

THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 3: Image Formation (continued)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (**September 11, 2024**)

Readings:

- **Today's** Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- **Next** Lecture: none

Reminders:

— Complete **Assignment 0** (ungraded) by Wednsday, **September 11** — **Assignment 1** (graded) is out Wednsday, **September 11**

Topics:

— **Lenses**

— Human **eye** (as a camera)

— Image as a **function** — **Linear filtering**

Today's "fun" Example #1: Nudging

Today's "fun" Example #1: Nudging

Aerial view of the white stripes at the lake shore drive in Chicago.

Today's "fun" Example #1: Anchoring and Ordering

Champagne

Sparkling Wines

Rose Wines

Sweet Wines

Champagne, Sparkling, Rose, Sweet Wines

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: auto-focus and image stabilization. No moving parts. Fast response. Minimal power consumption.

Video Source: https://www.youtube.com/watch?v=2c6ICdDFOY8

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: auto-focus and image stabilization. No moving parts. Fast response. Minimal power consumption.

Video Source: https://www.youtube.com/watch?v=2c6ICdDFOY8

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) - see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) - see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, **Cognex** signed a license agreement with Varioptic to

Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, **Cognex** signed a license agreement with Varioptic to

Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

 $\textbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho_d}{\sigma}$ π **Lambertian** surface:

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

(✓*i, i*)(✓*r, r*) the light and the surface (geometry) $(\vec{i} \cdot$ **To sum up**: For a perfect **lambertian** surface reflected light is (1) amount and color of incident light -1 (2) fraction of light being reflected (material) — (2) fraction of light being reflected (material) $-\rho_d$
(3) angle between the light and the surface (geometry) $-$ ⇡*L* = ⇢*d* ⇡ $\overline{\sqrt{i}}$ $i \cdot \vec{n}$ ⇢*d* \dot{t} *I*(~ *i ·*

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction

$$
x' = f' \frac{x}{z}
$$

\n
$$
y' = f' \frac{y}{z}
$$

\n
$$
x' = mx \t m = \frac{f'}{z_0}
$$

\n
$$
x' = x
$$

\n
$$
y' = y
$$

to 2D image point
$$
P' = \begin{bmatrix} x' \\ y' \end{bmatrix}
$$
 where

Lecture 2: Re-cap Projection $P =$ $\sqrt{2}$ 4 *x y z* $\overline{1}$ *proje* $rac{1}{2}$ 3D object point $P = |y|$ projects to 2D image point $P' = |y|$, where

Perspective

Weak Perspective

Orthographic

Lecture 2: Re-cap Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes

Solution: use a **lens** to focus light onto the image plane

blur in the image

Lecture 2: Re-cap Thin Lens Equation

Forsyth & Ponce (1st ed.) Figure 1.9

Lecture 2: Re-cap Thin Lens Equation

Focal Length: Property of the lens (geometry and refraction index)

Forsyth & Ponce (1st ed.) Figure 1.9

Forsyth & Ponce (1st ed.) Figure 1.9

Lecture 2: Re-cap Thin Lens Equation

Focal Length: Property of the lens (geometry and refraction index)

Depth of the point (P) in the world

Forsyth & Ponce (1st ed.) Figure 1.9

Lecture 2: Re-cap Thin Lens Equation

Focal Length: Property of the lens (geometry and refraction index)

imaging plane where the projection of this point (P) will be in focus

$$
\frac{1}{z'}-\frac{1}{z}
$$

Depth of the point

Pinhole Camera with a Lens

Perspective Projection: location in the image where a 3D world point projects

 \mathbf{V}'

 γ

 X'

Thin Lens Equation: depth of the imaging plane itself where this point will be in focus

$$
= f' \frac{x}{z}
$$

$$
= f' \frac{y}{z}
$$

$$
-\frac{1}{z}=\frac{1}{f}
$$

Lens Basics

A lens focuses parallel rays (from points at infinity) at focal length of the lens Rays passing through the center of the lens are not bent

Lens Basics

Objects off the plane are blurred depending on the distance

Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

 $1 \quad 1 \quad 1$ $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

 $\frac{1}{z'} - \frac{1}{z}$ = 1 *f*

Perspective Projection + **Thin Lens** Examples

Where would the focusing plane be for various positions of the object?

Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

 $\frac{1}{z'} - \frac{1}{z}$ = 1

Objects **further** away than the **focal length**

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z}$ = 1

Objects **further** away than the **focal length**

Where would the focusing plane be for various positions of the object?

Objects at 2 x **focal length**

Where would the focusing plane be for various positions of the object?

Objects at 2 x **focal length**

Where would the focusing plane be for various positions of the object?

 $\frac{1}{z'} - \frac{1}{z}$ = 1

Objects at the **focal length**

Where would the focusing plane be for various positions of the object?

Objects **closer** than the **focal length**

Where would the focusing plane be for various positions of the object?

Objects **closer** than the **focal length**

Where would the focusing plane be for various positions of the object?

Smaller aperture \Rightarrow smaller blur, larger depth of field

Depth of Field

Aperture size = f/N , \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Un-aberrated image

Image from lens with Spherical Aberration

Compound Lens Systems

A modern camera lens may contain multiple components, including aspherical elements

Vignetting

Vignetting in a two-lens system

Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Image Credit: Cambridge in Colour

Chromatic **Aberration**

- Index of **refraction depends on wavelength**, λ, of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Other (Possibly Significant) **Lens Effects**

- Chromatic **aberration**
- $-$ Index of refraction depends on wavelength, λ, of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus
- **Scattering** at the lens surface
- Some light is reflected at each lens surface
- There are other **geometric phenomena/distortions**
- pincushion distortion
- barrel distortion
- etc

Lens **Distortion**

Fish-eye Lens

- Szeliski (1st ed.) Figure 2.13
- Lines in the world are no longer lines on the image, they are curves!

Human Eye

- The eye has an **iris** (like a camera)
- **Focusing** is done by changing shape of lens
- When the eye is properly focused, light from an object outside the eye is imaged on the **retina**
- The retina contains light receptors called **rods** and **cones**

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Fun **Aside**

https://io9.gizmodo.com/does-your-brain-really-have-the-power-to-see-the-world-5905180

George M. Stratton

Human Eye

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

- The eye has an **iris** (like a camera)
- **Focusing** is done by changing shape of lens
- When the eye is properly focused, light from an object outside the eye is imaged on the **retina**
- The retina contains light receptors called **rods** and **cones**

Human Eye

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

- The eye has an **iris** (like a camera)
- **Focusing** is done by changing shape of lens
- When the eye is properly focused, light from an object outside the eye is imaged on the **retina**
- The retina contains light receptors called **rods** and **cones**

Two-types of **Light Sensitive Receptors**

Cones

 6-7 million cone-shaped receptors color vision operate in high light less sensitive yield higher resolution

-
-

Slide adopted from: James Hays

Rods

 75-150 million rod-shaped receptors **not** involved in color vision, gray-scale vision only operate at night highly sensitive, can responding to a single photon yield relatively poor spatial detail

Human Eye

Slide adopted from: James Hays

Density of rods and cones

Lecture **Summary**

— We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.

— **Lenses overcome limitations** of the pinhole model while trying to preserve it as a useful abstraction

- Projection equations: **perspective**, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and **distortions**" persist (e.g. spherical aberration, vignetting)
- The **human eye** functions much like a camera

