THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 9: Edge Detection

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (october 2, 2024)
Topics:

— Edge Detection — Image Boundaries
— Canny Edge Detector

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2

Reminders:

— Assignment 2: Scaled Representations, Face Detection and Image Blending

— Quiz 2 will be released Monday

— Lecture videos — stay tuned for some changes on Canvas



Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
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Today’s “fun” Example: Colour Constancy

— Some people see a white and gold dress.
— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

¥
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https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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Today’s “fun” Example: Colour Constancy

— Some people see a white and gold dress.
— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

Two pieces Average  The basic pattern
of the dress colors of the dress

-
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Today’s “fun” Example: Colour Constancy

IS THE DRESS IN SHADOW? THE DRESS IN THE PHOTO IS THE DRESS IN BRIGHT LIGHT?

If you think the dress is in shadow, If the photograph showed more of the If you think the dress is being washed
your brain may remove the blue cast room, or if skin tones were visible, out by bright light, your brain may
and perceive the dress as being white  there might have been more clues perceive the dress as a darker blue
and gold. about the ambient light. and black.

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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Lecture 8: Re-cap Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales
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Lecture 8: Re-cap Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales
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Lecture 8: Re-cap Scaled Representations

Gaussian Pyramid

—Each level represents a low-pass filtered image at a different scale
—Generated by successive Gaussian blurring and downsampling

— Useful for image resizing, sampling

Laplacian Pyramid

—Each level is a band-pass image at a different scale

— Generated by differences between successive levels of a Gaussian Pyramid

—Used for pyramid blending, feature extraction etc.



-rom lemplate Matching to Local Feature Detection
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rom Iemplate Matching to Local Feature Detection
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-rom lemplate Matching to Local Feature Detection

— Move from global template matching to local template matching
— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners



Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)




What Causes Edges”’

e Depth discontinuity

e Surface orientation
discontinuity

e Reflectance
discontinuity (i.e.,
change in surface
material properties)

e Jllumination
discontinuity (e.qg.,
shadow)

Slide Credit: Christopher Rasmussen
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Recall, for a 2D (continuous) function, f(x,y)
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Estimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

A (discrete) approximation is (central difference):

0f F(X+1,Y)-F(X—-1,Y)
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Estimating Derivatives (most common)

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
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A (discrete) approximation is (forward difference):
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Estimating Derivatives (most common)

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
Ox _e—>0 €

A (discrete) approximation is (forward difference):

o0f F(X+1Y)-F(X,Y)
0xX AX

Differentiation Is linear and shift invariant, and therefore can be implemented as a
convolution
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Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right



Estimating Derivatives

0
A similar definition (and approximation) holds for a—‘g
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Example 1D

0.5 oo

0.4
0.3

0.7 ®

Signal 0.5 05 05 04 03 02 02 02 0.35 0.5
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)




Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Note: visualized by adding 0.5/128

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)




Estimating Derivatives

Derivative in X (i.e., horizontal) direction
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)




A Sort Exercise

Use the “first forward difference” to compute the image derivatives in X and Y

directions.
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A Sort Exercise: Derivative in X Direction

Use the “first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
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A Sort Exercise: Derivative in Y Direction
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A Sort Exercise: Derivative in Y Direction
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directions.
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Estimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y ) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.



Estimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y ) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.
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Estimating Derivatives

Image noise tends 1o result In pixels not looking exactly like their neighbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.



Smoothing and Differentiation

Edge: a location with high gradient (derivative)
Need smoothing to reduce noise prior to taking derivative
Need two derivatives, in x and y direction

We can use derivative of Gaussian filters
— because differentiation is convolution, and
— convolution Is associative -

Let ® denote convolution

DRGIX,Y)=(D2G)®I(X,Y)




1D Example

Lets consider a row of pixels In an iImage:

1(X, 245)
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Where is the edge”



1D Example: Derivative

Lets consider a row of pixels In an iImage:

T(X,245) Lot o

01(X,245) :
ox

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”



1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

Sigma = 50
I(X,245) Bl .. . A T N T —
Z | |
T d

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

Sigma = 50
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1D Example: Smoothing + Derivative (efficient)

Lets consider a row of pixels In an iImage:

.................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel
i
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Partial Derivatives of Gaussian

0.15 - . : ey i 0.15 -
0.4 -

0.05 -

Slide Credit: Christopher Rasmussen



Gradient Magnitude

Let I(X,Y) be a (digital) image

Let I, (X,Y)and I,(X,Y) be estimates of the partial derivatives in the x and ¥y
directions, respectively.

Call these estimates I, and I, (for short) The vector |1, I,|is the gradient

The scalar \/ 12 + [y2 'S the gradient magnitude



Image Gradient

The gradient of an image:

V=
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The gradient of an image:

V=




Image Gradient

The gradient of animage: V f = Jf IOf

71 = [o.5

The gradient points In the direction of most rapid increase of intensity:



Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)



Image Gradient

The gradient of animage: V f = Jf IOf

vr=[o.4

The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)



Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:



Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude: ||V f|| = \/ (a;’;) + (% )



Image Gradient

The gradient of animage: V f = of Jf
- i
By looking at the gradient magnitude we can reason about the

strength of the edge and by looking at the gradient direction we can
reason about the direction of the edge

L Yyl

The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:



Image Gradient

The gradient of animage: V f = of Jf
- i
By looking at the gradient magnitude we can reason about the

strength of the edge and by looking at the gradient direction we can
reason about the direction of the edge

L Yyl

The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude: ||V f|| = \/ (33";) + (% )



Forsyth & Ponce (2nd ed.) Figure 5.4

Increased smoothing:

— eliminates noise edges

— makes edges smoother and thicker
— removes fine detall



Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. " 10 1
—2 0 2
2. Threshold to obtain edges -1 01

Original Image Sobel Gradient Sobel Edges
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Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first
forward differencing). This is more accurate.

2. Threshold to obtain edges
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Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. " 10 1
—2 0 2
2. Threshold to obtain edges -1 01

Thresholds are brittle, we can do better!



Comparing Edge Detectors



Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges
Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge
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Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach

Gradient Magnitude
Threshold

Detection

Good

Localization

Poor

Single Resp

Poor

Limitations

Results in Thick
Edges




Two Generic Approaches for Edge Detection

y d i(r
dr
I Threshold

X




Two Generic Approaches for Edge Detection

P

X

Two generic approaches to edge point detection:
— (significant) local extrema of a first derivative operator
— ZEero Ccrossings of a second derivative operator




Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach
Steps:
1. Gaussian for smoothing

2. Laplacian (Vv?) for differentiation where

02 (x,y) | &f(a
Vif(z,y) = 6,(;2 v) | 5,(;2 Y)

3. Locate zero-crossings in the Laplacian of the Gaussian ( V2G' ) where

—1 [ z*4y* 22442
VQG(x,y) — 27_‘_0_4 2 > exp 202

O



Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V4G )

... with 1ts characteristic “Mexican hat” shape



1D Example: Continued

Lets consider a row of pixels In an iImage:

T(X,245) Bl o _

1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. ............ ... 1 . . i, a
v 2 G 2 operator
10_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) I T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge” /ero-crossings of bottom graph



Marr / Hildreth Laplacian of Gaussian
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Marr / Hildreth Laplacian of Gaussian

Zero Crossings Scale (o)
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Assignment 1: High Frequency Image

original smoothed original - smoothed
(5x5 Gaussian) (scaled by 4, offset +128)
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Assighment 1: High Frequency Image

Laplacian of Gaussian
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Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach Detection Localization | Single Resp Limitations

Gradient Magnitude Results in Thick
Threshold Gooa Poor Poor Fdges

Sobel

Zero-crossings of 2nd Smooths

Derivative (LoG) Gooa Gooa Gooa Corners

Marr / Hildreth




Comparing Edge Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Sobel

Marr / Hildreth

Canny

Approach

Gradient Magnitude

Detection

Good

Localization

Poor

Single Resp

Poor

Limitations

Results in Thick

Threshold Edges
Zero-crossings of 2nd Smooths
Derivative (LoG) Gooa Gooa Gooa Corners
Local extrema of 1st Best Good Good

Derivative




Example: Edge Detection

fllter
response

Question: How many edges are there?

Question: \What is the position of each edge”?
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Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds

— Accept all edges over low threshold that are connected to edge over high
threshold



Canny Edge Detector

ook at the magnitude of the smoothed gradient |V

\i

Non-maximal suppression (keep points where |V1| is a maximum in directions =V I )

[ Canny 1986 ]



Non-maxima Suppression

Idea: suppress near-by similar detections to obtain one “true” result
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Detected template Correlation map

Slide Credit: Kristen Grauman
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Non-maxima Suppression

Gradient magnitude

Gradient
direction

Forsyth & Ponce (1st ed.) Figure 8.11

Select the iImage maximum point across the width of the edge



Non-maxima Suppression

Value at g must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left
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Non-maxima Suppression

Value at g must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left




Example: Non-maxima Suppression

courtesy of G. Loy

Non-maxima

Original Image Gradient Magnitude Suppression

Slide Credit: Christopher Rasmussen



Forsyth & Ponce (1st ed.) Figure 8.13 top
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Forsyth & Ponce (1st ed.) Figure 8.13 top -igure 8.13 bottom let
Fine scale (o = 1), high threshold
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Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle
Fine scale (o = 4), high threshold



Forsyth & Ponce (1st ed.) Figure 8.13 top

109

Figure 8.13 bottom right
Fine scale (o = 4), low threshold
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Linking Edge Points
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Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point iIs an edge point. [ake the normal to the gradient at
that point and use this to predict continuation points (either r or s)



Linking Edge Points

gradient magnitude > kp;qn

o ® ® ® — definitely edge pixel

r kiow < gradient magnitude < kp;qp,
® - — maybe an edge pixel

Gradient

< osradient magnitude < Kj,,,
e ¢ e — definitely not edge pixel
@ ® & @

Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point iIs an edge point. [ake the normal to the gradient at
that point and use this to predict continuation points (either r or s)



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis
Hysteresis: A |lag or momentum factor

Idea: Maintain two thresholds knign and Kiow
— Use knign to find strong edges to start edge chain
— Use kiow to find weak edges which continue edge chain

Typical ratio of thresholds is (roughly):




Canny Edge Detector

Original
lmage

Strong
Edges

courtesy of G. Loy

Strong +
connected
Weak Edges

Weak
Edges



How do humans perceive boundaries”?’

Edges are a property of the 2D image.

It Is Interesting to ask: How closely do image edges correspond to
boundaries that humans perceive to be salient or significant™



Traditional =dge Detection

Generally lacks semantics (i.e., too low-level for many task)



How do humans perceive boundaries”?’

"Divide the image into some number of segments, where the segments
represent 'things’ or 'parts of things’ in the scene. The number of segments is
up to you, as it depends on the image. Something between 2 and 30 is likely to
obe appropriate. It Is important that all of the segments have approximately equal

importance.”
(Martin et al. 2004)



How do humans perceive boundaries”?’
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Figure Credit: Martin et al. 2001



How do humans perceive boundaries”
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How do humans perceive boundaries”?’

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker
where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004



Boundary Detection

We can formulate boundary detection as a high-level recognition task

— [ry to learn, from sample human-annotated images, which visual features or
cues are predictive of a salient/significant boundary

Many boundary detectors output a probability or confidence that a pixel is
on a boundary



Boundary Detection: Example Approach

— Consider circular windows of radii r at each pixel (x, y)
cut In half by an oriented line through the middle

— Compare visual features on both sides of the cut

— |If features are very different on the two sides, the
cut line probably corresponds to a boundary

— Notice this gives us an idea of the orientation of the
boundary as well



Boundary Detection: Example Approach

— Consider circular windows of radii r at each pixel (x, y)
cut In half by an oriented line through the middle

— Compare visual features on both sides of the cut

— |If features are very different on the two sides, the
cut line probably corresponds to a boundary

— Notice this gives us an idea of the orientation of the
boundary as well

Implementation: consider 8 discrete orientations () and 3 scales (7



Boundary Detection:

Features:

— Raw Intensity

— Orientation Energy
— Brightness Gradient
— Color Gradient

— Jexture gradient
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Boundary Detection:

For each feature type
— Compute non-parametric distribution (histogram) for left side
— Compute non-parametric distribution (histogram) for right side

— Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that
outputs probabilities (Logistic Regression, SVM, etc.)



Example Approach

Boundary Detection
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Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



Summary

Physical properties of a 3D scene cause “edges” in an image:
— depth discontinuity

— surface orientation discontinuity

— reflectance discontinuity

— lllumination boundaries

Two generic approaches to edge detection:
— local extrema of a first derivative operator = Canny
— zero crossings of a second derivative operator = Marr/Hildreth

Many algorithms consider “boundary detection” as a high-level
recognition task and output a probability or confidence that a pixel Is on a
human-perceived boundary



