
Lecture 13: Correspondence and SIFT

CPSC 425: Computer Vision 



Menu for Today
Topics: 

Readings: 
— Today’s Lecture:  Szeliski Chapter 7, Forsyth & Ponce 5.4 

Reminders: 
— Midterm — will be graded next week 
— Assignment 3: Texture Synthesis due on Sunday (not today) 
— Assignment 4: RANSAC and Panorama Stitching out Today 

— Invariance, geometric, photometric 
— SIFT = Scale Invariant Feature Transform

— Correspondence Problem 
— Patch matching



Scale Invariant Feature Transform = SIFT

The SIFT paper (David Lowe) was rejected twice 
(and eventually published only as a Poster). 
Became one of the most influential and widely 
cited papers in the field ~ 70,000 citations. 



Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe 
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Today’s “fun” Example: Recognizing Panoramas
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Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences) 
between images. 

This has many applications: rigid/non-rigid tracking, object recognition, image 
registration, structure from motion, stereo...

? ??



Image Panoramas



Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched



Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched



Correspondence Problem
A basic problem in Computer Vision is to establish matches (correspondences) 
between images. 

This has many applications: rigid/non-rigid tracking, object recognition, image 
registration, structure from motion, stereo...

? ??



Back to Good Local Features

Where are the good features, and  
how do we match them?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Photometric Transformations

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Photometric Transformations

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What can we use to deal with this?



Geometric Transformations

objects will appear at different scales,  
translation and rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

objects will appear at different scales,  
translation and rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How can we deal with this?



Lets assume for the moment we can figure out where the good features 
(patches) are … how do we match them?
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Lets assume for the moment we can figure out where the good features 
(patches) are … how do we match them?

How do we localize good features to match (think back 1-2 lectures)?

Harris, Blob are locally distinct (this is minimally what we need)



Back to Good Local Features

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How do we know which corner goes with which?



Back to Good Local Features

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x x

x
x x

x
x

x

How do we know which blob goes with which?



Back to Good Local Features

Patch around the local feature is very informative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Feature Detector

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.
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Edges Straight Lines

Corners/Blobs Regions



Feature Descriptor

Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch

SIFT

Shape Context

 Learned Descriptors



Intensity Image

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged 
(a.k.a. template matching)

What are the problems?

( )
1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

vector of intensity values

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intensity Image

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged 
(a.k.a. template matching)

What are the problems?

How can you be less sensitive to absolute intensity values? 

( )
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1 2 3 4 5 6 7 8 9

vector of intensity values

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

( )
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

Feature is invariant to absolute intensity values

What are the problems?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

( )
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

Feature is invariant to absolute intensity values

What are the problems?

How can you be less sensitive to deformations? 
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

objects will appear at different scales,  
translation and rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

objects will appear at different scales,  
translation and rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How can we deal with this?



Local Coordinate Frame

One way to achieve invariance is to use local coordinate frames that follow 
the surface transformation (covariant) and compute features descriptors in them



Strategy #1: Detecting Scale / Orientation
A common approach is to detect a local scale and orientation for each feature 
point 

e.g., extract Harris at multiple scales and align to the local gradient

4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) c� 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H =

"
Dxx Dxy

Dxy Dyy

#
, (4.12)

and then rejecting keypoints for which

Tr(H)
2

Det(H)
> 10. (4.13)



A common approach is to detect a local scale and orientation for each feature 
point 

e.g., extract Harris at multiple scales and align to the local gradient

40 px

8 pixels

Strategy #1: Detecting Scale / Orientation



Strategy #1: Compute Features in Local Coordinate Frame
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First rotate to canonical frame of reference (e.g., align feature direction  
with y-axis) and only then compute a feature representation 
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Strategy #1: Compute Features in Local Coordinate Frame
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First scale to canonical frame of reference and only then compute a feature 
representation 



Strategy #2: Represent Distributions over Gradients

Use pixel differences

( )
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

Feature is invariant to absolute intensity values



Where does SIFT fit in?

/ “blob”



Object Recognition with Scale Invariant Feature Transform 

Task: Identify objects or scenes and determine their pose and model 
parameters  

Applications:  
— Industrial automation and inspection  
— Mobile robots, toys, user interfaces  
— Location recognition 
— Digital camera panoramas  
— 3D scene modeling, augmented reality  



David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior 
segmentation)  

Distinctiveness: individual features can be matched to a large database of 
objects  

Quantity: many features can be generated for even small objects  

Efficiency: close to real-time performance  



Scale Invariant Feature Transform (SIFT)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection 

Gaussian

Half the size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Recall: Applying Laplacian Filter at Different Scales 

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Searching over Scale-space
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Searching over Scale-space
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Searching over Scale-space

s = 0.5
s = 0.33
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1. Multi-scale Extrema Detection
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1. Multi-scale Extrema Detection



Selected if larger or 
smaller than all 26 

neighbors

Difference of Gaussian (DoG)
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1. Multi-scale Extrema Detection
Detect maxima and minima of Difference of Gaussian in scale space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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More points are found as sampling frequency increases, but accuracy of matching 
decreases after 3 scales/octave

1. Multi-scale Extrema Detection — Sampling Frequency



More points are found as sampling frequency increases, but accuracy of matching 
decreases after 3 scales/octave

1. Multi-scale Extrema Detection — Sampling Frequency
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2. Keypoint Localization 

— After keypoints are detected, we remove those that have low contrast or 
are poorly localized along an edge  
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are poorly localized along an edge  
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vs. well-localized?  

C =



2. Keypoint Localization 

— After keypoints are detected, we remove those that have low contrast or 
are poorly localized along an edge  

How do we decide whether a keypoint is poorly localized, say along an edge, 
vs. well-localized?  

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris 
corners) and checking if it is greater than a threshold  

— Aside: The ratio can be computed efficiently in fewer than 20 floating point 
operations, using a trick involving the trace and determinant of C - no need to 
explicitly compute the eigenvalues 



2. Keypoint Localization 
Example:



3. Orientation Assignment

— Create histogram of local gradient 
directions computed at selected scale  

— Assign canonical orientation at peak 
of smoothed histogram  

— Each key specifies stable 2D 
coordinates (x , y , scale, orientation)  



3. Orientation Assignment

Arrows illustrate gradient orientation (direction)  
and gradient magnitude (arrow length)
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Arrows illustrate gradient orientation (direction)  
and gradient magnitude (arrow length)



3. Orientation Assignment

Arrows illustrate gradient orientation (direction)  
and gradient magnitude (arrow length) Assigned Orientation



3. Orientation Assignment

Arrows illustrate gradient orientation (direction)  
and gradient magnitude (arrow length) Assigned Orientation



3. Orientation Assignment

Arrows illustrate gradient orientation (direction)  
and gradient magnitude (arrow length)

Multiply gradient magnitude by a Gaussian kernel



3. Orientation Assignment

— Histogram of 36 bins (10 degree 
increments)  

— Size of the window is 1.5 scale (recall 
the Gaussian  filter) 

— Gaussian-weighted voting 

— Highest peak and peaks above 80% of 
highest also considered for calculating 
dominant orientations 



3. Keypoint Localization 
Example:



Scale Invariant Feature Transform (SIFT)

101

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection  

— The next step is to compute a keypoint descriptor: should be robust to 
local shape distortions, changes in illumination or 3D viewpoint  

— Keypoint detection is not the same as keypoint description, e.g. some 
applications skip keypoint detection and extract SIFT descriptors on a regularly 
spaced grid  



— Image gradients are sampled over 16 × 16 array of locations in scale space 
(weighted by a Gaussian with sigma half the size of the window)  
— Create array of orientation histograms  
— 8 orientations × 4 × 4 histogram array 

4. SIFT Descriptor





How many dimensions are there in a SIFT descriptor?  

(Hint: SIFT descriptor uses a 4 x 4 array of 8D histogram) 

4. SIFT Descriptor



Descriptor is normalized to unit length (i.e. magnitude of 1) to reduce the 
effects of illumination change  

— if brightness values are scaled (multiplied) by a constant, the gradients are 
scaled by the same constant, and the normalization cancels the change  

— if brightness values are increased/decreased by a constant (additive), the 
gradients do not change  

4. SIFT Descriptor — Photometric Invariance



SIFT Recap

Detector:  
— Find points that are maxima in a DOG pyramid 
— Compute local orientation from gradient histogram 
— This establishes a local coordinate frame with scale/orientation 

Descriptor:  
— Build histograms over gradient orientations (8 orientations, 4x4 grid) 
— Normalise the final descriptor to reduce the effects of illumination change



SIFT Matching

Extract features from the image …  

Each image might generate 100’s or 1000’s of SIFT descriptors



SIFT Matching

Goal: Find all correspondences between a pair of images 

Means: extract and match all SIFT descriptors from both images 

?



SIFT Matching

— Each SIFT feature is represented by 128-D vector (numbers) 
— Feature matching becomes the task of finding the closest 128-D vector 
— Nearest-neighbor matching: 

— This is expensive (linear time), but good approximation algorithms exist 
e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast Library for 

Approximate Nearest Neighbours) [Muja Lowe 2009]

NN(j) = argmin
i

|xi � xj |, i 6= j



Match Ratio Test
Compare ratio of distance of nearest neighbour (1NN) to second nearest 
(2NN) neighbour — this will be a non-matching point  

Rule of thumb: d(1NN) < 0.8 * d(2NN) for good match



Feature Stability to Noise
Match features after random change in image scale & orientation, with differing 
levels of image noise  

Find nearest neighbour in database of 30,000 features 



Feature Stability to Affine Change
Match features after random change in image scale & orientation, with differing 
levels of image noise  

Find nearest neighbour in database of 30,000 features 



Summary
Four steps to SIFT feature generation:  

1. Scale-space representation and local extrema detection 
— use DoG pyramid 
— 3 scales/octave, down-sample by factor of 2 each octave  

	2. Keypoint localization 
— select stable keypoints (threshold on magnitude of extremum, ratio of   

principal curvatures)  
	3. Keypoint orientation assignment 

— based on histogram of local image gradient directions  
	4. Keypoint descriptor 

— histogram of local gradient directions — vector with 8 × (4 × 4) = 128 dim 
— vector normalized (to unit length) 



gradient magnitude histogram 
(one for each cell)

Block 
(2x2 cells)

Cell 
(8x8 pixels)

Single scale, no dominant orientation

histogram of 
‘unsigned’ 
gradients

soft binning

Concatenate and L-2 normalization

Histogram of Oriented Gradients (HOG) Features
Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Pedestrian detection

64 pixels 
8 cells 

7 blocks

128 pixels 
16 cells 

15 blocks

15 x 7 x 4 x 9 = 
3780

1 cell step size visualization

Redundant representation due to overlapping blocks

Histogram of Oriented Gradients (HOG) Features

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4 x 4 cell grid
Each cell is represented 

by 4 values: 

How big is the SURF descriptor?

5 x 5 
sample 
points

Haar wavelets filters
(Gaussian weighted from center)

‘Speeded’ Up Robust Features (SURF)

64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

‘Speeded’ Up Robust Features (SURF)



Keypoint Detectors vs. Descriptors

— Harris 
— Blob (Laplacian)  
— SIFT

— SIFT 
— HoG 
— SURF



Learning Descriptors

• Deep networks for descriptor learning

Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

[ MatchNet
Han et al 2015 ]
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Hyeonwoo Noh† André Araujo⇤ Jack Sim⇤ Tobias Weyand⇤ Bohyung Han†

†POSTECH, Korea
{shgusdngogo,bhhan}@postech.ac.kr

⇤Google Inc.
{andrearaujo,jacksim,weyand}@google.com

Abstract

We propose an attentive local feature descriptor suitable

for large-scale image retrieval, referred to as DELF (DEep

Local Feature). The new feature is based on convolutional

neural networks, which are trained only with image-level

annotations on a landmark image dataset. To identify

semantically useful local features for image retrieval, we

also propose an attention mechanism for keypoint selection,

which shares most network layers with the descriptor. This

framework can be used for image retrieval as a drop-in

replacement for other keypoint detectors and descriptors,

enabling more accurate feature matching and geometric

verification. Our system produces reliable confidence

scores to reject false positives—in particular, it is robust

against queries that have no correct match in the database.

To evaluate the proposed descriptor, we introduce a new

large-scale dataset, referred to as Google-Landmarks

dataset, which involves challenges in both database and

query such as background clutter, partial occlusion, multiple

landmarks, objects in variable scales, etc. We show that

DELF outperforms the state-of-the-art global and local

descriptors in the large-scale setting by significant margins.

Code and dataset can be found at the project webpage:

https://github.com/tensorflow/models/
tree/master/research/delf.

1. Introduction

Large-scale image retrieval is a fundamental task in com-
puter vision, since it is directly related to various practical
applications, e.g., object detection, visual place recognition,
and product recognition. The last decades have witnessed
tremendous advances in image retrieval systems—from hand-
crafted features and indexing algorithms [22, 33, 27, 16] to,
more recently, methods based on convolutional neural net-
works (CNNs) for global descriptor learning [2, 29, 11].

Despite the recent advances in CNN-based global descrip-
tors for image retrieval in small or medium-size datasets [27,
28], their performance may be hindered by a wide variety

DELF Pipeline

Large-Scale
Index

Features

DELF 
Features

Query Image

DELF Pipeline

Index Query 

NN Features

Attention Scores

Database Images

Retrieved Images

Geometric 
Verification

Figure 1: Overall architecture of our image retrieval system, us-
ing DEep Local Features (DELF) and attention-based keypoint
selection. On the left, we illustrate the pipeline for extraction and
selection of DELF. The portion highlighted in yellow represents an
attention mechanism that is trained to assign high scores to relevant
features and select the features with the highest scores. Feature
extraction and selection can be performed with a single forward
pass using our model. On the right, we illustrate our large-scale
feature-based retrieval pipeline. DELF for database images are
indexed offline. The index supports querying by retrieving nearest
neighbor (NN) features, which can be used to rank database images
based on geometrically verified matches.

of challenging conditions observed in large-scale datasets,
such as clutter, occlusion, and variations in viewpoint and
illumination. Global descriptors lack the ability to find patch-
level matches between images. As a result, it is difficult to
retrieve images based on partial matching in the presence of
occlusion and background clutter. In a recent trend, CNN-
based local features are proposed for patch-level matching
[12, 42, 40]. However, these techniques are not optimized
specifically for image retrieval since they lack the ability to
detect semantically meaningful features, and show limited
accuracy in practice.

Most existing image retrieval algorithms have been evalu-
ated in small to medium-size datasets with few query images,
i.e., only 55 in [27, 28] and 500 in [16], and the images in
the datasets have limited diversity in terms of landmark lo-
cations and types. Therefore, we believe that the image
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Planar Object Instance Recognition
Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)


