] []	[x,y] [x,y] [x,y]	

Inferring Other Information: Segmentation Idea: When back-projecting, back-project labeled segmentations per training patch

(a) detections

(b) p(figure)

(c) segmentation

[Source: B. Leibe]

- -

(a) detections

(b) p(figure)

(c) segmentation

Inferring Other Information: Segmentation

[Source: B. Leibe]

Inferring Other Information: Part Labels

Training

Test

Output

Inferring Other Information: **Depth**

Test image

"Depth from a single image"

Result

Stereo Vision

Problem Formulation:

Determine depth using two images acquired from (slightly) different viewpoints

Key Idea(s):

The 3D coordinates of each point imaged are constrained to lie along a ray. This is true also for a second image obtained from a (slightly) different viewpoint. Rays for the same point in the world intersect at the actual 3D location of that point

Stereo Vision

With two eyes, we acquire images of the world from slightly different viewpoints

We perceive **depth** based on **differences in the relative position of points** in the left image and in the right image

Binoculars

Binoculars enhance binocular depth perception in two distinct ways:

- 1. magnification
- normal human inter-pupillary distance

2. longer baseline (i.e., distance between entering light paths) compared to the

Stereo Vision

- **Task:** Compute depth from two images acquired from (slightly) different viewpoints
- **Approach:** "Match" locations in one image to those in another

Sub-tasks:

- Calibrate cameras and camera positions
- Find all corresponding points (the hardest part)
- Compute depth and surfaces

Stereo Vision

Point Grey Research Digiclops

Image credit: Point Grey Research

How do we find dense correspondences between two views?

How do we find dense correspondences between two views?

Planar case: the mapping can be obtained by a homography

How do we find dense correspondences between two views?

How do we find dense correspondences between two views?

How do we find dense correspondences between two views?

How do we find dense correspondences between two views?

Epipolar Line

How do we find dense correspondences between two views?

A point in Image 1 must lie along the line in Image 2

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines
The **Epipolar** Constraint

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Slide credit: Steve Seitz

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

Search over matches constrained to (epipolar) line

[R. Cipolla]

[R. Cipolla]

[R. Cipolla]

[R. Cipolla]

Improving RANSAC + Alignment with Epipolar Geometry Raw SIFT features and their matches

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

Better matches lead to fewer iterations of RANSAC

The **Epipolar** Constraint

Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Slide credit: Steve Seitz

Simplest Case: **Rectified** Images

- Image planes of cameras are **parallel**
- Focal **points** are at same height
- Focal **lengths** same
- Then, epipolar lines fall along the horizontal scan lines of the images
- scan lines
- Simplifies algorithms
- Improves efficiency

We assume images have been **rectified** so that epipolar lines correspond to

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

- Distance along the scanline (difference in x coordinate) for a corresponding feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for match
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

direction, epipolar lines are horizontal

Stereo algorithms search along scanlines for match

feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

[D. Scharstein]
Stereo Matching in Rectified Images (Right)

[D. Scharstein]

Stereo Matching in Rectified Images (Right)

[D. Scharstein]

Anaglyph

Stereo pair with images encoded in different color channels

Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120Hz

Lenticular lenses send different images directly to each eye, without the need for glasses

Stereo Displays

VR headsets send L/R images directly to each eye

[Google Cardboard]

Rectified Stereo Pair

Any two camera views that overlap can be **rectified** so that epipolar lines correspond to scan lines (no special conditions must hold)

Rectified Stereo Pair

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3x3 transform), one for each input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. Computer Vision and Pattern Recognition, 1999.

Rectified Stereo Pair: Example

Before Rectification

After Rectification

Sor

camera center

camera center

Left camera axis

camera center

camera center

image plane

4----x

X-bx' \overline{Z} f

$\frac{X}{Z}$	$\frac{-b}{Z} = \frac{x'}{f}$	
$\frac{X}{Z}$ –	$-\frac{b}{Z} = \frac{x'}{f}$	
$\frac{x}{f}$ –	$-\frac{b}{Z} = \frac{x'}{f}$	(S

(wrt to camera origin of image plane)

(wrt to camera origin of image plane)

Disparity

(wrt to camera origin of image plane)

Disparity will always be positive

inversely proportional to depth d = x - x'bfZ. 4

(simple) Stereo Algorithm

1.Rectify images (make epipolar lines horizontal) 2.For each pixel a.Find epipolar line b.Scan line for best match c.Compute depth from disparity $Z = \frac{\sigma_J}{d}$

bf

(simple) Stereo Algorithm

1.Rectify images (make epipolar lines horizontal) 2.For each pixel a.Find epipolar line b.Scan line for best match c.Compute depth from disparity $Z = \frac{\sigma_J}{d}$

bf

Random Dot Stereograms

Julesz (1960) showed that **recognition is not needed** for stereo "When viewed monocularly, the images appear completely random. But when viewed stereoscopically, the image pair gives the impression of a square markedly in front of (or behind) the surround."

Method: Pixel Matching

For each epipolar line

For each **pixel** in the left image

- pick pixel with minimum match cost

This leaves too much ambiguity!

- compare with every pixel on same epipolar line in right image

Slide credit: Steve Seitz

Block Matching: Sum of Squared (Pixel) Differences

Define the window function, $\mathbf{W}_m(x, y)$, by $\mathbf{W}_m(x,y) = \left\{ (u,v) \mid x - \frac{m}{2} \le \right\}$

SSD measures intensity difference as a function of disparity:

$$C_R(x, y, d) = \sum_{(u,v)\in\mathbf{W}_m}$$

 \mathbf{w}_L and \mathbf{w}_R are corresponding $m \times m$ windows of pixels

$$\leq u \leq x + \frac{m}{2}, y - \frac{m}{2} \leq v \leq y + \frac{m}{2} \Big\}$$

$$[I_L(u, v) - I_R(u - d, v)]^2$$

(x,y)

Image Normalization

$$\bar{I} = \frac{1}{|\mathbf{W}_m(x,y)|} \sum_{(u,v)\in\mathbf{W}_m(x,y)} I(v)$$

$$||I||_{\mathbf{W}_m(x,y)} = \sqrt{\sum_{(u,v)\in\mathbf{W}_m(x,y)} [I(u,v)\in\mathbf{W}_m(x,y)]}$$

$$\hat{I}(x,y) = \frac{I(x,y) - I}{\|I - \overline{I}\|} \mathbf{W}_m(x,y)$$

(u, v)

Average Pixel

 $[(u, v)]^2$

Window Magnitude

Normalized Pixel: subtract the mean, normalize to unit length

Image Metrics

(Normalized) Correlation

Image Metrics

Assume \mathbf{w}_L and $\mathbf{w}_R(d)$ are normalized to unit length (Normalized)

Sum of Squared Differences:

$$C_{SSD}(d) = \sum_{(u,v)\in\mathbf{W}_m(x,y)} \left[\hat{I}_L(u,v) - \hat{I}_R(u-d,v) \right]^2$$
$$= ||\mathbf{w}_L - \mathbf{w}_R(d)||^2$$

(Normalized) **Correlation**:

$$C_{NC}(d) = \sum_{(u,v)\in\mathbf{W}_m(x,y)} \hat{I}_L(u,v)\hat{I}_R(u-d,v)$$

 $= \mathbf{w}_L \cdot \mathbf{w}_R(d) = \cos \theta$

Image Metrics

Let d^* be the value of d that minimizes C_{SSD}

Then d^* also is the value of d that maximizes C_{NC}

That is,

$$d^* = \arg\min_d ||\mathbf{w}_L - \mathbf{w}|$$

$|\mathbf{w}_R(d)||^2 = \arg\min_d \mathbf{w}_L \cdot \mathbf{w}_R(d)$

Method: Correlation

Left

Right

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$\begin{split} & \sum_{(i,j) \in W} |I_1(i,j) - I_2(x+i,y+j)| \\ & \sum_{(i,j) \in W} (I_1(i,j) - I_2(x+i,y+j))^2 \\ & \sum_{(i,j) \in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)| \\ & \sum_{(i,j) \in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)| \\ & \frac{\sum_{(i,j) \in W} I_1(i,j) \cdot I_2(x+i,y+j)}{\sqrt{\sum_{(i,j) \in W} I_1^2(i,j) \cdot \sum_{(i,j) \in W} I_2^2(x+i,y+j)}} \end{split}$$

NCC

Ground truth

Effect of Window Size

W = 3

Smaller window + More detail - More noise

$$W = 20$$

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

Effect of Window Size

Note: Some approaches use an adaptive window size — try multiple sizes and select best match

W = 20

Ordering Constraints

Ordering constraint ...

Forsyth & Ponce (2nd ed.) Figure 7.13
Ordering Constraints

Ordering constraint ...

.... and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13

Block Matching Techniques: Result

Block matching

Ground truth

Block Matching Techniques: Result

Too many **discontinuities**. We expect disparity values to change slowly.

Let's make an assumption: depth should change smoothly

Block matching

Ground truth

energy function (for one pixel)

Want each pixel to find a good match in the other image

(block matching result)

$E(d) = E_d(d) + \lambda E_s(d)$ smoothness term Adjacent pixels should (usually) move about the same amount

(smoothness function)

smoothness term

 $E(d) = E_d(d) + \lambda E_s(d)$

 $E_d(d) = \sum C(x, y, d(x, y))$

SSD distance between windows centered at I(x, y)and J(x + d(x,y), y)

 $E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$ smoothness term $(p,q) \in \mathcal{E}$

L₁ distance

"Potts model"

Stereo Matching as **Energy Minimization**: Solution

$E(d) = E_d(d) + \lambda E_s(d)$

Can minimize this independently per scanline using dynamic programming (DP)

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Ground truth

Graph Cuts [Kolmogorov Zabih 2001]

Dynamic Programming

SSD 21px aggregation

[Scharstein Szeliski 2002]

Idea: Use More Cameras

Adding a third camera reduces ambiguity in stereo matching

Forsyth & Ponce (2nd ed.) Figure 7.17

Point Grey Research Digiclops

Image credit: Point Grey Research

Structured Light Imaging: Structured Light and One Camera

Projector acts like "reverse" camera

Microsoft Kinect

Microsoft Kinect

Stereo Vision Summary

With two eyes, we acquire images of the world from slightly different viewpoints

in the left image and in the right image

Stereo algorithms work by finding **matches** between points along corresponding lines in a second image, known as epipolar lines.

A point in one image projects to an epipolar line in a second image

scanlines

- We perceive depth based on differences in the relative position of points
- In an axis-aligned / rectified stereo setup, matches are found along horizontal