
Lecture 3: Image Filtering

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Goal

1. Learn how to mathematically describe 
image processing 

2. Basic building blocks



Image as a 2D Function
A (grayscale) image is a 2D function

grayscale image
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Image as a 2D Function
A (grayscale) image is a 2D function

What is the range of the 
image function?
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Image as a 2D Function
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Adding two Images
Since images are functions, we can perform operations on them, e.g., average
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Adding two Images
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Adding two Images

a = b

a > b

b < a

Question:

a > ba > b
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Adding two Images

It is often convenient to convert images to 
doubles when doing processing  



Adding two Images

This will save you a LOT of headache in homeworks: 

1. Convert to doubles 
2. (optionally) Normalize image to [0,1] range (by 

dividing by 255) 
3. Perform any computations needed 
4. (optionally) Undo normalization (by multiplying by 255) 
5. Clamp values between [0, 255]  
6. Convert to uint8



I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping
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What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”
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Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten
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Brightness v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel 
values stays the same  

Contrast: relative difference between pixel values becomes higher / lower
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Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten
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What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”
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Linear Neighborhood Operators (Filtering)
3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).
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Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
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Original Image

blur sharpen edge filter



Non-Linear Neighborhood Operators (Filtering)3.2 Linear filtering 113
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Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).
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Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
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Let               be another             digital image (our “filter” or “kernel”)

Linear Filters
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Compute a new image,              , as follows 
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Linear Filters

Y

X

For a give     and   , superimpose the 
filter on the image centered at I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5



Linear Filters

Y
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Compute the new pixel value,              , 
as the sum of             values, where each 
value is the product of the original pixel 
value in              and the corresponding 
values in the filter
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Linear Filters

X

Y

The computation is repeated for each
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)75

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Compute the new pixel value,              , as the sum of             values, where 
each value is the product of the original pixel value in              and the 
corresponding values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )

For a give     and   , superimpose the filter on the image centered at I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Linear Filters

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Let’s do some accounting … 

Linear Filters

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Let’s do some accounting … 

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Let’s do some accounting … 

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Let’s do some accounting … 

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Let’s do some accounting … 

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

O(n2) O(m4)m ⇡ nWhen     is fixed, small constant, this is           . But when             this is            .O(m4)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filters: Boundary Effects 



1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  
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* =

Notice decrease in brightness at edges
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A short exercise … 
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Note: if                                       then correlation = convolution.
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Preview: Why convolutions are important?

Basic operations in CNNs are convolutions (with learned linear filters) followed 
by non-linear functions.  

Note: This results in non-linear filters.

Who has heard of Convolutional Neural Networks (CNNs)? 
What about Deep Learning? 


