
Lecture 10: Corner Detection

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection

Menu for Today
Topics:

— Edge Detection (review)
— Corner Detection
— Harris Corner Detection

Readings:

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

— Image Structure
— Blob Detection

Reminders:

— Assignment 2: Scaled Representations, Face Detection and Image Blending
— Quiz 2 is out, due tomorrow

Goal: Identify sudden changes in image
intensity

This is where most shape information is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)

Lecture 9: Re-cap Edge Detection

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude
Threshold Good Poor Poor Results in Thick

Edges

Marr / Hildreth Zero-crossings of 2nd
Derivative (LoG) Good Good Good Smooths

Corners

Canny Local extrema of 1st
Derivative Best Good Good

Lecture 9: Re-cap Edge Detection

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative�1 1

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative

0 5 0 0 0 0 0 0 0

0 -5 0 0 64 128 196 0 0

0 0 0 64 64 68 0 0 0

0 0 70 64 68 0 0 0 0

0 64 58 68 0 0 0 0 0

0 -64 68 0 0 -66 -66 0 0

0 0 0 0 0 66 66 0 0

0 0 0 0 0 0 0 0 0

x x x x x x x x x

y-Derivative
�1

1

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative

0 5 0 0 0 0 0 0 0

0 -5 0 0 64 128 196 0 0

0 0 0 64 64 68 0 0 0

0 0 70 64 68 0 0 0 0

0 64 58 68 0 0 0 0 0

0 -64 68 0 0 -66 -66 0 0

0 0 0 0 0 66 66 0 0

0 0 0 0 0 0 0 0 0

x x x x x x x x x

y-Derivative

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

<latexit sha1_base64="/E4liT20ct1o4rMpzTYTTnIa3IY=">AAACJ3icbZDLSgMxFIYz9V5vVXe6CRZBEEqmDG1noYhu3AgVrC2005JJ0xrMXEwyQhn6Nm58CZcu3AgqYpdufA7TjqC2/hD4851zSM7vhpxJhdDASE1Nz8zOzS+kF5eWV1Yza+sXMogEoRUS8EDUXCwpZz6tKKY4rYWCYs/ltOpeHQ/r1RsqJAv8c9ULqePhrs86jGClUStz0JDXQsUFq5mHe7CImvk+3IcJtJBd0NCyEfqBJdsuDG+2lStZxVYmi3JoJDhpzG+TPdw8f/gc3J+WW5nnRjsgkUd9RTiWsm6iUDkxFooRTvvpRiRpiMkV7tK6tj72qHTi0Z59uKNJG3YCoY+v4Ij+noixJ2XPc3Wnh9WlHK8N4X+1eqQ6JSdmfhgp6pPkoU7EoQrgMDTYZoISxXvaYCKY/iskl1hgonS0aR2COb7ypLnI58xCzjrTaRyBRPNgC2yDXWCCIjgEJ6AMKoCAW/AIXsCrcWc8GW/Ge9KaMr5nNsAfGR9fsD+ksA==</latexit>p
642 + 702 =

p
4096 + 4900 =

p
8996 = 94.847

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative

0 5 0 0 0 0 0 0 0

0 -5 0 0 64 128 196 0 0

0 0 0 64 64 68 0 0 0

0 0 70 64 68 0 0 0 0

0 64 58 68 0 0 0 0 0

0 -64 68 0 0 -66 -66 0 0

0 0 0 0 0 66 66 0 0

0 0 0 0 0 0 0 0 0

x x x x x x x x x

y-Derivative

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

<latexit sha1_base64="/E4liT20ct1o4rMpzTYTTnIa3IY=">AAACJ3icbZDLSgMxFIYz9V5vVXe6CRZBEEqmDG1noYhu3AgVrC2005JJ0xrMXEwyQhn6Nm58CZcu3AgqYpdufA7TjqC2/hD4851zSM7vhpxJhdDASE1Nz8zOzS+kF5eWV1Yza+sXMogEoRUS8EDUXCwpZz6tKKY4rYWCYs/ltOpeHQ/r1RsqJAv8c9ULqePhrs86jGClUStz0JDXQsUFq5mHe7CImvk+3IcJtJBd0NCyEfqBJdsuDG+2lStZxVYmi3JoJDhpzG+TPdw8f/gc3J+WW5nnRjsgkUd9RTiWsm6iUDkxFooRTvvpRiRpiMkV7tK6tj72qHTi0Z59uKNJG3YCoY+v4Ij+noixJ2XPc3Wnh9WlHK8N4X+1eqQ6JSdmfhgp6pPkoU7EoQrgMDTYZoISxXvaYCKY/iskl1hgonS0aR2COb7ypLnI58xCzjrTaRyBRPNgC2yDXWCCIjgEJ6AMKoCAW/AIXsCrcWc8GW/Ge9KaMr5nNsAfGR9fsD+ksA==</latexit>p
642 + 702 =

p
4096 + 4900 =

p
8996 = 94.847

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative

0 5 0 0 0 0 0 0 0

0 -5 0 0 64 128 196 0 0

0 0 0 64 64 68 0 0 0

0 0 70 64 68 0 0 0 0

0 64 58 68 0 0 0 0 0

0 -64 68 0 0 -66 -66 0 0

0 0 0 0 0 66 66 0 0

0 0 0 0 0 0 0 0 0

x x x x x x x x x

y-Derivative

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image

0 0 0 0 0 0 196 0 x

5 -5 0 0 0 0 196 0 x

0 0 0 64 64 68 0 0 x

0 0 64 64 68 0 0 0 x

0 70 58 68 0 0 0 0 x

64 64 68 0 0 0 0 0 x

0 196 0 0 -66 0 66 0 x

0 196 0 0 0 0 0 0 x

0 196 0 0 0 0 0 0 x

x-Derivative

0 5 0 0 0 0 0 0 0

0 -5 0 0 64 128 196 0 0

0 0 0 64 64 68 0 0 0

0 0 70 64 68 0 0 0 0

0 64 58 68 0 0 0 0 0

0 -64 68 0 0 -66 -66 0 0

0 0 0 0 0 66 66 0 0

0 0 0 0 0 0 0 0 0

x x x x x x x x x

y-Derivative

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image Sobel (threshold = 100)

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

x

b x

x

x

x

x

x

x

x x x x x x x x x

196 x

64 128 277 x

91 91 96 x

95 91 96 x

95 82 96 x

64 91 96 66 66 x

196 66 66 93 x

196 x

x x x x x x x x x

Sobel (threshold = 50)

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image Sobel (threshold = 100)

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

x

b x

x

x

x

x

x

x

x x x x x x x x x

196 x

64 128 277 x

91 91 96 x

95 91 96 x

95 82 96 x

64 91 96 66 66 x

196 66 66 93 x

196 x

x x x x x x x x x

Sobel (threshold = 50)

Sobel issues:
 — Brittle = result depends on threshold
 — Thick edges = poor localization

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

3. Non-maximum suppression
 — thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding
 — Low, high edge-strength thresholds
 — Accept all edges over low threshold that are connected to edge over high
 threshold

Canny Edge Detector

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

No longer considered as possible edge points

Can still be edge points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Goal:
 — Identify local maxima, which can be edge points
 — Thin edges, so we can improve localization

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

Canny Non-Maxima Suppression

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Linking Edge Points

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

<latexit sha1_base64="oSR0m3XF45jCgdoIugsj1o/23B0=">AAACF3icbVC7SgNBFJ31bXxFLW0GH2AVdkXUSkQbywhGA0lYZmfvJkNmH8zcDYZl/8LGH7GwsYiIrXZ+iNZONil8HRg4nHPvnXuPl0ih0bbfrYnJqemZ2bn50sLi0vJKeXXtSsep4lDjsYxV3WMapIighgIl1BMFLPQkXHvds6F/3QOlRRxdYj+BVsjakQgEZ2gkt1xpItxg1lbMFxAhLWxMfcjpMW2GDDtekHVzN+uIdienbnnLrtgF6F/ijMnWyfbH/aC38Fl1y29NP+ZpaGZzybRuOHaCrYwpFFxCXmqmGhLGu6wNDUMjFoJuZcVdOd0xik+DWJlndivU7x0ZC7Xuh56pHG6qf3tD8T+vkWJw1MpElKQIER99FKSSYkyHIVFfKOAo+4YwroTZlfIOU4yjibJkQnB+n/yXXO1VnIPK/oVJ45SMMEc2yCbZJQ45JCfknFRJjXBySx7IgDxZd9aj9Wy9jEonrHHPOvkB6/UL6t2k0A==</latexit>

gradient magnitude > khigh

<latexit sha1_base64="4DhftVoESV1Cid/dbzi1Qp+0bK0=">AAACFnicbVC7SgNBFJ2N7/iKWioyGAQbw66IWlgEbSwTMCokIczO3k2GzD6YuauGZUu/wMZP0cZCEVux8xv8CSeJhUYPDBzOuffOvceNpdBo2x9Wbmx8YnJqeiY/Oze/sFhYWj7TUaI41HgkI3XhMg1ShFBDgRIuYgUscCWcu93jvn9+CUqLKDzFXgzNgLVD4QvO0EitwnYD4RrTtmKegBDpwMbEg4we0kbAsOP6aTdrpTK6ymirULRL9gD0L3G+SbG8dl/9vFm/r7QK7w0v4klgRnPJtK47dozNlCkUXEKWbyQaYsa7rA11Q0MWgG6mg7MyumkUj/qRMs+sNlB/dqQs0LoXuKayv6ge9frif149Qf+gmYowThBCPvzITyTFiPYzop5QwFH2DGFcCbMr5R2mGEeTZN6E4Iye/Jec7ZScvdJu1aRxRIaYJqtkg2wRh+yTMjkhFVIjnNySB/JEnq0769F6sV6HpTnru2eF/IL19gVluaPY</latexit>

gradient magnitude < klow

=100

=50

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression Linking Edge Points
<latexit sha1_base64="oSR0m3XF45jCgdoIugsj1o/23B0=">AAACF3icbVC7SgNBFJ31bXxFLW0GH2AVdkXUSkQbywhGA0lYZmfvJkNmH8zcDYZl/8LGH7GwsYiIrXZ+iNZONil8HRg4nHPvnXuPl0ih0bbfrYnJqemZ2bn50sLi0vJKeXXtSsep4lDjsYxV3WMapIighgIl1BMFLPQkXHvds6F/3QOlRRxdYj+BVsjakQgEZ2gkt1xpItxg1lbMFxAhLWxMfcjpMW2GDDtekHVzN+uIdienbnnLrtgF6F/ijMnWyfbH/aC38Fl1y29NP+ZpaGZzybRuOHaCrYwpFFxCXmqmGhLGu6wNDUMjFoJuZcVdOd0xik+DWJlndivU7x0ZC7Xuh56pHG6qf3tD8T+vkWJw1MpElKQIER99FKSSYkyHIVFfKOAo+4YwroTZlfIOU4yjibJkQnB+n/yXXO1VnIPK/oVJ45SMMEc2yCbZJQ45JCfknFRJjXBySx7IgDxZd9aj9Wy9jEonrHHPOvkB6/UL6t2k0A==</latexit>

gradient magnitude > khigh

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

<latexit sha1_base64="4DhftVoESV1Cid/dbzi1Qp+0bK0=">AAACFnicbVC7SgNBFJ2N7/iKWioyGAQbw66IWlgEbSwTMCokIczO3k2GzD6YuauGZUu/wMZP0cZCEVux8xv8CSeJhUYPDBzOuffOvceNpdBo2x9Wbmx8YnJqeiY/Oze/sFhYWj7TUaI41HgkI3XhMg1ShFBDgRIuYgUscCWcu93jvn9+CUqLKDzFXgzNgLVD4QvO0EitwnYD4RrTtmKegBDpwMbEg4we0kbAsOP6aTdrpTK6ymirULRL9gD0L3G+SbG8dl/9vFm/r7QK7w0v4klgRnPJtK47dozNlCkUXEKWbyQaYsa7rA11Q0MWgG6mg7MyumkUj/qRMs+sNlB/dqQs0LoXuKayv6ge9frif149Qf+gmYowThBCPvzITyTFiPYzop5QwFH2DGFcCbMr5R2mGEeTZN6E4Iye/Jec7ZScvdJu1aRxRIaYJqtkg2wRh+yTMjkhFVIjnNySB/JEnq0769F6sV6HpTnru2eF/IL19gVluaPY</latexit>

gradient magnitude < klow

=100

=50

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression Linking Edge Points

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression Linking Edge Points

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression Linking Edge Points

<latexit sha1_base64="+a6J/MT3Rm7MwsBigdSnzv/KU+w=">AAACKnicbVC5TgMxEPVyhnAFKGksDokq2kUIKCg4GsogkYCURJHXO5tY8R6yZ4Fotd9DQ80PUNOkAEW0/ALUOJsUXE+y9PTezHjmubEUGm17YE1MTk3PzBbmivMLi0vLpZXVmo4SxaHKIxmpa5dpkCKEKgqUcB0rYIEr4crtng39qxtQWkThJfZiaAasHQpfcIZGapVOGgHDjuun3ayVyug2o0e0gXCHaVsxT0CINO/AxIPc+1beEe1ORlulTbts56B/iTMmm8dbH49PN/OflVap3/AingRmNpdM67pjx9hMmULBJWTFRqIhZrzL2lA3NGQB6Gaan5rRbaN41I+UeWa3XP3ekbJA617gmsrhpvq3NxT/8+oJ+ofNVIRxghDy0Ud+IilGdJgb9YQCjrJnCONKmF0p7zDFOJp0iyYE5/fJf0ltt+zsl/cuTBqnZIQCWScbZIc45IAck3NSIVXCyT15Ji/k1Xqw+tbAehuVTljjnjXyA9b7F2ZerOI=</latexit>

klow < gradient magnitude < khigh

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Magnitude

0 90 0 0 0 0 0 0 x

0 -135 0 0 90 90 45 0 x

0 0 0 45 45 45 0 0 x

0 0 48 45 45 0 0 0 x

0 42 45 45 0 0 0 0 x

0 -45 45 0 0 -90 -90 0 x

0 0 0 0 180 90 45 0 x

0 0 0 0 0 0 0 0 x

x x x x x x x x x

Gradient Direction

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

0 5 0 0 0 0 196 0 x

5 7 0 0 64 128 277 0 x

0 0 0 91 91 96 0 0 x

0 0 95 91 96 0 0 0 x

0 95 82 96 0 0 0 0 x

64 91 96 0 0 66 66 0 x

0 196 0 0 66 66 93 0 x

0 196 0 0 0 0 0 0 x

x x x x x x x x x

Canny Non-Maxima Suppression Linking Edge Points

x

x

x

x

x

x

x

x

x x x x x x x x x

Canny Edge Detector

x

x

x

x

x

x

x

x

x x x x x x x x x

0 0 0 0 0 0 0 196 196

0 5 0 0 0 0 0 196 196

0 0 0 0 64 128 196 196 196

0 0 0 64 128 196 196 196 196

0 0 70 128 196 196 196 196 196

0 64 128 196 196 196 196 196 196

0 0 196 196 196 130 130 196 196

0 0 196 196 196 196 196 196 196

0 0 196 196 196 196 196 196 196

Original Image Sobel (threshold = 100)

x

b x

x

x

x

x

x

x

x x x x x x x x x

196 x

64 128 277 x

91 91 96 x

95 91 96 x

95 82 96 x

64 91 96 66 66 x

196 66 66 93 x

196 x

x x x x x x x x x

Sobel (threshold = 50)

Canny Edge Detector

The fact that the edge is shifted
can be addressed by better

derivative filter (central difference)

How do humans perceive boundaries?

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to
boundaries that humans perceive to be salient or significant?

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker
where more humans marked a boundary.

How do humans perceive boundaries?

Boundary Detection

We can formulate boundary detection as a high-level recognition task
— Try to learn, from sample human-annotated images, which visual features or
cues are predictive of a salient/significant boundary

Many boundary detectors output a probability or confidence that a pixel is
on a boundary

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

An edge exists if there is a large difference
between the distributions

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

✓

r

(x, y)

Features:
— Raw Intensity
— Orientation Energy
— Brightness Gradient
— Color Gradient
— Texture gradient

Raw
Intensity

Bright
Grad

Color
Grad

Texture
Grad

Boundary Detection:

For each feature type

— Compute non-parametric distribution (histogram) for left side
— Compute non-parametric distribution (histogram) for right side
— Compare two histograms, on left and right side, using statistical test

Use all the histogram similarities as features in a learning based approach that
outputs probabilities (Logistic Regression, SVM, etc.)

Boundary Detection:

Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

Learning Goals

Why corners (blobs)?
What are corners (blobs)?

Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences)
between images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...

? ??

Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences)
between images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...

Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences)
between images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...

Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences)
between images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...

When might template matching fail?

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching

When might template matching in scaled representation fail?

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching in Scaled Representation

When might edge matching in scaled representation fail?

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

Motivation: Edge Matching in Scaled Representation

When might edge matching in scaled representation fail?

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rotated 45 degrees
Scaled 50%

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rotated 45 degrees
Scaled 50%

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rotated 45 degrees
Scaled 50%

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rotated 45 degrees
Scaled 50%

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

 Correspondence/Matching for Object Detection

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Planar Object Instance Recognition
Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recognition under Occlusion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Matching

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Matching

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Feature Detectors (today)

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.

Corners/Blobs Regions

Edges Straight Lines

Feature Descriptors (later)

Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch

SIFT

Shape Context

 Learned Descriptors

General Setup
Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)
Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

General Setup
Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)
Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

General Setup
Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)
Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

General Setup
Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)
Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

General Setup
Use small neighborhoods of pixels to do feature detection — find locations
in image that we MAY be able to match (sometimes this will also come with an
estimate of the scale or canonical orientation of the feature)
Use (typically larger neighborhoods) around the feature detections to characterize
the region well, using a feature descriptor, in order to do matching (the scale
and orientation, if available, will impact the region of descriptor)

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Occluder

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Occluder

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

 Non-distinctive

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
 Locally distinctive

 Non-distinctive

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
 Locally distinctive

 Globally distinctive

 Non-distinctive

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a
big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
 Locally distinctive

 Globally distinctive

 Non-distinctive

What is a Good Feature?

What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.

Image Credit: John Shakespeare, Sydney Morning Herald

What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.

Image Credit: John Shakespeare, Sydney Morning Herald

Corner

Interest Point

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value. “flat” region:
no change in all

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

“flat” region:
no change in all

directions

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”:
no change along
the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”:
no change along
the edge direction

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”:
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”:
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the image in the window changes.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Structure

What kind of structures are present in the image locally?

Image Structure

What kind of structures are present in the image locally?

0D Structure: not useful for matching

Image Structure

What kind of structures are present in the image locally?

0D Structure: not useful for matching

1D Structure: edge, can be localized in one
direction, subject to the “aperture problem”

Image Structure

What kind of structures are present in the image locally?

0D Structure: not useful for matching

1D Structure: edge, can be localized in one
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be
localised in both directions, good for matching

Image Structure

What kind of structures are present in the image locally?

0D Structure: not useful for matching

1D Structure: edge, can be localized in one
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or
Interest point detectors find points with 2D structure.

How do you find a corner?

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Szeliski, Figure 4.5

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

Local SSD Function

Consider the sum squared difference (SSD) of a patch with its local
neighbourhood

�x1

�x2

x =

x1

x2

�

SSD =
X

R
|I(x)� I(x+�x)|2

Local SSD Function

Consider the local SSD function for different patches4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.

Clear peak in similarity function

High similarity along the edge

High similarity locally

Harris Corners

Harris corners are peaks of a local similarity function

Harris Corners

We will use a first order approximation to the local SSD function

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

Harris Corners

We will use a first order approximation to the local SSD function

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

SSD = �x
T
H�x

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD function must be large for all shifts for a corner / 2D structure

This implies that both eigenvalues of must be large

Note that is a 2x2 matrix

Harris Corners

�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

SSD = �x
T
H�x

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

SSD = �x
T
H�x

H =
X

R

I2x IxIy
IxIy I2y

�

H =
X

Rh
3 5
4 6

i

1

Harris Corner Detection

1.Compute image gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eigenvalues

4.Use threshold on eigenvalues to
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute image gradients over a small region

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization of Gradients

image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Distribution reveals the orientation and magnitude

What Does a Distribution Tells You About the Region?

108

Distribution reveals the orientation and magnitude

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude?

What Does a Distribution Tells You About the Region?

Distribution reveals the orientation and magnitude

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude?

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum()

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

Matrix is symmetric

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a small image region

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a small image region

C = Autocorrelation

Covariance matrix

Simple Case

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 =

�1 0
0 �2

�

?

Local Image Patch

Simple Case
Ix Iy

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 =

�1 0
0 �2

�

?

Local Image Patch

? ?

Simple Case
Ix Iy

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 =

�1 0
0 �2

�

?

Local Image Patch

?
high value along vertical

strip of pixels and 0 elsewhere

Simple Case
Ix Iy

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 =

�1 0
0 �2

�

?

Local Image Patch high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

Simple Case

high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

Ix Iy

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 =

�1 0
0 �2

�

Local Image Patch

General Case

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

General Case

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

It can be shown that since every C is symmetric:

… so general case is like a rotated version of the simple one

3. Computing Eigenvalues and Eigenvectors

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Quick Eigenvalue/Eigenvector Review

Given a square matrix , a scalar is called an eigenvalue of if there exists
a nonzero vector that satisfies

The vector is called an eigenvector for corresponding to the eigenvalue .

The eigenvalues of are obtained by solving (characteristic equation)

Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A

3. Computing Eigenvalues and Eigenvectors

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. Computing Eigenvalues and Eigenvectors

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial) (C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues) det(C � �I) = 0

(C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0

Example

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

Example

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

a

�2 � 4�+ 3 = 0
(�� 3)(�� 1) = 0
�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =

2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Since is symmetric, we have

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
RC =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
RC =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

We can visualize as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

Since is symmetric, we have

direction of
the major

axis

direction of the
minor axis

(λmax)-1/2

(λmin)-1/2

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
RC =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
RC =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

We can visualize as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

C =

2

4

P
p2P

IxIx
P
p2P

IxIy
P
p2P

IyIx
P
p2P

IyIy

3

5 = R�1

�1 0
0 �2

�
R

Interpreting Eigenvalues

λ2 >> λ1

λ1 >> λ2

What kind of image patch
does each region represent?

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

4. Threshold on Eigenvalues to Detect Corners

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

Think of a function to
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

strong
corner Think of a function to

score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

Use the smallest eigenvalue as the
response function

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

det(C)� trace2(C)

flat

corner

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

=

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^
 < 0

 > 0

 < 0

=

det(C)� trace2(C)

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

4. Threshold on Eigenvalues to Detect Corners
(a function of)

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

C =

Harris uses a Gaussian weighting instead

Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

C =

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures
change of intensity for small shifts … remember AutoCorrelation)

IntensityShifted
intensity

Window
function

Error
function

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

Computing Covariance Matrix Efficiently C =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Convolve Convolve Convolve

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

Harris & Stephens (1988)

det(C)� trace2(C)

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

X
2

4
0 0 0
0 �1 1
0 1 0

3

5�

2

4
0 0 0
0 �1 1
0 1 0

3

5 = 3

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =

3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =

3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =

3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =

3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =

3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =

3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =

3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =

3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

Properties: Rotational Invariance

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Properties: (partial) Invariance to Intensity Shifts and Scaling

x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

Properties: NOT Invariant to Scale Changes

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …
Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 1:

Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to

tracking every pixel
• Translation and rotation invariant (but not scale invariant)

Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)

Example 3: Crash Test Dummy (Harris Result)

� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald

Optional subtitle

182

Intuitively …

183 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …

183

Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Highest response when the signal has the same characteristic scale as
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

185 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Characteristic Scale

186

characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

187

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

188

jet color scale
blue: low, red: high

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

189

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

190

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

191

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

192

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

193

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

194

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

195

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

196

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

197

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

198

peak!

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

199

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

200

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

201

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

202

2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales

203

2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales

maximum
response

Optimal Scale

204

2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

Optimal Scale

205

2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum
response

maximum
response

Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

206

Detections are local
maxima in a 3x3x3
scale-space window

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 2

1/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

Implementation

207

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature

Multi-Scale Harris Corners

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly

Summary Table
Summary of what we have seen so far:

Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function
DoG maxima can be reliably located in scale-space and are useful as interest
points

