
Lecture 5: Image Filtering (continued)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (September 19, 2024)
Topics: 

—Linear Filtering recap + wrap up

—Efficient convolution, Fourier aside

— Non-linear Filters: 

Median, ReLU, Bilateral Filter


Readings: 

— Today’s Lecture:  Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4 


Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due September 26 

— Lectures 2-4 have been posted (on Canvas under Modules)

— Lecture Notes for Image Filtering by Friday



https://huggingface.co/spaces/nielsr/vilt-vqa
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

The course was smart, just not in the way van Osten thought! 

Today’s “fun” Example: Clever Hans



Clever DNN

Wilhelm  
von Osten 



Visual Question Answering

Is there zebra climbing the tree? 

AI agent Yes
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Lecture 4: Re-cap Linear Filters Properties

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))
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(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )
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⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Shift Invariance: Output is local (i.e., no dependence on absolute position)



Smoothing with a box doesn’t model lens defocus well

— Smoothing with a box filter depends on direction

— Image in which the center point is 1 and every other point is 0 


Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics) 


The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects) 

— whenever the Central Limit Theorem applies 

Lecture 4: Re-cap Smoothing Filters



Lets talk about efficiency



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two 
functions, one a function only of x and the other a function only of y 


Both the 2D box filter and the 2D Gaussian filter are separable 


Both can be implemented as two 1D convolutions: 

— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa 


The 2D Gaussian is the only (non trivial) 2D function that is both separable and 
rotationally invariant. 



If a 2D filter can be expressed as an outer product of two 1D filters

Separability: How do you know if filter is separable? 
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Mathematically: Rank of filter matrix is 1 (recall rank is number of linearly 
independent row vectors) 

Separability: How do you know if filter is separable? 
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At each pixel,           , there are              multiplications
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Naive implementation of 2D Filtering:

Efficient Implementation: Separability
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Efficient Implementation: Separability
Naive implementation of 2D Filtering:

Separable 2D Filter:



Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is,


Taking logarithms of both sides, one obtains


Therefore.


Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to admission 

25
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Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is,


Taking logarithms of both sides, one obtains


Therefore.


Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to addition … silly I know 

z = xy

ln z = lnx+ ln y

z = expln z = exp(ln x+ln y)



Speeding Up Convolution (The Convolution Theorem) 

Gonzales & Woods (3rd ed.) Figure 2.39 

Similarly, some image processing operations become cheaper in a 
transform domain 



Speeding Up Convolution (The Convolution Theorem) 

Convolution Theorem:

Let 

then

where                  ,                 , and                  are Fourier transforms of            ,

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)
i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

and

At the expense of two Fourier transforms and one inverse Fourier transform,

convolution can be reduced to (complex) multiplication



Cost of FFT/IFFT for image:

Cost of FFT/IFFT for filter:  

Cost of convolution:


Speeding Up Convolution (The Convolution Theorem) 

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
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n⇥ n
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There are                                               pixels in 

I(X,Y )
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Total:                                                     multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2 logm)

O(n2 log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!



Lets take a detour …



What follows is for fun

(you will NOT be tested on this)



Fourier Transform (you will NOT be tested on this)

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you 
express this 

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images



What are “frequencies” in an image? 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)



Amplitude (magnitude) of Fourier transform (phase does not show desirable 
correlations with image structure) 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 

y-
fre

q

x-freq

+
-

0

- +0



Amplitude (magnitude) of Fourier transform (phase does not show desirable 
correlations with image structure) 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Observation: low frequencies close 
to the center

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Spatial frequency
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Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Image
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



First (lowest) frequency, a.k.a. average
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



+ Second frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



+ Third frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



+ 50% of frequencies
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)



Fourier Transform (you will NOT be tested on this)



Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Distance to the screen will change the field of view of your eye and, as a result, 
frequency spectra of the image being formed on your retina



Fourier Transform (you will NOT be tested on this)

Distance to the screen will change the field of view of your eye and, as a result, 
frequency spectra of the image being formed on your retina

As you come closer, higher frequencies come into mid-range  

As you move away, low frequencies come into mid-range  



… back from detour



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Low-pass Filtering = “Smoothing”?
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Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters? 
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Are all of these low-pass filters? 

Low-pass filter: Low pass filter filters out all of the high 
frequency content of the image, only low frequencies remain



Low-pass Filtering = “Smoothing”
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1
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frequency content of the image, only low frequencies remain
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Linear Filters: Properties 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling 



— Convolution is symmetric. That is,

Linear Filters: Additional Properties
Let     denote convolution. Let              be a digital image. Let F and G be 

digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )

Note: Correlation, in general, is not associative. 

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )



Associativity Example

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) = corr(B0, A0)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) 6= corr(B,A)
corr(A,B) = corr(B0, A0)

A0(x, y) = A(�x,�y)

1



— Convolution is symmetric. That is,

Linear Filters: Additional Properties
Let     denote convolution. Let              be a digital image. Let F and G be 

digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )

Note: Correlation, in general, is not associative. 

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )



Example: Two Box Filters

3x3 Box 3x3 Box

filter = boxfilter(3) 
signal.correlate2d(filter, filter,′ full′) 



Example: Two Box Filters
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Note, in this case you have to pad 
maximally until two filters no longer overlap



Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3) 
temp = signal.correlate2d(filter, filter,′ full′) 

signal.correlate2d(filter, temp,′ full′) 



Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters 
Convolving two filters of size              and             results in filter of size:m⇥m n⇥ n

More broadly for a set of      filters of sizes                 the resulting filter will 
have size:

mk ⇥mkK

<latexit sha1_base64="9tlGDXwciwOBPKDWXvTitJ7m4xQ=">AAAB/3icbVDLSgMxFL1TX7W+RgU3boJFaBHLjIi6LLjRXQX7gHYomTTThmYyQ5IRyljQX3HjQhG3/oY7/8ZM24VWDwTOPede7s3xY86UdpwvK7ewuLS8kl8trK1vbG7Z2zsNFSWS0DqJeCRbPlaUM0HrmmlOW7GkOPQ5bfrDy8xv3lGpWCRu9SimXoj7ggWMYG2krr1XEkfhsVtGHc1CqtCs7NpFp+JMgP4Sd0aK1fIDZKh17c9OLyJJSIUmHCvVdp1YeymWmhFOx4VOomiMyRD3adtQgc0yL53cP0aHRumhIJLmCY0m6s+JFIdKjULfdIZYD9S8l4n/ee1EBxdeykScaCrIdFGQcKQjlIWBekxSovnIEEwkM7ciMsASE20iK5gQ3Pkv/yWNk4p7Vjm9MWlcwxR52IcDKIEL51CFK6hBHQjcwxO8wKv1aD1bb9b7tDVnzWZ24Resj2+HdpSk</latexit>

(n+m� 1)⇥ (n+m� 1)

<latexit sha1_base64="qw89m2zjKtu52PaePZJvpyNWqtc="></latexit> 
m1 +

KX

k=2

(mk � 1)

!
⇥
 
m1 +

KX

k=2

(mk � 1)

!



Gaussian: An Additional Property

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)

G�(x) Gp
2�(x)

Let     denote convolution. Let              and              be be two 1D Gaussians⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = Gp

�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian 

Special case: Convolving with             twice is equivalent to 



Non-linear Filters 

We’ve seen that linear filters can perform a variety of image transformations

— shifting

— smoothing 

— sharpening 


In some applications, better performance can be obtained by using non-linear 
filters. 


For example, the median filter (which is a very effective de-noising / smoothing 
filter) selects the median value from each pixel’s neighborhood. 




Median Filter

Take the median value of the pixels under the filter:
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Median Filter

Take the median value of the pixels under the filter:

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

13

Output



Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and 
pepper’ noise or ’shot’ noise)


The median filter forces points with distinct values to be more like their neighbors 

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png


Bilateral Filter

An edge-preserving non-linear filter 


Like a Gaussian filter: 

— The filter weights depend on spatial distance from the center pixel 
— Pixels nearby (in space) should have greater influence than pixels far away 


Unlike a Gaussian filter: 

— The filter weights also depend on range distance from the center pixel 
— Pixels with similar brightness value should have greater influence than pixels 
with dissimilar brightness value 



Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y )

(x, y)

(with appropriate normalization)

Bilateral Filter



Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
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2⇡�

exp�
x2
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exp�
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(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

Bilateral Filter



Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
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2⇡�

exp�
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Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

domain 

kernel

range 

kernel

Bilateral Filter



I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

image
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Images from: Durand and Dorsey, 2002 




Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong




Slide Credit: Alexander Wong


Original Image After 5 iterations of Bilateral Filter 

Bilateral Filter Application: Cartooning



Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive 
noise and blur 


But there are problems with flash images: 
— colour is often unnatural 
— there may be strong shadows or specularities 


Idea: Combine flash and non-flash images to achieve better exposure and 
colour balance, and to reduce noise 




Bilateral Filter Application: Flash Photography
System using ‘joint’ or ‘cross’ bilateral filtering: 

’Joint’ or ’Cross’ bilateral: Range kernel is computed using a separate 
guidance image instead of the input image 

Figure Credit: Petschnigg et al., 2004 



Aside: Linear Filter with ReLU 

Result of:       Linear Image Filtering After Non-linear ReLU



Summary
We covered two three non-linear filters: Median, Bilateral, ReLU  


Separability (of a 2D filter) allows for more efficient implementation (as two 
1D filters) 


Convolution is associative and symmetric 

Convolution of a Gaussian with a Gaussian is another Gaussian 


The median filter is a non-linear filter that selects the median in the 
neighbourhood 


The bilateral filter is a non-linear filter that considers both spatial distance 
and range (intensity) distance, and has edge-preserving properties 


