

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 3: Image Formation (continued)

Menu for Today (September 11, 2024)

Topics:

– Lenses

- Human eye (as a camera)

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- **Next** Lecture: none

Reminders:

 Complete Assignment 0 (ungraded) by Wednsday, September 11 - Assignment 1 (graded) is out Wednsday, September 11

— Image as a function Linear filtering

Today's "fun" Example #1: Nudging

Today's "fun" Example #1: Nudging

Aerial view of the white stripes at the lake shore drive in Chicago.

Today's "fun" Example #1: Anchoring and Ordering

Champagne

CH18	NV	GREMILLET "Brut Selection"
CH31	NV	ERNEST RAPENEAU "Selection
CH12	NV	CHAMPAGNE ERNEST RAPEN
CH05	NV	DRAPPIER "Carte d'Or" - Cha
CH30	2007	ERNEST RAPENEAU VINTAGE
CH32	NV	ERNEST RAPENEAU "Premier
CH28	NV	DRAPPIER Brut Rose - Champ
CH29	2012	DRAPPIER "Millesime Except
CH11	2008	DRAPPIER " Cuvee Grande Se
CH39	NV	ERNEST RAPENEAU "Grande

Sparkling Wines

CH06	NV	IL CORTIGIANO - Prosecco Ex
CH17	NV	VALLFORMOSA "Clasic" Sem
CH24	NV	VEUVE MOISANS "Blanc de E
CH25	NV	VALDO - Prosecco Extra Dry
CH33	NV	VALDO "Origine" Rose - Ven
CH03	2012	CHATEAU MONTGUERET Sau
CH04	NV	CAVA MASET RESERVA BRU
CH14	NV	TRIVENTO "Brut Nature" - M
CH21	2015	CAMASELLA - Glera - Vaneto
CH02	2013	BRUT D'ARGENT ICE - Charde
CH01	NV	VALDO "ORO PURO" Proseco
CH40	NV	MAISON DARRAGON - AOC
CH09	NV	LOU MIRANDA ESTATE 'LEON

Rose Wines

PO03	2014	CASAL MENDES Rose - Baga
RH09	2014	LA VIE EN ROSE - Cinsault - L
RH69	2015	LES EMBRUNS "La Croix des
RH04	2015	LES MAITRES VIGNERONS DI
RH15	2015	MANON - COTES DE PROVEN
RH04M	2015	LES MAITRES VIGNERONS DI

Sweet Wines

AR33	2015	TRIVENTO "Birds & Bees" White - Mendoza	\$30
AR34	2016	TRIVENTO "Birds & Bees" Red - Mendoza	\$30
AU05	2015	DEAKIN ESTATE - Moscato - Murray Darling	\$30
AU12	2016	Chalk Hill - Moscato - McLaren Vale	\$30
AU68	NV	WESTEND ESTATE "Richland" - Moscato - New South Wales	\$30
AU107	NV	WESTEND ESTATE "Richland" - Pink Moscato - New South Wales	\$30

Champagne, Sparkling, Rose, Sweet Wines

- Champagne	\$65
on Brut" - Champagne	\$65
EAU - BRUT - Chardonnay/Pinot Noir/Pinot Meunier -	\$75
mpagne	\$78
- Chardonnay/ Pinot Noir - Champagne	\$80
Cru Brut" - Champagne	\$80
pagne	\$85
ion" - Champagne	\$98
endree" - Champagne	\$130
Reserve"- Magnum - Champagne	\$130
tra Dry - Veneto	\$30
i Seco - Cava	\$30
Blancs" - Loire Valley	\$30
- Treviso, Veneto	\$30
eto	\$30
Imur Sec Rose - Cabernet Franc - Loire Valley	\$32
T - Macabeo/Xarello/Parellada - Cava	\$32
endoza	\$32
	\$32
onnay - France	\$35
o Superiore - Veneto	\$36
/ouvray Brut - Loire Valley	\$38
NE' - Sparkling Shiraz - Barossa Valley	\$42
- Portugal	\$30
anguedoc	\$30
Saintes" - Sable de Camargue	\$30
ST TROPEZ - Cotes de Provence	\$32
ICE - Grenache/Cinsault/Syrah Provence	\$34
LA PRESQU'ILE DE SAINT TROPEZ - Grenache/Mourve	\$68
hite - Mendoza	\$30

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: **auto-focus** and **image stabilization**. No moving parts. Fast response. Minimal power consumption.

Video Source: <u>https://www.youtube.com/watch?v=2c6lCdDFOY8</u>

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: **auto-focus** and **image stabilization**. No moving parts. Fast response. Minimal power consumption.

Video Source: <u>https://www.youtube.com/watch?v=2c6lCdDFOY8</u>

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: <u>https://www.youtube.com/watch?v=NjLJ77luBdM</u>

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: <u>https://www.youtube.com/watch?v=NjLJ77luBdM</u>

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, Cognex signed a license agreement with Varioptic to

Video Source: <u>https://www.youtube.com/watch?v=EU8LXxip1NM</u>

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, Cognex signed a license agreement with Varioptic to

Video Source: <u>https://www.youtube.com/watch?v=EU8LXxip1NM</u>

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

To sum up: For a perfect **lambertian** surface reflected light is (1) amount and color of incident light -I(2) fraction of light being reflected (material) $-\rho_d$ (3) angle between the light and the surface (geometry) $-(\vec{i}\cdot\vec{n})$

Lambertian surface: $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho_d}{2}$

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction

Lecture 2: Re-cap Projection 3D object point $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ projects t

Perspective

Weak Perspective

Orthographic

to 2D image point
$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
 where

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

$$x' = mx$$

$$m = \frac{f'}{z_0}$$

$$y' = my$$

$$x' = x$$

$$y' = y$$

Lecture 2: Re-cap Reason for Lenses

blur in the image

A real camera must have a finite aperture to get enough light, but this causes

Solution: use a **lens** to focus light onto the image plane

Forsyth & Ponce (1st ed.) Figure 1.9

Focal Length: Property of the lens (geometry and refraction index)

Forsyth & Ponce (1st ed.) Figure 1.9

Forsyth & Ponce (1st ed.) Figure 1.9

Focal Length: Property of the lens (geometry and refraction index)

Depth of the point (P) in the world

Location of the imaging plane where the projection of this point (P) will be in focus

Forsyth & Ponce (1st ed.) Figure 1.9

$$\frac{1}{z'}$$

Focal Length: Property of the lens (geometry and refraction index)

Depth of the point (P) in the world

Pinhole Camera with a Lens

Perspective Projection: location in the image where a 3D world point projects

X′

V'

 γ'

Thin Lens Equation: depth of the imaging plane itself where this point will be in focus

$$= f' \frac{x}{z} \\ = f' \frac{y}{z}$$

$$\frac{1}{z} = \frac{1}{f}$$

Lens Basics

A lens focuses parallel rays (from points at infinity) at focal length of the lens Rays passing through the center of the lens are not bent

Lens Basics

Objects off the plane are blurred depending on the distance

Where would the focusing plane be for various positions of the object?

$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

Where would the focusing plane be for various positions of the object?

$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

Where would the focusing plane be for various positions of the object?

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

Objects further away than the focal length

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

Objects further away than the focal length

Where would the focusing plane be for various positions of the object?

Objects at 2 x focal length

Where would the focusing plane be for various positions of the object?

Objects at 2 x focal length

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

Objects at the focal length

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ - 2F -F

Objects **closer** than the **focal** length

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ - 2F -F

Objects **closer** than the **focal** length

Smaller aperture \Rightarrow smaller blur, larger **depth of field**

Depth of Field

Aperture size = f/N, \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Un-aberrated image

Image from lens with Spherical Aberration

Compound Lens Systems

A modern camera lens may contain multiple components, including aspherical elements

Vignetting

Vignetting in a two-lens system

Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Image Credit: Cambridge in Colour

Chromatic Aberration

- Index of **refraction depends on wavelength**, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Other (Possibly Significant) Lens Effects

- Chromatic aberration
- Index of refraction depends on wavelength, $\lambda,$ of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus
- Scattering at the lens surface
- Some light is reflected at each lens surface
- There are other geometric phenomena/distortions
- pincushion distortion
- barrel distortion
- etc

Lens **Distortion**

Fish-eye Lens

- Szeliski (1st ed.) Figure 2.13
- Lines in the world are no longer lines on the image, they are curves!

- The eye has an iris (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Fun Aside

https://io9.gizmodo.com/does-your-brain-really-have-the-power-to-see-the-world-5905180

George M. Stratton

- The eye has an iris (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

- The eye has an **iris** (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Two-types of Light Sensitive Receptors

Rods

75-150 million rod-shaped receptors **not** involved in color vision, gray-scale vision only operate at night highly sensitive, can responding to a single photon yield relatively poor spatial detail

Cones

6-7 million cone-shaped receptors color vision operate in high light less sensitive yield higher resolution

Slide adopted from: James Hays

Density of rods and cones

Slide adopted from: James Hays

Lecture Summary

— We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.

- Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

- Projection equations: **perspective**, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and **distortions**" persist (e.g. spherical aberration, vignetting)
- The human eye functions much like a camera

