THE UNIVERSITY OF BRITISH COLUMBIA

Midterm Review

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Midterm Detalls

Closed book, (simple) calculators allowed

Format similar to posted practice problems
— Part A: Multiple-part true/false — no partial credit
— Part B: Short answer — partial credit

No coding questions

No complex math questions
— Meaning problems will not involve numbers that are difficult to work with
— You can leave answers in non-simplified form (e.q., sqrt(3))



Midterm Review: Study materials

Lectures 1-11 slides

Lecture notes

(Optional) readings from Szeliski / Forsyth and Ponce
Assignments 1-2

Practice quizzes on Canvas

Practice problems / solutions on Canvas



Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on
— Lightening condition

SOource
— Scene geometry
— Surface properties

— Camera optics

surface
element

Sensor (or eye) captures amount of light reflected from the object



Light

Behaves like particles” photons Behaves as waves”
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Gas Liquid  Solid

Wave-particle Duality: light exhibit particle or wave properties
according to the experimental circumstances

Sir Isaac Newton Christiaan Huygens



Spectral Power Distribution

Sunlight

Fluorescent
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The spectral distribution of energy in a light ray determines its colour
— e.d., You can have pure yellow or mixture of red and green

Surface reflects light energy according to a spectral distribution as well

The combination of incident and reflectance spectra determines observed colour
| scratchapixel.com |



Diffuse/Lambertian vs Specular/Mirror Surfaces
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Diffuse/Lambertian vs Specular/Mirror Surfaces
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(small) Graphics Review

Surface reflection depends on both the viewing (6, ¢»,) and illumination (6;, ¢;)
direction, with Bidirectional Reflection Distribution Function: BRDF (6;, ¢;, 60,,, ¢.)

SOUrce

-

Sensor
Lambertian surface:
surface
]3}{])]5‘((92.7 bi, 0y, @)) — % element | Lambert's Cosine Law
L="21G i)

Slide adopted from: loannis (Yannis) Gkioulekas (CMU)



(small) Graphics Review

Surface reflection depends on both the viewing (6», ¢») and illumination (6;, ¢;)
direction, with Bidirectional Reflection Distribution Function: BRDF (6;, ¢;, 60,,, ¢.)

source reflection
(0r, Pr)
normal SEeNnsor
A
ﬁ: (‘9?)7 ¢v)
%z
* surface
element

Mirror surface: all incident light reflected in one directions (6, ®») = (6, ¢r)

Slide adopted from: loannis (Yannis) Gkioulekas (CMU)



(small) Graphics Review

Surface reflection depends on both the viewing (6», ¢») and illumination (6;, ¢;)
direction, with Bidirectional Reflection Distribution Function: BRDF (6;, ¢;, 60,,, ¢.)
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surface
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Mirror surface: all incident light reflected in one directions (6, ®») = (6, ¢r)
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(small) Graphics Review

Surface reflection depends on both the viewing (6», ¢») and illumination (6;, ¢;)
direction, with Bidirectional Reflection Distribution Function: BRDF (6;, ¢;, 60,,, ¢.)

source reflection

(07, &)
(0:, ¢4)

-

normal Sensor
A
- ﬁ: /’ (9U7 ¢’U)
Lambertian surface: o -
y surface
BRDF(HM ¢727 9’07 ¢v) — % element

Mirror surface: all incident light reflected in one directions (6, ®») = (6, ¢r)

Slide adopted from: loannis (Yannis) Gkioulekas (CMU)



Diffuse vs Specular Surfaces




Diffuse vs Specular Surfaces
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Diffuse vs Specular Surfaces




Camera Obscura (latin for “dark chamber”)

illum 1n tabula per radios Solis, quam in ceelo contin-
git:hoc eft,fi in ceelo fuperior pars dehiquiii patiatur,in
radiis apparebit inferior deficere,vt ratio exigit optica.
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Sic nos exaéte Anno .1544 . Louanii eclipfim Solis
obferuauimus , inuenimusg; deficere paulé plus § dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January
24, 1544, He used this illustration in his book, “De Radio Astronomica et
Geometrica,” 1545. It is thought to be the first published illustration of a camera

obscura.

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”



Camera Obscura (latin for “dark chamber”)
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principles behind the pinhole camera ” amergbscura were first
mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)
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Sic nos exaéte Anno .1544 . Louanii eclipfim Solis
obferuauimus, inuenimusg; deficere paulé plus § dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January
24, 1544, He used this illustration in his book, “De Radio Astronomica et
Geometrica,” 1545. It is thought to be the first published illustration of a camera

obscura.

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”



Pinhole Camera (Simplified)

" 1s the focal length of the camera

.
|
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f!
T A < A
iImage pinhole object
plane

Note: In a pinhole camera we can adjust the focal length, all this will do Is change the size of the resulting image



Pinhole Camera (Simplified)

't Is convenient to think of the Image plane which is in from of the pinhole

T

T, X
f \
|
f’ f
| ‘ ? |
image pinhole image object
plane plane

What happens if object moves towards the camera’” Away from the camera?



Focal Length

For a fixed sensor size, focal length determines the field of view (FoV)
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Properties of Projection

— Points project to points
— Lines project to lines
— Planes project to the whole or half image

— Angles are not preserved

Degenerate cases
— Line through focal point projects to a point

— Plane through focal point projects to a line



Vanishing Points

Each set of parallel ines meet at a different point

— the point is called vanishing point

Sets of parallel lines one the same plane lead to collinear vanishing points

— the line is called a horizon for that plane

Good way to spot fake images

— scale and perspective do not work

— vanishing points behave badly



Perspective Projection

3D object point

L /
P = | y | projectsto 2D image point P = i,
. i i

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image
coordinate frame aligned with the camera coordinate frame



Summary of Projection Equations

L _
3D object point P = | y | projects to 2D image point P’ = .| where
- i

Perspective

Weak Perspective

Orthographic




Sample Question: Image Formation

True of false: A pinhole camera uses an orthographic projection.



Sample Question: Image Formation

True of false: For what imaging scenario would a weak perspective projection
be an accurate approximation of the imaging process?



Why Not a Pinhole Camera?

— |If pinhole Is too big then many directions
are averaged, blurring the image

| mm

— |If pinhole Is too small then diffraction
becomes a factor, also blurring the image

— Generally, pinhole cameras are dark,
because only a very small set of rays from a
particular scene point hits the image plane

().6mm .35 mm

— PInhole cameras are slow, because only a
very small amount of light from a particular
scene point hits the iImage plane per unit time

0.15 mm 0.07 mm

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987



Pinhole Model (Simplified) with Lens
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Lens Basics

A lens focuses parallel rays (from points at infinity) at focal length of the lens

Rays passing through the center of the lens are not bent

‘ from o0

N
To focus closer,
we have to move
the image plane back
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Lens Basics

L enses focus all rays from a (parallel to lens) plane in the world A 2z f

focal length

blur

In focus

Objects off the plane are blurred depending on the distance



Lens Basics

L enses focus all rays from a (parallel to lens) plane in the world A 2z f

focal length

blur

m/:f/

X

<

y' = f'7
<

f/ _ Z/
distance In focus
to imaging
plane

Objects off the plane are blurred depending on the distance



Lens Basics

1 1 1
L enses focus all rays from a (parallel to lens) plane in the world oy f
focal length

In focus

f/ — Z,/
distance
to imaging
plane

Objects off the plane are blurred depending on the distance



Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-lmage-Relations



Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

11 1 , 2 f
2z f 2+ f

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-lmage-Relations



Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

11 1 o 2 f
2z f _z—|—f
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https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-lmage-Relations



Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

1 1 1 ) 2 f
_— — A —
2z f 2+ f

e
1 2 3as —

- JF F FI|%I;
15

Objects further away than the
focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-lmage-Relations



Perspective Projection + Thin Lens Examples

Where would the focusing plane be for various positions of the object?

11 1 o 2f
_— — A —
2z f 2+ f
2f
— lim —

L’Hopital’s Rule

Objects further away than the
focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-lmage-Relations



Spherical Aberration

d’

P’

Forsyth & Ponce (1st ed.) Figure 1.12a



Vignetting

Image Credit: Cambridge in Colour



Chromatic Aberration

— Index of refraction depends on wavelength, A, of light
— Light of different colours follows different paths

— Therefore, not all colours can be In equal focus

White Light ;

Minimum Blur Spot

Image Credit: Trevor Darrell



| ens Distortion

Fish-eye Lens

Szeliski (1st ed.) Figure 2.13

Lines in the world are no longer lines on the image, they are curves!



Sample Question: Cameras and Lenses

True of false: Snell’s Law describes how much light is reflected and how much
passes through the boundary between two materials.



| Inear Filters

k k

I'X,Y)y= % » FIJ)I(X+iY +j)

j=—ki1=—k

output filter image (signal)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I' (X,Y), as the sum of m x m values, where
each value is the product of the original pixel value in I(X,Y’) and the
corresponding values in the filter



L Inear Filter Example
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I'(X,Y) = Z ZFIJ (X 4+, Y + )

1=—k1=—k

output filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

[(X,Y)

Image
| c PPl [TIITTILILITL[
FX,Y) ool o] [CRI LTI
filter o Jo fofsofsofsofsofsofo 0| [ [ [ [ L 1 [ [
1 o0 o [o [sofsofsofsofsofo [o| [ [ [ | | [ [ ||
5 o Jo [o [sofoisofsofolo 0| [T | [ [ I | [ [
o0 Jo [o [sofsofsofsofsoo [o| [ [ [ L L | [ [
ofofofofofofoololo] [ L1 L1 1L L[]
ofofofofofofolofolo]l [ L1 L1111
ofofsofo o fofofofofo|l [ L L1 L L1111
umumumumum HEEEEEEEEEE

I'(X,Y) = Z ZFIJ (X 4+, Y + )

1=—k1=—k

output filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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L Inear Filter Example
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L Inear Filter Example
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L Inear Filter Example
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L Inear Filter Example
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L Inear Filter Example
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I'(X,Y) = Z ZFIJ (X 4+, Y + )

1=—k1=—k

output filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

image I(X’ Y)

filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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L Inear Filter Example
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L Inear Filter Example
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output filter image (signal)
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L Inear Filter Example
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I'(X,Y) = Z ZFIJ (X 4+, Y + )
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output filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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L Inear Filter Example
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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I'(X,Y) = Z ZFIJ (X 4+, Y + )
1=—k1=—k

output filter image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

60

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

4. Reflect boarder: Copy rows/columns locally by reflecting over the edge



Sample Question: Filtering and Padding

When, specifically, would padding be suboptimal (i.e., you would opt for
ignoring locations near boarders)? \Why*



| Inear Filters

— The correlation of F'( X ,‘Y) and I(X,Y)is

I'X,Y) = Z ZFIJ (X +i,Y + )

1=—k1=—k

output filter image (signal)

— Visual interpretation: Superimpose the filter F' on the image I at (X,Y),
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter “flipped”

f F(X,Y)=F(—X,—-Y) then correlation = convolution.



Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)

Scaling: Let F be digital filter and let £ be a scalar
(kF) @ I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling



Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That is,
GRIFRIX,)Y)=(GRF)QI(X,Y)

— Convolution is symmetric. That is,
(GRF)RIX,Y)=(GRF)I(X,Y)

Convolving I(X,Y ) with filter /" and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfilter G® F = F Q G



| inear System: Characterization Theorem

Any linear, shift invariant operation can be expressed as a convolution



| inear System: Characterization Theorem

Any linear, shift invariant operation can be expressed as a convolution

(1f and only If’ result)



Low-pass Filtering = “Smoothing”

Gaussian Filter

1141641
i 4116|24/16| 4
24 24
SFE 0 30 0
4116|2416 | 4
11416 4]1

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the Image, only low frequencies remain



Other smoothing filters

Box Filter Pillbox Filter




Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies



Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
GO‘ (337 y) — ) 2 exXp  20°

Forsyth & Ponce (2nd ed.)
Figure 4.2



Gaussian: Area Under the Curve

~iG  -30 20 -1 O IG 20 30 40
~—68% —
< 95% -1
i 99.7% -

- 99.99% .



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.



Separability: How do you know If filter is separable?

Mathematically: Rank of filter matrix is 1 (recall rank is number of linearly
iIndependent row vectors)




Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications

Separable 2D Gaussian:

At each pixel, (X,Y), thereare 2m  multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications



Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,wy,) = F(wz, wy) L(wg, w,)

where ' (w,, wy,), F(wg,w,), and Z(w,,w,) are Fourier transforms of i'(z,y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication



Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X 7‘Y)

Total: m® x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n?logn)
Cost of FFT/IFFT for filter: O(m? log m)

Cost of convolution: @(nQ) Note: not a function of filter size !!!



Median Filter

Take the median value of the pixels under the filter:

5 | 221

34

34 | 23

123

25

or

12

Image

Output




Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:

— The filter weights depend on spatial distance from the center pixel
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

— The filter weights also depend on range distance from the center pixel
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value

lgs



Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZC, y) — ) 52 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

domain x? 4 y? (I(X+z,Y+y)—I(X,Y))2 range
o 252
kernel CXP CXP " kernel

(with appropriate normalization)
[4e



Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

27 Slide Credit: Alexander Wong



Sample Question: Convolution

s the following filter applied as correlation shift invariant’?

— s

e
S~ N3
~ ~J ~J



Sample Question: Filters

What does the following 3 x 3 linear, shift invariant filter compute when applied
to an image”?

1 -1 -1
0 0 0
1 1 1




Resampling Images

Naive method: form new image by selecting every nth pixel

O O 0O 0O (C
O O O O O C
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Aliasing Example

® Sampling every 5th pixel, while shifting rightwards | pixel at a time




Aliasing Example

® Sampling every 5th pixel, while shifting rightwards | pixel at a time




Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency
— This is called “Aliasing”

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Nyquist Sampling Theorem

To avoid aliasing a signal must be sampled at twice the maximum frequency:

where fs is the sampling frequency, and f,,,, is the maximum frequency
present in the signal

Futhermore, Nyquist’s theorem states that a signal is exactly recoverable
from its samples if sampled at the Nyquist rate (or higher)

Note: that a signal must be bandlimited for this to apply (i.e., it has a
maximum frequency)



Back to Processing in Camera



(in camera) Image Processing Pipeline

The sequence of Image processing operations applied by the camera’s image
signal processor (ISP) to convert a RAW image into a “conventional” image.

analog front-end

denoising

> | color transforms

CFA demosaicing

white balance

RAW image
(Mmosaiced,
linear, 12-bit)

tone reproduction

compression

, final RGB image

(non-linear, 8-bit)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filter Arrays (CFA)

photodiode photodiode photodiode

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filter Arrays (CFA)

Implication: Only certain wavelengths of light are recorded at a given pixel

photodiode photodiode photodiode

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



CFA Demosicing

Produce full RGB image from mosaiced sensor output

Interpolate from neighbors:

— Bilinear interpolation (needs 4 neighbors)

— Bicubic interpolation (heeds more neighbors, may overblur)
— Edge-aware interpolation (e.q., Bilateral)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



N camera) White balance

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(iIn camera) White balance r2w  r-correction: + 55

G: 265 — G-correction: + 0O

B: 190 B-correction: + 65

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(in camera) Tone reproduction

PressiSheet

Measuf:ements \
Curves
l
Tonemapped with Comected \
Lietal 2005 saturation reduced ;’uﬁ;
o

Curve
Adjust

Corrected [onemapped with
saturation enhanced Remhard et al. 2012



(in camera) Image Processing Pipeline

The sequence of Image processing operations applied by the camera’s image
signal processor (ISP) to convert a RAW image into a “conventional” image.

analog front-end

denoising

> | color transforms

CFA demosaicing

white balance

RAW image
(Mmosaiced,
linear, 12-bit)

tone reproduction

compression

, final RGB image

(non-linear, 8-bit)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching

N4

[ N

3

Template (mask)

Scene

A toy example

Slide Credit: Kristen Grauman
O1



Template Matching

Detected template Correlation map

Slide Credit: Kristen Grauman
92



Template Matching

Similarity measures between a filter J local image region [

Correlation, CORR= T.J =1!]
. . 1]
Normalised Correlation, NCORR = WK — cos ¢

Sum Squared Difference, SSD = [I — J |2

Normalized correlation varies between —1 and 1, attains the value 1 when the
filter and image region are identical (up to a scale factor)

Minimising SSD and maximizing Normalized Correlation
are equivalent if |I| = |J| =1

93



Template Matching

Convolve image with template, find local maxima




Template Matching

Convolve image with template, find local maxima




Template Matching

Convolve image with template, find local maxima




Template Matching

Convolve image with template, find local maxima




Template Matching

Convolve image with template, find local maxima




Template Matching

Convolve image with template, find local maxima

max suppress %

+ threshold

C
O
Z




Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Partial Occlusions w (
J

— Different Perspective
— Lighting conditions .

_ Left vs. Right hand w w

— Motion / blur

Q7



Example 1.

Template (left), image (middle),
normalized correlation (right)

Note peak value at the true
position of the hand

Credit: V. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998

98



Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.
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image brightness.

1,L2, L3, ..., TN



Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.

1,L2, L3, ..., TN

After (L2) normalization:




Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.

[$1,$2,$3,...,I‘N] [ka:l,kxg,katg,...,ka:']\f]

After (L2) normalization:




Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.

[$1,$2,$3,...,I‘N] [ka:l,kxg,katg,...,ka:']\f]
kxi1,kxo, kxs, ..., kx N
[$17$27$37°°°7$N] \/k2$%+k2$%—|—k2$§—|——|—k2$%\[




Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.

[$1,$2,$3,...,I‘N] []{?ail,kiﬁg,kivg,...,kai‘]\f]
kxi1,kxo, kxs, ..., kx N
[$17$27$37°°°7$N] \/k2$%+k2$%—|—k2$§—|——|—k2$%\[
2 2 2 2 | ' '
\/551 Lo T L3 LN

k[$17$27$37 7ZEN]
VkZ\/2? + 13 + 22 + ... + 7%




Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the
image brightness.

[$1,$2,$3,...,I‘N] []{?ail,kiﬁg,kivg,...,kai‘]\f]
kxi1,kxo, kxs, ..., kx N
[$17$27$37°°°7$N] \/k2$%+k2$%—|—k2$§—|——|—k2$%\[
2 2 2 2 | ' '
\/ 1 2 3 N /K[x17$27$37"'7m]\7]

W\/x%—kx%—l—xg—l—...—l—x?\,



Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image

efficient search for image—to—-image correspondences
— lookK first at coarse scales, refine at finer scales
— much less cost (but may miss best match)

to examine all levels of detall
— find edges with different amounts of blur
— find textures with different spatial frequencies (i.e., different levels of detall)

100



Blur with a Gaussian
ernel, then select
every 2nd pixel

s\L,Y) = 1{(X,Y) * o\,



Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(x,y) = 1(x,y) * go (T, Yy
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Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(x,y) = 1(x,y) * go (T, Yy




Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(x,y) = 1(x,y) * go (T, Yy




Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)

G4

E
—— Gaussian Pyramid



G4

Gaussian Pyramid Laplacian Pyramid
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Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



Laplacian Pyramid



LA
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Laplacian Pyramid



Sample Question: Scaled Representations

How does the top-most image in a Laplacian pyramid differ from the others?



Pyramid Blending




Step 2: blend lower frequency bands over
larger spatial ranges, high frequency bands
over small spatial ranges




~rom lemplate Matching to Local Feature Detection

Find the chair in this image

Pretty much garbage
Simple template matchingis not going to make it

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



Estimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

Differentiation Is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

Of _ F(X +1,y)— Flz,y)
Ox Ax




Estimating Derivatives

A similar definition (and approximation) holds for ?
Y

Image noise tends to result In pixels not looking exactly like their neighbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.



What Causes Edges”’

e Depth discontinuity

e Surface orientation
discontinuity

e Reflectance
discontinuity (i.e.,
change in surface
material properties)

e Jllumination
discontinuity (e.qg.,
shadow)

Slide Credit: Christopher Rasmussen



Smoothing and Differentiation

Edge: a location with high gradient (derivative)
Need smoothing to reduce noise prior to taking derivative
Need two derivatives, in x and y direction

We can use derivative of Gaussian filters
— because differentiation is convolution, and
— convolution Is associative -

Let ® denote convolution

DRGIX,Y)=(D2G)®I(X,Y)




Gradient Magnitude

Let I(X,Y) be a (digital) image

Let I, (X,Y)and I,(X,Y) be estimates of the partial derivatives in the x and ¥y
directions, respectively.

Call these estimates I, and I, (for short) The vector |1, I,|is the gradient

The scalar \/ 12 + [y2 'S the gradient magnitude

The gradient direction is given by: 6 = tan™! (_)



Two Generic Approaches for Edge Detection

P

X

Two generic approaches to edge point detection:
— (significant) local extrema of a first derivative operator
— ZEero Ccrossings of a second derivative operator




Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach
Steps:
1. Gaussian for smoothing

2. Laplacian (Vv?) for differentiation where

02 (x,y) | &f(a
Vif(z,y) = 6,(;2 v) | 5,(;2 Y)

3. Locate zero-crossings in the Laplacian of the Gaussian ( V2G' ) where

—1 [ z*4y* 22442
VQG(x,y) — 27_‘_0_4 2 > exp 202

O



Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V4G )

... with 1ts characteristic “Mexican hat” shape



Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds

— Accept all edges over low threshold that are connected to edge over high
threshold



Sample Question: Edges

Why Is non-maximum suppression applied in the Canny edge detector?



What Is a corner?

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

—_ - —

| . ‘corner”:
— Place a small window over a patch of constant image value. significant change

f you slide the window In any direction, the image in the in all directions
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the Image in the window changes.

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Autocorrelation
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Szeliski, Figure 4.5



Corner Detection

Edge detectors perform poorly at corners

Observations:
— The gradient is Ill defined exactly at a corner
— Near a corner, the gradient has two (or more) distinct values



Harris Corner Detection

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix pEP pEP

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

> 11,
C o peEP

2.

pEP

2. Iyl
pEP




Harris Corner Detection

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Solve for product of the A’s

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

array of x gradients array of y gradients



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

O O O O O O O O
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = ‘;’ i —> Ay = 1.4384: Ay = 5.5616
0 0 0 0 | -1 0
41 0 0 0 0
4.0 0 0 0 0 0 0
1.0 0 O 0 0 1 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

N
C= |5 5 |=>X\=14384) = 55616
' ' det(C) — 0.04trace?(C) = 6.04

O 0 O 0 | -1 0

-1, 1 0 0 O 0

-1, 00 1 0 O 0 O 0

-1/ 0 00 110 o/ 1, 0] 00 0 O

O -1 00| 1 O O 0 O/ 0|0 OO0

O -1 00| 1 O O 0 O/ 0|0 OO

O -1 00| 1 O O 0 O/ 0|0 OO0
oI 1o 4 0 0 1 o0 ol
S 7 o= 2
= oz Y Oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = g 8 => A\ =3; A =0

det(C) — 0.04trace*(C) = —0.36

O 0|0 0 00 O/ -1]0 0 0 |-10

-1 1,100 -1] 1 o 0o /-1 -1/-1]1 0

-1 0, 0 0] 10 O 0|0 0 000

-1 0 OO0 110 O 1 /0 0|00 0

O -1 010 0 O 0|01 0 007160

O -1 010 0 O 0O]0]J0 0] 07]O0

O -1 010 0 O 0O]0]J0 0]01]O0
=% 10 4 0 0 1 0 I, = ol
ox 0y



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 C = (3) (2) => A\ = 3; Ay =2
0 ' ' det(C) — 0.04trace*(C) = 5
0
0 0 0 0|0 0 O 0 -1 0|0 0 -1 0
0 11 0]0 -1 f 0 0 -1|-1 -1 1 0
0 10 0|0 1 0 0 0 0|0 0 0 O
0 1.0 0 0 1 0 01 0 0 0 0 O
0 0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=220 10 0 1 0 =%
ox oy



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

Blobs are circular regions in the image

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Blobs features

= 163 Blobs are circular regions in the image
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500} - - - - - s R e el e SN

1000} - - - - - - T R, LT .

characteristic scale

we need to search over characteristic scales
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)



Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)

(for Harris you can also save orientation 6 based on top eigenvector)



Sample Questions: Corners

The Rarris corner detector is stable under some image transformations
(features are considered stable if the same locations on an object are typically
selected in the transformed image).

True or false: The Harris corner detector is stable under image blur.



Texture

We will look at two main questions:

1. How do we represent texture”
— [exture analysis

2. How do we generate new examples of a texture?
— [exture synthesis



Texture Synthesis

Why might we want to synthesize texture®

1. To fill holes in images (inpainting)

— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.

— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics
— Good textures make object models look more realistic



Texture Synthesis

radishes

lots more radishes

Szeliski, Fig. 10.49



Texture Synthesis

A |

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling
of the
duplication

of soldiers.

Original photograph

Photo Credit: Associated Pres



Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p

— o synthesize p, pick one match at random



Efros and Leung: Synthesizing One Pixel

— Since the sample image is finite, an exact neighbournhood match might not
be present

— Find the best match using SSD error, weighted by Gaussian to emphasize
local structure, and take all samples within some distance from that match



Efros and Leung: Synthesizing Many Pixels

For multiple pixels, "grow" the texture in layers
— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see
https://una-dinosauria.github.io/efros-and-leung-js/
(written by Julieta Martinez, a previous CPSC 425 TA)



https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

