THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 10: Corner Detection

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today
Topics:
— Edge Detection (review) — Image Structure
— Corner Detection — Blob Detection

— Harris Corner Detection

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

Reminders:

— Assignment 2. Scaled Representations, Face Detection and Image Blending

— Quiz 2 is out, due tomorrow



Lecture 9: Re-cap Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)




Lecture 9: Re-cap Edge Detection

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge
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Results in Thick
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Original Image Sobel (threshold = 100) Sobel (threshold = 50)
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Original Image Sobel (threshold = 100) Sobel (threshold = 50)

Sobel issues:
05 o — Bhrittle = result depends on threshold
R — Thick edges = poor localization
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Canny Edge Detector

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds
— Accept all edges over low threshold that are connected to edge over high
threshold
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Canny Non-Maxima Suppression
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Canny Non-Maxima Suppression
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Canny Non-Maxima Suppression
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Canny Non-Maxima Suppression

Can still be edge points
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Canny Non-Maxima Suppression

2 Goal:

B — |dentify local maxima, which can be edge points
B — Thin edges, so we can improve localization

0) X

0) X

Gradient Magnitude Gradient Direction

X 90 90.

X 0 45 45 45

95 01 X 0 \&45 45

95 82 46 X 42 45 45 O 0 0

5
7
Q
0

64 91 96 0 X 45
66 66 93 X = 0 . 90 45
0 0 O X =gp 0

o O O o o o o o




Canny Non-Maxima Suppression Linking Edge Points

gradient magnitude > kp;q, =100

kiow < gradient magnitude < kp;q

osradient magnitude < ki, =50
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Canny Non-Maxima Suppression Linking Edge Points

kiow < gradient magnitude < kp;q
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Canny Non-Maxima Suppression Linking Edge Points
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Canny Non-Maxima Suppression Linking Edge Points
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Canny Non-Maxima Suppression
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Original Image Sobel (threshold = 100)

X Canny Edge Detector

Sobel (threshold = 50)

The fact that the edge is shifted
can be addressed by better
derivative filter (central difference)




How do humans perceive boundaries”?’

Edges are a property of the 2D image.

It Is Interesting to ask: How closely do image edges correspond to
boundaries that humans perceive to be salient or significant™



How do humans perceive boundaries”?’

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker
where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004



Boundary Detection

We can formulate boundary detection as a high-level recognition task

— [ry to learn, from sample human-annotated images, which visual features or
cues are predictive of a salient/significant boundary

Many boundary detectors output a probability or confidence that a pixel is
on a boundary
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Boundary Detection:

Features:

— Raw Intensity

— Orientation Energy
— Brightness Gradient
— Color Gradient

— Jexture gradient

Non-Boundaries
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Boundary Detection:

For each feature type
— Compute non-parametric distribution (histogram) for left side
— Compute non-parametric distribution (histogram) for right side

— Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that
outputs probabilities (Logistic Regression, SVM, etc.)



Example Approach

Boundary Detection
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Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



| earning Goals

Why corners (blobs)?
What are corners (blobs)?



Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between iImages

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...
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orrespondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between iImages

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Motivation: lemplate Matching

When might template matching fail”

— Different scales u

— Different orientation &

— Partial Occlusions g |
J

— — Different Perspective
— Lighting conditions ‘

_ Left vs. Right hand & w

— Motion / blur




Motivation: Template Matching in Scaled Representation

When might template matching in scaled representation fail®

—mm—g—'s‘—

— Different orientation &

— Partial Occlusions g |
J

— Different Perspective

— Lighting conditions ‘

_ Left vs. Right hand ﬂl \&

— Motion / blur



Motivation: Edge Matching in Scaled Representation
When might edge matching in scaled representation fail”
— Different orientation @
_ Left vs. Right hand @ \&

— Partial Occlusions g |
J

— Different Perspective

— Motion / blur



Motivation: Edge Matching in Scaled Representation

¥

. .
- e
1:*.' -

0 . J
e R A, S ) -
: - -,e

-
s

-




Motivation: Edge Matching in Scaled Representation
When might edge matching in scaled representation fail”
— Different orientation @
_ Left vs. Right hand @ \&

— Partial Occlusions g |
J

— Different Perspective

— Motion / blur



Motivation: Edge Matching in Scaled Representation

— Motion / blur

_ Left vs. Right hand & w




Correspondence/Matching for Object Detection
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Correspondence/Matching for Object Detection
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Correspondence/Matching for Object Detection
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Correspondence/Matching for Object Detection
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Correspondence/Matching for Object Detection

Casbhah

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Planar Object Instance Recognition

Datalbase of planar objects Instance recognition

BASAATI

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Matching

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Matching

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Feature Detectors

Corners/Blobs

Straight Lines




Feature Descriptors (later
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General Setup

Use small neighborhoods of pixels to do feature detection — find locations

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)
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General Setup
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Use small neighborhoods of pixels to do feature detection — find locations
estimate of the scale or canonical orientation of the feature)



General Setup

Use small neighborhoods of pixels to do feature detection — find locations

N image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)

3y T

a8
ST L
"\z/.,x.h wnmxu

Q.C.QQ‘QC«QQ
.QCC.Q‘.Q 0

.(




General Setup

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)
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General Setup

Use small neighborhoods of pixels to do feature detection — find locations
N image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)
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What is a Good Feature”

Local:; features are local, robust to occlusion and clutter
Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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What is a Good Feature”

Local:; features are local, robust to occlusion and clutter

Accurate: precise localization

Globally distinctive
'; Cnl)['ﬂh

Robust: noise, blur, compression, etc. do not have a
big iImpact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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What Is a corner?

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.



What Is a corner?

Corner

Interest Point

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:



Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

S —

. . “flat’ region:
— Place a small window over a patch of constant image value. ar TEgen

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

| | “flat” region:
— Place a small window over a patch of constant image value. no change in al

f you slide the window In any direction, the image in the directions
window will not change.

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

l . 14 d ”:
— Place a small window over a patch of constant image value. =a9e

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge.

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

| , “‘edge’:
— Place a small window over a patch of constant image value. no change along

f you slide the window In any direction, the image in the the edge direction
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value. orner

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

—_ - —

| . ‘corner”:
— Place a small window over a patch of constant image value. significant change

f you slide the window In any direction, the image in the in all directions
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the Image in the window changes.

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Image Structure

What kind of structures are present in the image locally”?
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Image Structure

What kind of structures are present in the image locally®?

OD Structure: not useful for matching

1D Structure: edge, can be localized in one
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or
Interest point detectors find points with 2D structure.



How do you find a corner??

[Moravec 1980]

N

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls oft

slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.



Autocorrelation

Szeliski, Figure 4.5
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Szeliski, Figure 4.5



Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls oft

slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.



| ocal SSD Function

Consider the sum squared difference (SSD) of a patch with its local
neighbournood




| ocal SSD Function

Consider the local SSD function for different patches




Harris Corners

Harris corners are peaks of a local similarity function




Harris Corners

We will use a first order approximation to the local SSD function




Harris Corners

We will use a first order approximation to the local SSD function




Harris Corners

SSD function must be large for all shifts Ax for a corner/ 2D structure
This implies that both eigenvalues of H must be large

Note that H is a 2x2 matrix



Harris Corner Detection

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix pEP pEP

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



1. Compute image gradients over a small region
(not just a single pixel)

array of x gradients

o
- Oz

Iy

array of y gradients

ol
Iyza_y

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization of Gradients

»

- y . " .AA
WA I R

image

X derivative

Y derivative

lekas (CMU)

IOU

loannis (Yannis) Gk

Slide Credi



What Does a Distribution Tells You About the Region”

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

Distribution reveals the orientation and magnitude

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

Distribution reveals the orientation and magnitude

How do we quantify the orientation and magnitude”
108 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

Distribution reveals the orientation and magnitude

How do we quantify the orientation and magnitude”
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

>, 1.1, ) 1.1,

pEP pEP

C=|ynL ¥ 1,1,

peEP pEP



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

>, I.1, > I.I,

C pEP pEP

| Ll . Iyl
pEP pEP



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner




2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

array of x gradients array of y gradients



Computing Covariance Matrix Efficiently _[=2"" &*"

> Iy Y Iyl
_ pEP peP _




Computing Covariance Matrix Efficiently _[=2"" 2"

o)
T Oz
Yy 8y




Computing Covariance Matrix Efficiently _[=2"" 2"

o)
T Oz
Yy 8y

ol
oz




Computing Covariance Matrix Efficiently _[=2"" 2"

o)
T Oz
Yy 8y

ol
oz




Computing Covariance Matrix Efficiently ._[="" =™
— | Y LI, Y I,
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oz




Computing Covariance Matrix Efficiently _|= = ="

ol
oz

Convolve




Computing Covariance Matrix Efficiently . _[ & &
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Computing Covariance Matrix Efficiently . _[ & &

Convolve
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Computing Covariance Matrix Eff

Convolve




2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

> 11,
C o peEP

2.

pEP

2. Iyl
pEP




2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix ...

>, 1.1, ) 1.1,

C o pEP pEP
| 2 Lyl ) Iyl
pEP pEP

we are fitting a quadratic to the gradients over a small image region



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix ...

>, I.1, > I.I,

o pEP pEP

C - Z IyICE Z I Y I Y Autocorrelation

peEP peP O

Covariance matrix

we are fitting a quadratic to the gradients over a small image region




Simple Case

_ocal Image Patch

> LI, >, 1.1,

C __ peP peP f?

> Iyl ) Il |
_ peP pe P




Simple Case

I, 1,
|]
_ocal Image Patch

C __ peP peP

2, Iyle 2, I,

_ peP peP

C S LI, Y L,
|2




Simple Case

Local Image Patch high value along vertical
strip of pixels and O elsewhere

[ Z 1.1, Z LEIy
O — peP peEP _ f?
Z IyIa:‘ Z Iy]y ]

_ peP peP




Simple Case

I, I,

Local Image Patch high value along vertical high value along horizontal
strip of pixels and O elsewhere strip of pixels and O elsewhere
> LI, >, 1.1,
P cP
O = | PS P — )
2, Iyl ), Iy, -
_ peP pel




Simple Case

I, I,

Local Image Patch high value along vertical high value along horizontal
strip of pixels and O elsewhere strip of pixels and O elsewhere
r S LI Y LI, _ _
(' — pel peP _ At 0
N I, Y I, 0 X
- pelP peP




General Case




General Case

't can be shown that since every C Is symmetric:

S L1, Y LI, _ _

_ pe P pelP _ p—1 )\1 0
¢ = > 1,1, ZP 1,1, = A 0 A2 ) i
peP DPE

... SO general case Is like a rotated version of the simple one



3. Computing Eigenvalues and Eigenvectors

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Quick Eigenvalue/Eigenvector Review

Given a square matrix A, a scalar A is called an eigenvalue of A if there exists
a nhonzero vector v that satisfies

Av = )\v

The vector v is called an eigenvector for A corresponding to the eigenvalue ).

The eigenvalues of A are obtained by solving (characteristic equation)

det(A — \I) =0



3. Computing Eigenvalues and Eigenvectors

eigenvalue

!

Y
Ce = Xe (C'—=X)e=0
N/
elgenvector

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue
i
\
(e = e (C—)\I)GIO
N/
elgenvector
1. Compute the determinant of O — \]

(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue
!
C'e = le (C’—)\I)e:()
N/
elgenvector
1. Compute the determinant of O — \]

(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue

|

Ce = e (C'—X)e=0
N/

elgenvector

1. Compute the determinant of O — \]
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




1. Compute the determinant of O — \]
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Example
2 1 2—-X 1
C=11 2 det(_ 1 2—>\_)
1. Compute the determinant of O — \]

(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Example
2 1 2—-X 1
C=11 2 det(_ 1 2—>\_)
(2=A)2-A)— (D)
1. Compute the determinant of O — \]

(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Example

| |
— DO

92—\ 1
det(_ | 2_)\_)

(2=2)2 =) = 1))

DO
| |

1. Compute the determinant of
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Example

| |
— DO

92—\ 1
det(_ | 2_)\_)

(2=2)2 =) = 1))

DO
| |

1. Compute the determinant of
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Visualization as Ellipse

A 0
0 Ao

Since C is symmetric, we have (' = R R

We can visualize (' as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by R

Ellipse equation:

= Cconst

flzy) =]z y]

eI

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization as Ellipse

A 0
0 Ao

Since C is symmetric, we have (' = R R

We can visualize (' as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by R

direction of the
MINor axis

0 11 X | O\'max)_l/gz\’
1 J = const direction of
the major
axis

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Ellipse equation:

flzy) =]z y]

eI




Interpreting Eigenvalues

Ao,

Al

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

: - ‘horizontal’ edge

Ay >> Ny

corner

_ B

A~ A

A >> A,y
‘vertical’ edge J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

1



Interpreting Eigenvalues

- ‘horizontal’ edge

Ay >> N

o 8 &8 8 8 8

10

7\'1N7\‘2

100 .

corner

_ B

A >> A,

‘vertical’ edge —l

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

oy

Al

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues
Ao

Image Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

Ao,

Think of a function to
score ‘cornerness’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

oy

Strong

SO Think of a function to
score ‘cornerness’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

A2 4

corner

Use the smallest eigenvalue as the
response function

IIliIl(Al, )\2)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



A
4. Threshold on Eigenvalues to Detect Corners
(a function of )

A2

AAg — k(A1 + )\2)2

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

A2

corner

Al)\g — K,()\l -|- )\2)2

det(C) — ktrace*(C)

(more efficient)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

det(M) — wtrace*(M) <0

A2

corner

det(M) — strace*(M) >0

Al)\g — K,()\l -|- )\2)2

det(C) — ktrace*(C)

 det(M) — rtrace®(M) <0 (more efficient)

det(M) — wtrace*(M) <0 1
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)

IIliIl()\l, Ag)

Nobel (1998)
det(C)
trace(C') + ¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Solve for product of the A’s

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

>, I.1, > I.I,

C o pEP peP
R EPIR I IR 7
pE P pEP

Harris uses a Gaussian weighting instead



Compute the Covariance Matrix B = e 1,y +9) - 1)

E 7] 1 \

Sum can be implemented as an cror Window Shifted onsity

| ' : function function intensi
(unnormalized) box filter with i i tensity

>, I.1, > I.I,

C o pEP pEP
| 2 L. 2, Iy
pE P pEP

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures
change of intensity for small shifts ... remember AutoCorrelation)
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Computing Covariance Matrix Eff

Convolve




Computing Covariance Matrix Efficiently . _[ &7 &

Convolve




Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s | |

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = ‘;’ i —> Ay = 1.4384: Ay = 5.5616
0 0 0 0 | -1 0
41 0 0 0 0
4.0 0 0 0 0 0 0
1.0 0 O 0 0 1 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

N
C= |5 5 |=>X\=14384) = 55616
' ' det(C) — 0.04trace?(C) = 6.04

O 0 O 0 | -1 0

-1, 1 0 0 O 0

-1, 00 1 0 O 0 O 0

-1/ 0 00 110 o/ 1, 0] 00 0 O

O -1 00| 1 O O 0 O/ 0|0 OO0

O -1 00| 1 O O 0 O/ 0|0 OO

O -1 00| 1 O O 0 O/ 0|0 OO0
oI 1o 4 0 0 1 o0 ol
S 7 o= 2
= oz Y Oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = g 8 => A\ =3; A =0

det(C) — 0.04trace*(C) = —0.36

O 0|0 0 00 O/ -1]0 0 0 |-10

-1 1,100 -1] 1 o 0o /-1 -1/-1]1 0

-1 0, 0 0] 10 O 0|0 0 000

-1 0 OO0 110 O 1 /0 0|00 0

O -1 010 0 O 0|01 0 007160

O -1 010 0 O 0O]0]J0 0] 07]O0

O -1 010 0 O 0O]0]J0 0]01]O0
=% 10 4 0 0 1 0 I, = ol
ox 0y



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 C = (3) (2) => A\ = 3; Ay =2
0 ' ' det(C) — 0.04trace*(C) = 5
0
0 0 0 0|0 0 O 0 -1 0|0 0 -1 0
0 11 0]0 -1 f 0 0 -1|-1 -1 1 0
0 10 0|0 1 0 0 0 0|0 0 0 O
0 1.0 0 0 1 0 01 0 0 0 0 O
0 0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=220 10 0 1 0 =%
ox oy



Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Solve for product of the A’s

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Properties: Rotational Invariance

> > 4
— =

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

threshold //'\\//\\_/\/ﬂ\ / vxv/’\\

X (image coordinate) X (image coordinate)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Intuitively ...

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Intuitively ...

Find local maxima in both position and scale

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 1.

keypoinis




Example 2: Wagon Wheel (Harris Results

’
e . PRNR— ¢ : o - A=

- : ) . " p » E e
e“:k_oc/.ﬁ*:f!.-\"- . -"“_.'\L_ Q" !fs,'_: :

— 1 (219 points)

Q
|

4 (87 points)



Example 3: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)
Original Image Credit: John Shakespeare, Sydney Morning Herald



Optional subtitle
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Intuitively ...

183 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Intuitively ...

Find local maxima in both position and scale

183 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
0 0 0 0

-20 -10 10 20 =20 -7 7 20 =20 -3 3 20 -20 -1 1 20

Convolved with Laplacian (o = 1)
0__% \/L_ : H : J\/\/\ : ﬂ/\
0 =10 10 2

-2

0 -20 = 7 20 -20 -3 3 20 -20 11 20

Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Characteristic Scale

characteristic scale - the scale that produces peak filter response
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characteristic scale

we need to search over characteristic scales
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Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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Applying Laplacian Filter at Different Scales

jet color scale
blue: low, red: high
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Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales
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Scales

Applying Laplacian Filter at Different

sigma=9.8

o

il

191 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5
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Applying Laplacian Filter at Different Scales

sigma=17
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Applying Laplacian Filter at Different Scales

Full size 3/4 size
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Applying Laplacian Filter at Different Scales

sigma=2.1
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Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales
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Scales

Applying Laplacian Filter at Different

sigma=9.8
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Applying Laplacian Filter at Different Scales

sigma=15.5
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Applying Laplacian Filter at Different Scales

sigma=17
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Applying Laplacian Filter at Different Scales

Full size 3/4 size
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Applying Laplacian Filter at Different Scales
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Applying Laplacian Filter at Different Scales
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Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image
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3/4 size image
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Optimal Scale

2.1 4.2
2.1 4.2
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maximum
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Full size Image
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Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve
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Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)
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Multi-Scale Harris Corners




Summary Table

Summary of what we have seen so far:

Representation Result is. .. Approach Technique
ntensity dense templgte (normal.lzed)
matching correlation
edge relatively derivatives 2 @G, Canny
sparse
locally distinct .
corner sparse faatures Harris




Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
pDoINtS



