

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 14: Planar Geometry and RANSAC

Menu for Today (October 28, 2024)

Topics:

- **Planar** Geometry
- Image Alignment, Object Recognition

Readings:

- Today's Lecture: Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders:

- Assignment 4: RANSAC and Panorama Stitching

Today's "fun" Example: COTR

lmage 1

With COTR, we find dense correspondences, which we can reconstruct a dense 3D model from just two calibrated views.

Today's "fun" Example: COTR

lmage 1

With COTR, we find dense correspondences, which we can reconstruct a dense 3D model from just two calibrated views.

ICCV 2015 paper by Kevin Murphy

(UBC's former faculty)

Coincidently Kevin is also author of one of the most prominent ML books

<i>Step1:</i> Image Acquisition	Top View	Side View
<i>Step2:</i> Object Detection		
<i>Step3:</i> Image Segmenta- tion		
<i>Step4:</i> Volume Estimation	apple: V=311.6 <i>cm</i> ³	qiwi: V=135.7 <i>cm</i> ³
<i>Step5:</i> Calorie Estimation		apple: 126.857Ko qiwi: 80.297Kcal

Figure 1: Calorie Estimation Flowchart

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodv, kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodv, kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com

Fun **on-line demo**: <u>http://www.caloriemama.ai/api</u>

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable

Locally distinct

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable

The feature **descriptor** summarizes the local structure around the key point

- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Locally distinct

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)

robust to 3D pose and illumination

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

- SIFT features (**description**) are invariant to translation, rotation, and scale;

- 1. Multi-scale extrema detection

Lecture 13: Re-Cap Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- Use DoG pyramid Output: (x, y, s) for each keypoint
- 3 scales/octave, down-sample by factor of 2 each octave

Lecture 13: Re-Cap — Multi-scale Extrema Detection

Gaussian

Difference of Gaussian (DoG)

Half the size

Detect maxima and minima of Difference of Gaussian in scale space

Selected if larger or smaller than all 26 neighbors

Difference of Gaussian (DoG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-Cap Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- Use DoG pyramid
 Output: (x, y, s) for each keypoint
- 3 scales/octave, down-sample by factor of 2 each octave
- 2. Keypoint localization
 - principal curvatures)

- select stable keypoints (threshold on magnitude of extremum, ratio of

Output: Remove some (weak) keypoints

Lecture 13: Re-Cap — Keypoint Localization

 After keypoints are detected, we remove those that have **low contrast** or are **poorly localized** along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

 $C = \begin{bmatrix} \sum_{p \in P} I \\ \sum_{p \in P} I \end{bmatrix}$

$$\left[egin{array}{ccc} I_x I_x & \sum\limits_{p \in P} I_x I_y \ P & p \in P \end{array}
ight] \left[egin{array}{ccc} I_y I_x & \sum\limits_{p \in P} I_y I_y \ P & p \in P \end{array}
ight]$$

Lecture 13: Re-Cap Four steps to SIFT feature generation:

- 1. Scale-space representation and local extrema detection
 - Use DoG pyramid
 Output: (x, y, s) for each keypoint
 - 3 scales/octave, down-sample by factor of 2 each octave
- 2. Keypoint localization
 - principal curvatures)
- 3. Keypoint orientation assignment based on histogram of local image gradient directions

- select stable keypoints (threshold on magnitude of extremum, ratio of

Output: Remove some (weak) keypoints

Output: Orientation for each keypoint

Lecture 13: Re-Cap — Orientation Assignment

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Lecture 13: Re-Cap Four steps to SIFT feature generation: 1. Scale-space representation and local extrema detection

- Use DoG pyramid Output: (x, y, s) for each keypoint
- 3 scales/octave, down-sample by factor of 2 each octave
- 2. Keypoint localization
 - principal curvatures) Output: Remove some (weak) keypoints
- 3. Keypoint orientation assignment
 - based on histogram of local image gradient directions
- 4. Keypoint descriptor

 - vector normalized (to unit length)

- select stable keypoints (threshold on magnitude of extremum, ratio of

Output: Orientation for each keypoint

— histogram of local gradient directions — vector with $8 \times (4 \times 4) = 128$ dim

Output: 128D normalized vector characterizing the keypoint region

Lecture 13: Histogram of Oriented Gradients (HOG)

1 cell step size

Pedestrian detection

128 pixels 16 cells 15 blocks

64 pixels 8 cells 7 blocks

Redundant representation due to overlapping blocks

visualization

 $15 \times 7 \times 4 \times 9 =$ 3780

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: 'Speeded' Up Robust Features

4 x 4 cell grid

Each cell is represented by 4 values: $\left[\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|\right]$

Haar wavelets filters (Gaussian weighted from center)

How big is the SURF descriptor? 64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Summary

Keypoint Detection Algorithms	Representation	Keypoint Description Algorithms	Representation
Harris Corners	(x,y,s)	SIFT	128D
LoG / Blobs	(x,y,s)	Histogram of Oriented Gradients	3780D
SIFT	(x,y,s,theta)	SURF	64D

Learning Descriptors

• Deep networks for descriptor learning

Patch labels

[MatchNet] Han et al 2015]

Image labels, also learns interest function

[DELF Noh et al 2017]

 L_2

Minimize the distance for corresponding matches.

Slide credits, Eduard Trulls

Minimize the distance for corresponding matches. Maximize it for non-corresponding patches.

Minimize the distance for corresponding matches. Maximize it for non-corresponding patches.

Image Panoramas

Planar Object Instance Recognition

Database of planar objects

Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recognition under Occlusion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Learning Goals

Linear (Projective) Transformations Good results don't happen by chance (or do they?)

3. Good == more support

Aim: Warp one image to align with another

Aim: Warp one image to align with another <u>using a 2D transformation</u>

Step 1: Find correspondences (matching points) across two images

Step 2: Compute the transformation to align the two images

Not all points will match across two images, we can also reject outliers

Image Alignment

Not all points will match across two images, we can also reject outliers

Planar Geometry

- 2D Linear + **Projective** transformations Euclidean, Similarity, Affine, Homography

Robust Estimation and RANSAC Estimating 2D transforms with noisy correspondences

2D Transformations

— We will look at a family that can be represented by 3x3 matrices

This group represents perspective projections of planar surfaces

Affine Transformation

- Transformed points are a linear function of the input points

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

$$\begin{array}{c} a_{12} \\ a_{22} \end{array} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

Affine Transformation

- Transformed points are a linear function of the input points

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

This can be written as a single matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

$$\begin{array}{c} a_{12} \\ a_{22} \end{array} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

- Consider the action of the unit square under, sample transform $\begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Consider the action of the unit square under, sample transform

Translation, rotation, scale, shear (parallel lines preserved)

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Consider a single point correspondence

Y

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \\ 0 \end{bmatrix}$$

Consider a single point correspondence

Y

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

How many points are needed to solve for **a**?

Lets compute an affine transform from correspondences:

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Lets compute an affine transform from correspondences:

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

Re-arrange unknowns into a vector

$$\begin{bmatrix} x_1' \\ y_1' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} 0 & x_1 \\ 0 & y_1 \\ 0 & 1 \\ x_2 & 0 \\ y_2 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Linear system in the unknown parameters **a**

x_1	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3

Of the form

Ma = y

Linear system in the unknown parameters **a**

x_1	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3

Of the form

Ma = y

Solve for a using Gaussian Elimination

Once we solve for a transform, we can now map any <u>other points</u> between the two images ... or resample one image in the coordinate system of the other

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{21} \\ 0 \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

This allows us to "stitch" the two images

Once we solve for a transform, we can now map any other points between the two images ... or resample one image in the coordinate system of the other

Other linear transforms are special cases of **affine** transform:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

Other linear transforms are special cases of **affine** transform:

 $\begin{vmatrix} a_{11} \\ a_{21} \\ 0 \end{vmatrix}$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array}$$

Other linear transforms are special cases of **affine** transform:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

Other linear transforms are special cases of **affine** transform:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths	
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles	
affine	$\left[\begin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{oldsymbol{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Example: Warping with Different Transformations Projective Translation Affine (homography)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: We can use homographies when ...

1.... the scene is planar; or

2.... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation or pose change)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Projective Transformation

General 3x3 matrix transformation

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Projective Transformation

General 3x3 matrix transformation

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Lets try an example:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Transformation

$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$

Points

Transformed Points

Projective Transformation

General 3x3 matrix transformation

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Lets try an example:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Transformation

$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$

Points

Transformed Points

Divide by the last row: $\begin{bmatrix} 0 & 0 & 1 & 0.5 \\ 0 & 0.5 & 0 & 0.5 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

 \rightarrow 4 correspondences to solve for **H** matrix Solution uses **Singular Value Decomposition** (SVD) In Assignment 4 you can compute this using cv2.findHomography

a_{11}	a_{12}	a_{13}	x_1
 a_{21}	a_{22}	a_{23}	y_1
a_{31}	a_{32}	a_{33}	1

Image Alignment

Find corresponding (matching) points between the image

$\mathbf{u} = \mathbf{H}\mathbf{x}$

2 points for Similarity3 for Affine4 for Homography
Image Alignment

In practice we have many noisy correspondences + outliers

Image Alignment

In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

x_1	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3
			•

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)

Image Alignment

In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

	c_1	y_1	1	0
	0	0	0	x_1
5	v_2	y_2	1	0
	0	0	0	x_2
	\mathcal{C}_3	y_3	1	0
	0	0	0	x_3
-				

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)

Let's deal with these problems in a simpler context ...

Fitting a Model to Noisy Data

We can fit a line using two points

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

Fitting a Model to Noisy Data Suppose we are **fitting a line** to a dataset that consists of 50% outliers We can fit a line using two points

will consist entirely of 'good' data points (inliers)

points lie close to the line fitted to the pair

that lie close to the line

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs
- We can identify these good pairs by noticing that a large collection of other
- A better estimate of the line can be obtained by refitting the line to the points

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

sample) Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a **consensus set**. Size of consensus set is model's support

3. Repeat for N samples; model with biggest support is most robust fit Points within distance t of best model are inliers

- Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

Slide Credit: Christopher Rasmussen

Example 1: Fitting a Line

\bigcirc

Example 1: Fitting a Line

Example 1: Fitting a Line

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let *n* be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is

$$\omega^n$$

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is] Choose k large enough (to keep this below a target failure rate)

$$\omega^n$$

$$(-\omega^n)^k$$

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers								
n	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

After RANSAC

from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

RANSAC divides data into inliers and outliers and yields estimate computed

Example 2: Fitting a Line

Example 2: Fitting a Line

In practice we have many noisy correspondences + outliers

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown), 4 outliers (blue, light blue, purple, pink)

RANSAC solution for Similarity Transform (2 points)

choose light blue, purple

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances #inliers = 2

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

choose pink, blue

RANSAC solution for Similarity Transform (2 points)

warp image

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances #inliers = 2

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

choose red, orange

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

#inliers = 4

RANSAC solution for Similarity Transform (2 points)

- **1.** Match feature points between 2 views
- **2.** Select minimal subset of matches^{*}
- **3.** Compute transformation T using minimal subset
- count #inliers with distance < threshold
- **5.** Repeat steps 2-4 to maximize #inliers

* Similarity transform = 2 points, Affine = 3, Homography = 4

Assignment 4

4. Check consistency of all points with T - compute projected position and

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers								
n	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

Figure Credit: Hartley & Zisserman

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers								
n	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

Figure Credit: Hartley & Zisserman

2-view Rotation Estimation

Find features + raw matches, use RANSAC to find Similarity

2-view Rotation Estimation

Remove outliers, can now solve for R using least squares

2-view Rotation Estimation

Final rotation estimation

Object Instance Recognition

Database of planar objects

Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Object Instance Recognition with SIFT

- Match SIFT descriptors between query image and a database of known keypoints extracted from training examples
- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances between 1NN and 2NN
- Use **RANSAC** to find a **subset of matches** that all agree on an object and geometric transform (e.g., **affine transform**)
- Optionally **refine pose estimate** by recomputing the transformation using all the RANSAC inliers

Re-cap RANSAC

RANSAC is a technique to fit data to a model

- divide data into inliers and outliers
- estimate model from minimal set of inliers
- improve model estimate using all inliers
- alternate fitting with re-classification as inlier/outlier

- easy to implement
- easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing up

RANSAC is a general method suited for a wide range of model fitting problems