THE UNIVERSITY OF

0(. ‘
e STANY: //A"”{A\\ /. 'l//A /\ A
Ql’o Q, l/ \\v‘l:, 0 o ‘ 0
\\;\:“'// \\‘*‘2"1" “\\“’:"ll:;"/.\\\\\'\‘ .\‘\“'/{ \\'I’.\\‘ ‘\\\\'lll/:\v 'A\\ ‘\ //A ' A\\‘.
' V""‘»/ \\‘N&y»: > l' ‘ [) \ ". / \\\\’[1,
AR X »«»«‘0‘*‘" O o 0//.\"" i m 0% 0 QN \\\
SNy ww Sy O XYy N o "0'/ W " \\‘ 7 '
SRR DS o a«':.\ KX vv~’0»/ R M‘ \Q; ‘ “‘l XA 7,
SRS @ 201 \"t‘,f SO0 X0 Do B0 @ L Wiy Qs QR i S % 0/// «'r .00 Vi \\,A’ “\‘/
Oﬁttzf‘\“\{ /'"/::“\‘"\!/4& AR "/,,‘,;(;“v&.%,zf.:}?(g’,’{(»’:‘ X 0,: 1 ": '~ X "‘*‘.A,‘A" "y’(:)‘\)?s;‘h ,v J:,//. \.,‘.‘.{}32’: \\‘: :’c», ‘ "‘ ze
)/ 3 0 u 4 "“} A % »‘”,: % 3 ’V'
$.l,'\“ ‘ "')/\\“}“ l()‘%“\\ /'/X%. //"';‘ .’,l‘) "//":':)\1"'/'/ ‘)(\‘:y‘ .?‘?“(:‘I(}Q:‘\ 0‘:)\’ 'A. 'A'V A"
A X ""*“\\\\/w Q0 -%'«o s e A‘ o Fi I \'7'" (g 0iide
> AN 9% » 0% A; DERA KD %
//’ O '//:"‘“}‘\\'l [‘\ .4/ X "‘\‘ \ \ "’m \‘:§\ A'/“‘\““‘f.""{‘)«"{\\
S «\\ RS
RS
7R

AV

BRITISH COLUMBIA

»‘\\.’
\.v ~\\.

\\\'”’,,““\ '// ”'ll W@
o \\\V/ = \V//'

Lecture 20: Neural Networks Intro

Menu for Today

Topics:

— Introduction to neural networks

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1-17.2

Reminders:

— Assignment 2 & 3 graded, grades posted (let us know If there are issues)

— Assignment S is due on today

— Assignment 6 will be out tonight or tomorrow

Assignment 5

Computing the error for optical flow:

Assuming you are computing optical flow of Image 1 -> Image 2
(note, this is not the same as Image 2 -> Image 1)

1. Warp the Image 1 using estimated optical flow.

2. Subtract warped Image 1 from Image 2 pixel-by-pixel, then compute L2
norm of the difference per pixel. Result is a W x H iImage of L2 norms.

3. Average the L2 norms over all pixels.

We will not grade based on the error itself ...

warning:

Our intro to Neural Networks will be light weight ...

... If you want to know more, take my CPSC 532S next year or CPEN 455

Recall: Linear Classifier

Deflnes a score function:

image features

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

02 |-05| 01 | 20 5l5

15| 13 | 21 | 0.0 231
0 |[025]| 02 |-0.3 24
14 2

L

1 1 -96.8 | cat score

32 | — | 437 .9 dog score

-1.2 61.95 ship score
b f(mzy Wa b)

Image Credit: loannis (Yannis) Gkioulekas (CMU)

1-vs-All Linear SVM

1-vs-All Linear SVM

1-vs-All Linear SVM

1-vs-All Linear SVM

1-vs-All Linear SVM

1-vs-All Linear SVM

One-hot Regression

An alternative solution is to regress to one-hot targets = 1 vs all classifiers

0

| class 2 =
N ‘automobile’
— | 0

| class 4 =

cat

One-hot Regression

An alternative solution is to regress to one-hot targets = 1 vs all classifiers

0
| class 2 =
N ‘automobile’
Why one-hot?
= 10
| class 4 =

cat

One-hot Regression

Transpose

% i iz iz) 1 0 0 ..|auto
B o w0 0 1
| L31 L32 X33 ...

One-hot Regression

Transpose
2
g) 1 0 0 ..|auto
2 W — (0 0 0 1 ..[cat
"

XW

|
~

One-hot Regression

Transpose

0 1 0 0 ..|auto
0 0 0 1 ..| cat

)
D
@)
®
S
(@)
S
e
®©
| -
e
+H

One-hot Regression

Transpose
2
g) 1 0 0 ..|auto
5) 0 0 1 ... | cat
"

Solve regression problem by Least Squares

L=|XW —TJ

One-hot Regression

Transpose
2
g) 1 0 0 ..|auto
5) 0 0 1 ... | cat
"

Solve regression problem by Least Squares

L=|XW —TJ

Why this maybe sub-optimal®?

One-hot Regression

‘. g ' 1
R . .n - L r ;
L l WA et "- L |

Solve regression problem by Least Squares

L=|XW —T|°

One-hot Regression

Solve regression problem by Least Squares

L=|XW —T]* 4+ AW/

Recall: Nearest Mean Classifier

FINnd the nearest mean and assign class:

Cq = argmin X, —

CIFAR10 class means:

airplane automobile bird deer horse ship truck

One-hot Regression

10 Neurons with simple-linear (identity) activation function
Transpose

7 auto
1 ...| cat

p—
o O
-

o O
-

)
D
@)
®
S
(@)
S
e
®©
| -
e
+H

XW =T

Solve regression problem by Least Squares

L= |XW —T|* + \|W|*

A Neuron

weights

activation function

Y output

&

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (RelLLU)

A Neuron

weights

activation function

Y output

&

N
y=17r (szl‘z an b)
i=1

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (RelLLU)

Recall: Linear Classifier

Deflnes a score function:

image features

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

02 |-05| 01 | 20 5l5

15| 13 | 21 | 0.0 231
0 |[025]| 02 |-0.3 24
14 2

L

1 1 -96.8 | cat score

32 | — | 437 .9 dog score

-1.2 61.95 ship score
b f(mzy Wa b)

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Aside: Inspiration from Biology

Figure credit: Fei-Fel and Karpathy

L ()

*@® synapse
axon from a neuron ™
. WoL

impulses carried dendrite \\

toward cell body N,
, branches cell body f (Z wiT; + b)

dendrites , of axon w1 Z il ;
. - W; T; >
\ (_— i e output axon

\ / axon st

nucleus st A i R, ?ctl\/tgtlon
A > Wo T unction
¢/ [\ '\ impulses carried

away from cell body
cell body

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by biology.

But they certainly are not a model of howkthe brain works, or even how neurons
WOTrK.

Activation Function: Sigmoid

f(x)=1/(1+¢e)

Figure credit: Fei-Fei and Karpathy

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0, 1]

Activation Function: ReLU (Rectified Linear Unit)

f(x) = max(0, x)

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning
Used In the most recent neural networks

A Neuron

weights

Activation function

(e.g., Sigmoid or ReLU function of weighted sum)

h @ Y output

A Neuron ... another way to draw It ...

weights

Y output

Activation function

(e.qg., Sigmoid or ReLU function of weighted sum)

A Neuron ... another way to draw 1t ...

(1) Combine the sum and activation function

a — E W, L4
weights p

y = f(a)
3 @

Y output

Activation function

(e.qg., Sigmoid or ReLU function of weighted sum)

A Neuron ... another way to draw 1t ...

(1) Combine the sum and activation function

a — E W, T4
weights p

y = f(a)

Y output

Activation function

(e.qg., Sigmoid or RelLU function of weighted sum)

(2) suppress the bias term (less clutter)
TN4+1 = 1

WN41 — b

A Neuron ... another way to draw 1t ...

(1) Combine the sum and activation function

a — E W, T4
weights p

y = f(a)

Y output

Activation function

(e.qg., Sigmoid or RelLU function of weighted sum)

(2) suppress the bias term (less clutter)
TN4+1 = 1

WN41 — b

Neural Network

Connect a bunch of neurons together — a collection of connected neurons

/O ‘One neuron,

O

Neural Network

Connect a bunch of neurons together — a collection of connected neurons
/“ 'two neurons’

Neural Network

Connect a bunch of neurons together — a collection of connected neurons

Neural Network

Connect a bunch of neurons together — a collection of connected neurons

O ‘four neurons’

Neural Network

Connect a bunch of neurons together — a collection of connected neurons

O ‘flve neurons’

Neural Network

Connect a bunch of neurons together — a collection of connected neurons

oA ~ <X
ISIOLAZ0) o

O

Neural Network

This network Is also called a Multi-layer Perceptron (MLP)

7>
O

I
b
D O

O
<
i o

X
W O

O
@
O

Neural Network: Terminology

'nput’ [ayer

Neural Network: Terminology

‘hidden’ layer

'nput’ [ayer

Neural Network: Terminology

‘hidden’ layer
'Input’ layer ‘output’ layer

Neural Network: Terminology

m y N -
éﬁx
I Y}\
O O O

Neural Network: Terminology

O O O

Neural Network

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

output layer

iInput layer

hidden layer Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

Neural Network

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

output layer

iInput layer

hidden layer Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping

2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Neural Network

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

output layer

iInput layer

hidden layer Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

Neural Network

Note: each neuron will have its own vector of weights and a bias, its easier to think

of all neurons in a layer as a single entity with a matrix of weights (size = number of
iNnputs X number of neurons) and a vector of biases (size = number of neurons)

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

Neural Network

Note: each neuron will have its own vector of weights and a bias, its easier to think

of all neurons in a layer as a single entity with a matrix of weights (size = number of
iNnputs X number of neurons) and a vector of biases (size = number of neurons)

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

Activation Function

Why can’t we have linear activation functions”? Why have non-linear activations”

7>
O

N7
b

O
<
i o

X
W O

O
@
O

Activation Function

'57 — f(X, W17W27 b17 b2) — 0 (W§2X4)O_ (WYLXS)X ™ bg4)) T bgz))

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

Activation Function

'57 — f(X, W17W27 b17 b2) — 0 (W§2X4)U (WYLXS)X ™ b§4)) T bgz))

_ W§2X4) (W§4X3)X—|—b§4)) —|—b§2>

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

Activation Function

'57 — f(X, W17W27 b17 b2) — 0 (W§2X4)U (WYLXB)X ™ b§4)) T bgz))
= W (W% 4 b)) 4+ b

_ W§2><4)W§4>‘<3)X n W§2x4)b§4) n b§2)

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

Activation Function

'57 — f(X, W17W27 b17 b2) — 0 (W§2X4)U (WYLXB)X ™ b§4)) T bgz))
= W (W% 4 b)) 4+ b

_ W§2><4)W§4>‘<3)X n W§2x4)b§4) n b§2)

W>(k2><3) b(2)

output layer
iInput layer

hidden layer Figure credit: Fei-Fei and Karpathy

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

The guarantee is that by using enough hidden neurons we can always find a
neural network whose output g(z) satisfies |g(z) — f(x)| < € for an arbitrarily
small €

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

1 N Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

1 N Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

. A Output from top hidden neuron

b = -40

.

K

/

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. A Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. A Output from top hidden neuron

Location of the step? b = -40

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. /‘\ Output from top hidden neuron
Location of the step? b=-40
b)
S = w = 1007~
£ / (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function

. A Output from top hidden neuron
Location of the step? s = 0.40
b \
S = A
W0 -
Z (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

> AN Weighted output from hidden layer

) N:O-V T
v NS w, = 1.2

A -

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

5 A Weighted output from hidden layer

. £

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

AN Weighted output from hidden layer

/
\

-

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

5 AN Weighted output from hidden layer

040

/060 =~)
/

\
\ /’

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

3 A Weighted output from hidden layer

|:,0’ | 'O\:‘ - | |
> h=-1.3 2 Riemann sum approximation

l 0.2 a
;jj::=::< ‘_ h=-1.6 :1: \A

\

4 1 | = D
I., .I, ':/" ‘\\‘ l.v -Il

,‘ | Average deviation: 0.39
\ 0.6) Success!

- | Reset

:‘:ﬁ::zzzij; h=-1.2

(08)
>~ h=1.0

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

t Riemann sum approximation

A

-
B
R
4
4
e

"

m

Light Theory: Neural Network as Universal Approximator

Conditions needed for proof to hold: Activation function needs to be well

defined
m11_):0[;<> a(x) = A
A+#B

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Conditions needed for proof to hold: Activation function needs to be well

definea
mlgx;@ a(x) = A
A H7) = B
A+ B

Note: [his gives us another way to provably say that linear activation function

cannot produce a neural network which Is an universal approximator.

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Activation Function

Non-linear activation is required to provably make the Neural Net a universal
function approximator

Intuition: with RelLU activation, we
effectively get a linear spline approximation ¢
to any function. ey

Optimization of neural net parameters =]
finding slops and transitions of linear :-
pleces °

The qua‘lty of apprOXimatiOn depeﬂds on Number of linear Segmen’[s fOr
the number of linear segments ‘arge mpu’[dimension: Q(23)

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size d + 1 neurons, where d is the dimension of the input

space, can approximate any continuous function.
[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018 |

Neural Network

How many neurons?

Neural Network

P 442

How many neurons

Neural Network

How many neurons? 4+2 =06 How many weights®

O
@
O

Neural Network

How many neurons? 4+2 =06 How many weights®
B3x4)+ (4 x2) =20

O
@
O

Neural Network

How many neurons? 4+2 =06 How many weights®

(3% 4) + (4 x2) =20

N\
/o

N /
N\

\ ‘
e '
=X >
N7 Q‘

)

¢

4/

~

How many learnable parameters?

O
@
O

Neural Network

How many neurons? 4+2 =06 How many weights®
B3x4)+ (4 x2) =20

20+4+2=20
How many learnable parameters? bias terms

Neural Networks

Modern convolutional neural networks contain 10-20 layers and on the
order of 100 million parameters

Training a neural network requires estimating a large number of parameters

Training a Neural Network

L1
X - _
Input Image 2 _ 985
X3 f(x,W1,Wy by, bs) = | 0.86
0.28
L 4 Neural Network - T -
_/ (hidden layers) Prediction

(score)

Vectorized Input

Training a Neural Network

Output layer
(prob)

0(x)

9,

Input Image T _ 985 {0016
X3 f(x, W1, Wy, by,by) = 85232 v = 0.631
5y Neural Network - T - - 0.353
_/ (hidden layers) Prediction
(score)

Vectorized Input

Training a Neural Network

Output layer

(Prob)
0(X)
L1 /_\
Input Image L2 - —2.85 - 0.016
3 f(x, W1, W5, by,by) = | 0.86 y =| 0.631

3 0.28
X4 Neural Network - - i 0.353 _
_/ (hidden layers) Prediction

(score)

Vectorized Input

Input and output layers (size and form) are dictated by the problem,
INntermediate hidden layers have few constraints and can be anything

Training a Neural Network

Qutput layer
(prob)

0(x)

L1 /-\
L9

Input Image T _ 985 {0016
X3 f(x, W1, Wy, by,by) = 85232 v = 0.631
5y Neural Network - T - - 0.353
_/ (hidden layers) Prediction
(score)

Vectorized Input

Inference: o(f(x,---))

Training a Neural Network

Qutput layer
(prob)

0(x)

vl L(>y,y)
Input Image L2 T _985
X3 f(x,W1,Wa,by,by) = | 0.86
0.28 o
iy Neural Network - - class 3 =‘car
_/ (hidden layers) Prediction

(score)

Vectorized Input

Inference: o(f(x,---))

Learning: L(y,o(f(x,---)))

Training a Neural Network

/

& L(y,¥)
Input Image . - —2.85
- ’ 0.86
- 028 class 3 =‘car’
_/ ‘ Prediction Tue label
input layer (score) output layer rue laoe

hidden layer hidden layer

Inference: o(f(x,--+))

Learning: L(y,o(f(x,--+)))

Training a Neural Network

Input Image

®_

class 3 = ‘car’

35

output layer True label

input layer

hidden layer hidden layer

Inference: o(f(x,--+))

Learning: L(y,o(f(x,--+)))

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3
classes, with true class being class 3:

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3
classes, with true class being class 3:

f
C1 — —2.89
Co — 0.80

C3 — 0.28

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3
classes, with true class being class 3:

f

- 92
C1 39 ex 0.058

cg = 0.80 =—9 2.36

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3
classes, with true class being class 3:

f

_ Normalize to
c1 = —2.89 exD 0.058 «iymto 1 0.016

co =0.80 =—y 236 =—=19) ().631
ca = (.28 1.32 0.393

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3

classes, with true class being class 3:
f probabllity of a class

_ Normalize to
c1 = —2.89 exD 0.058 «iymto 1 0.016

co =0.80 =—y 236 =—=19) ().631
ca = (.28 1.32 0.393

Backpropagation
When training a neural network, the final output will be some loss (error)

function f .
. e’ Yi softmax function

— €.g. cross-entropy loss: £ = — Z yilog(y:) Yi = >, efv multi-class classifier

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3

classes, with true class being class 3:
f probabllity of a class

_ Normalize to
c1 = —2.85 ex 0.058 cumto - 0.016

co =0.80 =—y 236 =—=19) ().631
ca = (.28 1.32 0.393

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector x; and predicts scores for 3

classes, with true class being class 3:
f probabllity of a class

_ Normalize to
C1 = —2.89 exD 0.058 <umito 1 0.016

g =086 —> 236 —> 0.631 L = —1log(0.353)=1.04
ca = (.28 1.32 0.393

Backpropagation

When training a neural network, the final output will be some loss (error)
function -

— e.g. cross-entropy loss: £ = —) y;log(§;) Ui =

which defines loss for i-th training example with true class index y:; and f;
IS the |-th element of the vector of class scores coming from neural net.

We want to compute the gradient of the loss with respect to the network
parameters so that we can incrementally adjust the network parameters

Gradient Descent

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V £(W7 b) |W:Wk,b=bk

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V £(W7 b) |W:Wk ,b=Dby

3. Re-estimate the parameters

OL(W,b)
Wk_|_1 — Wk —)\
OW W=W, . b=Dby
0L(W,b
bk_|_1 — bk —)\ (8]:))

W=W, .b=b,

*slide adopted from V. Ordonex

Gradient Descent

A 1. Start from random value of -

For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

3. Re-estimate the parameters

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of Wy, bg

For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

3. Re-estimate the parameters

OL(W,b)
Wk_|_1 — Wk —)\
OW W=W, . b=Dby
0L(W,b
bk_|_1 — bk —)\ (8]:))

W=W, .b=b,

*slide adopted from V. Ordonex

Gradient Descent

A - is the learning rate

1. Start from random value of Wy, bg

For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

3. Re-estimate the parameters

0L(W,b)
Wk_|_1 — Wk —)\
= OW W=W,.,b=by,
OL(W.b
b1 =bp—A (6’b)

W=W_,.b=b,

*slide adopted from V. Ordonex

Gradient Descent

‘Dtrain| ‘Dt’r'a’in|
Loss: L = Z Hyz_yZH: Z Hyfi_f(X%Wl?WQ?bl?bQ)H
1=1 1=1

output layer
iInput layer

hidden layer Figure credit: Fei-Fel and Karpathy

5/_ — f(X,W17W27 b17 b2) — g (WéQXéL)O_ (WYLXS)X _I_ b:([4)) _I_ ng))

Gradient Descent

‘Dtrain‘ ‘thr'ain|
Loss: L = Z Hyz_yZH: Z Hyfi_f(X’UWl?WZ)bl)bQ)H
1=1 1=1

Gradient Descent

0L(y,y
30y
0L(y.)
bi;=bi; — A
1, 1, 3b1,z
output layer
iInput layer
hidden layer Figure credit: Fei-Fei and Karpathy

Stochastic Gradient Descent

‘thr‘ain‘
Z [yz T f(X’i7W17W27b17b2)]2

1=1

o 9
0W]_,7/,] B 8W1,7J’]

Stochastic Gradient Descent

‘thr‘ain‘
Z [yz T f(X’i7W17W27b17b2)]2

1=1

o 9
GW]_,rL,] B 8W1,7J’]

Problem: For large datasets computing sum Is expensive

Stochastic Gradient Descent

‘thr'ain‘
0L 0
— E T ’L?“?H 7b7b °
OWi,: OWq,; 1 yi I 1, Wa, b1, bo)

Problem: For large datasets computing sum Is expensive

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Stochastic Gradient Descent

8[: 0 ‘thr'ain‘
— i — f(xi, W1, W3, by, by)]
OW1 ; OW1 ; ; i~ f(x : 2, b1, b2)

Problem: For large datasets computing sum Is expensive

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient?

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
8$7; -~ h—0 h

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
(%7; - h—0 h

Even better, we can use central differencing:

8@; -~ h—0 2h

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
(%7; - h—0 h

Even better, we can use central differencing:

8@; -~ h—0 2h

However, both of theses suffer from rounding errors and are not good enough
for learning.

h = 0.000001

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location
1;; - Matrix of all zeros, except for one 1 in (i,j)-th location

We can approximate the gradient numerically, using:

5’£(W, b) . E(W + h].z'j, b) — L(W, b) QE(W, b) . E(W, b + hlj) — [,(W, b)
~ lim ~ lim
Ow; ; h—0 h 0b; h—0 h

Even better, we can use central differencing:

OL(W.b) . L(W+hly b)— L(W +hly;,b) OLW.b) . L(W.,b+hl;)— L(W,b+hl;)
Dwi; ho 2h Ob; hso 2h

However, both of theses suffer from rounding errors and are not good enough
for learning.

h = 0.000001

Symbolic Differentiation y = f01,22) = In(z1) + 2122 — sin(2)

Input function is represented as computational graph (a symbolic tree)

Sory TR
w f’fzﬁ@m ~(o0)—v

\mp\ements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule

(@) +9e) _ Afle) | dylw) dUl)-gw) _df@) o dee) (o) _ dflg) dgle)
dx de = dw dx dx dx dx dg(x) dx

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Symbolic Differentiation y = f(e1,22) = In(21) + 2122 — sin(as)

Input function is represented as computational graph (a symbolic tree)

Sory TR
w @ﬁ@m ~(o0)—v

\mp\ements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule

d(f(z) +g(z)) df(z) dg(z) d(f(z)-g(x)) df() dg(z) d(f(g(z))) _df(g(x)) dg(z)

dx T dr | dw dx T dg 9(z) + f() dx dx ~ dg(a) dx

Problem: For complex functions, expressions can be exponentially large; also

difficult to deal with piece-wise functions (creates many symbolic cases)
*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Intuition: Interleave symbolic differentiation and simplification

Key ldea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

Success of deep learning owes A LOT to success of AutoDiff algorithms
(also to advances In parallel architectures, and large datasets, ...)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Each node is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from
topological sort.

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v =/tx.e2) =nle) e = sinlz)

1 _,‘ @\

2 ’ @ sin ‘ ‘_’ g Computational graph is governed by these equations
Vo = L1
Each node is an input, intermediate, or output variable U1 = L2
vy = In(vp)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(vy)

U5 = U2 + U3
Vg — Uy — U4y
Y = Vs

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

/
$2—'@W '—’ Y Computational graph is governed by these equations

Vo — X1
Each node is an input, intermediate, or output variable U1 = L2

vy = In(vg)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(vy)

U5 = U2 + U3
Vg — Uy — U4y
Y = Vs

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — X1
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — 41 2
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — X1
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vo = 41
Each node is an input, intermediate, or output variable U1 = L2

vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) v =/tm=)=

r1) + r122 — sin(xs)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

OO
@—'@ Sin ‘ ‘—'y

Forward Evaluation Irace:

f(2,5)
Vg — 41
Each node is an input, intermediate, or output variable bil = 49
vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - Uy 55 =10
topological sort. vy = sin(vy) sin(5) = 0.959

U5 = V2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Automatic Differentiation (AutoDiff) v =/tm=)=

r1) + r122 — sin(xs)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

OO
@—'@ Sin ‘ ‘—'y

Forward Evaluation Irace:

f(2,5)
Vg — 41
Each node is an input, intermediate, or output variable bil = 49
vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - Uy 55 =10
topological sort. vy = sin(vy) sin(5) = 0.959

U5 = V2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Automatic Differentiation (AutoDiff) v=/trez) =izt me: = sinlz)

SECASC ;@
(Do) @ (o) —

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = X9 ®
vo = In(vo) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(vy) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — Us — U4 10.693 + 0.959 = 11.652
Y= "Ve 11.652

AutoDiff - Forward Mode

f(2,5)
Vo = 41
V1 = T2 5
vy = In(vp) n() = 0.693
U3 = Vg - U1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Y = f(l'la 372) — ln(iUl) + X1To — SZR(:EQ)

Lets see how we can evaluate a derivative using
computational graph (DNN learning)

af(ajlv ZUQ)

axl (561:2,332:5)

We will do this with forward mode first, by
introducing a derivative of each variable node
with respect to the input variable.

AutoDiff - Forward Mode

N —>‘ \ @
ﬁ@—> @ (v)—

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,332 :5)

AutoDiff - Forward Mode

f(2,5)
Up = X1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

O
8371

AutoDiff - Forward Mode

f(2,5)
Up = X1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

O
8371

AutoDiff - Forward Mode

ww@ﬁ ()
SYAL

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oz,
Ovq
o0z,

AutoDiff - Forward Mode

ww@ﬁ ()
SYAL

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oz,
Ovq
o0z,

AutoDiff - Forward Mode

f(2,5)
Vo = L1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oxq
0vq
Ox1
0V
ox1

AutoDiff - Forward Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Forward Derivative Irace:

y:

f($17 33‘2)

= In(x

8f(£€1,£132)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

8?)0

Oy

anl

Oy

82}2

Oy

Chain Rule

AutoDiff - Forward Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

y = f(x1,22) = In(x

Forward Derivative Irace:

8f(£€1,£132)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

8?)0

Oy

anl

Oy

82}2

Oy

1 (%0
Vo 8%1

Chain Rule

AutoDiff - Forward Mode

B =2
SNQE=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = X9 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

y = f(x1,22) = In(x

1) + 122 — sin(xo)

Forward Derivative Trace: Of(x1,x2)
0T1 | (3,22,20=5)
6?]0
5’371 |
Ovq 0
8x1
0vs _ 1 Ovg 1/2*1=0.5
0xq vo 011
Chain Rule

AutoDiff - Forward Mode

N —>‘ \ @
ﬁ@—> @ (v)—

Forward Evaluation Irace:

f(2,5)
Vg — 41
V1 = I9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vs = sin(vr) sin(5) = 0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x1) + x122 — sin(xzs)

af(xlva)

axl (331:2,.7;2:5)

8?)0

Oy

anl

Oy

82}2

Oy

(%3

Oy

1 5”00

Vo 8$1

1/2*1=0.5

AutoDiff - Forward Mode

O
00 @ @

Forward Evaluation Irace:

f(2,5)
Vg — 41
V1 = I9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vs = sin(vr) sin(5) = 0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

y = f(x1,22) = In(x

Forward Derivative Irace:

1) + 122 — sin(xo)

8f(£€1,£132)

axl (331:2,.7;2:5)

8?)0

Oy

anl

Oy

82}2

Oy

(%3

Oy

1 5”00
N Vo 8$1

Product Rule

1/2*1=0.5

Y = f(3317 372) — ln(il?l) + X1To — Sfm(:vg)

AutoDiff - Forward Mode

- _» ‘ Forward Derivative Irace: Of(z1,)
@ 0z (21=2,22=5)
\ Ovg
$2—>@ @ >‘—> Y 6’—:1:1 |
SN Ovq
Forward Evaluation Irace: % -~ 1 dug et oe
£(2,5) O0ri1 wvg 0xq
Ovs 0vg 0vq
Yo = T 5 a—aﬁza—xl-vl—l—vo-a—xl
V1 = X9 5 Product Rule
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = VU2 + VU3 0.693 + 10 = 10.693
Vg — Us — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

Y = f(3317 372) — ln(il?l) + X1To — Sfm(:vg)

AutoDiff - Forward Mode

- _» ‘ Forward Derivative Irace: Of(z1,)
@ 0z (21=2,22=5)
\ Ovg
$2—>@ @ >‘—> Y 6’—:1:1 |
SN 0vq
Forward Evaluation Irace: % -~ 1 dug et oe
£(2,5) O0ri1 wvg 0xq
Ovs 0vg 0vq
Vo = X1 5 a—mza—aﬁ-ervo-a—xl 1"54+2*0=5
V1 = X9 5 Product Rule
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y = Vs 11.652

AutoDiff - Forward Mode

xlﬁ‘\ @\

@
ST

Forward Evaluation Irace:

() —

Yy — f($1,33‘2)

= In(x

1) + 122 — sin(xo)

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

6?)0
5,—371 1
82}1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg 0vy
5»—331:3—%'@1_'_@0'8—331 16 +2"0=5
Oovy Ovy
S _ a—ml(:()s(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—51;1 = 9t o 55-0=5.5
Oy Oue
a_xl _ a_xl 5.5

AutoDiff - Forward Mode

We now have:

8f($17$2)

a$1 (5131:2,332:5)

= 9.9

Y = f(wla 372) — ln(il?l) + X1To — Szn(xQ)

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

8?}0
a_wl 1
8@1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg Juy
3—1.1:@—3;1.014_@0.8—@ 16 +2"0=5
Oovy Ovy
S _ 8—11;1008(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—;1;1 = 9t o 55-0=5.5
Jy Oug
Oy 5.5

5’331_8—231

AutoDiff - Forward Mode

We now have:

8f($17$2)

a$1 (5131:2,332:5)

Still need:

af(xlv 513‘2)

axQ (5131 :2,5132:5)

= 9.9

Y = f(wla 372) — ln(il?l) + X1To — Szn(xQ)

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

8?}0
a_wl 1
8@1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg Juy
3—1.1:@—3;1.014_@0.8—@ 16 +2"0=5
Oovy Ovy
S _ 8—11;1008(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—;1;1 = 9t o 55-0=5.5
Jy Oug
Oy 5.5

5’331_8—231

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n, = 1) Why?

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

Automatic differentiation in reverse mode computes all gradients in 12 backwards
passes (so for most DNNs in a single back pass — back propagation)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiif - Reverse Mode

"—OLE @
\ e @ @
Dk

Forward Evaluation Irace:

Traverse the original graph in the reverse
£(2,5) topological order and for each node In the

’ original graph introduce an adjoint node, which
Vo = X1 2 computes derivative of the output with respect
to the local node (using Chain rule):

V1 = T2 O

vz = In(vo) n(2) = 0.693

V3 = Vg * U1 2Xx5=10

Vg = sin(vl) sin(®) = 0.959 b, = ayj _ Z a’Ulc ayy Z avk o
Us = VU2 T U3 0.693 + 10 = 10.693 dv; kepa(i) Ov; 87)16 kepal(i) Jv;

Vg — Us — U4 10.693 + 0.959 = 11.652

Y = Ve 11.652 “local” derivative

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

__ Ovg
Uy — Uﬁ—av
5
Oy
6 = —— 1

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— - 4 « <—y

Backwards Derivative Irace;

__ Ovg
Uy — UG_@U
5
Oy
6 = —— 1

AutoDiif - Reverse Mode

@ @ O
\ \ L9 4—@4 ”(_]4 < 4— y
. _, IR Backwards Derivative Irace:
2 Sin " — Y

Forward Evaluation [race:
f(2,5)
Vg — L1
V1 = I9 5
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = Vg + VU3 0.693 + 10 = 10.693 Ovg
Vs = Vg —=—— = Vg 1
Vg — Uy — U4y 10.093 + 0.959 = 11.652 O0vs
Y = s 11.652 o= 1
82)6

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = X9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Backwards Derivative Irace;

()—

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
N
|
S
@)

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
N
|
S
@)

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 = 1

AutoDiif - Reverse Mode

B _>’ \ @
L2 @ sin @ ' g

Forward Evaluation Irace:

xl_‘\ @\

Backwards Derivative Irace;

()—

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

0
@4_@6ﬁ:@6 (—1)
8”04
~_ 0Ovg _ .
Vs = Vg——7
5} 63?)5 6
Oy

c
)
|

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

0
@4_@6ﬁ:@6 (—1)
8”04
~_ 0Ovg _ .
Vs = Vg——7
5} 63?)5 6
Oy

c
)
|

@\

()—

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

TOsw @\

@_@/ @—s

Backwards Derivative Irace;

@ -

=~ o
| |
c c

@) Ot
|

~{

o

~—~
|

-

~—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

TOsw @\

@_@/ @—s

Backwards Derivative Irace;

@ -

=~ o
| |
c c

@) Ot
|

~{

o

~—~
|

-

~—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

c c
Ot H~
| |
> >
oy o
| |
s s
— ~—~
|
ek
~—

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

?72—?75(%2_?75 (1)

_ _ Ov _

v3:v5a—UZ=v5 (1)
OV _

@4—@68_0227}6 (—1)

0 = T6 228 — g - 1

5 6(%5 6

. 0y

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

?72—?75(%2_?75 (1)

_ _ Ov _

v3:v5a—UZ=v5 (1)
OV _

@4—@68_0227}6 (—1)

0 = T6 228 — g - 1

5 6(%5 6

. 0y

c
)
|

@\

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

Uy = Us = U5 - (1) 1x1 = 1

U3 =Us5— = U5 - (1) 1x1 = 1

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

1x-1 = -1

-~
o)
|
c
o
|
~{
@)
o

o ' 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

OO
R Oe=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

= = 5’?}3 | 8U4
: 382}1 | 02}1
~ 0 _
vQ:U5(%Z = U5 - (1)
~_ Ovs _
032053—2}2205 (1)
Ov ~
@4—@68_0222}6 (—1)
Bs = G528 = 5is - 1
5 6(%5 6
Oy
Vg — —

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
R Oe=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = T
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959
U5 = Vg + U3 0.693 + 10 = 10.693
Ve = Us — V4 10.693 + 0.959 = 11.652
Y = Ve 11.652

= = 5’?}3 | 8U4
: 382}1 | 02}1
~ 0 _
02205(%2 = U5 - (1)
~_ Ovs _
032053—2}2205 (1)
Ov ~
@4—@68_0227}6 (—1)
Bs = G528 = 5is - 1
5 6(%5 6
Oy
Vg — —

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = X1
V1 = T2 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

()—

Backwards Derivative Irace;

Wy 5,90
8”01 | 4801

= U5 - (1) 1x1 =1

— V3V + 1_}4608(1}1)

U3 = Us—=— = U5 - (1) 11 = 1

— = Vg - (—1) 1x-1 = -1

-
N
|
~4
OB

-~
o)
|
c
o
|
~{
@)
o

Io- ° 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = X1
V1 = T2 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

()—

Backwards Derivative Irace;

Wy 5,90
8@1 | 4801

= U5 - (1) 1x1 =1

= U3vUg + V4cos(v1) | 1.716

U3 = Us—=— = U5 - (1) 11 = 1

— = Vg - (—1) 1x-1 = -1

-
N
|
~4
OB

-~
o)
|
c
o
|
~{
@)
o

Io- ° 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

» Vg |« <—y

= = ng L= 8?)2 B i 1
0~ 381}0 | 281}() — sl 02 Vo
Ov Ov
V1 = ?73 avj | @48—1}11 = V3V + 1_}4608(”01)
Ov
’172 — ?758@5 — Uy - (].)
2
. _ Ov _
Vg = 058—2}5 = U5 - (1)
3
_ _ Ovg _
Uy = vGa—vi = vg - (—1)
_ dvg
Uy — /068_?]5: U6 1
_ oy
Vg — —

0.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

» Vg |« <—y

= = ng L= 8?)2 B i 1
0~ 381}0 | 281}() — sl 02 Vo
Ov Ov
V1 = ?73 avj | @48—1}11 = V3V + 1_}4608(”01)
Ov
’172 — ?758@5 — Uy - (].)
2
. _ Ov _
Vg = 058—2}5 = U5 - (1)
3
_ _ Ovg _
Uy = vGa—vi = vg - (—1)
_ dvg
Uy — /068_?]5: U6 1
_ oy
Vg — —

9.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

Automatic Differentiation (AUtoDIff) v = f@122) = (@) + 2122 — sin(a»)

AutoDift can be done at various granularities

Elementary function granularity: Complex function granularity:

Backpropagation Practical Issues

Input Layer Easier to deal with In vector form

L]
2nd Hidden Layer

1st Hidden Layer

Y

&
P

L

N

C
V.

NN

=
ot

Backpropagation Practical Issues
y = f(W,b,x) = sigmoid(W - x + b)

X ——

|
OO OO0

Backpropagation Practical Issues Tocal” Jacobians

(matrix of partial derivatives, e.g. size |x| x |y|)

y — f(W) b, X) — Sigmoid(W X b) “backprop” Gradient

X —

O0x Ox Oy

Ob 0b Oy

Backpropagation Practical Issues Tocal” Jacobians

(matrix of partial derivatives, e.g. size |x| x |y|)

y — f(W’ b, X) — W - x “backprop” Gradient

X —

O0x Ox Oy

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

"

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

"

We will need some labeled data

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

E Neural Network Class 1

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

::: Neural Network Class 2

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

E Neural Network Class 3

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages
What do we need to do”

E Neural Network Class 3

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages
What do we need to do”

o(Class 1)
E Neural Network p(Class 2)
o(Class 3)

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages
Now, lets build a network!

o(Class 1)
E Neural Network p(Class 2)
o(Class 3)

How many inputs should the network have”? How neuron outputs”?

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

"

Input Layer Output Layer

What else Is
missing for us to
train it?

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

"

Input Layer Output Layer Loss

Example: Let’s Build (world smallest) Neural Network

Lets create a neural network that will be able to differentiate (classity) these patterns

of simple 3x3 pixel iImages

"

Input Layer Output Layer Loss

J

r : 62’?21 o(w1,;T;+b1)
— —]o
: J 23:1 62?:1 o(w1,;T;+b1)

