
Lecture 19: Classification (part2)

CPSC 425: Computer Vision

Menu for Today
Topics:

— Scene Classification
— Bag of Words Representation

Redings:
— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1–17.2

Reminders:

— Quiz 4 is due today

— Decision Tree
— Boosting

Classify images containing single objects, the same techniques can be applied
to classify natural scenes (e.g. beach, forest, harbour, library).

Lecture 18: Re-cap (Image Classification)

Lecture 18: Image Classification

Representation of Images

— Image pixels directly
— Bag of Words

Classification Algorithms

— Bayes’ Classifier
— Nearest Neighbor Classifier
— SVM Classifier

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classify a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.

Lecture 18: Re-cap (Vector Space Model)

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Classify:
 Train data using BOWs

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Classify:
 Train data using BOWs

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: training images, dictionary
Output: histogram representation
for each training image

k

Classify:
 Train data using BOWs

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: training images, dictionary
Output: histogram representation
for each training image

k

Input: histogram representation for
each training image + labels Output: parameters if the classifier

Standard Bag-of-Words Pipeline (for image classification) — Testing

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
Test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: test image, dictionary
Output: histogram representation
for test image

k

Standard Bag-of-Words Pipeline (for image classification) — Testing

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
Test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: test image, dictionary
Output: histogram representation
for test image

Input: histogram representation for
test image, trained classifier Output: prediction for test image

k

k

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Classify:
 Train data using BOWs

Extracting SIFT Patches

Normalize patch

Detect patches
[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, ’02]
[Sivic & Zisserman, ’03]

Compute SIFT
descriptor

 [Lowe’99]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

…

Extracting SIFT Patches

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Creating Dictionary

…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Clustering

…

Creating Dictionary

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Clustering

Visual vocabulary
…

Creating Dictionary

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

…

Source: B. Leibe

Example Visual Dictionary

Appearance codebook
…

…

…
…

…

Example Visual Dictionary

Source: B. Leibe

Standard Bag-of-Words Pipeline (for image classification) — Testing

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
Test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: test image, dictionary
Output: histogram representation
for test image

k

2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Histogram: count the number of visual word occurrences

2. Encode: build Bag-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

…..

fr
eq

ue
nc
y

codewords

2. Encode: build Bag-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: training images, dictionary
Output: histogram representation
for each training image

k

Input: histogram representation for
each training image + labels Output: parameters if the classifier

3. Classify: Train and text classifier using BOWs

K nearest
neighbors

Naïve
Bayes

Support
Vector

Machine

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification) — Testing

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
Test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Input: large collection of images
(they don’t even need to be training images)

Output: dictionary of visual words

Input: test image, dictionary
Output: histogram representation
for test image

Input: histogram representation for
test image, trained classifier Output: prediction for test image

k

k

Inference Bag-of-Words Representation

Algorithm:

Initialize an empty K-bin histogram, where K is the number of codewords
Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x
 Map (Quantize) x to its closest codeword → c(x)
 Increment the histogram bin for c(x)
Return histogram

We can then classify the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier

Spatial Pyramid

The bag of words representation does not preserve any spatial information

The spatial pyramid is one way to incorporate spatial information into the
image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid
box; this is performed at multiple levels

Fig. 16.8 in Forsyth & Ponce (2nd ed.).
Original credit: Lazebnik et al., 2006

Spatial Pyramid
Compute Bag-of-Words histograms for each quadrant and then concatenate them

Fig. 16.8 in Forsyth & Ponce (2nd ed.).
Original credit: Lazebnik et al., 2006

Spatial Pyramid
Compute Bag-of-Words histograms for each quadrant and then concatenate them

Fig. 16.8 in Forsyth & Ponce (2nd ed.).
Original credit: Lazebnik et al., 2006

Spatial Pyramid
Compute Bag-of-Words histograms for each quadrant and then concatenate them

VLAD (Vector of Locally Aggregated Descriptors)

There are more advanced ways to ‘count’ visual words than incrementing its
histogram bin

For example, it might be useful to describe how local descriptors are quantized
to their visual words

In the VLAD representation, instead of incrementing the histogram bin by one,
we increment it by the residual vector x − c(x)

Example: VLAD

Example: VLAD
Bag of Word

6

Example: VLAD
Bag of Word

6

3

Example: VLAD
Bag of Word

6

3

Example: VLAD
Bag of Word

6

3

[6. 3. 0]

VLAD

Example: VLAD
Bag of Word

6

3

[6. 3. 0]

VLAD

The dimensionality of a VLAD descriptor is Kd
— K : number of codewords
— d : dimensionality of the local descriptor

VLAD characterizes the distribution of local descriptors with respect to the
codewords

VLAD (Vector of Locally Aggregated Descriptors)

Recognition Overview: Early —> 2024

Recognition Overview: Early
Rule Based Classifier:
Distance + Threshold

There is nothing really to “learn” (no need for training data),
just measure similarity using favorite distance and choose
threshold based on validation set

Recognition Overview: Early

Local Features:
Edges

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Distance + Threshold

More robust, to lighting, but
basically same

There is nothing really to “learn” (no need for training data),
just measure similarity using favorite distance and choose
threshold based on validation set

Recognition Overview: Early

Bank of Local Features:
Edges, Blobs, etc.

Local Features:
Edges

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Distance + Threshold

More expressive, but basically
same

There is nothing really to “learn” (no need for training data),
just measure similarity using favorite distance and choose
threshold based on validation set

Recognition Overview: Early

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

Local Features:
Edges

Local Features:
Edges

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Distance + Threshold

Rule Based Classifier:
Size of inlier set

 SIFT / HoG

— Empirically engineered features with desired properties

— Pragmatically defined models (classifiers) that either defined by hand or require test time optimization

— No real learning, mostly parameter/design tuning using validation set

Recognition Overview: Learning
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

 SIFT / HoG

Recognition Overview: Learning
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Bayes — estimate parametric form of distribution (requires training data) for each class

 SIFT / HoG

Recognition Overview: Learning
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Bayes — estimate parametric form of distribution (requires training data) for each class
kNN — non-parametric form of distribution (requires training data) for each class

More expressive

 SIFT / HoG

Recognition Overview: Learning
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Bayes — estimate parametric form of distribution (requires training data) for each class

Linear SVM — parametric form of classifier (requires training data) with implicit feature selection / weighting
kNN — non-parametric form of distribution (requires training data) for each class

More expressive

 SIFT / HoG

Recognition Overview
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

 SIFT / HoG

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Recognition Overview
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

 SIFT / HoG

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

1. Now there is some unsupervised “learning” in feature extraction

Recognition Overview
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

 SIFT / HoG

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

1. Now there is some unsupervised “learning” in feature extraction
2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

Recognition Overview
Learned Classifier:

Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

 SIFT / HoG

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

1. Now there is some unsupervised “learning” in feature extraction
2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

3. Features are still not tuned for any specific task (features for object vs.
scene classification are exactly same) only classifier can be tuned

Recognition Overview: Convolutional Neural Nets (next week)

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Deeper hierarchies of features (obtained by learned filters) learned together with the classifier
for a specific task (classification, detection, segmentation)

1. Now there is some unsupervised “learning” in feature extraction
2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Classifier:

Bayes, kNN,
Linear SVM

Recognition Overview: Foundational Models

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Classifier:

Bayes, kNN,
Linear SVM

1. “Pre-training” (optimizing) in an unsupervised / self-supervised manner (to get good feature extractors)

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

Learned
Features:

Filters

2. “Fine-tuning” (optimizing again from a warm start) to get good performance on the task

1. Now there is some unsupervised “learning” in feature extraction
2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

Pre-text Tasks
we don’t really

care about

Learned Classifier:
Bayes, kNN, Linear SVM

Bank of Local Features:
Edges, Blobs, etc.

Summary Statistics:
Histogram

 SIFT / HoG

Local Features:
Edges

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Learned Classifier:
Bayes, kNN, Linear SVM

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Let’s do a bit of a case study …

Good test set for visual recognition problems

CIFAR10 Dataset
— Hand labelled set of 10 categories from Tiny Images dataset
— 60,000 32x32 images in 10 classes (50k train, 10k test)

CIFAR10 Classification
Let’s build an image classifier

32 x 32 x RGB (8 bit) image →
x = [65 102 33 57 54 …]

Start by vectorizing the data x = 3072 element vector of 0-255

x = 3072 element vector of 0-255

Nearest Mean Classifier
Compute a single “average” template per class

plane

bird

car

cat

xq =
cq =

Query:

?

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

cq = argmin
i

|xq �mi|2

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

Find the nearest mean and assign class:

CIFAR10 class means:

Nearest Mean Classifier

cq = argmin
i

|xq �mi|2

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

Find the nearest mean and assign class:

CIFAR10 class means:

Nearest Mean Classifier

<latexit sha1_base64="Pg/Zug8u3aRci33mTjpwHShxB4Y=">AAACm3icbVFNbxMxEPVuC5SUj9AeAKFKFhFScki0W1WQC6iih0aIQ6ombaU4WXkdb2rVXi+2FzXa7J/ilyBu7aVXfka9+RBJw8i23ryZscdvwoQzbTzvxnE3Nh89frL1tLT97PmLl+VXO2daporQLpFcqosQa8pZTLuGGU4vEkWxCDk9D6+Oivj5T6o0k3HHjBPaF3gUs4gRbCwVlH+1q2SCBDaXYZRd5zWIEiUTI2G7+o+dkJr17YGQXaUp/AxRpDDJ/DzzvXweQVyO1ioXNy7RwY/6whF5QGqDDkSnbCTwIKv7+WomrMOV3FJQrngNb2pwHfhzUDls3v1+ffv3bTso/0FDSVJBY0M41rrne4npZ1gZRjjNSyjVNMHkCo9oz8IYC6r72VTbHH6wzBBGUtkdGzhllysyLLQei9BmFl3qh7GC/F+sl5qo2c9YnKSGxmT2UJRyaJUqBgWHTFFi+NgCTBSzvUJyia3kxo6zEMF/+OV1cLbf8D82Dk6sGl/BzLbAO/AeVIEPPoFD0AJt0AXEeeN8cY6dlrvnHrnf3O+zVNeZ1+yCFXO797r3zRA=</latexit>

P (c|x) / P (x|c)P (c)

P (c) =
1

10

logP (x|c) / (xq �mc)
T⌃�1(xq �mc)

cq = argmin
i

|xq �mi|2

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

Find the nearest mean and assign class:

CIFAR10 class means:

Nearest Mean Classifier

<latexit sha1_base64="Pg/Zug8u3aRci33mTjpwHShxB4Y=">AAACm3icbVFNbxMxEPVuC5SUj9AeAKFKFhFScki0W1WQC6iih0aIQ6ombaU4WXkdb2rVXi+2FzXa7J/ilyBu7aVXfka9+RBJw8i23ryZscdvwoQzbTzvxnE3Nh89frL1tLT97PmLl+VXO2daporQLpFcqosQa8pZTLuGGU4vEkWxCDk9D6+Oivj5T6o0k3HHjBPaF3gUs4gRbCwVlH+1q2SCBDaXYZRd5zWIEiUTI2G7+o+dkJr17YGQXaUp/AxRpDDJ/DzzvXweQVyO1ioXNy7RwY/6whF5QGqDDkSnbCTwIKv7+WomrMOV3FJQrngNb2pwHfhzUDls3v1+ffv3bTso/0FDSVJBY0M41rrne4npZ1gZRjjNSyjVNMHkCo9oz8IYC6r72VTbHH6wzBBGUtkdGzhllysyLLQei9BmFl3qh7GC/F+sl5qo2c9YnKSGxmT2UJRyaJUqBgWHTFFi+NgCTBSzvUJyia3kxo6zEMF/+OV1cLbf8D82Dk6sGl/BzLbAO/AeVIEPPoFD0AJt0AXEeeN8cY6dlrvnHrnf3O+zVNeZ1+yCFXO797r3zRA=</latexit>

P (c|x) / P (x|c)P (c)

P (c) =
1

10

logP (x|c) / (xq �mc)
T⌃�1(xq �mc)

<latexit sha1_base64="Pg/Zug8u3aRci33mTjpwHShxB4Y=">AAACm3icbVFNbxMxEPVuC5SUj9AeAKFKFhFScki0W1WQC6iih0aIQ6ombaU4WXkdb2rVXi+2FzXa7J/ilyBu7aVXfka9+RBJw8i23ryZscdvwoQzbTzvxnE3Nh89frL1tLT97PmLl+VXO2daporQLpFcqosQa8pZTLuGGU4vEkWxCDk9D6+Oivj5T6o0k3HHjBPaF3gUs4gRbCwVlH+1q2SCBDaXYZRd5zWIEiUTI2G7+o+dkJr17YGQXaUp/AxRpDDJ/DzzvXweQVyO1ioXNy7RwY/6whF5QGqDDkSnbCTwIKv7+WomrMOV3FJQrngNb2pwHfhzUDls3v1+ffv3bTso/0FDSVJBY0M41rrne4npZ1gZRjjNSyjVNMHkCo9oz8IYC6r72VTbHH6wzBBGUtkdGzhllysyLLQei9BmFl3qh7GC/F+sl5qo2c9YnKSGxmT2UJRyaJUqBgWHTFFi+NgCTBSzvUJyia3kxo6zEMF/+OV1cLbf8D82Dk6sGl/BzLbAO/AeVIEPPoFD0AJt0AXEeeN8cY6dlrvnHrnf3O+zVNeZ1+yCFXO797r3zRA=</latexit>

P (c|x) / P (x|c)P (c)

P (c) =
1

10

logP (x|c) / (xq �mc)
T⌃�1(xq �mc)

cq = argmin
i

|xq �mi|2

m1 (1)
m2 (2)
m3 (3)
m4 (4)
m5 (5)

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

Find the nearest mean and assign class:

CIFAR10 class means:

Nearest Mean Classifier

Chance performance: 10%
Human performance: ~94%
Nearest Mean Classifier (pixels): 37%

Performance:

Nearest Neighbor Classifier

plane

bird

car

cat

x1

x2

x3

x4x5

xq =
cq =

Query:

?

We can view each image as a point in a high dimensional space

Calculate |xq � xi|
for all training data

iNN = argmin
i

|xq � xi|

ŷ(xq) = y(xiNN)

xqQuery
Result = 3

1
2
3
4
5

Nearest Neighbor Classifier

Find nearest neighbour in training set:

Assign class to class of the nearest neighbour:

iNN = argmin
i

|xq � xi|

ŷ(xq) = y(xiNN)

Nearest Neighbor Classifier

Find nearest neighbour in training set:

Assign class to class of the nearest neighbour:

Performance:

Chance performance: 10%
Human performance: ~94%
Nearest Neighbor (pixels): 40.8%
Nearest Neighbor (HoG): 58.3%

Source: https://cran.r-project.org/web/packages/KernelKnn/vignettes/image_classification_using_MNIST_CIFAR_data.html

Pedestrian detection

64 pixels
8 cells

7 blocks

128 pixels
16 cells

15 blocks

15 x 7 x 4 x 9 =
3780

1 cell step size visualization

Redundant representation due to overlapping blocks

Histogram of Oriented Gradients (HOG) Features

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

iNN = argmin
i

|xq � xi|

ŷ(xq) = y(xiNN)

Nearest Neighbor Classifier

Find nearest neighbour in training set:

Assign class to class of the nearest neighbour:

Performance:

Chance performance: 10%
Human performance: ~94%
Nearest Neighbor (pixels): 40.8%
Nearest Neighbor (HoG): 58.3%

Source: https://cran.r-project.org/web/packages/KernelKnn/vignettes/image_classification_using_MNIST_CIFAR_data.html

6

7
,9
0
0

T
ar
g
et

7
9
0
,0
0
0

7
9
,0
0
0
,0
0
0

Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.

entity

object

artifact

instrumentality

device

holding

vise

entity
71

object 56

artifact

36

instrumentality
25

device
14

covering

5

thing
4

part

4

4

structure

3

living
19

substance
10

psychological
phenomen

5

cognition
5

content
5

organism

17

plant

5

vascular

5

person

8clothing
3

instrument

3

material

3

implement

4
animal

4

chordate

4

vertebrate
4

container

5

utensil

3

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity

object

living

organism

person

scientist

chemist

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity
73

object
56

living 44

organism 44

animal

6

chordate
4

vertebrate

4

location
10

person
33

commu-
nicator

3

writer

3

worker

6

skilled
4

region
7

artifact
9

plant

5

vascular

5

substance

3

4
device

3

district
4
administrative

4

land

3

island

3

thing
4

woody

3
tree

3

creator
3

instrument

Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query

6

7
,9
0
0

T
ar
g
et

7
9
0
,0
0
0

7
9
,0
0
0
,0
0
0

Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.

entity

object

artifact

instrumentality

device

holding

vise

entity
71

object 56

artifact

36

instrumentality
25

device
14

covering

5

thing
4

part

4

4

structure

3

living
19

substance
10

psychological
phenomen

5

cognition
5

content
5

organism

17

plant

5

vascular

5

person

8clothing
3

instrument

3

material

3

implement

4
animal

4

chordate

4

vertebrate
4

container

5

utensil

3

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity

object

living

organism

person

scientist

chemist

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity
73

object
56

living 44

organism 44

animal

6

chordate
4

vertebrate

4

location
10

person
33

commu-
nicator

3

writer

3

worker

6

skilled
4

region
7

artifact
9

plant

5

vascular

5

substance

3

4
device

3

district
4
administrative

4

land

3

island

3

thing
4

woody

3
tree

3

creator
3

instrument

Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query

6

7
,9
0
0

T
ar
g
et

7
9
0
,0
0
0

7
9
,0
0
0
,0
0
0

Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.

entity

object

artifact

instrumentality

device

holding

vise

entity
71

object 56

artifact

36

instrumentality
25

device
14

covering

5

thing
4

part

4

4

structure

3

living
19

substance
10

psychological
phenomen

5

cognition
5

content
5

organism

17

plant

5

vascular

5

person

8clothing
3

instrument

3

material

3

implement

4
animal

4

chordate

4

vertebrate
4

container

5

utensil

3

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity

object

living

organism

person

scientist

chemist

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity
73

object
56

living 44

organism 44

animal

6

chordate
4

vertebrate

4

location
10

person
33

commu-
nicator

3

writer

3

worker

6

skilled
4

region
7

artifact
9

plant

5

vascular

5

substance

3

4
device

3

district
4
administrative

4

land

3

island

3

thing
4

woody

3
tree

3

creator
3

instrument

Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query

6

7
,9
0
0

T
ar
g
et

7
9
0
,0
0
0

7
9
,0
0
0
,0
0
0

Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.

entity

object

artifact

instrumentality

device

holding

vise

entity
71

object 56

artifact

36

instrumentality
25

device
14

covering

5

thing
4

part

4

4

structure

3

living
19

substance
10

psychological
phenomen

5

cognition
5

content
5

organism

17

plant

5

vascular

5

person

8clothing
3

instrument

3

material

3

implement

4
animal

4

chordate

4

vertebrate
4

container

5

utensil

3

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity

object

living

organism

person

scientist

chemist

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

entity
73

object
56

living 44

organism 44

animal

6

chordate
4

vertebrate

4

location
10

person
33

commu-
nicator

3

writer

3

worker

6

skilled
4

region
7

artifact
9

plant

5

vascular

5

substance

3

4
device

3

district
4
administrative

4

land

3

island

3

thing
4

woody

3
tree

3

creator
3

instrument

Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query

Tiny Image Recognition

Nearest neighbour becomes increasingly accurate as N increases, but do we
need to store a dataset of 80 million images?

12

Geological
formation (32)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Organism
(658)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a

te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Fish
(29)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Insect
(7)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Animal
(97)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Plant life
(335)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Flower
(58)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Artifact
(187)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recalll

Vehicle
(20)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Drug
(14)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
e
te

c
ti
o
n

 r
a
te

false alarm rate

0 50 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

Fig. 20. Test images assigned to words at each semantic level. The images are ordered by voting confidence. The number indicates the total number of
positive examples in the test set out of the 1148 images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red).
The middle row shows the ROC curves for three dataset sizes (red = 7,900 image training set; yellow = 790,000 images; blue = 79,000,000 images). The
bottom row shows the corresponding precision-recall graphs.

Gray scale
input

Gray level
32x32 siblings

High resolution
color siblings

Avage color

Avage
colorization

Proposed
colorizations

Fig. 21. Automatic image colorization. From top to bottom, first row, gray scale input image, second row, 32×32 gray scale siblings, third row, corresponding
high resolution color siblings, fourth row, average of the color siblings, fifth row, input image with color from the average, sixth row, candidate colorizations
by taking the color information from four different siblings.

yellow = 7900, red = 790,000, blue = 79,000,000

[Torralba, Fergus, Freeman ‘08]

1-vs-All Linear SVM

plane

bird

car

cat

1-vs-All Linear SVM

plane

bird

car

cat

1-vs-All Linear SVM

plane

bird

car

cat

xq =

Query:

1-vs-All Linear SVM

plane

bird

car

cat

xq =

Query:

1-vs-All Linear SVM

plane

bird

car

cat

xq =

Query:

1-vs-All Linear SVM

plane

bird

car

cat

xq =

Query:

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Performance:
Chance performance: 10%
Human performance: ~94%

Linear SVM (pixels): 37.3% [2] / 39.5%*[1]
Linear SVM (SIFT): 65.6%*[1]
Linear SVM (BoW /w SIFT, 1600 words, hard voting): 68.6% [2]
Linear SVM (BoW /w SIFT, 1600 words, soft voting): 77.9% [2]
Linear SVM (BoW /w SIFT, 4000 words, soft voting): 79.6% [2]

[1] https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf

[2] https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

Hard voting:

Soft voting:

L2 distance to centroid k

https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Hard voting:

Soft voting:

L2 distance to centroid k
Keywords

SIFT Descriptor from Test Image
1.1

3.2

2.0

1.7

12

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Hard voting:

Soft voting:

L2 distance to centroid k

1.1

3.2

2.0

1.7

12

+ 1

+ 0

+ 0

+ 0

+ 0

Keywords

SIFT Descriptor from Test Image

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Hard voting:

Soft voting:

L2 distance to centroid k

1.1

3.2

2.0

1.7

12

Keywords

SIFT Descriptor from Test Image

Average Distance: 2.0

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Hard voting:

Soft voting:

L2 distance to centroid k

1.1

3.2

2.0

1.7

12

+ 0.9

+ 0

+ 0

+ 0.3

+ 0

Keywords

SIFT Descriptor from Test Image

Average Distance: 2.0

1-vs-All Linear SVM
plane

bird

car

cat

xq =

Query:

Performance:
Chance performance: 10%
Human performance: ~94%

Linear SVM (pixels): 37.3% [2] / 39.5%*[1]
Linear SVM (SIFT): 65.6%*[1]
Linear SVM (BoW /w SIFT, 1600 words, hard voting): 68.6% [2]
Linear SVM (BoW /w SIFT, 1600 words, soft voting): 77.9% [2]
Linear SVM (BoW /w SIFT, 4000 words, soft voting): 79.6% [2]

[1] https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf

[2] https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

Hard voting:

Soft voting:

L2 distance to centroid k

https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

Deep Learning

Performance:
Chance performance: 10%
Human performance: ~94%

Linear SVM (pixels): 37.3% [2] / 39.5%*[1]
Linear SVM (SIFT): 65.6%*[1]
Linear SVM (BoW /w SIFT, 1600 words, hard voting): 68.6% [2]
Linear SVM (BoW /w SIFT, 1600 words, soft voting): 77.9% [2]
Linear SVM (BoW /w SIFT, 4000 words, soft voting): 79.6% [2]
*Convolutional Neural Net (CNN): 91.3% [3]
*DINO [Caron et al., 2021]: 94.4% [3]
*RandSAC [Hua et al., 2023]: 96.9% [3]

plane

bird

car

cat

xq =

Query:

[3] https://arxiv.org/pdf/2203.12054.pdf

https://arxiv.org/pdf/2203.12054.pdf

Take home messages …

— Both classification and feature representation play significant role

— Classifiers need to be expressive to do well, but so do the features

— Parametric classifiers are much easier to work with (they are faster)

— Which is more significant, in part, depends on the amount of available data

More complex classifiers …

Summary Statistics:
Histogram

K-means coding:
Bag of Words, VLAD

 SIFT / HoG

Local Features:
Edges

Learned Classifier:
Bayes, kNN, Linear SVM

Lets look at more expressive classifiers that, for example, explicitly do feature selection

Back to Classification

Decision Tree

A decision tree is a simple non-linear parametric classifier

Consists of a tree in which each internal node is associated with a feature test

A data point starts at the root and recursively proceeds to the child node
determined by the feature test, until it reaches a leaf node

The leaf node stores a class label or a probability distribution over class labels

Decision Tree

Learning a decision tree from a training set involves selecting an efficient
sequence of feature tests
Example: Waiting for a restaurant table

Decision Tree

Learning a decision tree from a training set involves selecting an efficient
sequence of feature tests
Example: Waiting for a restaurant table

Decision Tree

Is there an alternative restaurant near by?

Learning a decision tree from a training set involves selecting an efficient
sequence of feature tests
Example: Waiting for a restaurant table

Decision Tree

Is there a bar at the restaurant?

Learning a decision tree from a training set involves selecting an efficient
sequence of feature tests
Example: Waiting for a restaurant table

Decision Tree

Is it Friday night?

Learning a decision tree from a training set involves selecting an efficient
sequence of feature tests
Example: Waiting for a restaurant table

Decision Tree

How many people in the restaurant?

Figure credit: Russell and Norvig (3rd ed.)

Which test is more helpful?

Decision Tree

The entropy of a set of data samples is defined as

where is the set of classes represented in , and is the empirical
distribution of class in

Entropy is highest when data samples are spread equally across all classes,
and zero when all data samples are from the same class.

H(S) = �
X

c2C

p(c) log(p(c))

c
SC p(c)

Decision TreeDecision Tree

S

S

Figure credit: Russell and Norvig (3rd ed.)

Which test is more helpful?

Entropy at each node …

<latexit sha1_base64="3MWpuIM12Xnln48peq0Jo4G8Scg=">AAACDXicbZA7SwNBFIXvxleMr1VLm8EoJAjLbvBVBmy0i2AekCzL7GQ2GTL7YGZWCCFgbeNfsbFQxNbezn/jbJJCEw8MfJx7L3fu8RPOpLLtbyO3tLyyupZfL2xsbm3vmLt7DRmngtA6iXksWj6WlLOI1hVTnLYSQXHoc9r0B1dZvXlPhWRxdKeGCXVD3ItYwAhW2vLMI9s6Qx0e97wKKmkuoxO0YHlm0bbsidAiODMoVssPkKnmmV+dbkzSkEaKcCxl27ET5Y6wUIxwOi50UkkTTAa4R9saIxxS6Y4m14zRsXa6KIiFfpFCE/f3xAiHUg5DX3eGWPXlfC0z/6u1UxVcuiMWJamiEZkuClKOVIyyaFCXCUoUH2rARDD9V0T6WGCidIAFHYIzf/IiNCqWc26d3uo0bmCqPBzAIZTAgQuowjXUoA4EHuEZXuHNeDJejHfjY9qaM2Yz+/BHxucPNh+XXw==</latexit>

0.5 log2(0.5) + 0.5 log2(0.5)

<latexit sha1_base64="MZ+kCgyQy4rzNCBSUNhLEebqv1U=">AAACBXicbVDLSgMxFL1TX7W+Rl3qIliEFqHMFFGXBTe6q2Af0A5DJs20oZkHSUYoQ0Hc+CtuXCji1n9w59+YaYto64ELJ+fcS+49XsyZVJb1ZeSWlldW1/LrhY3Nre0dc3evKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8DLzW3dUSBaFt2oUUyfA/ZD5jGClJdc8tFCXR323ikpWGZ0g++dpl5FrFq2KNQFaJPaMFGvle8hQd83Pbi8iSUBDRTiWsmNbsXJSLBQjnI4L3UTSGJMh7tOOpiEOqHTSyRVjdKyVHvIjoStUaKL+nkhxIOUo8HRngNVAznuZ+J/XSZR/4aQsjBNFQzL9yE84UhHKIkE9JihRfKQJJoLpXREZYIGJ0sEVdAj2/MmLpFmt2GeV0xudxjVMkYcDOIIS2HAONbiCOjSAwAM8wQu8Go/Gs/FmvE9bc8ZsZh/+wPj4BoA3lYU=</latexit>

0 log2(0) + 1 log2(1)

<latexit sha1_base64="zZN3PAoHNrChz12huOZiDXRb/1M=">AAACBXicbVDLSgMxFL1TX7W+Rl3qIliEFqHMFFGXBTe6q2Af0A5DJs20oZkHSUYoQ0Hc+CtuXCji1n9w59+YaYto64ELJ+fcS+49XsyZVJb1ZeSWlldW1/LrhY3Nre0dc3evKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8DLzW3dUSBaFt2oUUyfA/ZD5jGClJdc8tFGXR323ikp2GZ0g6+dplZFrFq2KNQFaJPaMFGvle8hQd83Pbi8iSUBDRTiWsmNbsXJSLBQjnI4L3UTSGJMh7tOOpiEOqHTSyRVjdKyVHvIjoStUaKL+nkhxIOUo8HRngNVAznuZ+J/XSZR/4aQsjBNFQzL9yE84UhHKIkE9JihRfKQJJoLpXREZYIGJ0sEVdAj2/MmLpFmt2GeV0xudxjVMkYcDOIIS2HAONbiCOjSAwAM8wQu8Go/Gs/FmvE9bc8ZsZh/+wPj4BoBVlYU=</latexit>

1 log2(1) + 0 log2(0)

<latexit sha1_base64="3MWpuIM12Xnln48peq0Jo4G8Scg=">AAACDXicbZA7SwNBFIXvxleMr1VLm8EoJAjLbvBVBmy0i2AekCzL7GQ2GTL7YGZWCCFgbeNfsbFQxNbezn/jbJJCEw8MfJx7L3fu8RPOpLLtbyO3tLyyupZfL2xsbm3vmLt7DRmngtA6iXksWj6WlLOI1hVTnLYSQXHoc9r0B1dZvXlPhWRxdKeGCXVD3ItYwAhW2vLMI9s6Qx0e97wKKmkuoxO0YHlm0bbsidAiODMoVssPkKnmmV+dbkzSkEaKcCxl27ET5Y6wUIxwOi50UkkTTAa4R9saIxxS6Y4m14zRsXa6KIiFfpFCE/f3xAiHUg5DX3eGWPXlfC0z/6u1UxVcuiMWJamiEZkuClKOVIyyaFCXCUoUH2rARDD9V0T6WGCidIAFHYIzf/IiNCqWc26d3uo0bmCqPBzAIZTAgQuowjXUoA4EHuEZXuHNeDJejHfjY9qaM2Yz+/BHxucPNh+XXw==</latexit>

0.5 log2(0.5) + 0.5 log2(0.5)

<latexit sha1_base64="3MWpuIM12Xnln48peq0Jo4G8Scg=">AAACDXicbZA7SwNBFIXvxleMr1VLm8EoJAjLbvBVBmy0i2AekCzL7GQ2GTL7YGZWCCFgbeNfsbFQxNbezn/jbJJCEw8MfJx7L3fu8RPOpLLtbyO3tLyyupZfL2xsbm3vmLt7DRmngtA6iXksWj6WlLOI1hVTnLYSQXHoc9r0B1dZvXlPhWRxdKeGCXVD3ItYwAhW2vLMI9s6Qx0e97wKKmkuoxO0YHlm0bbsidAiODMoVssPkKnmmV+dbkzSkEaKcCxl27ET5Y6wUIxwOi50UkkTTAa4R9saIxxS6Y4m14zRsXa6KIiFfpFCE/f3xAiHUg5DX3eGWPXlfC0z/6u1UxVcuiMWJamiEZkuClKOVIyyaFCXCUoUH2rARDD9V0T6WGCidIAFHYIzf/IiNCqWc26d3uo0bmCqPBzAIZTAgQuowjXUoA4EHuEZXuHNeDJejHfjY9qaM2Yz+/BHxucPNh+XXw==</latexit>

0.5 log2(0.5) + 0.5 log2(0.5)
<latexit sha1_base64="mg3Lsd1dhu7OBgbkTJppIRgzTI0=">AAACJXicbVDLSgMxFL1TX7W+Rl26CRahRSgzVaoLFwU3uqtgH9ApJZNm2tDMgyQjlKHgt7jxV9y4sIjgyl8x0xbR1gMXTs65l9x73IgzqSzr08isrK6tb2Q3c1vbO7t75v5BQ4axILROQh6Klosl5SygdcUUp61IUOy7nDbd4XXqNx+okCwM7tUooh0f9wPmMYKVlrrmlVVyXCySszFyeNjvllHhRymiUzR/VJbsira7Zt4qWVOgZWLPSb5afIQUta45cXohiX0aKMKxlG3bilQnwUIxwuk458SSRpgMcZ+2NQ2wT2UnmV45Rida6SEvFLoChabq74kE+1KOfFd3+lgN5KKXiv957Vh5l52EBVGsaEBmH3kxRypEaWSoxwQlio80wUQwvSsiAywwUTrYnA7BXjx5mTTKJbtSOr/TadzCDFk4gmMogA0XUIUbqEEdCDzBC7zBxHg2Xo1342PWmjHmM4fwB8bXN6LponE=</latexit>

0.3̄ log2(0.3̄) + 0.6̄ log2(0.6̄)

In general we try to select the feature test that maximizes the information gain:

In the previous example, the information gains of the two candidate tests are:

So we choose the ‘Patrons’ test.

I = H(S)�
X

i2{children}

|Si|
|S| H(Si)

IPatrons = 0.541 IType = 0

Decision Tree

In general we try to select the feature test that maximizes the information gain:

In the previous example, the information gains of the two candidate tests are:

So we choose the ‘Patrons’ test.

I = H(S)�
X

i2{children}

|Si|
|S| H(Si)

IPatrons = 0.541 IType = 0

Decision Tree

Build a tree in a greedy recursive manner by maximizing
information gain at each node

Following this construction procedure we obtain the final decision tree:

Figure credit: Russell and Norvig (3rd ed.)

Decision Tree

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the
candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

Decision Tree

Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011

Microsoft Kinect

Example 1: Kinect
Kinect allows users of Microsoft’s Xbox 360 console to interact with games
using natural body motions instead of a traditional handheld controller. The
pose (joint positions) of the user is predicted using a random forest trained on
depth features.

Figure credit: J. Shotton et al., 2011

Example 1: Kinect
Kinect allows users of Microsoft’s Xbox 360 console to interact with games
using natural body motions instead of a traditional handheld controller. The
pose (joint positions) of the user is predicted using a random forest trained on
depth features.

Figure credit: J. Shotton et al., 2011

Jamie Shotton

Example 1: Kinect

Figure credit: J. Shotton et al., 2011

Simple test: threshold on the difference of two depth values at an offset from a target pixel …

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

How many such tests can we have?

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

 Learning is slow (weeks)!

f✓(I,x) > ⇥j

Example 1: Kinect

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

 Learning is slow (weeks)!

 Inference is fast (real-time)!

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j

0.5

0.4

-0.2

0.7

-0.7

0.45

…… …

…… …

Example 1: Kinect

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

-0.7

0.45

0.3

0.4

0.7

0.2

0.8

0.1

… …… …

… …… …

Example 1: Kinect

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

-0.7

0.45

0.3

0.4

0.7

0.2

0.8

0.1

… …… …

… …… …

Example 1: Kinect

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

0.45

0.3

0.4

0.7

0.2

0.1

… …… …

… …… …

dI(x+)� dI(x+) > �0.7 dI(x+)� dI(x+) < �0.7

-0.7 0.8

Example 1: Kinect

Example 1: Kinect

Figure credit: J. Shotton et al., 2011

Combining Classifiers

One common strategy to obtain a better classifier is to combine multiple
classifiers.

A simple approach is to train an ensemble of independent classifiers, and
average their predictions.

Boosting is another approach.
— Train an ensemble of classifiers sequentially.
— Bias subsequent classifiers to correctly predict training examples that
previous classifiers got wrong.
— The final boosted classifier is a weighted combination of the individual
classifiers.

Figure credit: Paul Viola

Combining Classifiers: Boosting

Combining Classifiers: Boosting

Figure credit: Paul Viola

Combining Classifiers: Boosting

Figure credit: Paul Viola

Combining Classifiers: Boosting

Figure credit: Paul Viola

Combining Classifiers: Boosting

Figure credit: Paul Viola

Combining Classifiers: Boosting

Figure credit: Paul Viola

Object Detection: Introduction

We have been discussing image classification, where we pass a whole
image into a classifier and obtain a class label as output

We assumed the image contained a single, central object

The task of object detection is to detect and localize all instances of a target
object class in an image
— Localization typically means putting a tight bounding box around the object

Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

This is a search over location
— We have to search over scale as well
— We may also have to search over aspect ratios

Image credit: KITTI Vision Benchmark

Sliding Window

What data we train a classifier on?
Image Classifiers

Image classifiers can be applied
to regions/windows, but do not
work so well in practice …

What data we train a classifier on?
Image Classifiers

What data we train a classifier on?
Image Classifiers Object Classifiers

Let’s assume we have object labeled data …
Object Classifiers

Object classifiers work a lot
better … but require expensive
bounding box annotations …

Let’s assume we have object labeled data …
Object Classifiers

Object classifiers work a lot
better … but require expensive
bounding box annotations …

(for convenience we will normalize patches
to 64x64 … or 128x128)

Example: Face Detection

The Viola-Jones face detector is a classic sliding window detector that learns
both efficient features and a classifier

A key strategy is to use features that are fast to evaluate to reject most
windows early

The Viola-Jones detector computes ‘rectangular’ features within each window

Figure credit: K. Grauman

Example: Face Detection Summary

Figure credit: K. Grauman

Example: Face Detection Summary

Main Issue: Efficiency

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

Example: Face Detection

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

Solution:
— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows
— 2nd layer with 10 features can tackle “harder” negative-windows which
survived the 1st layer, and so on…

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Cascading Classifiers

To make detection faster, features can be reordered by increasing complexity
of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that is rejected by early tests can be discarded quickly without
computing the other features

This is referred to as a cascade architecture

Figure credit: P. Viola

Cascading Classifiers

A classifier in the cascade is not necessarily restricted to a single feature

Figure credit: P. Viola

Figure credit: K. Grauman

Example: Face Detection Summary

Hard Negative Mining

Image From: Jamie Kang

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties
— These regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

This work argued that objects typically
— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Object Proposals

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals

Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps
	 1. Assume components and part locations given; compute appearance and

offset models
	 2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

