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Menu for Today (october 28, 2024)

Topics:

— Planar Geometry — RANSAC
— Image Alignment, Object Recognition

— Today’s Lecture: Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders:

— Assignment 4. RANSAC and Panorama Stitching




Today’s “fun” Example: COTR
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With COTR, we find dense correspondences, which we can
reconstruct a dense 3D model from just two calibrated views.
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With COTR, we find dense correspondences, which we can
reconstruct a dense 3D model from just two calibrated views.




Today’s “fun” Example: Im2Calories

ICCV 2015 paper by Kevin Murphy Top View Side View

(UBC’s former faculty) >eps

Image Acquisition |
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by | A .
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A
Step3

: Lty g
Image Segmenta-
tion ” %

Machine Learning Step4: apple: qiwi:
A Probabilistic Perspective Volume Estimation V=3116cm? V=135.7cm?

Kevin P. Murphy

Step2:
Object Detection

Step5:

L L | apple: 126.857Kcal
Coincidently Kevin is also author of one of S tmation m ook 30257l
the most prominent ML books

Figure 1: Calorie Estimation Flowchart



Today’s “fun” Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio
Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodyv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com



Today’s “fun” Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio
Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodyv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com



Today’s “fun” Example: Im2Calories

Fun on-line demo: http://www.caloriemama.ai/api



http://www.caloriemama.ai/api

Lecture 13: Re-Cap

Keypoint is an image location at which a
descriptor iIs computead b e b

Locally distinct

— Locally distinct points
— Easily localizable and identifiable

Locally non-distinct



Lecture 13: Re-Cap

Keypoint is an image location at which a
descriptor iIs computed

Locally distinct

— Locally distinct points
— Easily localizable and identifiable

The feature descriptor summarizes the local
structure around the key point

— Allows us to (hopefully) unique matching of
keypoints in presence of object pose variations, Locally non-distinct
image and photometric deformations




Lecture 13: Re-Cap

Keypoint is an image location at which a
descriptor iIs computed

Locally distinct

— Locally distinct points
— Easily localizable and identifiable

The feature descriptor summarizes the local
structure around the key point

— Allows us to (hopefully) unique matching of
keypoints in presence of object pose variations, Locally non-distinct
image and photometric deformations

Note, for repetitive structure this would still not
give us unigue matches.



Lecture 13: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image
(detection)

— SIFT features (description) are invariant to translation, rotation, and scale;
robust to 3D pose and illumination




Lecture 13: Re-Cap

Four steps to SIFT feature generation:

Output: (x, vy, s) for each keypoint




Lecture 13: Re-Cap — Multi-scale Extrema Detection
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 13: Re-Cap

Four steps to SIFT feature generation:

Output: (x, vy, s) for each keypoint

Output: Remove some (weak) keypoints




Lecture 13: Re-Cap — Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?
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Lecture 13: Re-Cap

Four steps to SIFT feature generation:

Output: (x, vy, s) for each keypoint

Output: Remove some (weak) keypoints

Output: Orientation for each keypoint




Lecture 13: Re-Cap — Orientation Assignment

.

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)




Lecture 13: Re-Cap

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

— use DoG pyramid Output: (x, y, s) for each keypoint
— 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

— select stable keypoints (threshold on magnitude of extremum, ratio of

principal curvatures) Output: Remove some (weak) keypoints
3. Keypoint orientation assignment Output: Orientation for each keypoint

— pbased on histogram of local image gradient directions

4. Keypoint descriptor
— histogram of local gradient directions — vector with 8 x (4 x 4) = 128 dim
— vector normalized (to unit length) Output: 128D normalized vector

characterizing the keypoint region



Lecture 13: Histogram of Oriented Gradients (HOG)

1 cell step size visualization

Pedestrian detection

128 pixels 15X 7 x4 X9 =
10 cells 3780
15 blocks

64 pixels
8 cells
/ blocks

Redundant representation due to overlapping blocks
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 13: ‘Speeded’ Up Robust Features

4 x 4 cell grid

vl

7

1 5x5
sample
DOINtS

] ] ] ]

- Each cell Is represented
oy 4 values:

e Y, Y 1], Y1

Haar wavelets filters
(Gaussian weighted from center)

How big is the SURF descriptor?
04 dimensions

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 13: Summary

Keypoint Detection

Keypoint Description

Representation Representation

Algorithms Algorithms
Harris Corners (X,Y,S) SIFT 128D
LoG / Blobs (X.v.5) Histogram of Oriented 3780D

Gradients

SIFT (X,Y,S,theta) L oo > SURF 64D




Learning Descriptors

® Deep networks for descriptor learning

Patch labels Image labels, also learns
interest function

A: Feature network B: Metric network

FC3 + Softmax DELF

000~ | B
{1

FC1

Bottleneck

Pool4

Conv4

. I
_ _ o '--qr—--- -y ---" I Geometric
e C: MatchNet in training m | Verification
Cross-Entropy Loss ﬁ Attention Scores G G
Conv2
Metric network
Pool1 [ . Features .:" 3 _n:i;;.“.ﬂ\'
Conv1 ‘ by
e a
¥
ConvO I

Preprocessing
Sampling

DELF Pipeline

[ MatchNet | DELF
Han et al 2015 ] Noh et al 2017 ]



DeepDesc [ICCV 2015]

Learning an “embedding”

Slide credits, Eduard Trulls



DeepDesc [ICCV 2015]

Learning an “embedding”

Minimize the distance for corresponding matches.

Slide credits, Eduard Trulls



DeepDesc [ICCV 2015]

Learning an “embedding”
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Minimize the distance for corresponding matches.

# l(Xl, X2)

Maximize It for non-corresponding patches.

Slide credits, Eduard Trulls



DeepDesc [ICCV 2015]

Learning an “embedding”

- .-

Shared
We|ghts
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Minimize the distance for corresponding matches.

) [(x1,%>) -

Maximize It for non-corresponding patches.

Slide credits, Eduard Trulls



Image Panoramas




Planar Object Instance Recognition

Datalbase of planar objects Instance recognition

BASAATI

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| earning Goals

1. Linear (Projective) Transformations
2. Good results don’t happen by chance (or do they?)
3. Good == more support



Image Alignment

Aim: Warp one image to align with another




Image Alignment

Aim: Warp one image to align with another using a 2D transtormation
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Image Alignment

Step 2: Compute the transformation to align the two images




Image Alignment

Not all points will match across two images, we can also reject outliers




Image Alignment

Not all points will match across two images, we can also reject outliers




Planar Geometry

— 2D Linear + Projective transformations
—uclidean, Similarity, Affine, Homography

— Robust Estimation and RANSAC

—stimating 2D transforms with noisy correspondences




2D Transformations

— We will look at a family that can be represented by 3x3 matrices

Y A / similariE? Q project;e‘/

i g |
Euclidwe

, -

— This group represents perspective projections of planar surfaces



Affine Iransformation

— [ransformed points are a linear function of the input points

|
_|_




Affine Iransformation

— [ransformed points are a linear function of the input points

— This can be written as a single matrix multiplication using
homogeneous coordinates

/
L1 adi1 Q12 Aais L1

/
Y — |21 Q22 Q23 Y1

1D Lo o 1 jqip



Linear lransformation

— Consider the action of the unit square under, sample transform

O = W

o N =

— O O



Linear lransformation

— Consider the action of the unit square under, sample transform

O =W
DI W
— O O

Transformed Points




Linear (or Affine) Transformations

0= /7

Translation, rotation, scale, shear (parallel lines preserved)



Linear (or Affine) Transformations

0= /7

Translation, rotation, scale, shear (parallel lines preserved)

SVARSEY'

These transforms are not affine (parallel lines not preserved)



Linear (or Affine) Transformations

Consider a single point correspondence

1
1 0 0 1 1




Linear (or Affine) Transformations

Consider a single point correspondence

How many points are needed to solve for a”



Computing Affine Transform

Lets compute an affine transform from correspondences:

56/1 di1 412 04ais L1
yi — [d21 Q22 G23 Y1
1 0 0 1 1



Computing Affine Transform

Lets compute an affine transform from correspondences:

L1 adi1 12 Aais L1
/

Y1 | = |a21 a22 423 Y1
1 0 0 1 1

Re-arrange unknowns INto a vector

[&11 di12 4aAi13 a21 Aa22 CL23}




Computing Affine Transform

Linear system in the unknown parameters a

L1 Y1 1 0 0
0 0 0 L1 Yq
T2 y2 1 0

0
0 0 0 L2 Y92
L3 Y3 1 0 0
0 0 0 L3 Y3

Of the form




Computing Affine Transform

Linear system in the unknown parameters a

L1 Y1 1 0 0 0 a11 L1
0 0 0 x1 y1 1| |ar Y1
L2 Y2 1 0 0 0 ais| 213/2
0 0 0 =z y2 1 la:a|  |vh
L3 Y3 1 0 0 0 a29 ZIZ‘g
0 0 0 x3 y3 1| |as3 Y3

Of the form
Ma =y

Solve for a using Gaussian Elimination




Computing Affine Transform

Once we solve for a transform, we can now map any other points between the
two Images ... or resample one image In the coordinate system of the other




Computing Affine Transform

Once we solve for a transform, we can now map any other points between the
two Images ... or resample one image in the coordinate system of the other

This allows us to “stitch” the
two Images




Linear lransformations

Other linear transforms are special cases of affine transform:

a1 di12 di3

o1 dA22 A3
0 0 1



Linear lransformations

Other linear transforms are special cases of affine transform:

a1 di12 di3

o1 dA22 A3
0 0 1

e.g.,

S
ek
L W

translation transform

o O =
o = O
-

— N



Linear lransformations

Other linear transforms are special cases of affine transform:

a1 di12 di3

o1 dA22 A3
0 0 1

e.d., cosf sinf aqs
—sinf cosf a93

0 0 . euclidian transform




Linear lransformations

Other linear transforms are special cases of affine transform:

a1 di12 di3

o1 dA22 A3
0 0 1

e.d., scosf) ssinf ajs
—ssinf)  scosf aog

0 0 h similarity transform




Face Alignment

51



Face Alignment

51



Face Alignment

52



Face Alignment

53



Face Alignment

53



Face Alignment

53



2D Transformations

Transformation Matrix # DoF Preserves Icon
translation _ I ‘ t 2 orientation
_ 12%x3
rigid (Euclidean) | R ‘ t 3 lengths Q
i 12x3
similarity | s ‘ t _ 4 angles Q
12x3
affine _ A _ 6 parallelism E
i 12%x3
projective _ H _ 3 straight lines E
_ 413x3




Example: \Warping with Different Transformations

Projective
Translation Affine (homography)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

.... the scene Is planar; or

.... the scene Is very far
or has small (relative
depth variation = scene
IS approximately planar

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation
or pose change)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Projective [ransformation

General 3x3 matrix transformation




Projective [ransformation

(General 3x3 matrix transformation

L1 a1 di12 d13 L1
/

Y1 | = [A21 G292 Q23 Y1
1 a31 a3z Qas33 1

Lets try an example:

Transformed Points

x’ X
y | =H|y| =
1 1




Projective [ransformation

(General 3x3 matrix transformation

$1 a11
y1| = |2
1 a3
Lets try an example:
x’ X 1 0 O
Y| =H |yl =0 1 0
1 1 0 1 1

Transformation

ad12 A13
22 U323
az2 433

Points

Transformed Points

0 0

Divide by the last row: |0 0.5

I 1




Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters

/
L1 adi1 Q12 Aais L1

/
Y1 | = |a21 a22 423 Y1
1 a31 G322 Qa33 1

— 4 correspondences to solve for H matrix
Solution uses Singular Value Decomposition (SVD)

In Assignment 4 you can compute this using cv2 . findHomography



Image Alignment

Find corresponding (matching) points between the image

2 points for Similarity

u = Hx 3 for Affine
4 for Homography



INn practice we have many noisy correspondences + outliers

Image Alignment



Image Alignment

INn practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

_331 U1 1 0 0 0 a11 513/1
0 0 0 L1 U1 1 a19 y/1
L2 Y2 1 0 0 0 ais| 513/2
0 0 0 22 w2 1| [an| |¥5
L3 Y3 1 0 0 0 a929 ZB%

0 0 0 w3 y3 1| |aos Y3

t iIs overconstrained (more equations than unknowns) and subject to outliers
(some rows are completely wrong)



Image Alignment

INn practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

_331 U1 1 0 0 0 a11 513/1
0 0 0 L1 U1 1 a19 y/1
L2 Y2 1 0 0 0 ais| 513/2
0 0 0 22 w2 1| [an| |¥5
L3 Y3 1 0 0 0 a929 ZB%

0 0 0 w3 y3 1| |aos Y3

t iIs overconstrained (more equations than unknowns) and subject to outliers
(some rows are completely wrong)

Let’s deal with these problems in a simpler context ...



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers

We can fit a line using two points

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers

We can fit a line using two points

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs
will consist entirely of ‘good’ data points (inliers)

— We can identify these good pairs by noticing that a large collection of other
points lie close to the line fitted to the pair

— A better estimate of the line can be obtained by refitting the line to the points
that lie close to the line



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are Inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

RANSAC is very useful for variety of applications

Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman



RANSAC: How many samples?

Let w be the fraction of inliers (i.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probabillity that a single sample of n points is correct (all inliers) is



RANSAC: How many samples?

Let w be the fraction of inliers (i.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probabillity that a single sample of n points is correct (all inliers) is

wn

The probability that all £ samples fail is



RANSAC: How many samples?

Let w be the fraction of inliers (I.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) Is

wn

The probability that all £ samples fail is
(1 —w™)"

Choose k large enough (to keep this below a target failure rate)



RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman



After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed
from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard
least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier



Example 2: Fitting a Line

4 points

Figure Credit: Hartley & Zisserman



Example 2: Fitting a Line

10 points

Figure Credit: Hartley & Zisserman



Image Alignment + RANSAC

INn practice we have many noisy correspondences + outliers




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose light blue, purple



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances




Image Alignment + RANSAC

check match distances

N Y |

tinliers = 2



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose pink, blue



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

warp image



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances

Hinliers = 2



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose red, orange



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

-

¢ ife,
check match distance



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

-

¢ ife,
check match distance

Hinliers = 4



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC
Assignment 4

1. Match feature points between 2 views
2. Select minimal subset of matches”
3. Compute transformation T using minimal subset

4. Check consistency of all points with T — compute projected position and
count #inliers with distance < threshold

5. Repeat steps 2-4 to maximize #inliers

* Similarity transform = 2 points, Affine = 3, Homography = 4



RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman



RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N S% 10% 20% 25% 30% 40% 50%

Proportion of outliers

272

Figure Credit: Hartley & Zisserman



2-view Rotation Estimation

FIind features + raw matches, use RANSAC to find Similarity




2-view Rotation Estimation

Remove outliers, can now solve for R using least squares




2-view Rotation Estimation

Final rotation estimation




Object Instance Recognition

Datalbase of planar objects Instance recognition

BASAATI

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known
keypoints extracted from training examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and
geometric transform (e.qg., affine transform)

Optionally refine pose estimate by recomputing the transformation using all
the RANSAC inliers



Re-cap RANSAC

RANSAC is a technigque to fit data to a model

— divide data into Inliers and outliers

— estimate model from minimal set of inliers

— Improve model estimate using all inliers

— alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems
— easy to Implement
— easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing
Up



