

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: <u>https://en.wikipedia.org/wiki/Corner_detection</u>

Lecture 10: Corner Detection

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- Edge Detection (review)
- Corner **Detection**
- Harris Corner Detection

Readings:

- Today's Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

Reminders:

- Quiz 2 is out, due tomorrow

— Image Structure - **Blob** Detection

— Assignment 2: Scaled Representations, Face Detection and Image Blending

Lecture 9: Re-cap Edge Detection

- **Goal**: Identify sudden changes in image intensity
- This is where most shape information is encoded
- **Example:** artist's line drawing (but artist also is using object-level knowledge)

Lecture 9: Re-cap Edge Detection

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

	Approach	Detection	Localization	Single Resp	Limitations
Sobel	Gradient Magnitude Threshold	Good	Poor	Poor	Results in Thic Edges
Marr / Hildreth	Zero-crossings of 2nd Derivative (LoG)	Good	Good	Good	Smooths Corners
Canny	Local extrema of 1st Derivative	Best	Good	Good	

- **Good detection**: minimize probability of false positives/negatives (spurious/missing) edges

	-					90		
					_			
0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

Original Image

Original Image											
0	0	0	0	0	0	0	196	196			
0	5	0	0	0	0	0	196	196			
0	0	0	0	64	128	196	196	196			
0	0	0	64	128	196	196	196	196			
0	0	70	128	196	196	196	196	196			
0	64	128	196	196	196	196	196	196			
0	0	196	196	196	130	130	196	196			
0	0	196	196	196	196	196	196	196			
0	0	196	196	196	196	196	196	196			

x-Derivative

0	0	196	0	х
0	0	196	0	х
64	68	0	0	х
68	0	0	0	х
0	0	0	0	х
0	0	0	0	х
-66	0	66	0	х
0	0	0	0	х
0	0	0	0	х

Original Image

		_	-	-				
0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

0	0	0	0	0	0	196	0	х
5	-5	0	0	0	0	196	0	х
0	0	0	64	64	68	0	0	х
0	0	64	64	68	0	0	0	х
0	70	58	68	0	0	0	0	х
64	64	68	0	0	0	0	0	х
0	196	0	0	-66	0	66	0	х
0	196	0	0	0	0	0	0	х
0	196	0	0	0	0	0	0	х

x-Derivative

1

y-Derivative

0	5	0	0	0	0	0	0	0
0	-5	0	0	64	128	196	0	0
0	0	0	64	64	68	0	0	0
0	0	70	64	68	0	0	0	0
0	64	58	68	0	0	0	0	0
0	-64	68	0	0	-66	-66	0	0
0	0	0	0	0	66	66	0	0
0	0	0	0	0	0	0	0	0
Х	x	x	x	x	x	x	x	x

						90		
			-					
0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

	-	-						
0	5	0	9	0	0	196	0	х
5	7	0	0	64	128	217	0	х
0	0	8	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	х
x	х	х	х	x	х	х	х	x

Original Image

x-Derivative

y-Derivative

$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$

	-	-						
0	5	0	9	0	0	196	0	х
5	7	0	0	64	128	217	0	х
0	0	ß	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	х
x	x	x	x	x	х	х	x	x

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

x-Derivative

y-Derivative

$\sqrt{64^2 + 70^2} = \sqrt{4096 + 4900} = \sqrt{8996} = 94.847$

Original Image											
0	0	0	0	0	0	0	196	196			
0	5	0	0	0	0	0	196	196			
0	0	0	0	64	128	196	196	196			
0	0	0	64	128	196	196	196	196			
0	0	70	128	196	196	196	196	196			
0	64	128	196	196	196	196	196	196			
0	0	196	196	196	130	130	196	196			
0	0	196	196	196	196	196	196	196			
0	0	196	196	196	196	196	196	196			

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
0	196	0	0	66	66	93	0	x
0	196	0	0	0	0	0	0	x
x	x	х	х	x	x	х	х	x

x-Derivative

y-Derivative

0	90	9	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0		48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	x	x	x	x	x	x	x

Original Image											
0	0	0	0	0	0	0	196	196			
0	5	0	0	0	0	0	196	196			
0	0	0	0	64	128	196	196	196			
0	0	0	64	128	196	196	196	196			
0	0	70	128	196	196	196	196	196			
0	64	128	196	196	196	196	196	196			
0	0	196	196	196	130	130	196	196			
0	0	196	196	196	196	196	196	196			
0	0	196	196	196	196	196	196	196			

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	x
x	x	x	x	x	x	x	x	x

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

x-Derivative

y-Derivative

0	90	9	0	0	0	0	0	x
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0		48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	x	x	x	x	x	x	x

$$\theta = \tan^{-1} \left(\frac{\partial}{\partial \theta} \right)$$

0	0	0	0	0	0	0	196	196		
0	5	0	0	0	0	0	196	196		
0	0	0	0	64	128	196	196	196		
0	0	0	64	128	196	196	196	196		
0	0	70	128	196	196	196	196	196		
0	64	128	196	196	196	196	196	196		
0	0	196	196	196	130	130	196	196		
0	0	196	196	196	196	196	196	196		
0	0	196	196	196	196	196	196	196		

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
0	196	0	0	66	66	93	0	x
0	196	0	0	0	0	0	0	x
x	x	х	x	x	x	х	х	x

Original Image

Sobel (threshold = 100)

Sobel (threshold = 50)

0	0	0	0	0	0	0	196	196		
0	5	0	0	0	0	0	196	196		
0	0	0	0	64	128	196	196	196		
0	0	0	64	128	196	196	196	196		
0	0	70	128	196	196	196	196	196		
0	64	128	196	196	196	196	196	196		
0	0	196	196	196	130	130	196	196		
0	0	196	196	196	196	196	196	196		
0	0	196	196	196	196	196	196	196		

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
0	196	0	0	66	66	93	0	x
0	196	0	0	0	0	0	0	x
x	x	х	x	x	x	х	х	x

Original Image

Sobel (threshold = 100)

Sobel (threshold = 50)

Sobel issues:

- Brittle = result depends on threshold
- Thick edges = poor localization

Canny Edge Detector

3. Non-maximum suppression - thin multi-pixel wide "ridges" down to single pixel width

4. Linking and thresholding

- Low, high edge-strength thresholds
- threshold

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	x
0	196	0	0	0	0	0	0	x
x	x	х	x	x	x	x	x	x

Accept all edges over low threshold that are connected to edge over high

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	х	х	х	х	x	х	x

Gradient Magnitude

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	х
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	х
0	196	0	0	0	0	0	0	x
x	x	х	х	x	x	x	х	x

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
х	x	х	х	х	х	х	х	х

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	х
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	x
С	196		0	0	0	0	0	x
x	x	х	х	х	х	x	х	x

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
х	x	x	х	x	х	х	x	х

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
0	196	0	0	66	66	93	0	x
С	196		0	0	0	0	0	x
x	x	х	x	х	x	x	х	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
x	x	x	х	x	х	x	x	x

Gradient Magnitude

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
С	196	-0	0	66	66	93	0	x
С	196	—)	0	0	0	0	0	x
x	x	x	x	x	x	x	x	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
х	x	x	х	x	x	x	х	x

Gradient Magnitude

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
С	196	-0	0	66	66	93	0	x
С	196	—)	0	0	0	0	0	x
x	x	x	x	x	x	x	х	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
х	x	x	х	x	x	x	х	x

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	C	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	х
С	196		0	66	66	93	0	x
С	196	-0	0	0	0	0	0	x
x	x	x	x	x	x	x	x	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	4	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
x	x	x	x	x	x	х	x	x

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	х
0	95	82	96	0	0	0	0	х
64	91	96	0	0	66	66	0	х
С	196		0	66	66	93	0	х
С	196	-0	0	0	0	0	0	x
x	x	x	x	x	x	x	x	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	4	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
x	x	x	x	x	x	х	x	x

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
С	196		0	66	66	93	0	x
С	196	-0	0	0	0	0	0	x
x	x	x	х	x	x	х	х	x

No longer considered as possible edge points

Can still be edge points

0	90	0	0	0	0	0	0	Х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	4	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0		0	0	180	90	45	0	х
0		0	0	0	0	0	0	х
x	x	x	x	x	x	x	x	x

Goal: Identify local maxima, which can be edge points Thin edges, so we can improve localization

Gradient Magnitude

0	5	0	0	0	0	196	0	x
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	x
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	х
С	196		0	66	66	93	0	х
С	196	-0	0	0	0	0	0	x
x	х	x	х	х	x	х	х	x

Х 0 64 128 277 Х Х Х Х Х 66 93 0 66 Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

0	5	0	0	0	0	196	0	х
5	7	0	0	64	128	277	0	x
0	0	0	91	91	96	0	0	х
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	х
0	196	0	0	66	66	93	0	x
0	196	0	0	0	0	0	0	x
x	x	х	x	x	x	x	х	x

Linking Edge Points

0	0	0	196	0	x
0	64	128	277	0	x
91	91	96	0	0	x
91	96	0	0	0	x
96	0	0	0	0	x
0	0	66	66	0	x
0	66	66	93	0	x
0	0	0	0	0	x
х	x	х	х	x	x

gradient magnitude $> \mathbf{k}_{high} = 100$ $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

gradient magnitude $< \mathbf{k}_{low} = 50$

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	x	x	x	х	х	x	x

Х 0 64 128 277 Х Х Х Х 0 66 Х 66 93 0 0 66 Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

5	0	0	0	0	196	0	х
7	0	0	64	128	277	0	x
0	0	91	91	96	0	0	x
0	95	91	96	0	0	0	x
95	82	96	0	0	0	0	x
91	96	0	0	66	66	0	x
196	0	0	66	66	93	0	x
196	0	0	0	0	0	0	x
x	х	х	х	x	х	х	x
	5 7 0 95 91 196 196 x	5070000959582291966196019601960xx	500700009109591958296919601960019600xxx	50070064009191095919695829609196009196001960066196000xxxx	500070064412880091191496609559119660955822966009109660066619660066666619660000xxxxx	500019670064412827700919196600919196600958296000919600009196006666661960000019600000196000001960000019600000196000001960000019600001960000196000019600001960000196000019600019600019600019600019600019600019600019600019600019600019600019600196001960<	5000196070641282770009191696000959196000958296000091960000091960000091960000091960000091960000091960000091960000091960000091960000093000000940000009510000009600000096000000960000009600000096000000960000009600000096000000

Linking Edge Points

0	0	0	196	0	x
0	64	128	277	0	x
91	91	96	0	0	x
91	96	0	0	0	x
96	0	0	0	0	x
0	0	66	66	0	x
0	66	66	93	0	x
0	0	0	0	0	x
x	х	x	х	х	x

gradient magnitude $> \mathbf{k}_{high} = 100$ $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

gradient magnitude $< \mathbf{k}_{low} = 50$

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	х	х	x	х	х	х	х

0 196 Х 0 64 128 277 Х Х Х Х Х 0 66 Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

5	0	0	0	0	196	0	х
7	0	0	64	128	277	0	x
0	0	91	91	96	0	0	x
0	95	91	96	0	0	0	x
95	82	96	0	0	0	0	x
91	96	0	0	66	66	0	x
196	0	0	66	66	93	0	x
196	0	0	0	0	0	0	x
x	х	х	х	x	х	х	x
	5 7 0 95 91 196 196 x	5070000959582291966196019601960xx	500700009109591958296919601960019600xxx	50070064009191095919695829609196009196001960066196000xxxx	500070064412880091191496609559119660955822966009109660066619660066666619660000xxxxx	500019670064412827700919196600919196600958296000919600009196006666661960000019600000196000001960000019600000196000001960000019600001960000196000019600001960000196000019600019600019600019600019600019600019600019600019600019600019600019600196001960<	5000196070641282770009191696000959196000958296000091960000091960000091960000091960000091960000091960000091960000091960000091960000093000000940000009510000009600000096000000960000009600000096000000960000009600000096000000

Linking Edge Points

0	0	0	196	0	x
0	64	128	277	0	x
91	91	96	0	0	x
91	96	0	0	0	x
96	0	0	0	0	x
0	0	66	66	0	x
0	66	66	93	0	x
0	0	0	0	0	x
Х	x	x	x	x	x

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
х	x	х	х	х	х	х	х	х

0 196 Х 0 64 128 277 Х Х Х Х Х 0 66 Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

5	0	0	0	0	196	0	х
7	0	0	64	128	277	0	x
0	0	91	91	96	0	0	x
0	95	91	96	0	0	0	x
95	82	96	0	0	0	0	x
91	96	0	0	66	66	0	x
196	0	0	66	66	93	0	x
196	0	0	0	0	0	0	x
x	х	х	х	x	х	x	x
	5 7 0 95 91 196 196 x	5070000959582291966196019601960xx	500700009109591958296919601960019600xxx	50070064009191095919695829609196009196001960066196000xxxx	500070064412880091191496609559119660955822966009109660066619660066666619660000xxxxx	500019670064412827700919196600919196600958296000919600009196006666661960000019600000196000001960000019600000196000001960000019600001960000196000019600001960000196000019600019600019600019600019600019600019600019600019600019600019600019600196001960<	5000196070641282770009191696000959196000958296000091960000091960000091960000091960000091960000091960000091960000091960000091960000093000000940000009510000009600000096000000960000009600000096000000960000009600000096000000

Linking Edge Points

0	0	0	196	• 0	x
0	64	128	277	0	x
91	91	95	0	0	x
91	96	0	0	0	х
96	0	0	0	0	x
0	0	66	66	0	x
0	66	66	93	0	x
0	0	0	0	0	х
X	x	x	X	x	x

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	4-	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
х	х	х	х	x	х	х	х	x

0 196 Х 0 64 128 277 Х Х Х Х Х 0 66 Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

5	0	0	0	0	196	0	х
7	0	0	64	128	277	0	x
0	0	91	91	96	0	0	x
0	95	91	96	0	0	0	x
95	82	96	0	0	0	0	x
91	96	0	0	66	66	0	x
196	0	0	66	66	93	0	x
196	0	0	0	0	0	0	x
x	х	х	х	x	х	x	x
	5 7 0 95 91 196 196 x	5070000959582291966196019601960xx	500700009109591958296919601960019600xxx	50070064009191095919695829609196009196001960066196000xxxx	500070064412880091191496609559119660955822966009109660066619660066666619660000xxxxx	500019670064412827700919196600919196600958296000919600009196006666661960000019600000196000001960000019600000196000001960000019600001960000196000019600001960000196000019600019600019600019600019600019600019600019600019600019600019600019600196001960<	5000196070641282770009191696000959196000958296000091960000091960000091960000091960000091960000091960000091960000091960000091960000093000000940000009510000009600000096000000960000009600000096000000960000009600000096000000

Linking Edge Points

0	0	0	196	• 0	x
0	64	128	277	0	x
91	91	9	0	0	x
91	96	0	0	0	х
96	0	0	0	0	x
0	0	66	66	0	x
0	66	66	93	0	х
0	0	0	0	0	x
Х	x	x	X	x	x

 $\mathbf{k}_{low} < \text{gradient magnitude} < \mathbf{k}_{high}$

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	4-	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
х	х	х	х	x	х	х	х	x

Х 128 277 Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х

Gradient Magnitude

0	5	0	0	0	0	196	0	х
5	7	C	0	61	128	277	0	x
0	0	C	91	91	96	0	0	х
0	0	95	91	96	0	0	0	x
0	95	82	96	0	0	0	0	x
64	91	96	0	0	66	66	0	x
С	196		0	66	66	93	0	x
С	196	-0	0	0	0	0	0	x
x	x	x	x	x	x	x	x	x

Linking Edge Points

0	0	0	196	0	х
0	64	128	277	0	х
91	91	96	0	0	х
91	96	0	0	0	х
96	0	0	0	0	х
0	0	66	66	0	х
0	66	66	93	0	х
0	0	0	0	0	х
х	х	х	х	х	х

Canny Edge Detector

0	90	0	0	0	0	0	0	х
0	-135	0	0	90	90	45	0	х
0	0	0	45	45	45	0	0	х
0	0	48	45	45	0	0	0	х
0	42	45	45	0	0	0	0	х
0	-45	45	0	0	-90	-90	0	х
0	0	0	0	180	90	45	0	х
0	0	0	0	0	0	0	0	х
x	x	х	х	х	х	х	х	x

Original Image

0	0	0	0	0	0	0	196	196
0	5	0	0	0	0	0	196	196
0	0	0	0	64	128	196	196	196
0	0	0	64	128	196	196	196	196
0	0	70	128	196	196	196	196	196
0	64	128	196	196	196	196	196	196
0	0	196	196	196	130	130	196	196
0	0	196	196	196	196	196	196	196
0	0	196	196	196	196	196	196	196

Sobel (threshold = 100)

Sobel (threshold = 50)

Canny Edge Detector

The fact that the edge is shifted can be addressed by better derivative filter (central difference)

How do humans perceive **boundaries**?

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to boundaries that humans perceive to be salient or significant?

How do humans perceive **boundaries**?

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Boundary Detection

We can formulate **boundary detection** as a high-level recognition task - Try to learn, from sample human-annotated images, which visual features or cues are predictive of a salient/significant boundary

on a boundary

Many boundary detectors output a **probability or confidence** that a pixel is

An edge exists if there is a large difference **between the distributions**

(x, y)

Boundary Detection:

Features:

- Raw Intensity
- Orientation Energy
- Brightness Gradient
- Color Gradient
- Texture gradient

Boundary Detection:

For each **feature** type

- Compute non-parametric distribution (histogram) for left side
- Compute non-parametric distribution (histogram) for right side
- Compare two histograms, on left and right side, using statistical test

outputs probabilities (Logistic Regression, SVM, etc.)

Use all the histogram similarities as features in a learning based approach that

Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

Learning Goals

Why corners (blobs)? What are corners (blobs)?

between images

registration, structure from motion, stereo...

A basic problem in Computer Vision is to establish matches (correspondences)

between images

registration, structure from motion, stereo...

A basic problem in Computer Vision is to establish matches (correspondences)

between images

registration, structure from motion, stereo...

A basic problem in Computer Vision is to establish matches (correspondences)

between images

registration, structure from motion, stereo...

A basic problem in Computer Vision is to establish matches (correspondences)

Motivation: Template Matching

When might **template matching fail**?

Different scales

- Different orientation
- Lighting conditions
- Left vs. Right hand

Partial Occlusions

Different Perspective

— Motion / blur

When might **template matching** in scaled representation **fail**?

Lighting conditions

Partial Occlusions

Different Perspective

— Motion / blur

When might edge matching in scaled representation fail?

- Partial Occlusions

- Different Perspective

Motion / blur

When might edge matching in scaled representation fail?

- Partial Occlusions

- Different Perspective

Motion / blur

Left vs. Right hand

— Motion / blur

Planar Object Instance Recognition

Database of planar objects

Instance recognition

Recognition under Occlusion

Image Matching

Image Matching

Feature **Detectors** (today)

Corners/Blobs

Edges

Regions

Straight Lines

Feature **Descriptors** (later)

Image Patch

SIFT

Shape Context

Learned Descriptors

estimate of the scale or canonical orientation of the feature)

Use small neighborhoods of pixels to do feature detection — find locations in image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)

Use small neighborhoods of pixels to do feature detection — find locations in image that we MAY be able to match (sometimes this will also come with an

estimate of the scale or canonical orientation of the feature)

Use small neighborhoods of pixels to do feature detection — find locations in image that we MAY be able to match (sometimes this will also come with an

Use small neighborhoods of pixels to do feature detection — find locations in image that we MAY be able to match (sometimes this will also come with an estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize the region well, using a **feature descriptor**, in order to do matching (the scale and orientation, if available, will impact the region of descriptor)

Use small neighborhoods of pixels to do feature detection — find locations in image that we MAY be able to match (sometimes this will also come with an estimate of the scale or canonical orientation of the feature)

Use (typically larger neighborhoods) around the feature detections to characterize the region well, using a **feature descriptor**, in order to do matching (the scale and orientation, if available, will impact the region of descriptor)

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Occluder

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Occluder

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Non-distinctive Locally distinctive SARESIS BREN INDIA Section and the section of the

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Globally distinctive

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

Globally distinctive

What is a **corner**?

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

What is a **corner**?

Interest Point

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

A corner can be **localized reliably**.

Thought experiment:

- A corner can be **localized reliably**.
- Thought experiment:
- Place a small window over a patch of constant image value.

"flat" region:

- A corner can be **localized reliably**.
- Thought experiment:

 Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

"flat" region: no change in all directions

- A corner can be **localized reliably**.
- Thought experiment:

 Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

Place a small window over an edge.

"edge":

- A corner can be **localized reliably**.
- Thought experiment:
- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.
- the edge, the image in the window will not change

"edge": no change along the edge direction

- Place a small window over an edge. If you slide the window in the direction of

 \rightarrow Cannot estimate location along an edge (a.k.a., **aperture** problem)

- A corner can be **localized reliably**.
- Thought experiment:
- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.
- the edge, the image in the window will not change
- Place a small window over a corner.

"corner":

- Place a small window over an edge. If you slide the window in the direction of

 \rightarrow Cannot estimate location along an edge (a.k.a., **aperture** problem)

- A corner can be **localized reliably**.
- Thought experiment:
- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.
- the edge, the image in the window will not change
- the image in the window changes.

"corner": significant change in all directions

- Place a small window over an edge. If you slide the window in the direction of

 \rightarrow Cannot estimate location along an edge (a.k.a., **aperture** problem)

- Place a small window over a corner. If you slide the window in any direction,

What kind of structures are present in the image locally?

What kind of structures are present in the image locally?

OD Structure: not useful for matching

What kind of structures are present in the image locally?

OD Structure: not useful for matching

1D Structure: edge, can be localized in one direction, subject to the "aperture problem"

What kind of structures are present in the image locally?

- **OD Structure**: not useful for matching
- **1D Structure:** edge, can be localized in one direction, subject to the "aperture problem"
- **2D Structure**: corner, or interest point, can be localised in both directions, good for matching

What kind of structures are present in the image locally?

- **OD Structure:** not useful for matching
- **1D Structure**: edge, can be localized in one direction, subject to the "aperture problem"
- **2D Structure:** corner, or interest point, can be localised in both directions, good for matching
- Edge detectors find contours (1D structure), Corner or **Interest point** detectors find points with 2D structure.

How do you find a corner?

Shifting the window should give large change in intensity

Easily recognized by looking through a small window

Autocorrelation

Autocorrelation is the correlation of the image with itself.

slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

rapidly in all directions.

- Windows centered on an edge point will have autocorrelation that falls off
- Windows centered on a corner point will have autocorrelation that falls of

100

Autocorrelation is the correlation of the image with itself.

slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

rapidly in all directions.

- Windows centered on an edge point will have autocorrelation that falls off
- Windows centered on a corner point will have autocorrelation that falls of

Local SSD Function

Consider the sum squared difference (SSD) of a patch with its local neighbourhood

$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$

Local SSD Function

Consider the local SSD function for different patches

High similarity locally

High similarity along the edge

Clear peak in similarity function

Harris corners are peaks of a local similarity function

We will use a first order approximation to the local SSD function

$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$

We will use a first order approximation to the local SSD function

 $SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$ $= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$ $\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

 $\Delta x_2 \uparrow$

This implies that **both eigenvalues of** H must be large Note that **H** is a **2x2 matrix**

 $SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$ $= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$ $\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

SSD function must be large for all shifts Δx for a corner / 2D structure

Harris Corner Detection

- 1.Compute image gradients of small region
- 2.Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_{x} = \frac{\partial I}{\partial x} \qquad \qquad I_{y} = \frac{\partial I}{\partial y}$$
over
$$\left[\sum_{x \in P} I_{x} I_{x} \sum_{x \in P} I_{x} I_{y} \right]$$

1. Compute image gradients over a small region (not just a single pixel)

array of y gradients

Visualization of Gradients

image

X derivative

Y derivative

$$I_{y} = \frac{\partial I}{\partial y}$$
$$I_{x} = \frac{\partial I}{\partial x}$$

How do we quantify the orientation and magnitude?

Sum over small region around the corner

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Sum over small region around the corner

 $\sum I_x I_y = \text{SUM}($ $p \in P$

array of x gradients

Gradient with respect to x, times gradient with respect to y

$$\begin{array}{ccc} {}_{x}I_{x} & \sum\limits_{p \in P} I_{x}I_{y} \ {}_{y}I_{x} & \sum\limits_{p \in P} I_{y}I_{y} \ {}_{p \in P} \end{array}$$

*

Computing Covariance Matrix **Efficiently** $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_y I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Computing Covariance Matrix **Efficiently** $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Computing Covariance Matrix **Efficiently** $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Computing Covariance Matrix **Efficiently** $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region around the corner

Matrix is **symmetric**

Gradient with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix ...

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

we are fitting a **quadratic** to the gradients over a small image region

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix ...

$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Covariance matrix

we are fitting a **quadratic** to the gradients over a small image region

Local Image Patch

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$

Local Image Patch

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$

Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$

Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ p \in P & p \in P \end{bmatrix}$ $C = \left[\sum_{p \in P} I_y I_x \quad \sum_{p \in P} I_y I_y \right] = \mathbf{I}$

 I_x

 I_y

high value along horizontal strip of pixels and 0 elsewhere

Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ p \in P & p \in P \end{bmatrix}$ $C = \left[\sum_{p \in P} I_y I_x \quad \sum_{p \in P} I_y I_y \right] = \left[\sum_{p \in P} I_y I_y \right]$

 I_x

high value along horizontal strip of pixels and 0 elsewhere

$$\left[\begin{array}{cc}\lambda_1 & 0\\ 0 & \lambda_2\end{array}\right]$$

General Case

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

General Case

It can be shown that since every C is symmetric:

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_y I_y & \sum_{p \in P} I_y & \sum_{p \in$

... so general case is like a **rotated** version of the simple one

$$\begin{bmatrix} x & \sum_{p \in P} I_x I_y \\ x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

3. Computing Eigenvalues and Eigenvectors

Quick Eigenvalue/Eigenvector Review

a nonzero vector v that satisfies

The eigenvalues of A are obtained by solving (**characteristic** equation)

- Given a square matrix A, a scalar λ is called an **eigenvalue** of A if there exists
 - $Av = \lambda v$
- The vector v is called an **eigenvector** for A corresponding to the eigenvalue λ .

 - $\det(\mathbf{A} \lambda I) = 0$

3. Computing Eigenvalues and Eigenvectors

eigenvalue $Ce = \lambda e$ RZ eigenvector

$(C - \lambda I)e = 0$

3. Computing Eigenvalues and Eigenvectors eigenvalue $Ce = \lambda e$ $(C - \lambda I)e = 0$ R 7 eigenvector

1. Compute the determinant of (returns a polynomial)

 $C - \lambda I$

3. Computing Eigenvalues and Eigenvectors eigenvalue $Ce = \lambda e$ $(C - \lambda I)e = 0$ R 7 eigenvector

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

3. Computing Eigenvalues and Eigenvectors eigenvalue $Ce = \lambda e$ $(C - \lambda I)e = 0$ R 7 eigenvector

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

3. For each eigenvalue, solve (returns eigenvectors)

$C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

3. For each eigenvalue, solve (returns eigenvectors)

 $C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$

$$\det \left(\left[\begin{array}{c} 2-\lambda \\ 1 \end{array} \right] \right)$$

1. Compute the determinar (returns a polyr

2. Find the roots of polynon (returns eigenv

3. For each eigenvalue, solv (returns eigenved

$\begin{pmatrix} 1 \\ 2-\lambda \end{pmatrix}$

nt of nomial)	$C - \lambda I$
nial values)	$\det(C - \lambda I) = 0$
ve ctors)	$(C - \lambda I)e = 0$

$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \det\left(\begin{bmatrix} 2 - \lambda \\ 1 & 2 \end{bmatrix}\right)$ $(2-\lambda)(2-\lambda)$ -

1. Compute the determinant (returns a polyn

2. Find the roots of polynon (returns eigenv

3. For each eigenvalue, solv (returns eigenvec

$$\begin{pmatrix} 1 \\ 2 - \lambda \end{bmatrix}$$

nt of nomial)	$C-\lambda I$
nial alues)	$\det(C - \lambda I) = 0$
ve ctors)	$(C - \lambda I)e = 0$

$C = \left| \begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right| \qquad \det \left(\left| \begin{array}{ccc} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{array} \right| \right)$ $(2 - \lambda)(2 - \lambda) - (1)(1)$

1. Compute the determinar (returns a polyr

2. Find the roots of polynor (returns eigenv

3. For each eigenvalue, solv (returns eigenved

$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$

nt of nomial)	$C - \lambda I$
nial values)	$\det(C - \lambda I) = 0$
ve ctors)	$(C - \lambda I)e = 0$

$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \det \begin{pmatrix} 2 - \lambda \\ 1 \end{bmatrix}$ $(2-\lambda)(2-\lambda)$

1. Compute the determinal (returns a poly

2. Find the roots of polynor (returns eigen

3. For each eigenvalue, so (returns eigenve

$ \begin{array}{c} 1 \\ 2 - \lambda \end{array} \right) $ $ - (1)(1) $	$(2 - \lambda)(2 - \lambda) - (1)(1)$ $\lambda^2 - 4\lambda + 3 = 0$ $(\lambda - 3)(\lambda - 1) =$ $\lambda_1 = 1, \lambda_2 = 3$) =
nt of nomial)	$C-\lambda I$	
mial Jalues)	$\det(C - \lambda I) = 0$	
lve ctors)	$(C - \lambda I)e = 0$	

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

 $\left(\right)$

Visualization as **Ellipse**

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \operatorname{con}$$

Since *C* is symmetric, we have $C = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$

ist

Visualization as **Ellipse**

Since C is symmetric, we have

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \operatorname{con}$$

$C = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$

ıst

 $\lambda_1 \sim 0$

 $\lambda_2\sim 0$

What kind of image patch does each region represent?

4. Threshold on Eigenvalues to Detect Corners

Think of a function to score 'cornerness'

Think of a function to score 'cornerness'

Use the smallest eigenvalue as the response function

$\min(\lambda_1, \lambda_2)$

$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$

$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$ $\det(C) - \kappa \operatorname{trace}^2(C)$ (more efficient)

4. Threshold on Eigenvalues to Detect Corners (a function of) $\det(M) - \kappa \operatorname{trace}^2(M) < 0$

corner $\det(M) - \kappa \operatorname{trace}^2(M) > 0$

$$\det(M) - \kappa \operatorname{trace}^2(M) \ll 0$$

 λ_2

 $\det(M) - \kappa \operatorname{trace}^2(M) < 0$

$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$ $\det(C) - \kappa \operatorname{trace}^2(C)$ (more efficient)

Harris & Stephens (1988)

 $\det(C) - \kappa \operatorname{trace}^2(C)$

Kanade & Tomasi (1994)

 $\min(\lambda_1, \lambda_2)$

Nobel (1998) $\det(C)$ $\operatorname{trace}(C) + \epsilon$
Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

- If λ 's both are big (product reaches local maximum above threshold) then we

Compute the **Covariance Matrix**

Sum can be implemented as an (unnormalized) box filter with

Harris uses a Gaussian weighting instead

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Compute the **Covariance**

Sum can be implemented as an (unnormalized) box filter with

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures change of intensity for small shifts ... remember AutoCorrelation)

Covariance Matrix
mplemented as an
ed) box filter with
$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(y)]$$
Error Window Shifted Intensity Intensity
$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Computing Covariance Matrix Efficiently

Computing Covariance Matrix Efficiently

 $\mathsf{Convolve} \rightarrow$

Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel - Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

Harris & Stephens (1988) $\det(C) - \kappa \operatorname{trace}^2(C)$

- If λ 's both are big (product reaches local maximum above threshold) then we

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$0$$
 0 0 0 -11 1 0 0 -11 0 0 0 0 -11 0 0 0 -11 0 0 0 -11 0 0 0 -11 0 0

$$I_x = \frac{\partial I}{\partial x}$$

0	0	0	0	
0	0	-1	1	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$I_x = \frac{\partial I}{\partial x}$$

							-	-	_
0	0	0		0	-1	0	0	0	_
0	-1	1		0	0	-1	-1	-1	1
0	1	0		0	0	0	0	0	С
0	1	0		0	1	0	0	0	С
0	1	0		0	0	0	0	0	С
0	1	0		0	0	0	0	0	С
0	1	0		0	0	0	0	0	С
0	1	0	$I_y = \frac{\partial I}{\partial x}$						
			° Oy		-				-

Lets compute a measure of "corner-ness" for the green pixel:

-1

-1

0

0

0

0	0	0	0	0	0	0			$\mathbf{\Sigma}$
0	1	0	0	0	1	0			
0	1	1	1	1	0	0			
0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	-1	1	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1			0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

-1 -1 ()-1 -1 -1 -1 \mathbf{O} \mathbf{O} $\mathbf{\cap}$ $I_y = \frac{\partial I}{\partial y}$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1			0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1		1	0	0

 $\mathbf{C} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 0$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = -0.36$$

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array} \right] \, .$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

 $I_x = \frac{\partial I}{\partial x}$

$$\begin{bmatrix} 0\\2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$

-1

-1

Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

- If λ 's both are big (product reaches local maximum above threshold) then we

Corner response is **invariant** to image rotation

Ellipse rotates but its shape (eigenvalues) remains the same

Properties: Rotational Invariance

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

x (image coordinate)

x (image coordinate)

Properties: NOT Invariant to Scale Changes

corner!

Intuitively ...

Intuitively ...

Find local maxima in both **position** and **scale**

Example 1:

Example 2: Wagon Wheel (Harris Results)

 $\sigma = 1$ (219 points) $\sigma = 2$ (155 points) $\sigma = 3$ (110 points) $\sigma = 4$ (87 points)

Example 3: Crash Test Dummy (Harris Result)

corner response image

Original Image Credit: John Shakespeare, Sydney Morning Herald

www.johnshakespeare.com.au

$\sigma = 1$ (175 points)

Optional subtitle

182

Intuitively ...

Intuitively ...

Find local maxima in both **position** and **scale**

Formally ...

Highest response when the signal has the same characteristic scale as the filter

Characteristic Scale

characteristic scale - the scale that produces peak filter response

characteristic scale

we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

186

Full size

3/4 size

jet color scale blue: low, red: high

Full size

3/4 size

Full size

3/4 size

2.1

9.8

4.2

6.0

15.5

2.1

9.8

4.2

6.0

15.5

Optimal Scale

2.1 4.2 6.0

6.0

2.1 4.2

Full size image

9.8

15.5

17.0

3/4 size image

Optimal Scale

2.1 4.2

2.1 4.2

6.0

Full size image

9.8

15.5

17.0

3/4 size image

Scale Selection

is formed with ultiple scales per ocatve Scale scale space, the initial image is repeatedly convolved with Gaussians to Scale mages are subtracted ³ Dete e Gaussian image is ocal maxima in a 3x3x3 ference-of-Gaussian function provides a close approximation to the

possible image functions, such as the gradient, Hessian, or Harris corner function. The relationship between D and $\sigma^2 \nabla^2 G$ can be understood from the heat diffusion equa-tion (parameterized in terms of σ rather than the more usual t = 0). with circles).

Implementation

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian) For each level of the Gaussian pyramid if local maximum and cross-scale save scale and location of feature (x, y, s)

Multi-Scale Harris Corners

Summary Table

Summary of what we have seen so far:

Representation	Result is	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	$\bigtriangledown^2 G$, Canny
corner	sparse	locally distinct features	Harris

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function **DoG** maxima can be reliably located in scale-space and are useful as interest points