

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

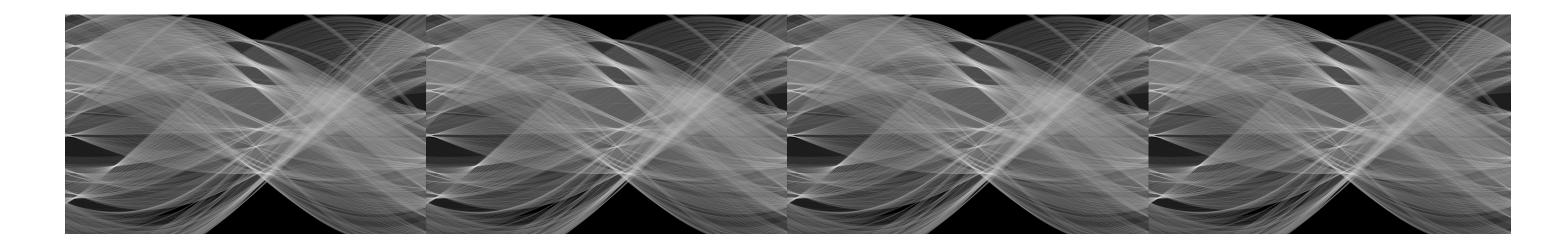


Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 15: Hough Transform

Menu for Today (October 30, 2024)

Topics:

– Hough Transform

Transformation Space Voting

Readings:

- Today's Lecture: Szeliski 7.4, Forsyth & Ponce 10.1

Reminders:

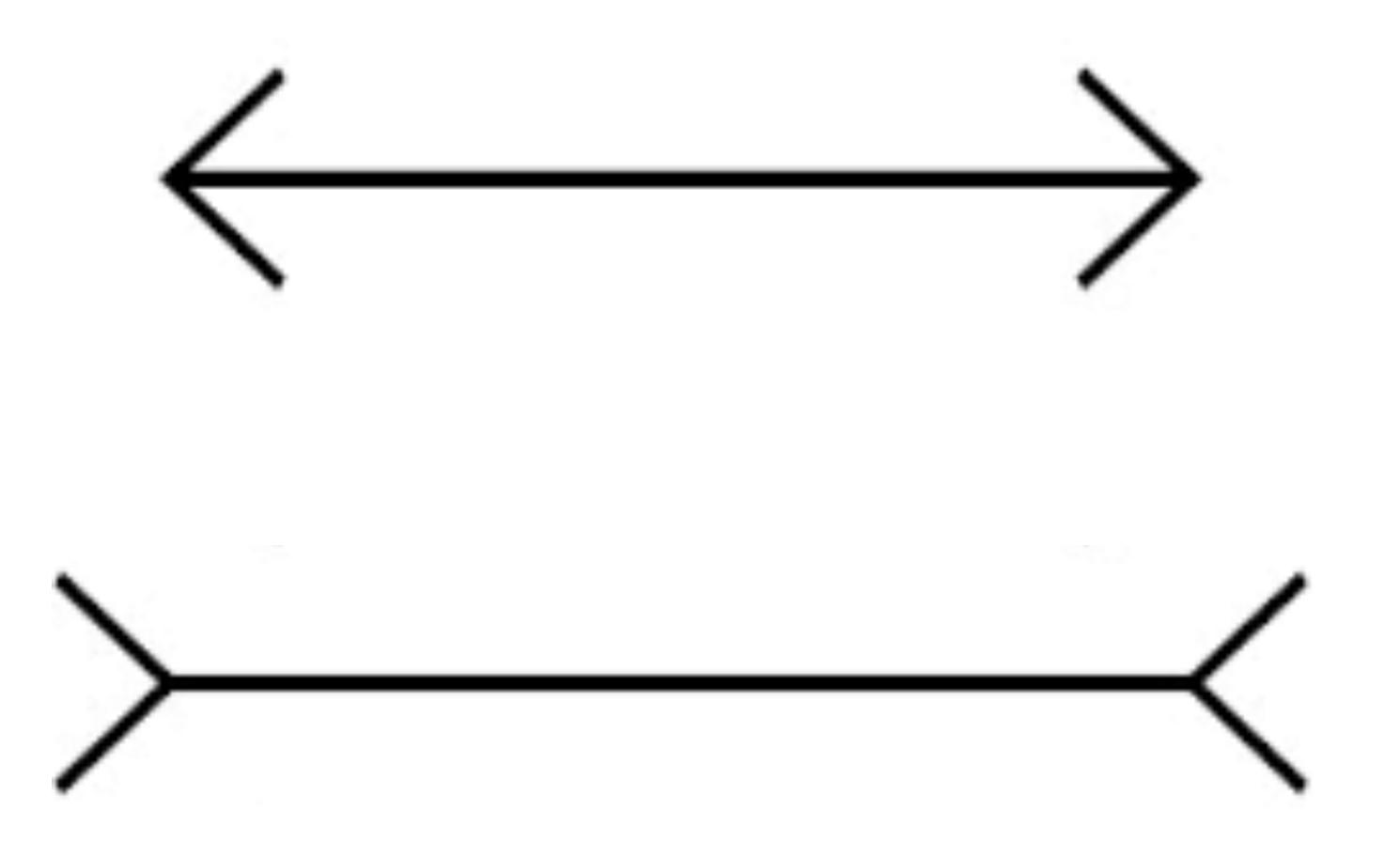
- Assignment 4: RANSAC and Panorama Stitching
- Midterm grading is on the way (Gradescope)

- Line Detection

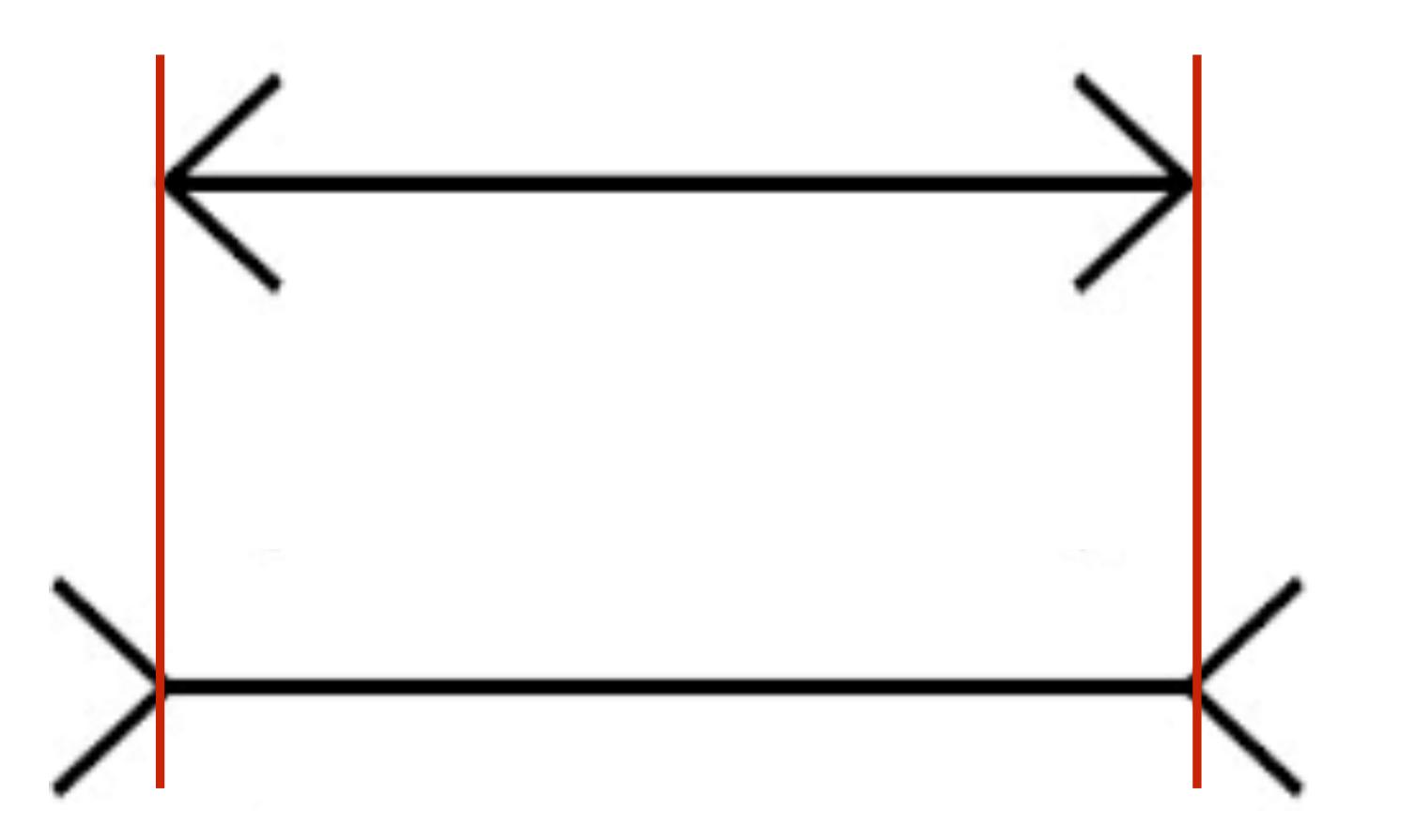
Learning Goals

1. How to get **multiple** hypothesis 2. Voting-based strategies are useful

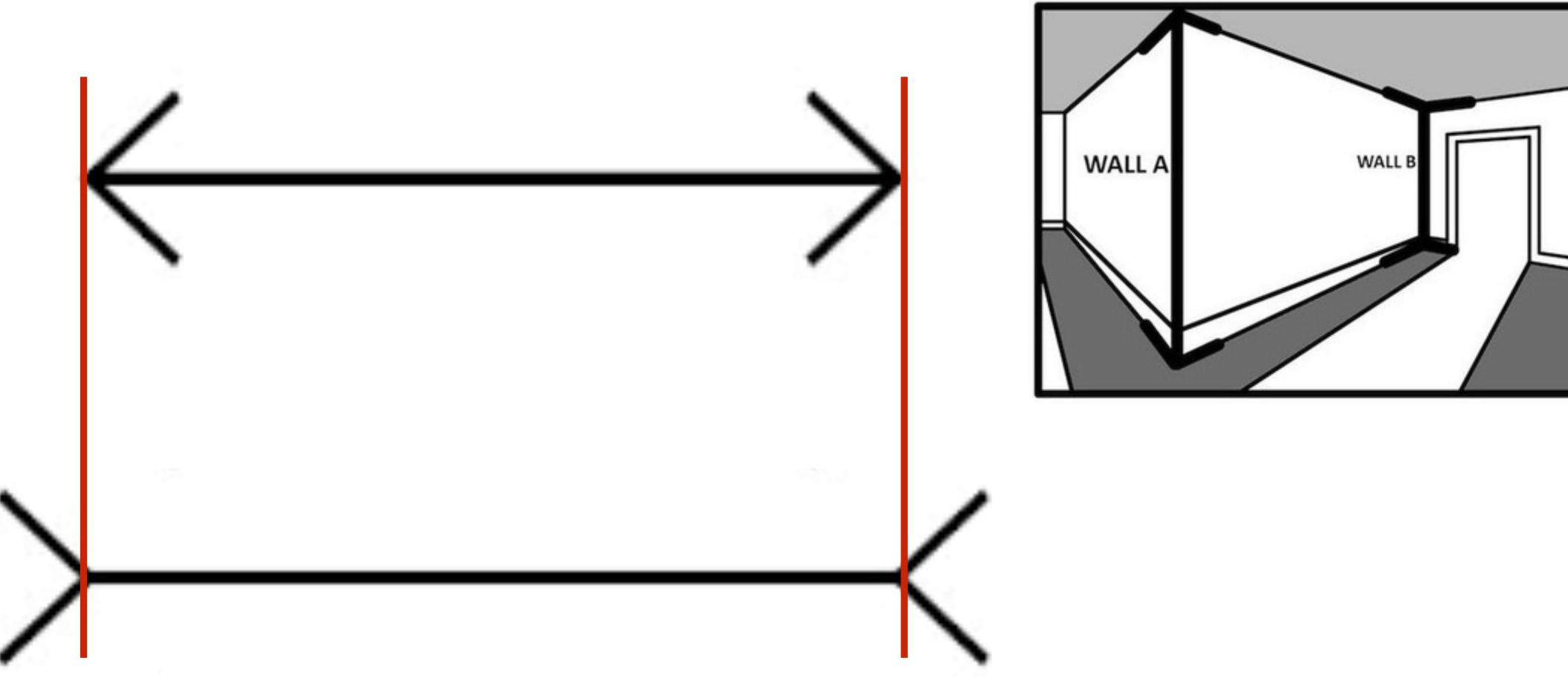
Today's "fun" Example: Müller-Lyer Illusion



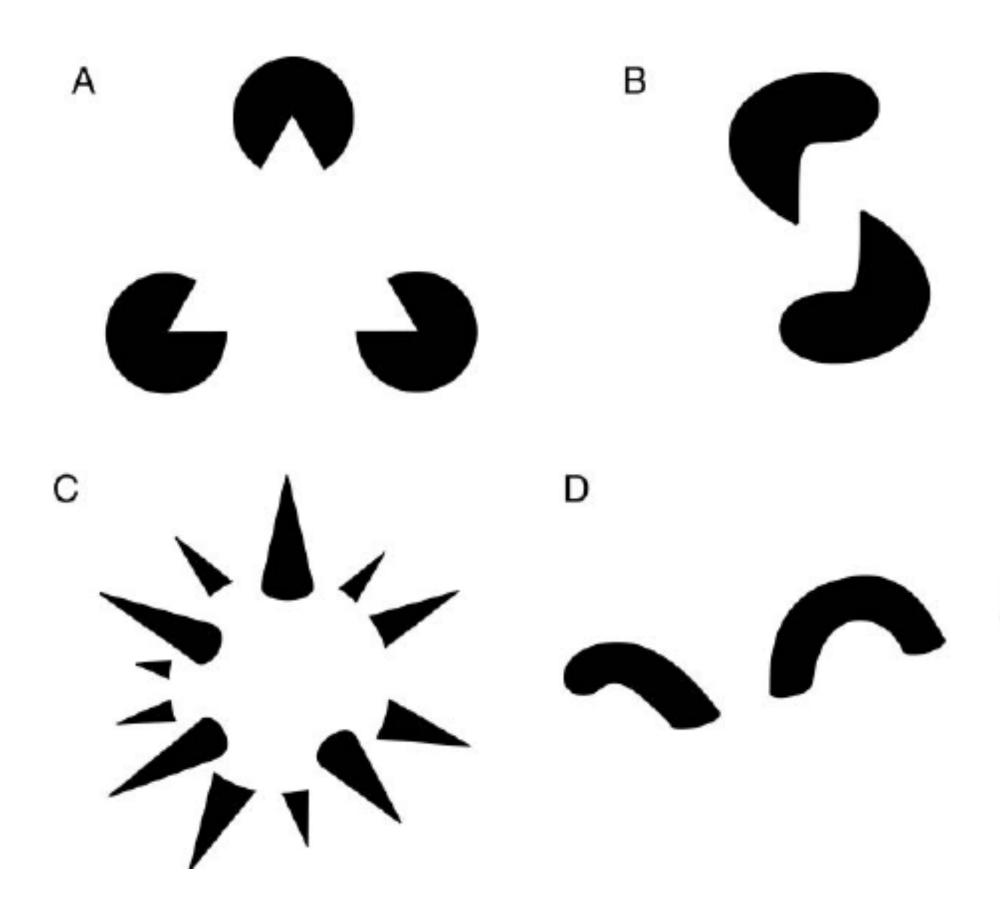
Today's "fun" Example: Müller-Lyer Illusion



Today's "fun" Example: Müller-Lyer Illusion



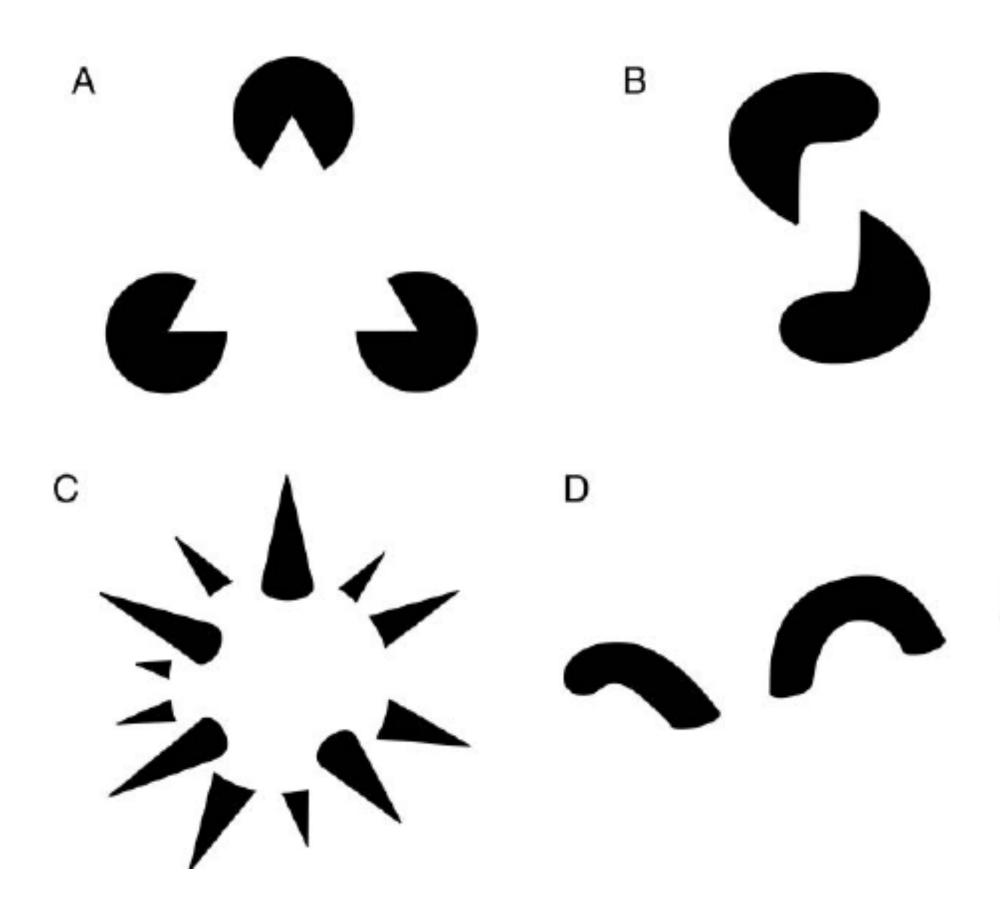
Today's "fun" Example: Tse's Volumetric Illusions

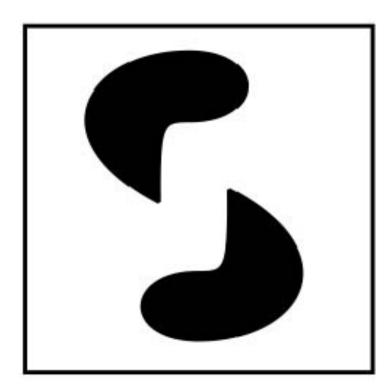


A. Kanizsa triangle
B. Tse's volumetric worm
C. Idesawa's spiky sphere
D. Tse's "sea monster"

Figure credit: Steve Lehar

Today's "fun" Example: Tse's Volumetric Illusions





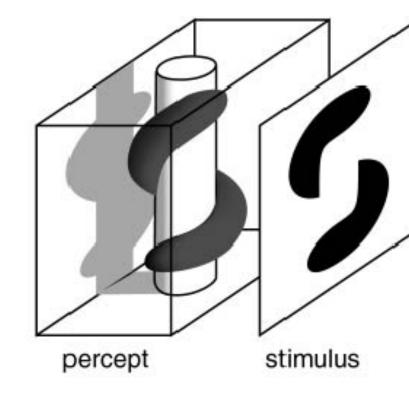
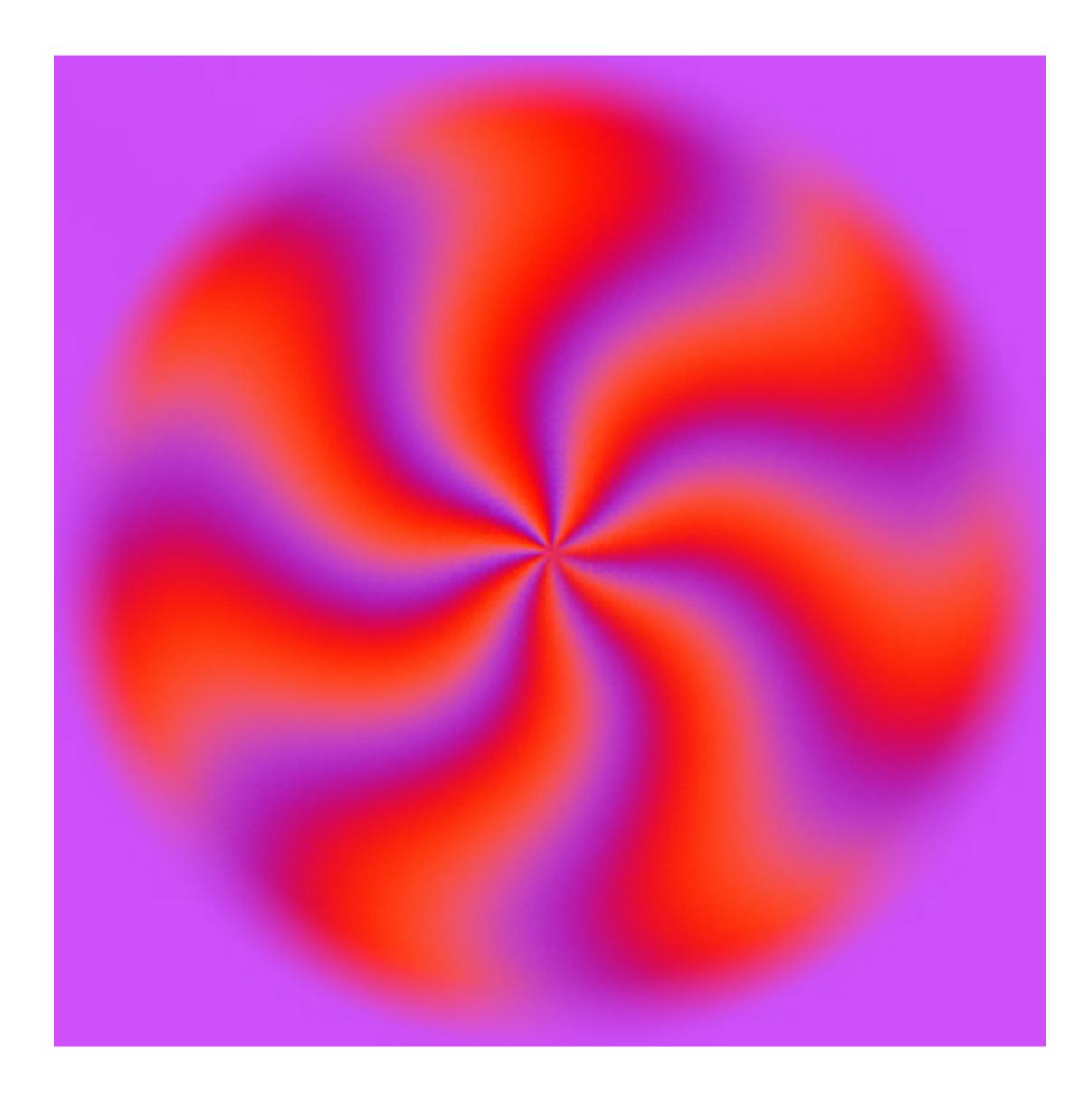


Figure credit: Steve Lehar

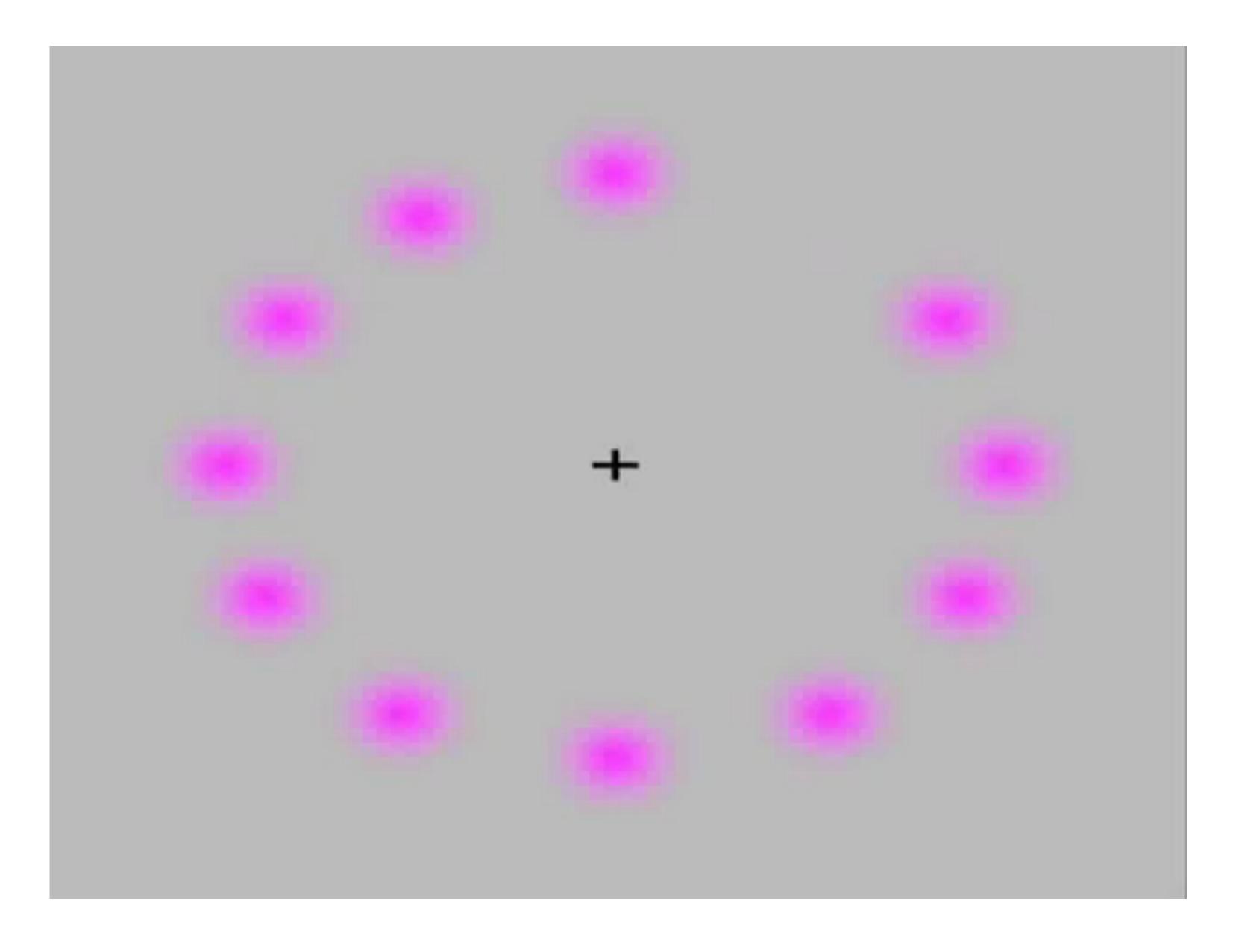
J

Today's "fun" Example: FedEx

Today's "fun" Example: Motion Illusion



Today's "fun" Example: Lilac Chaser (a.k.a. Pac-Man) Illusion



Today's "fun" Example: Lilac Chaser (a.k.a. Pac-Man) Illusion

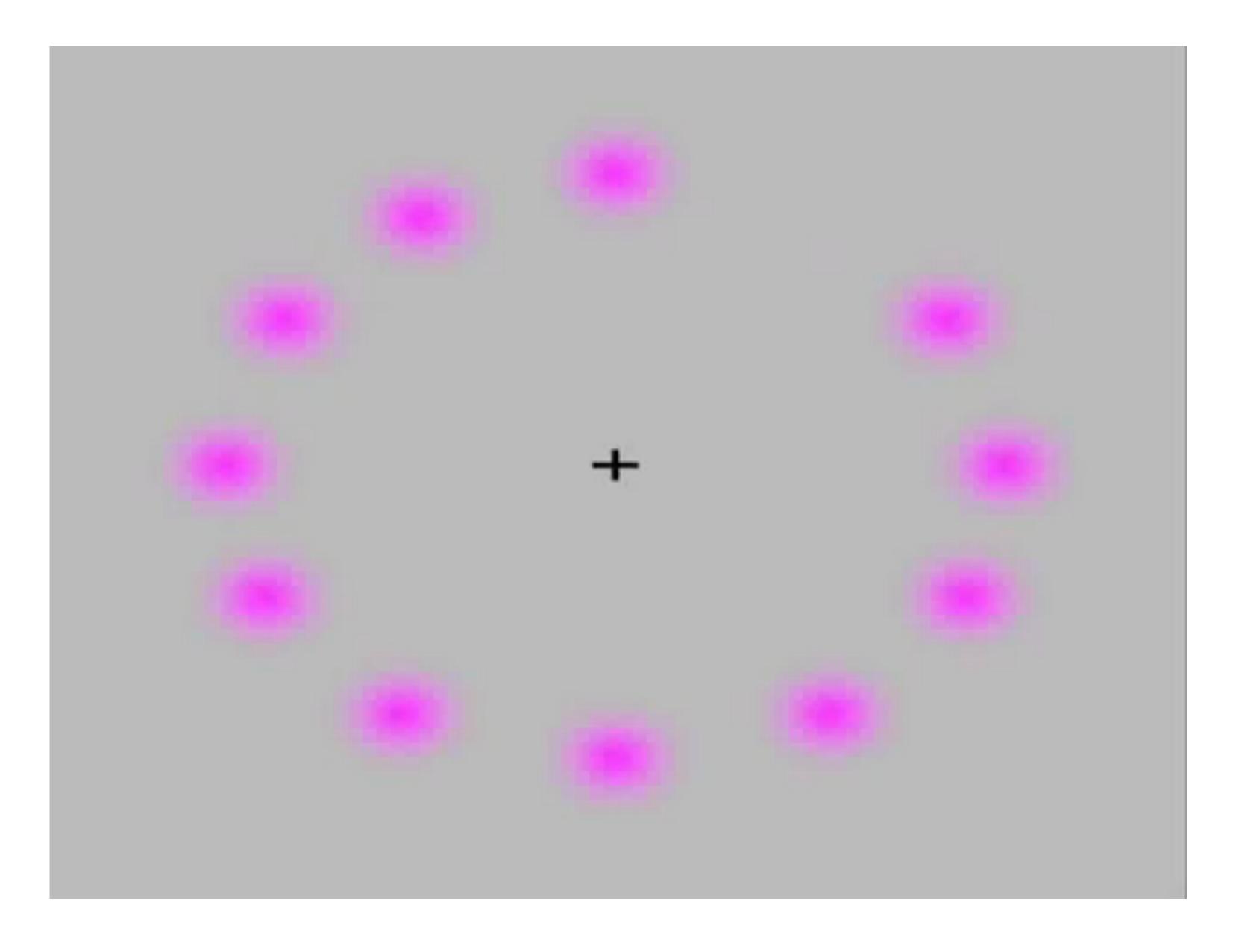
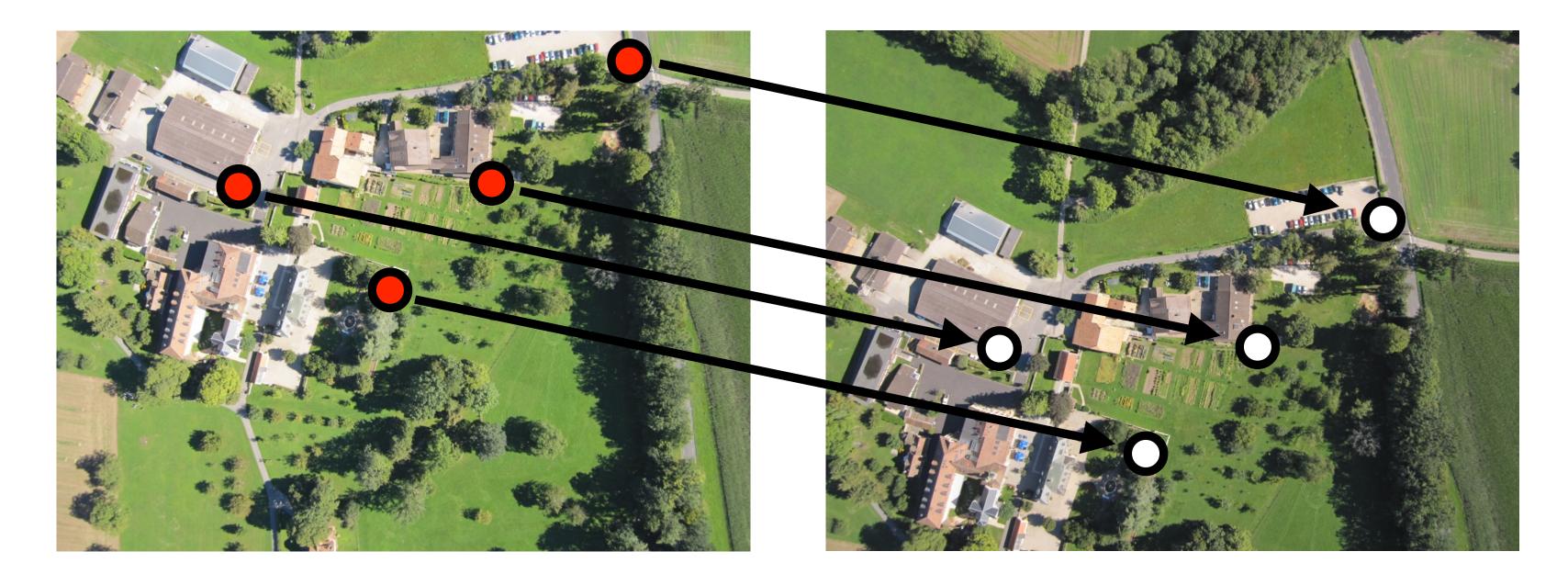


Image Alignment

Aim: Warp one image to align with another <u>using a 2D transformation</u>

Image Alignment

Step 1: Find correspondences (matching points) across two images



$\mathbf{u} = \mathbf{H}\mathbf{x}$

2 points for Similarity3 for Affine4 for Homography

Image Alignment

Step 2: Compute the transformation to align the two images

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

1. Randomly choose minimal subset of data points necessary to fit model (a

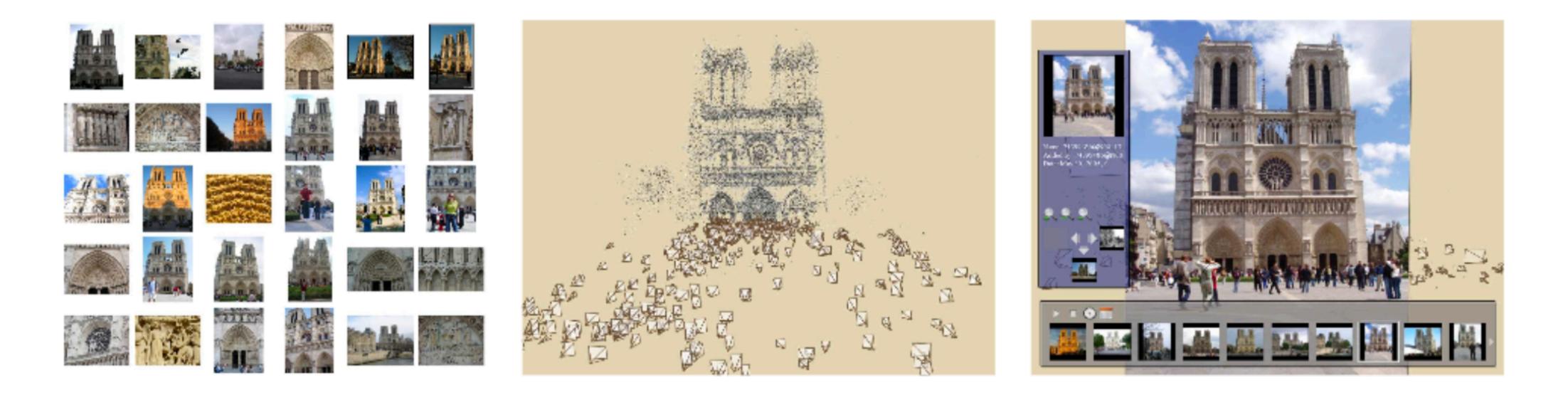
2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

2-view Rotation Estimation

Final rotation estimation

Example: Photo Tourism



Takes as input unstructured collections of photographs and reconstructs each photo's viewpoint and a sparse 3D model of the scene

Uses both SIFT and RANSAC

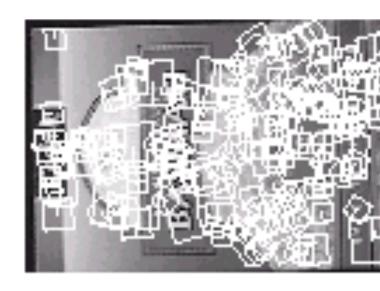
Figure credit: Snavely et al. 2006

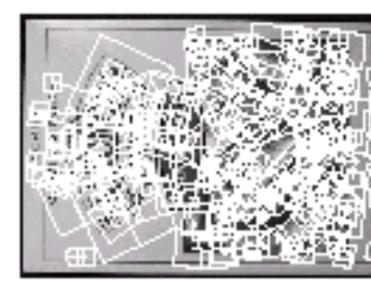
Example: Photo Tourism

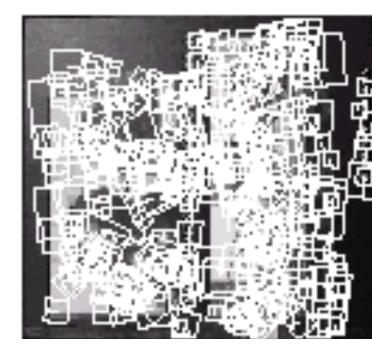
Example: Photo Tourism

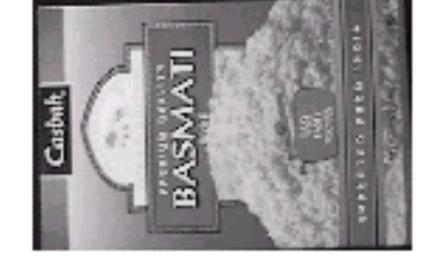
Object Instance Recognition

Database of planar objects









Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Discussion of RANSAC

Advantages:

- General method suited for a wide range of model fitting problems - Easy to implement and easy to calculate its failure rate

Disadvantages:

- Only handles a moderate percentage of outliers without cost blowing up Many real problems have high rate of outliers (but sometimes selective)
- choice of random subsets can help)
- Hard to deal with multiple solutions (e.g., object detection with many objects)

The **Hough transform** can handle high percentage of outliers

Learning Goals

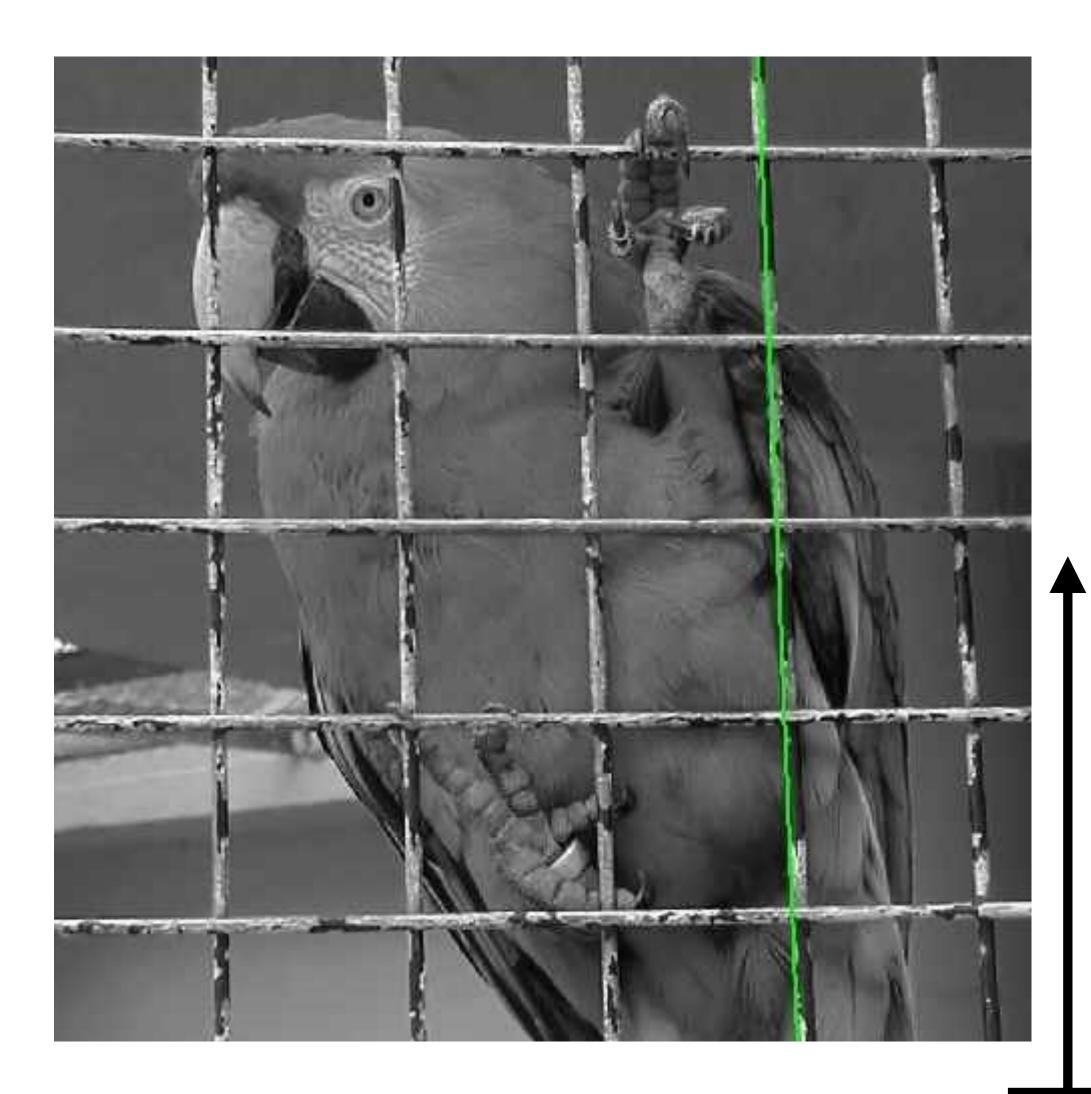
1. How to get **multiple** hypothesis 2. Voting-based strategies are useful

Hough Transform: Motivation

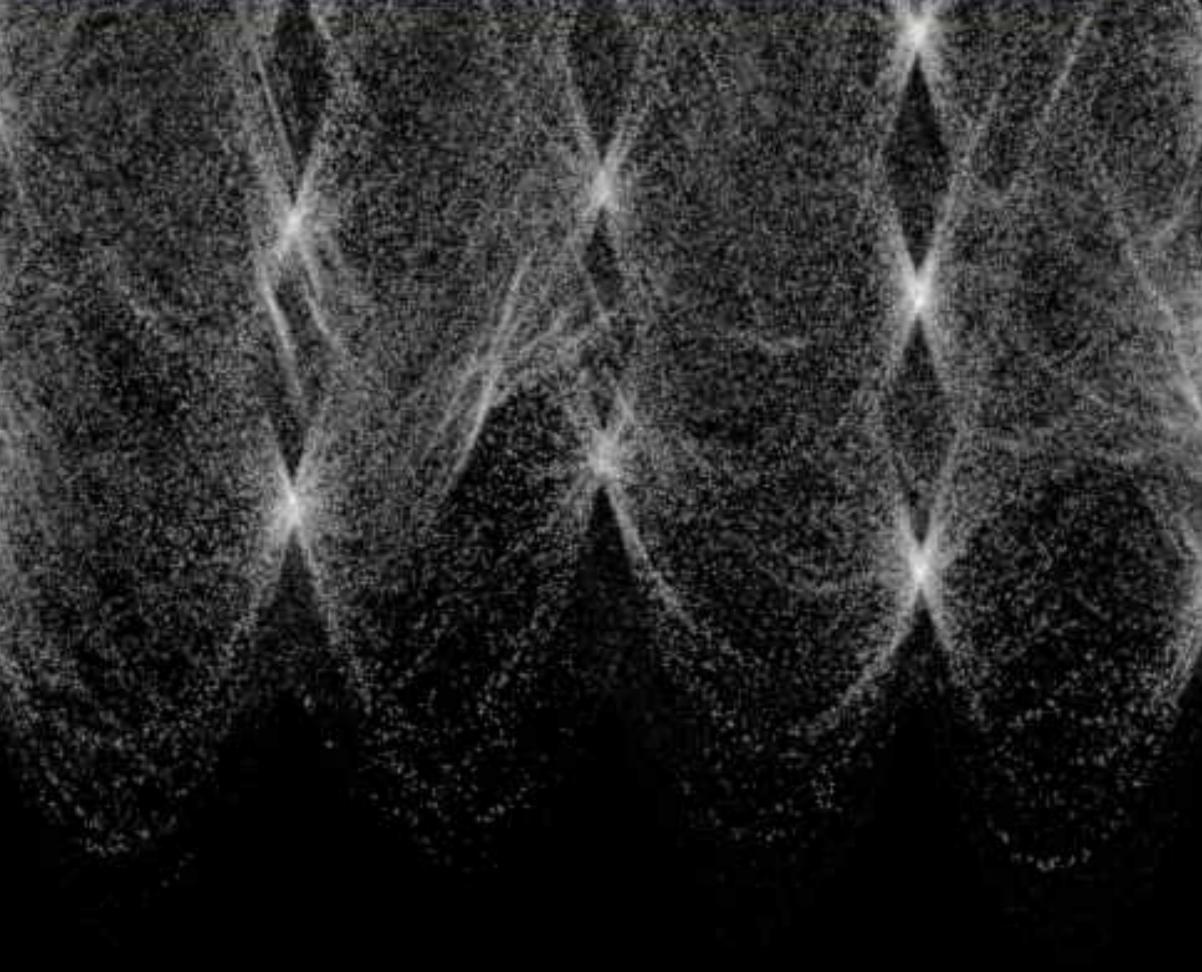
How to find lines in this image?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Hough Transform: Motivation



Votes / Probability Distribution



Space of 2D Image Lines

Hough Transform

Idea of **Hough transform**:

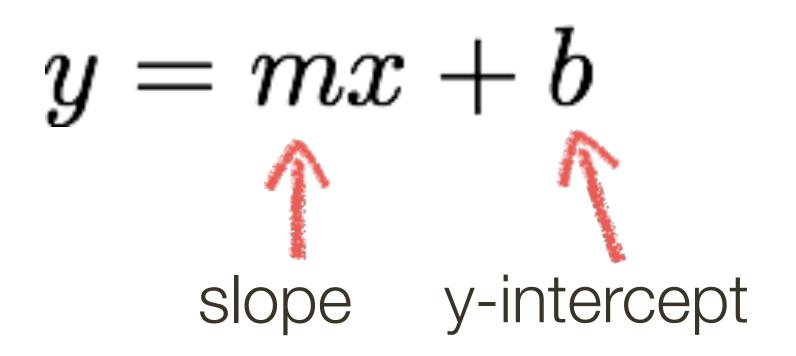
— For each token / data point vote for all models to which it could belong

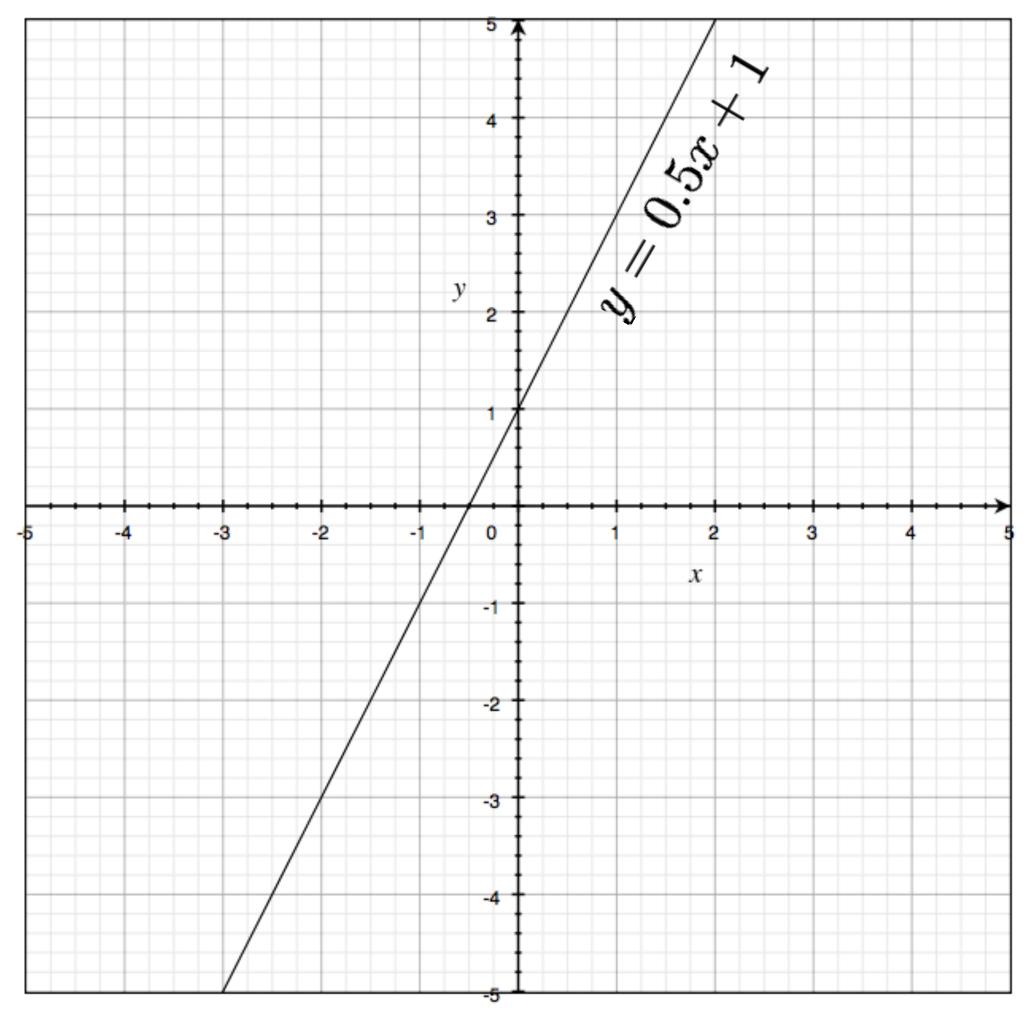
Example: For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

c.f. RANSAC which optimizes a single hypothesis by maximizing the number of inliers (though modifications exist to find multiple instances of a model)

- Return models that get many votes / distribution of possible models

Lines: Slope intercept form





Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Hough Transform: Image and Parameter Space

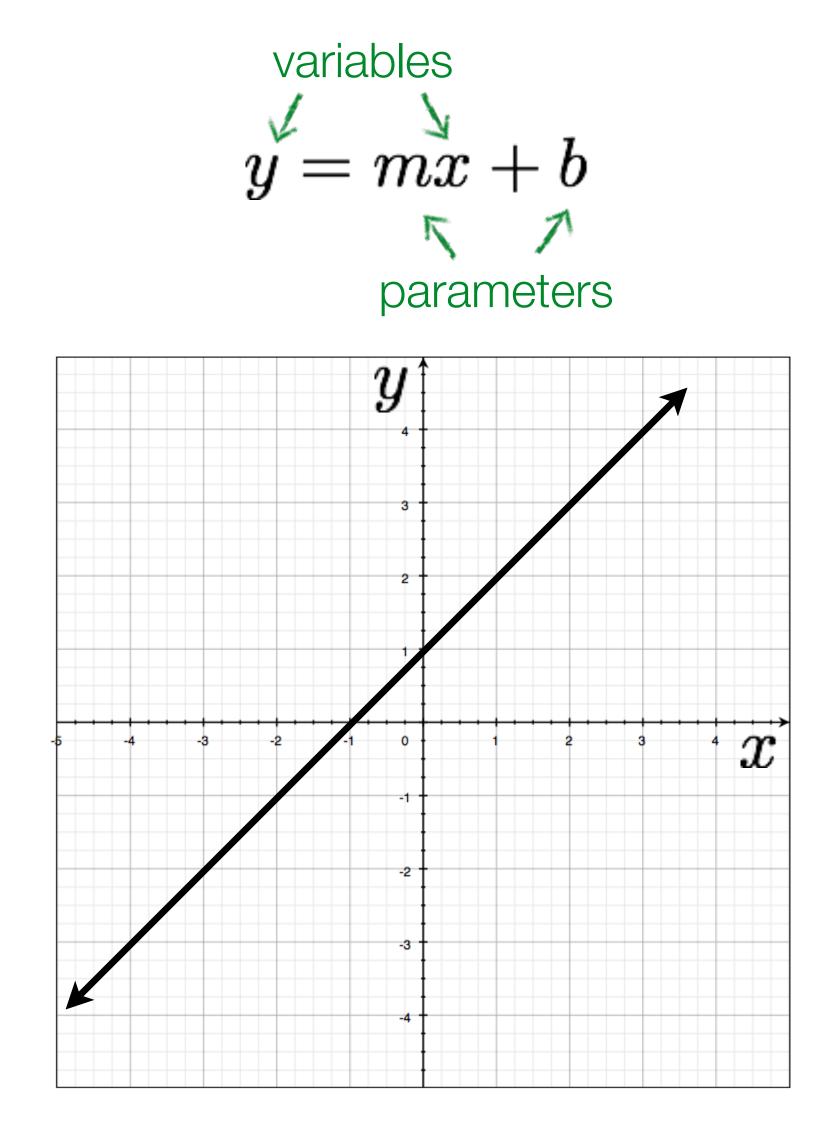


Image space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Hough Transform: Image and Parameter Space

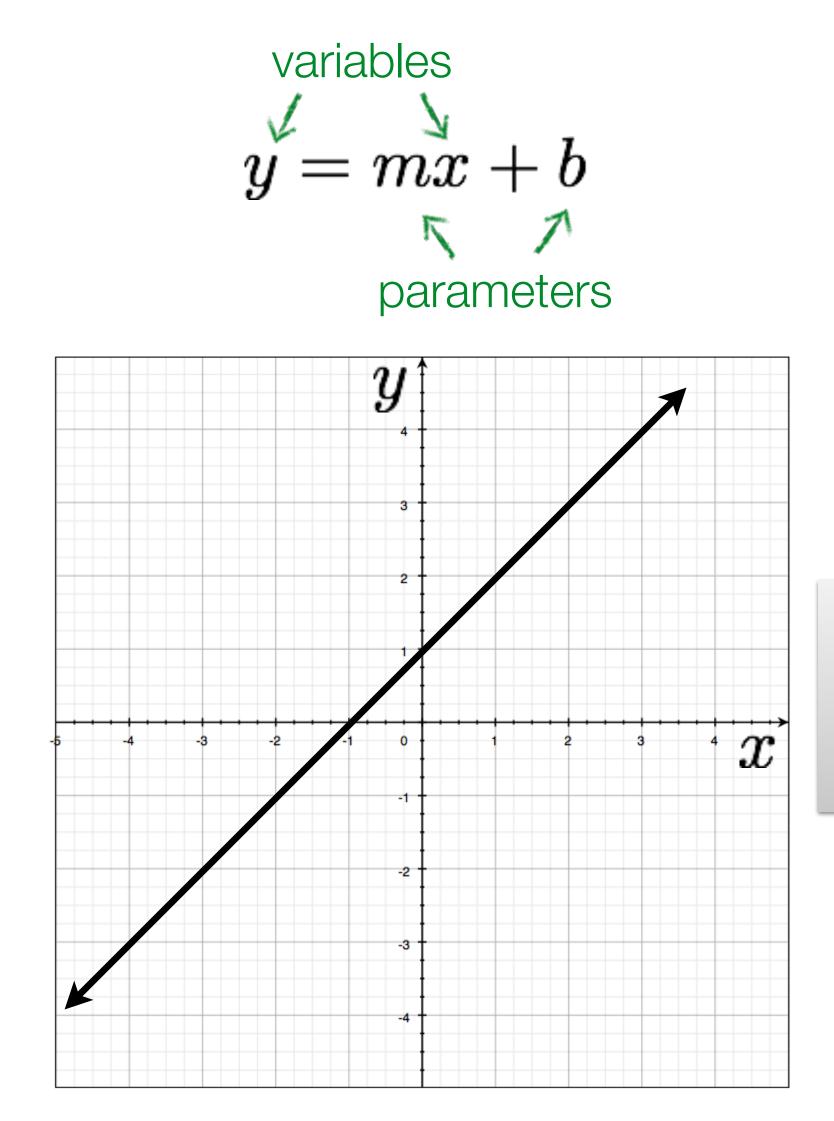


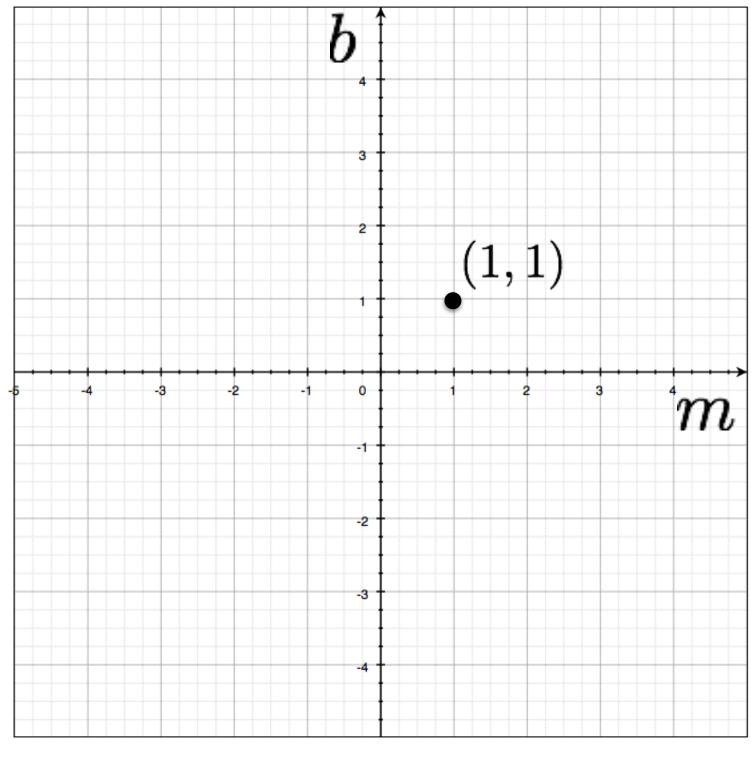
Image space

variables

y - mx = b

parameters

a line becomes a point



Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Hough Transform: Image and Parameter Space

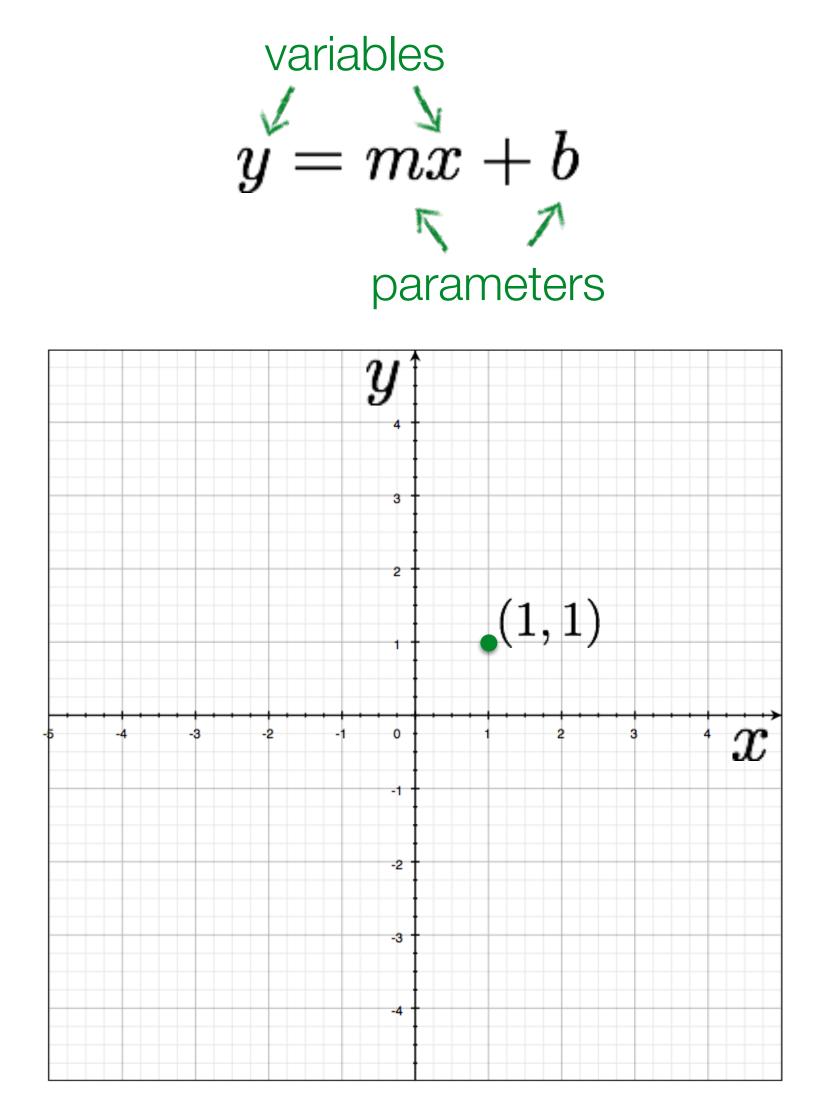


Image space

What would a **point** in image space become in parameter space?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

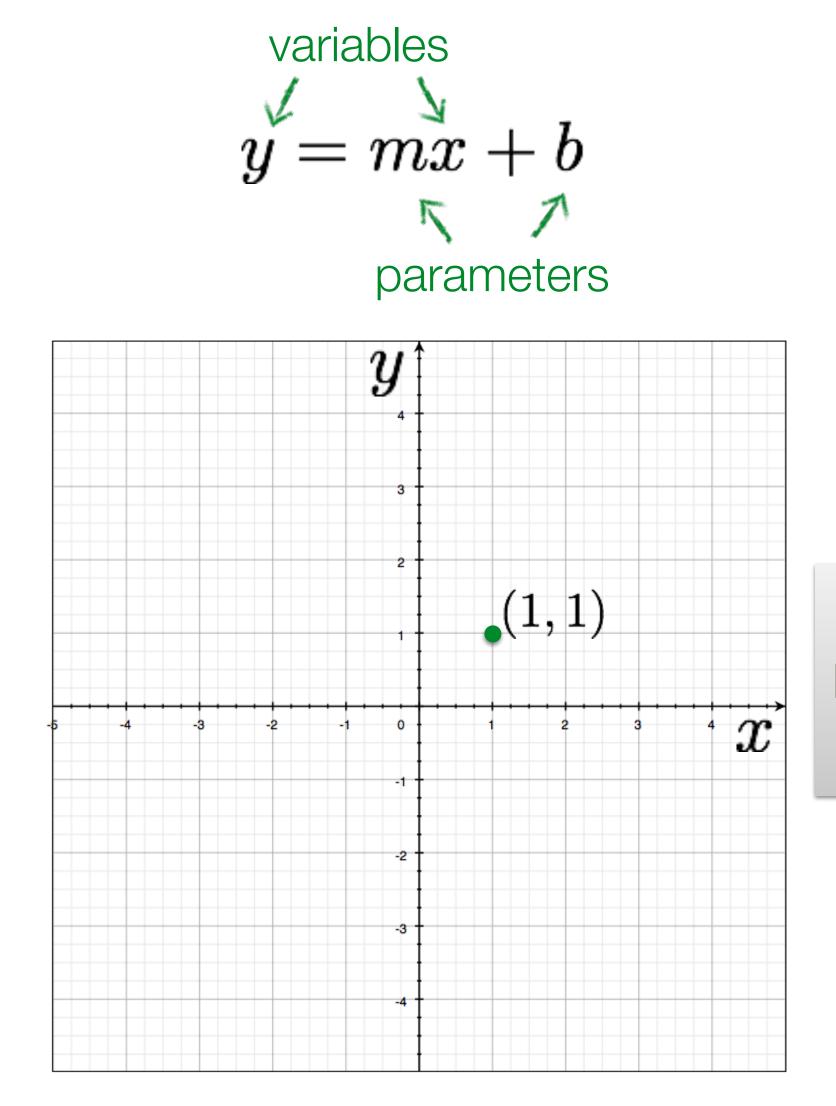
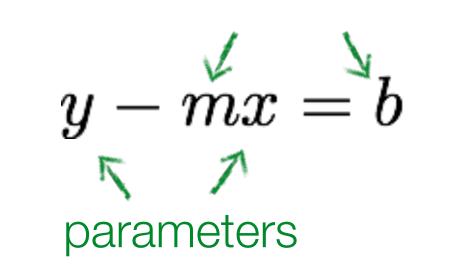
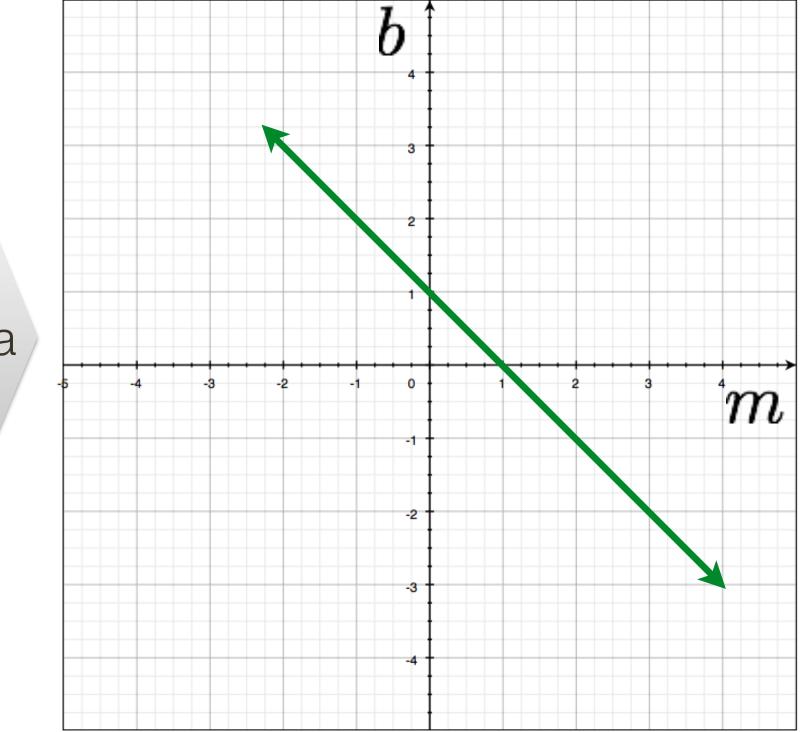


Image space

variables





Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a point becomes a line

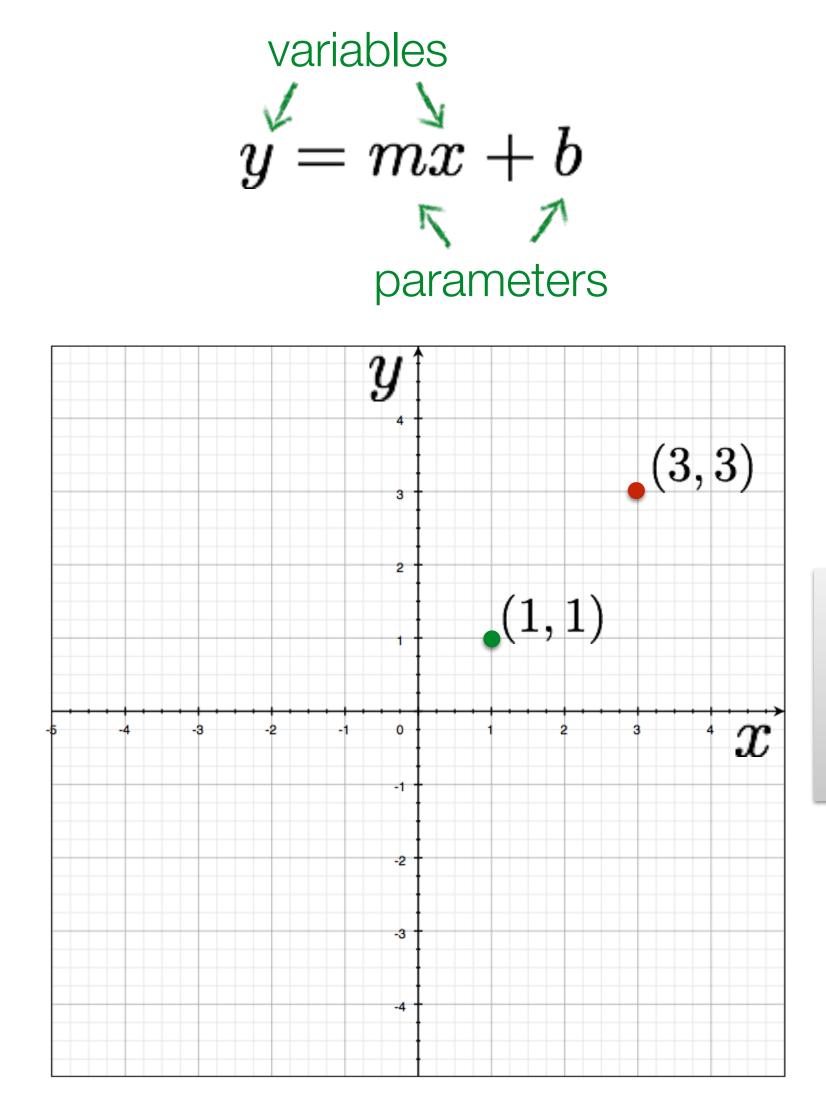


Image space

variables

y - mx = bparameters

bm

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

two points?

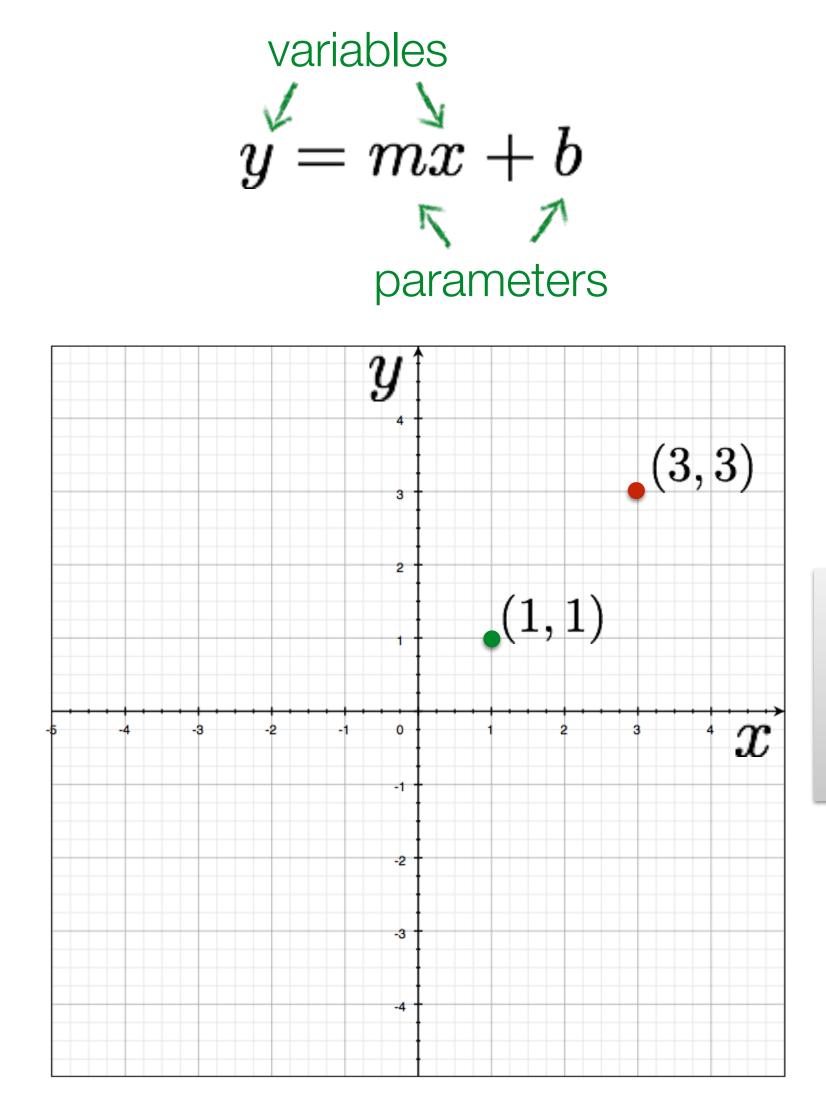
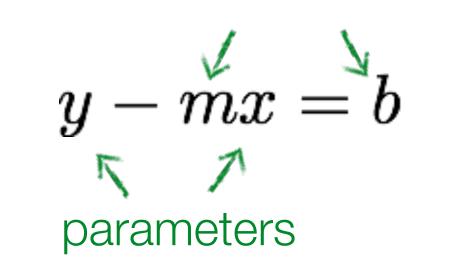
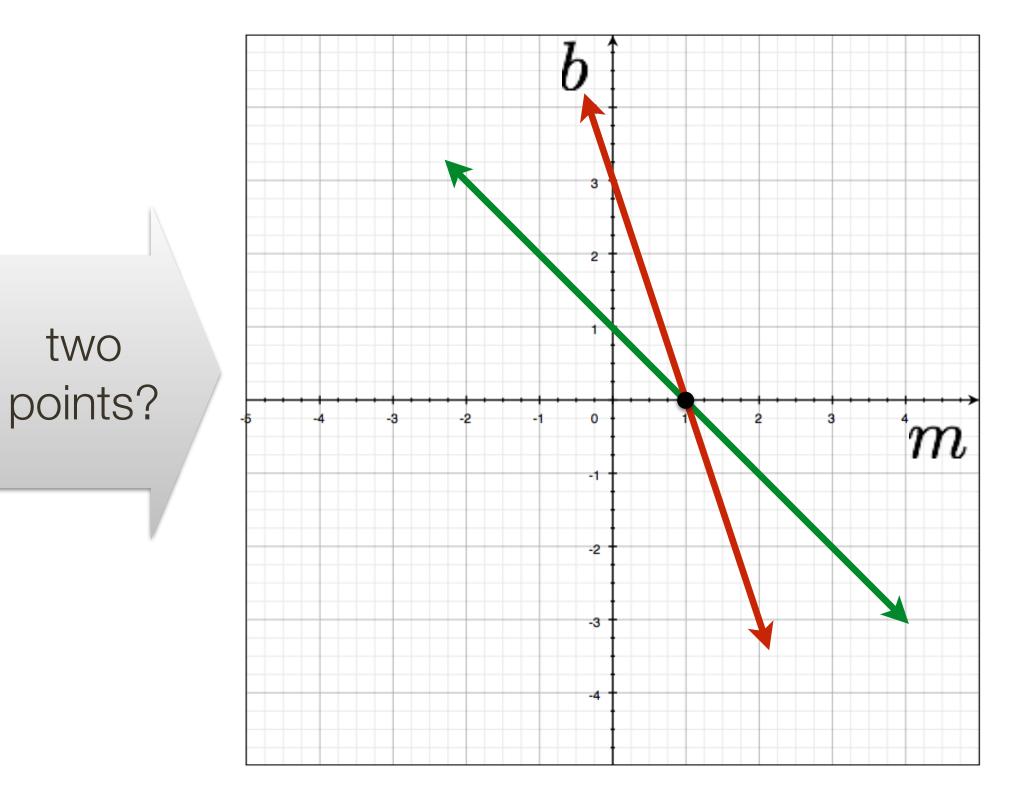


Image space





Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

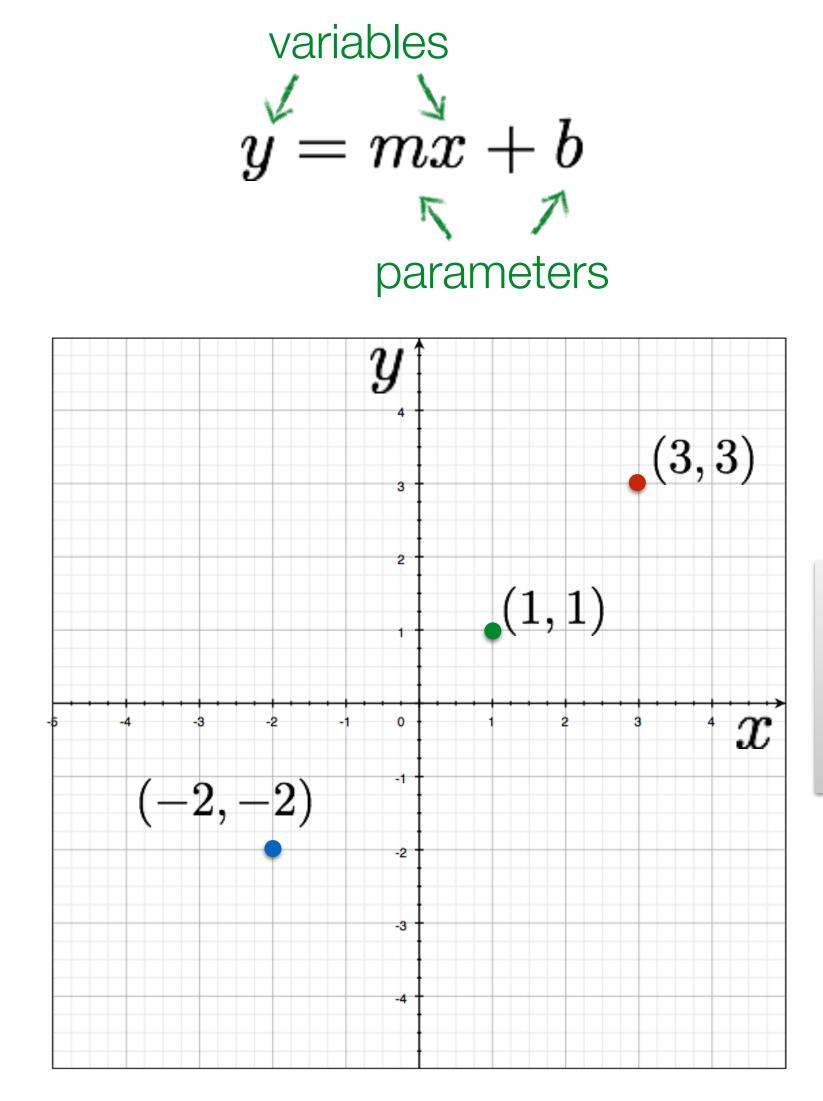
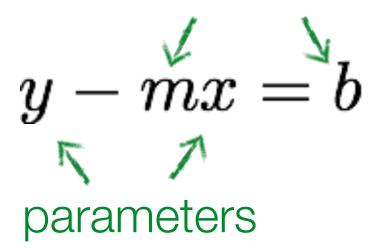
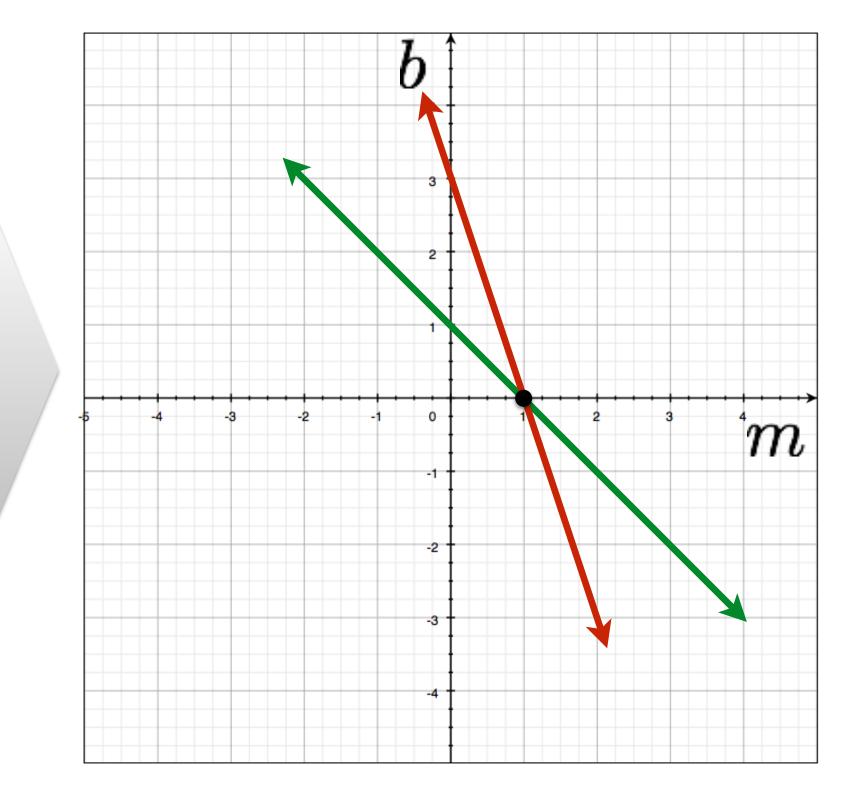


Image space





Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

three points?

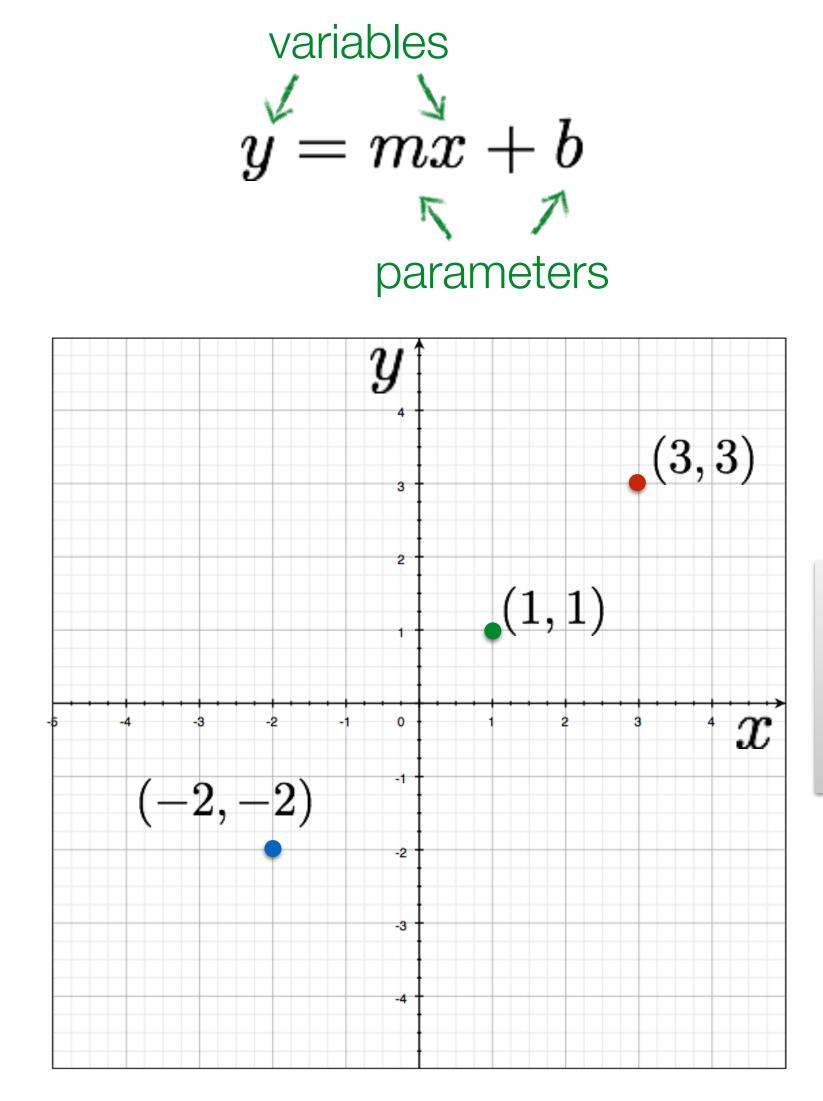
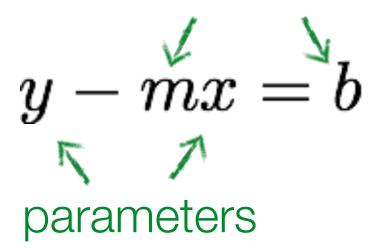
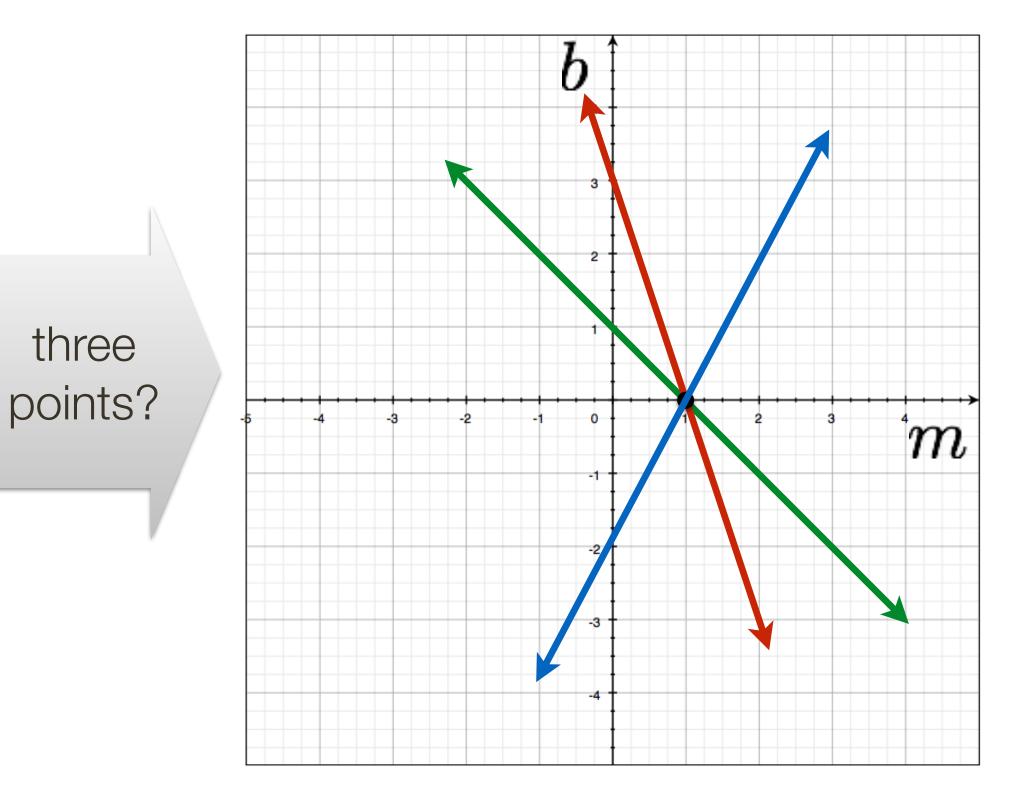


Image space





Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

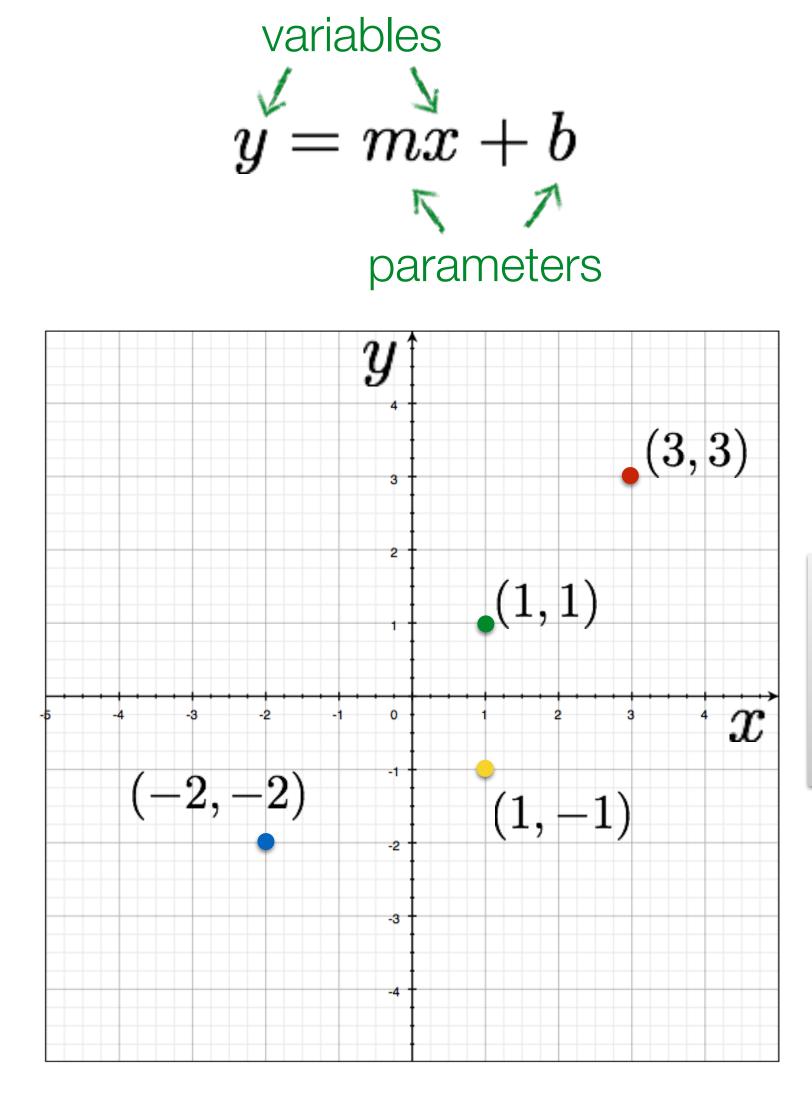
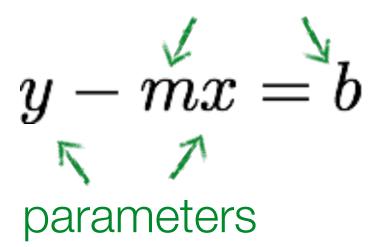
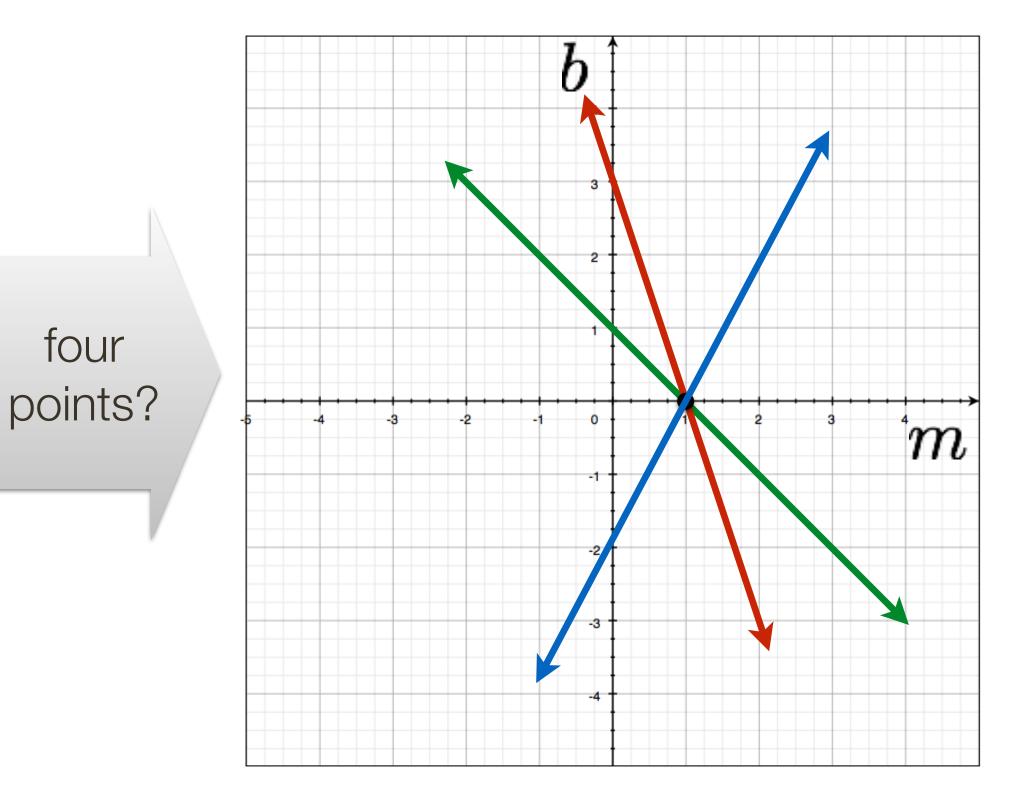


Image space





Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

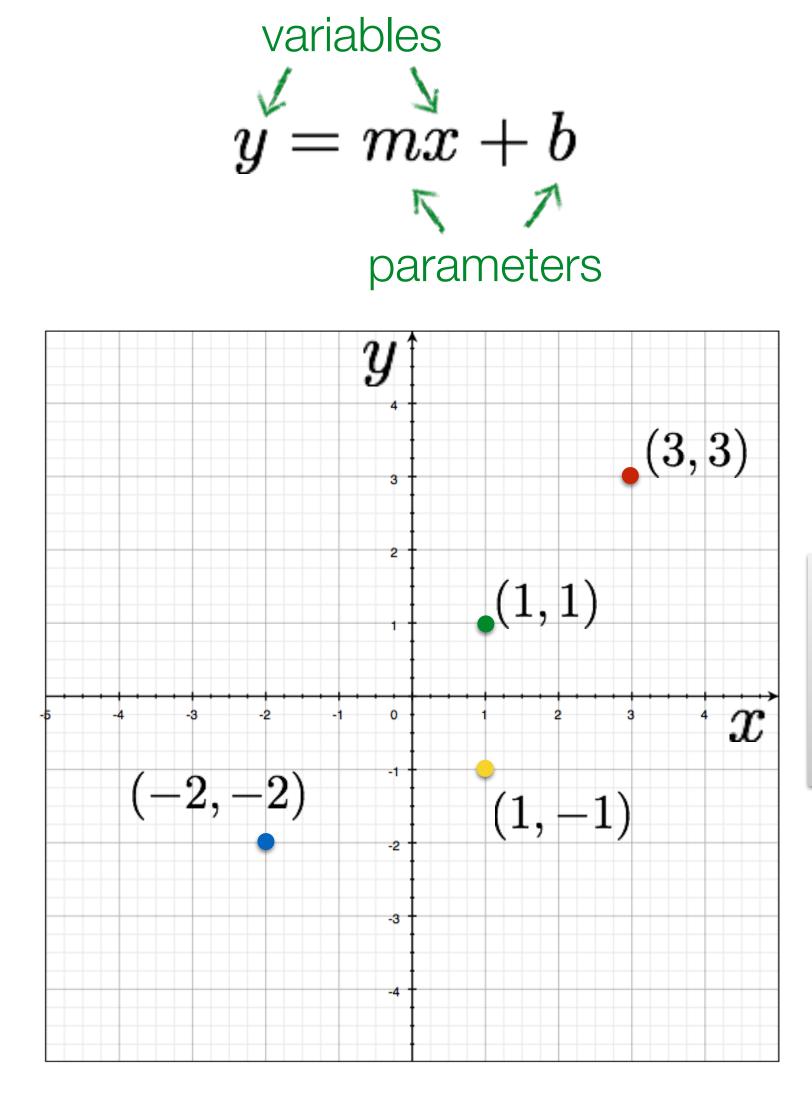
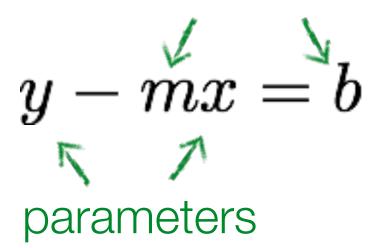
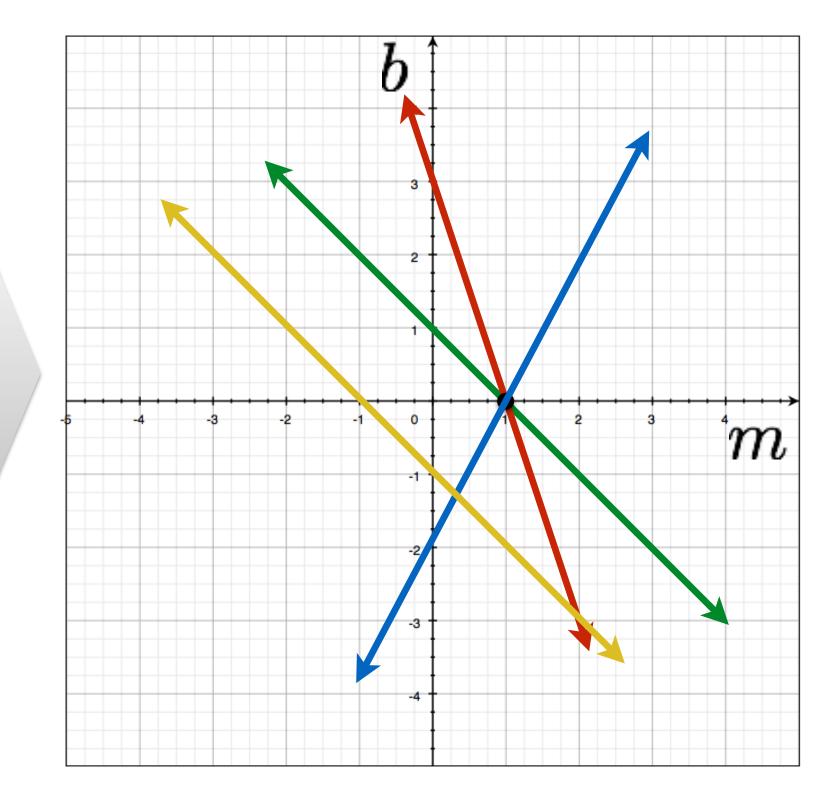


Image space





four

points?

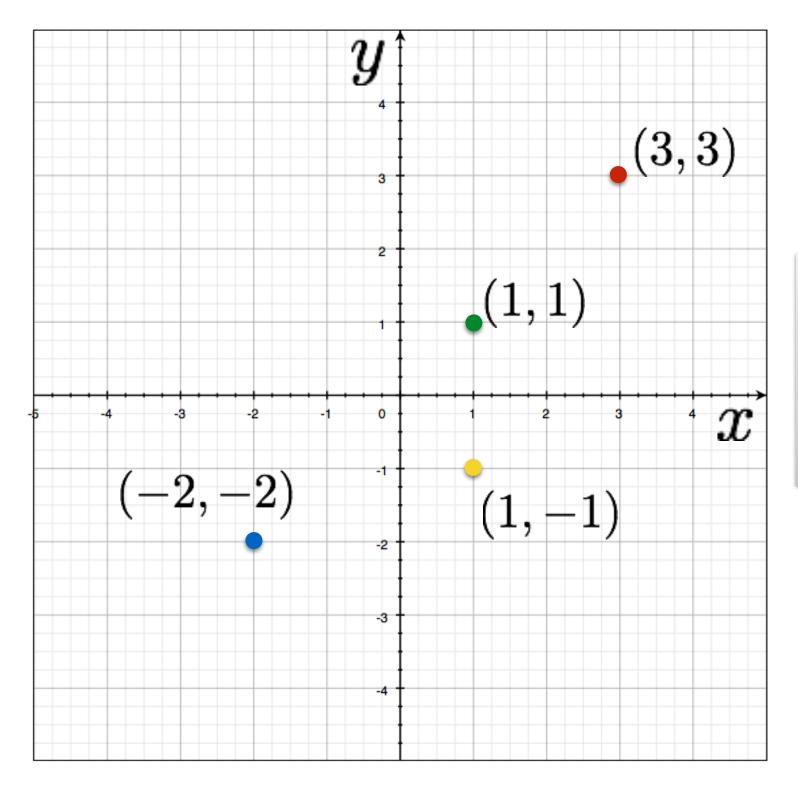
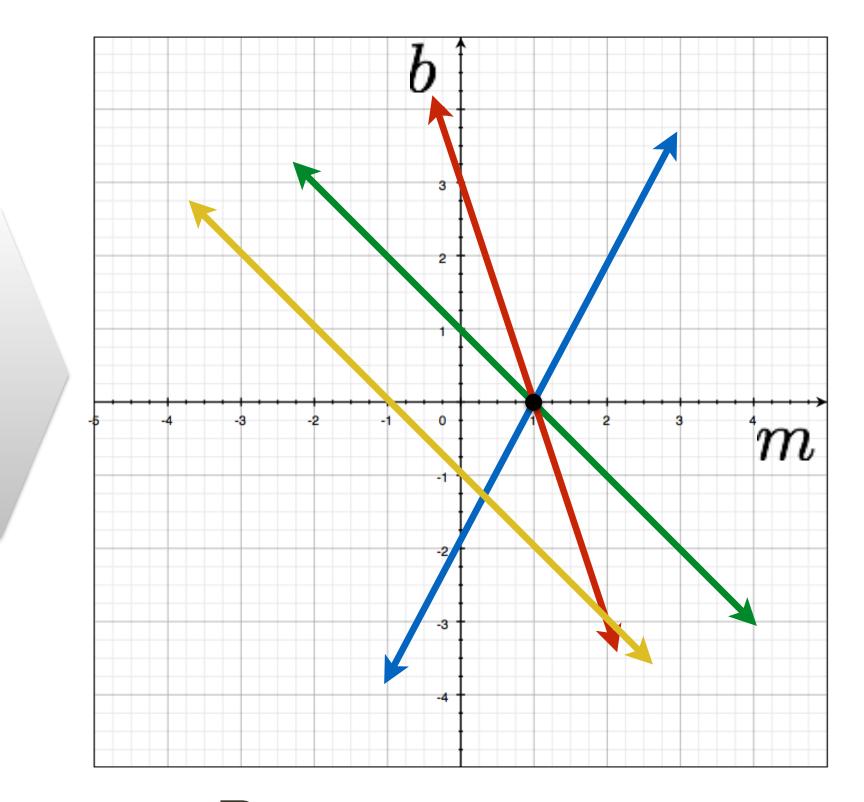


Image space

How would you find the best fitting line?



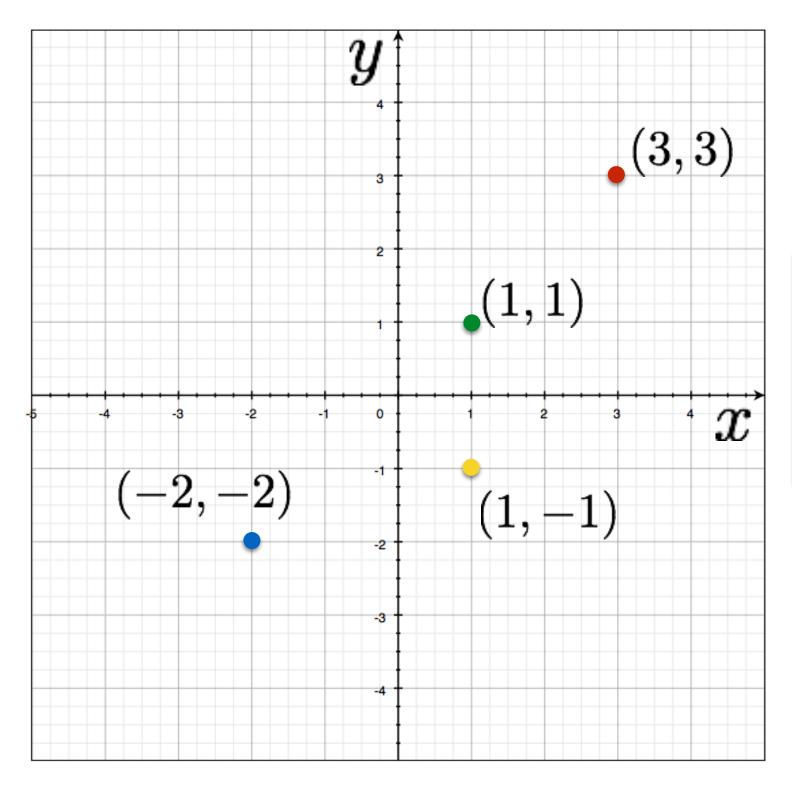
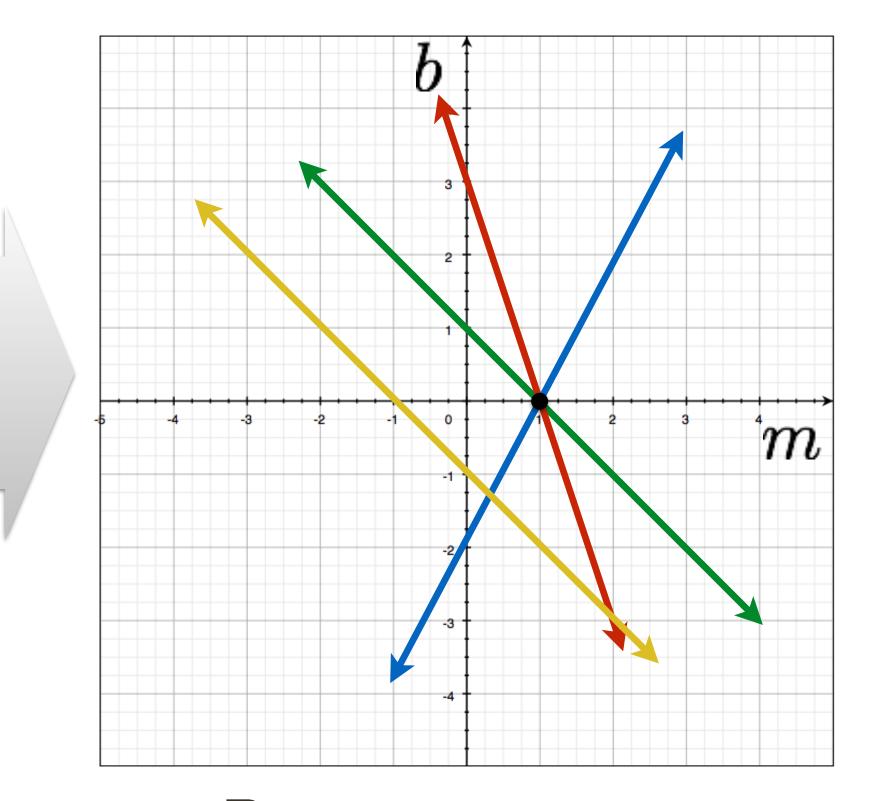


Image space

Is this method robust to measurement noise? clutter?



Line Detection by Hough Transform

Algorithm:

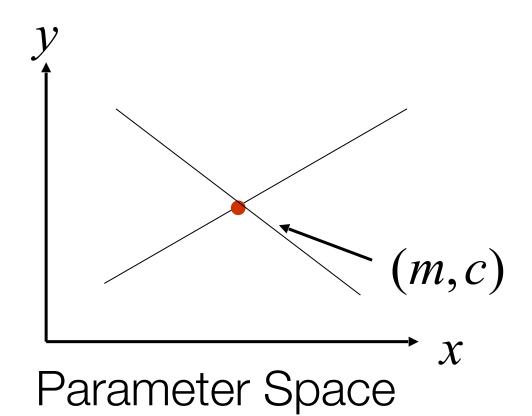
- 1.Quantize Parameter Space(m,c)
- 2.Create Accumulator Array A(m,c)
- 3.Set $A(m,c) = 0 \quad \forall m,c$
- 4. For each image edge (x_i, y_i) For each element in A(m)If (m,c) lies on the lin Increment A(m,c) = A(m)

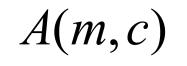
5. Find local maxima in A(m,c)

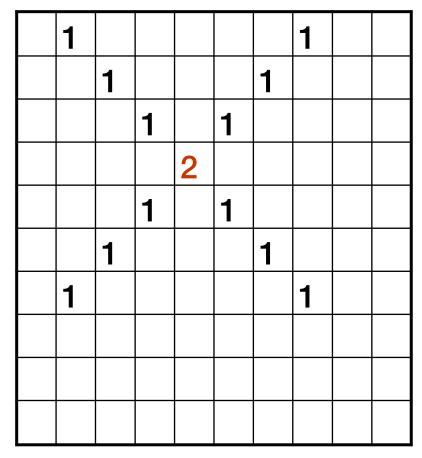
$$(a,c)$$

$$(a,c) = -x_i m + y_i$$

$$(m,c) + 1$$



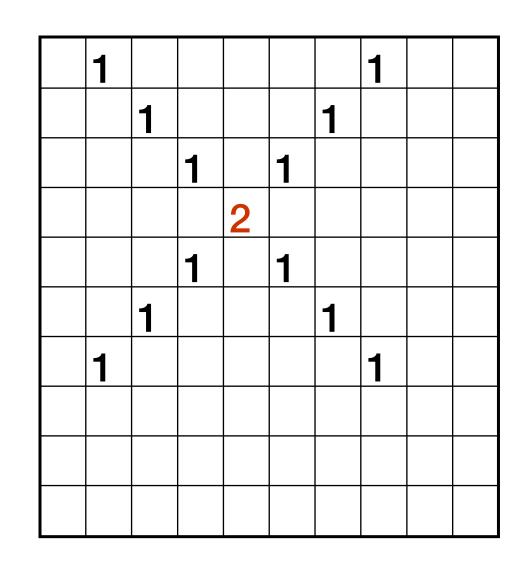




Problems with **Parametrization**

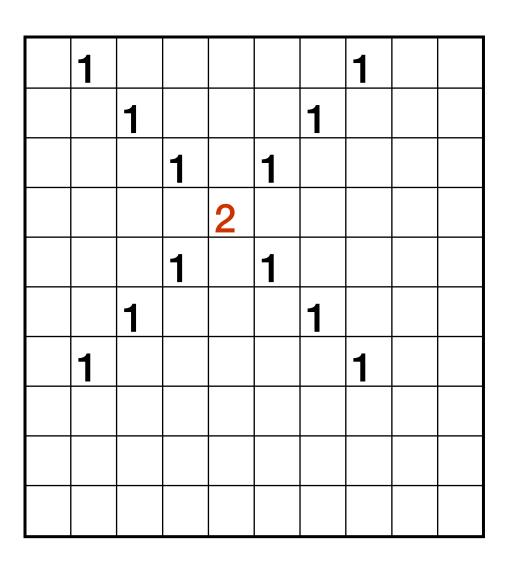
A(m,c)

How big does the accumulator need to be for the parameterization (m,c)?



Problems with **Parametrization**

How big does the accumulator need to be for the parameterization (m,c)?



The space of m is huge!

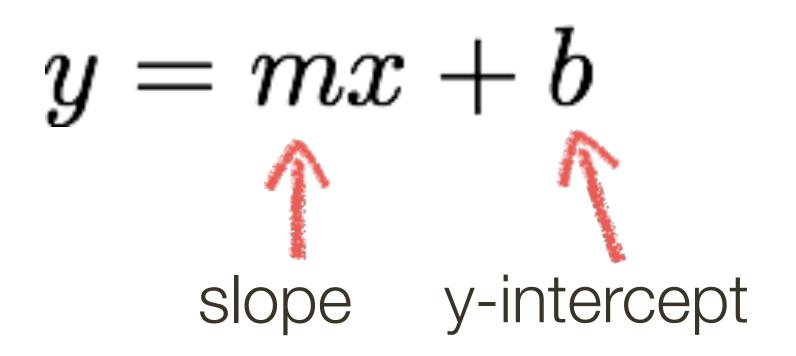
A(m,c)

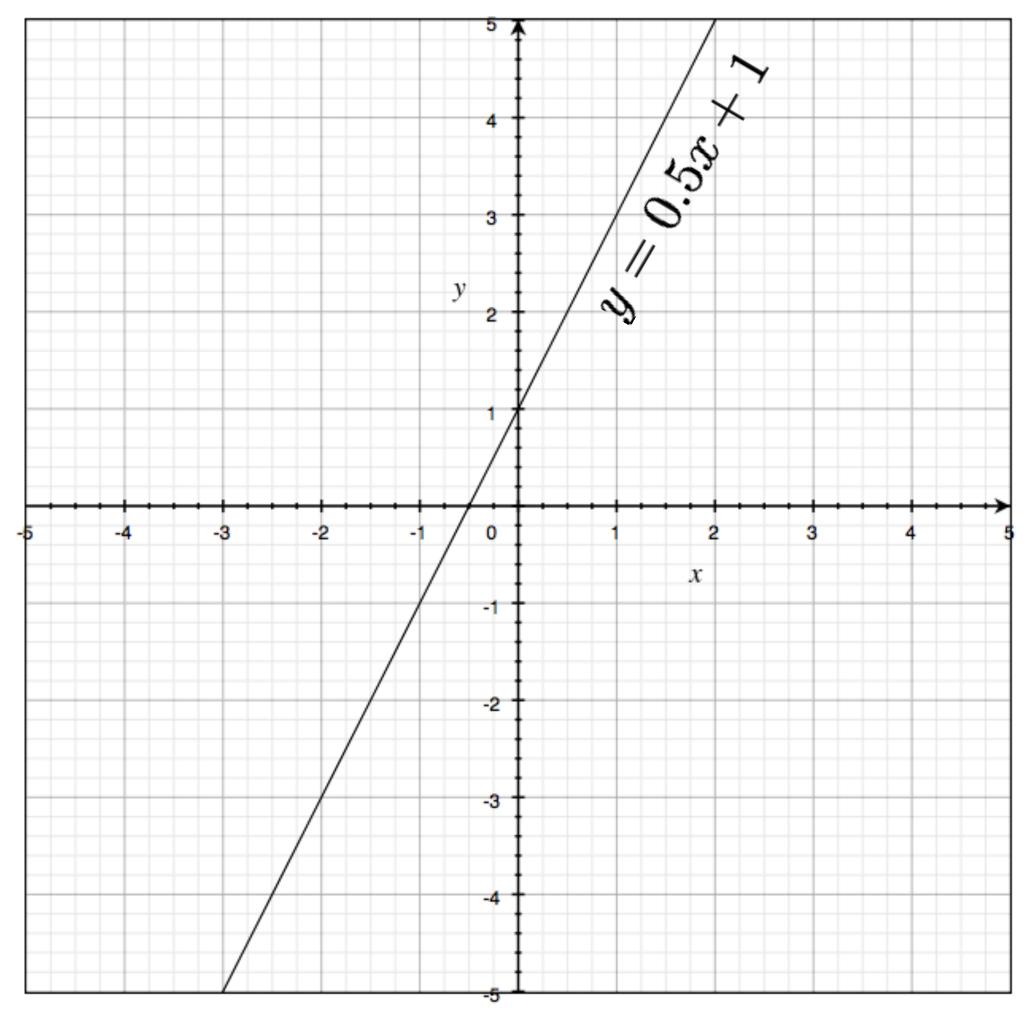
 $-\infty \leq m \leq \infty$

The space of c is huge!

$-\infty \leq C \leq \infty$

Lines: Slope intercept form



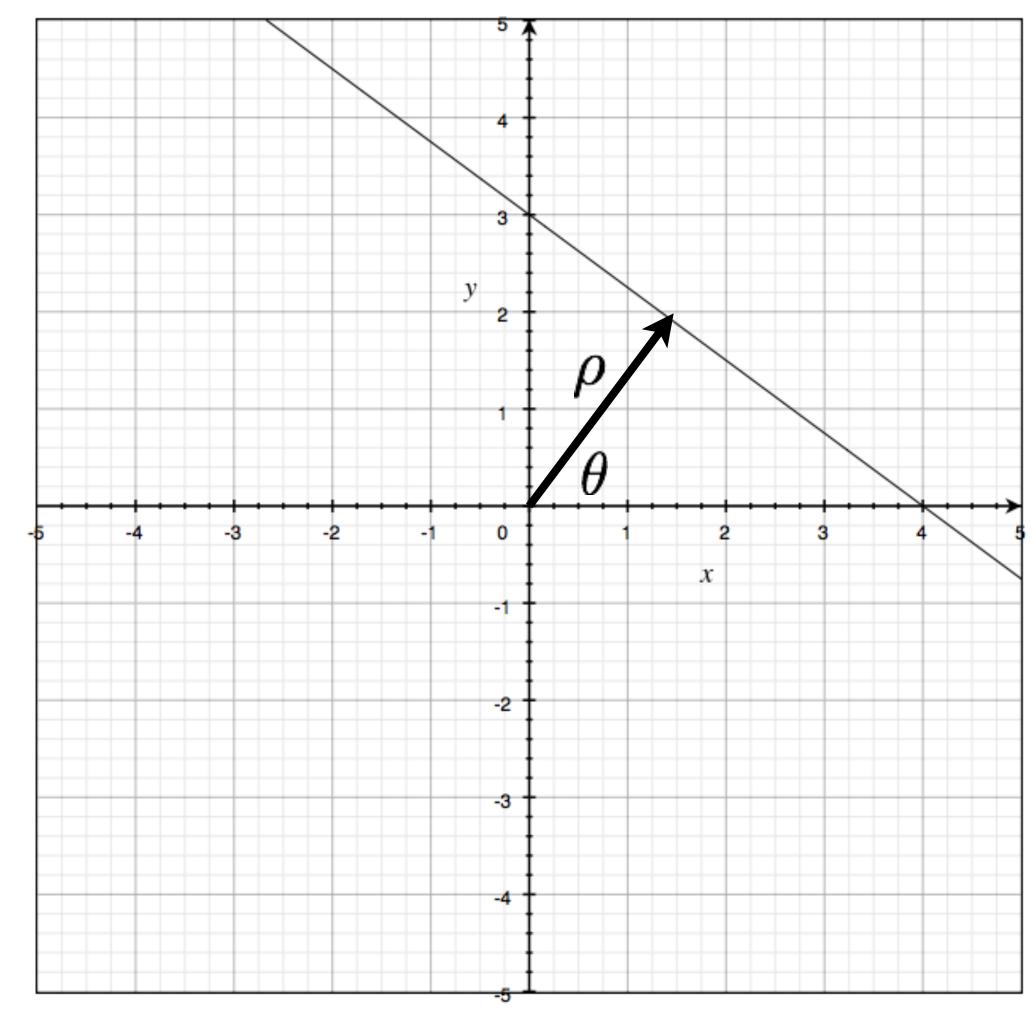


Lines: Normal form

$x\sin\theta + y\cos\theta = \rho$

Forsyth/Ponce convention

 $x\sin\theta + y\cos\theta + r = 0$ r > 0 $0 < \theta < 2\pi$



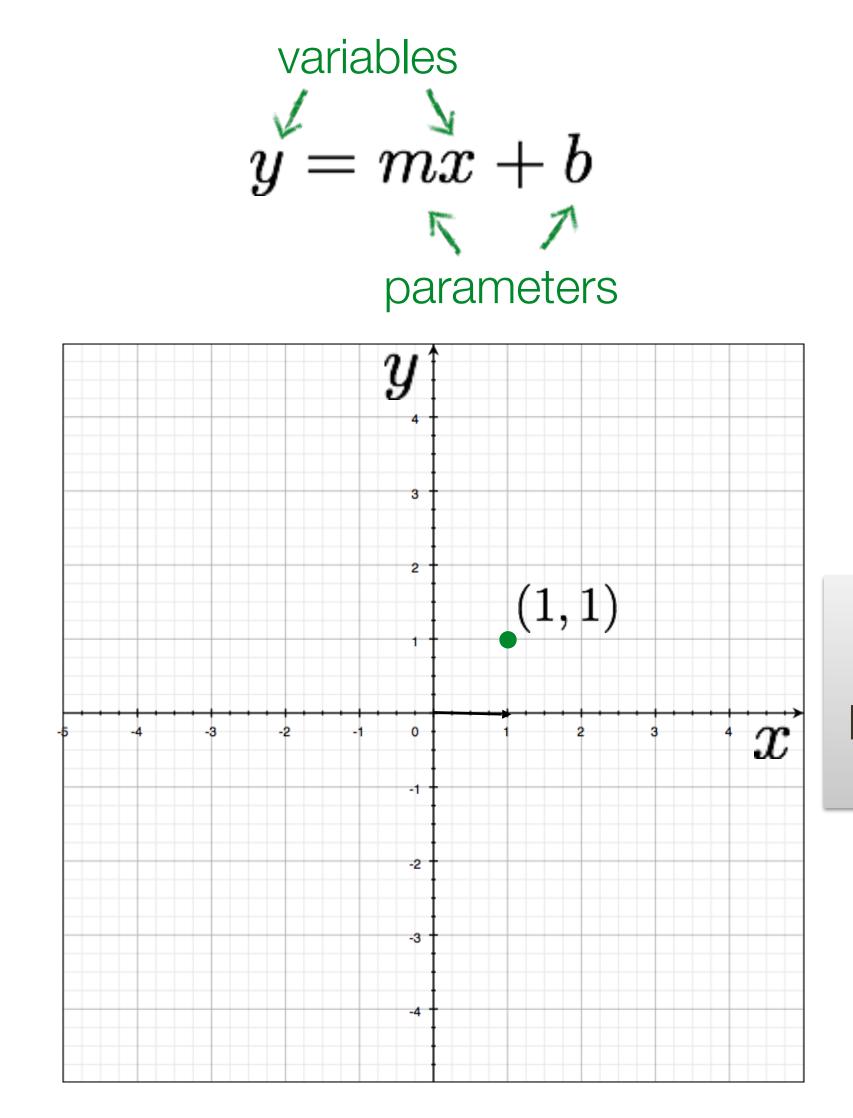
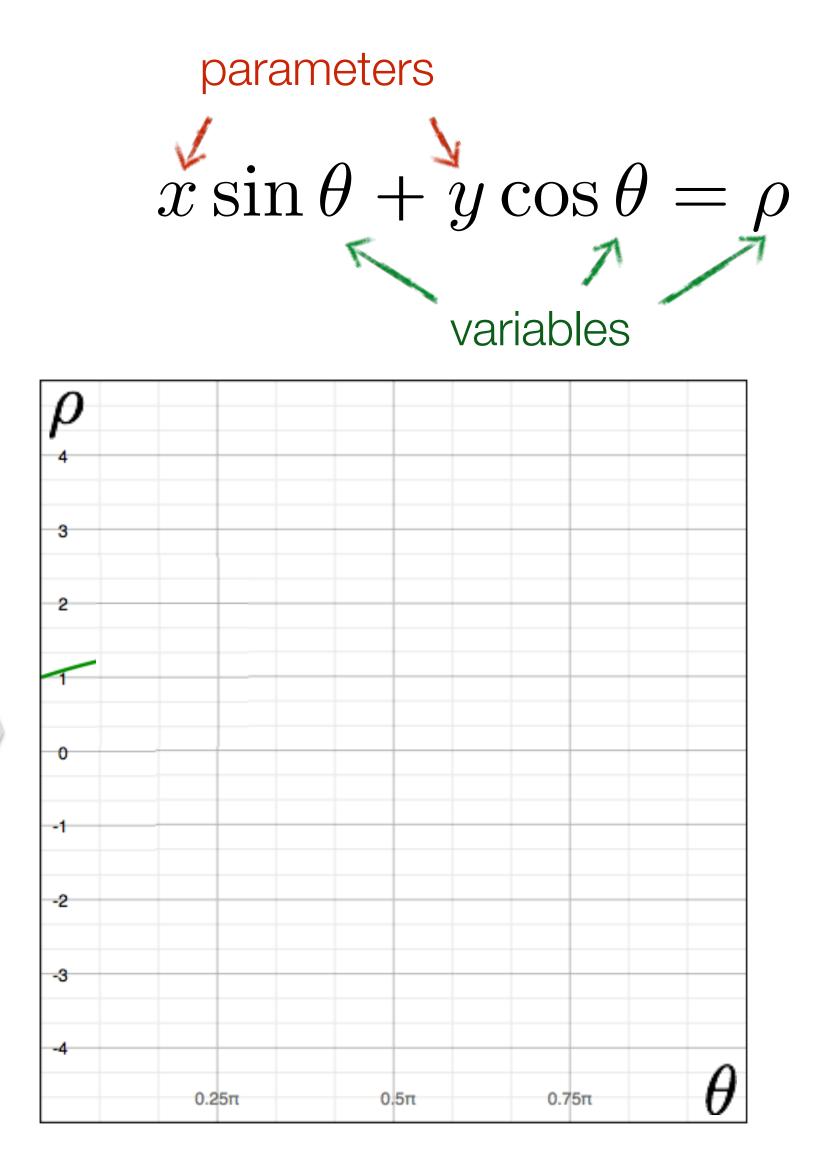


Image space



Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a point becomes?

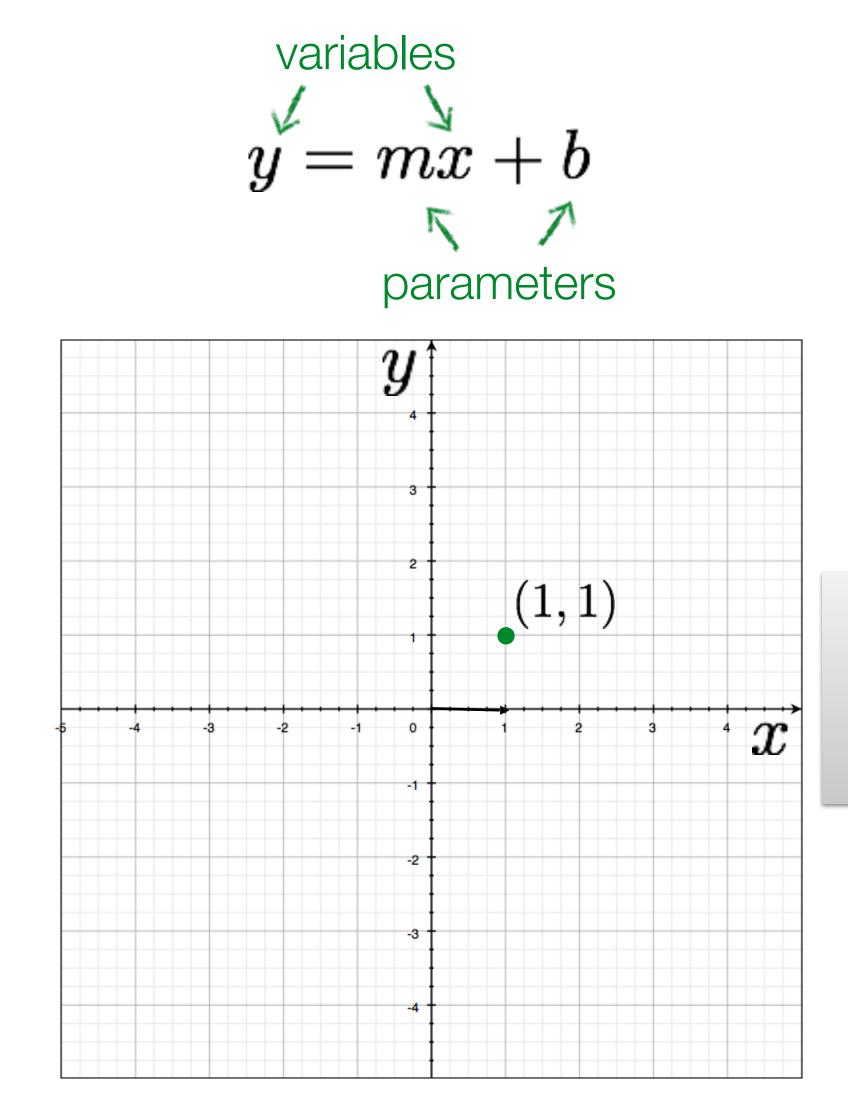
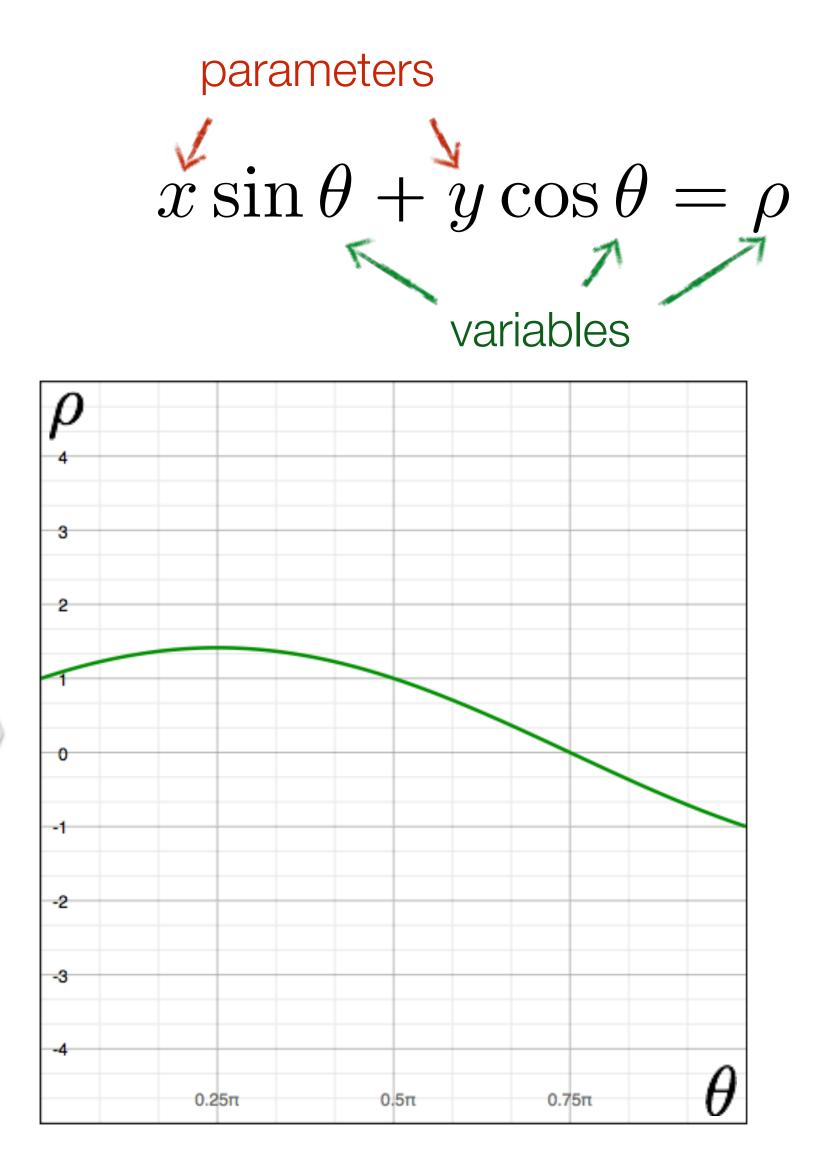


Image space



a point becomes a wave

Parameter space

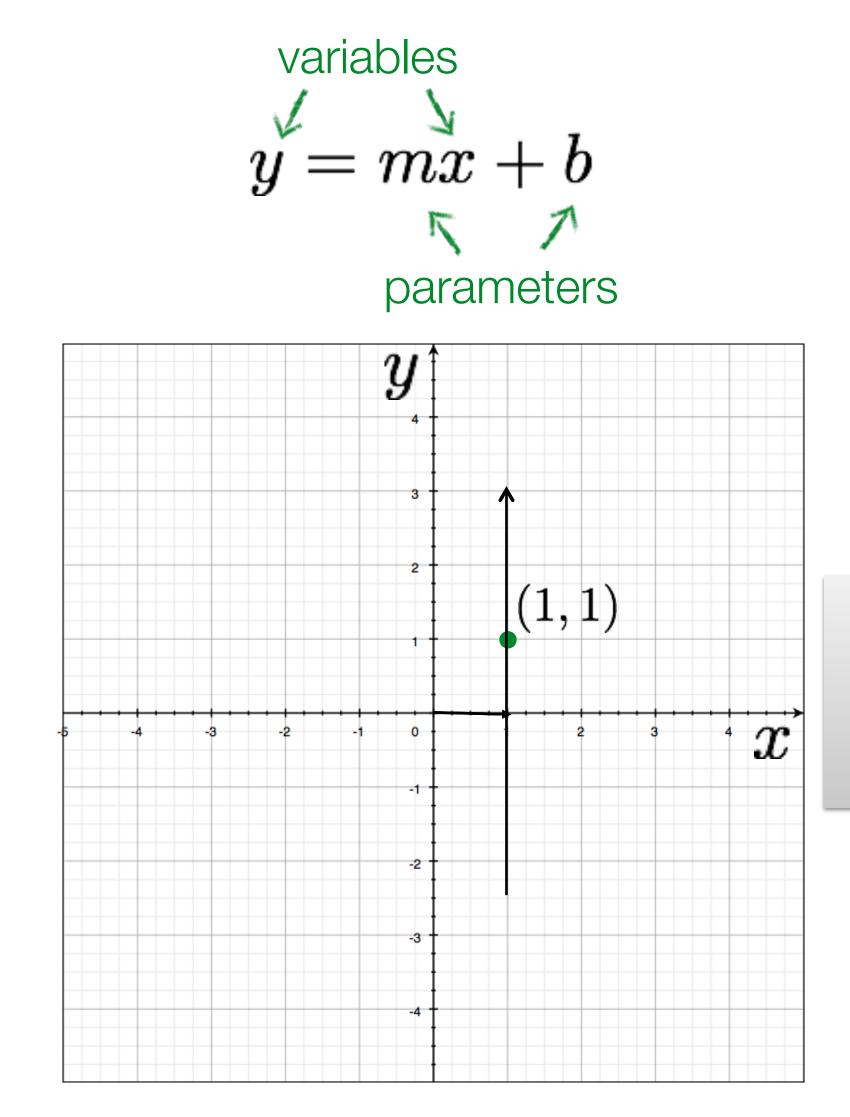
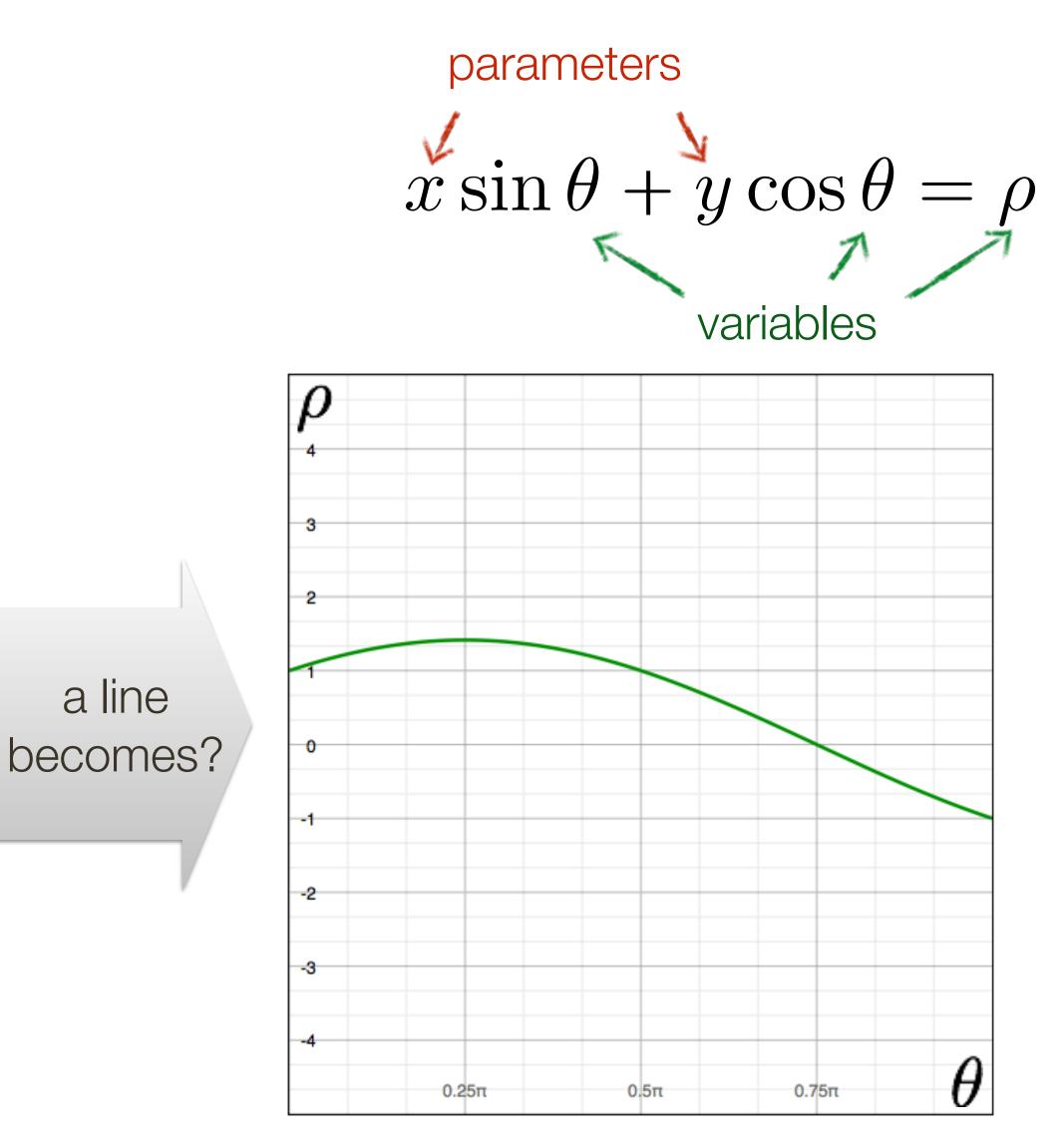


Image space



Parameter space

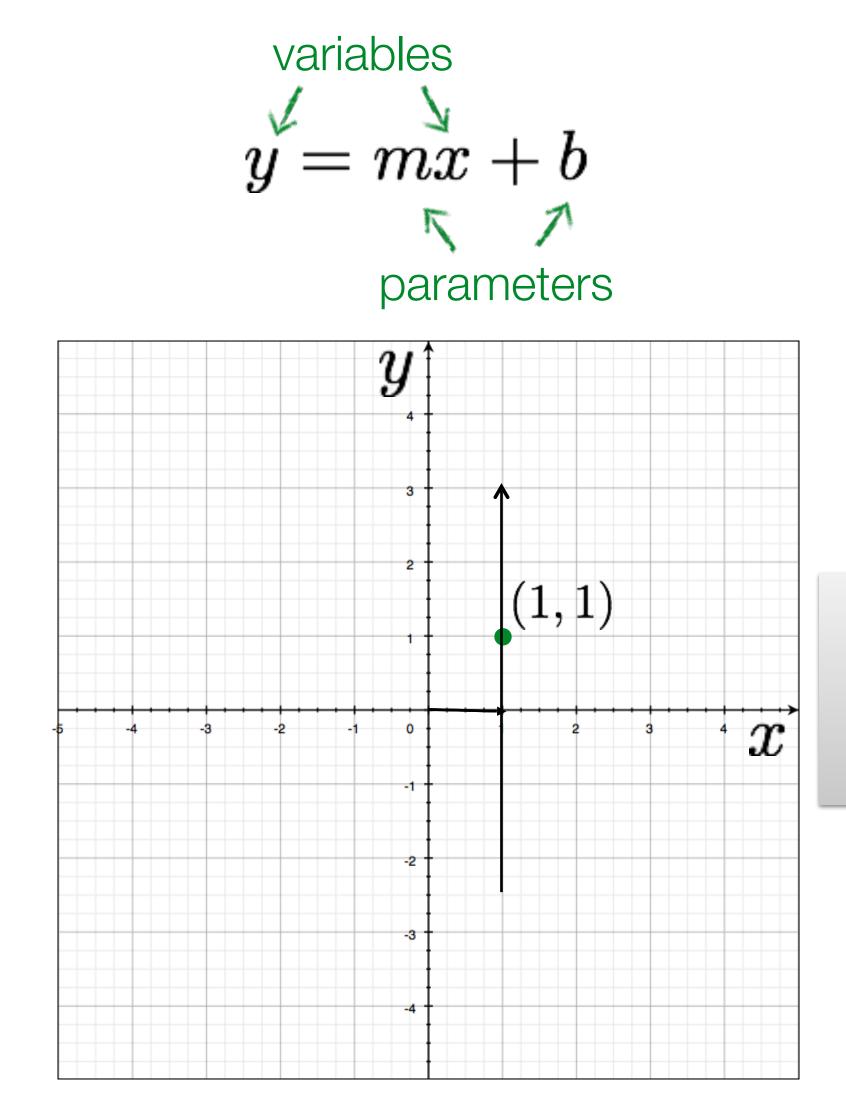
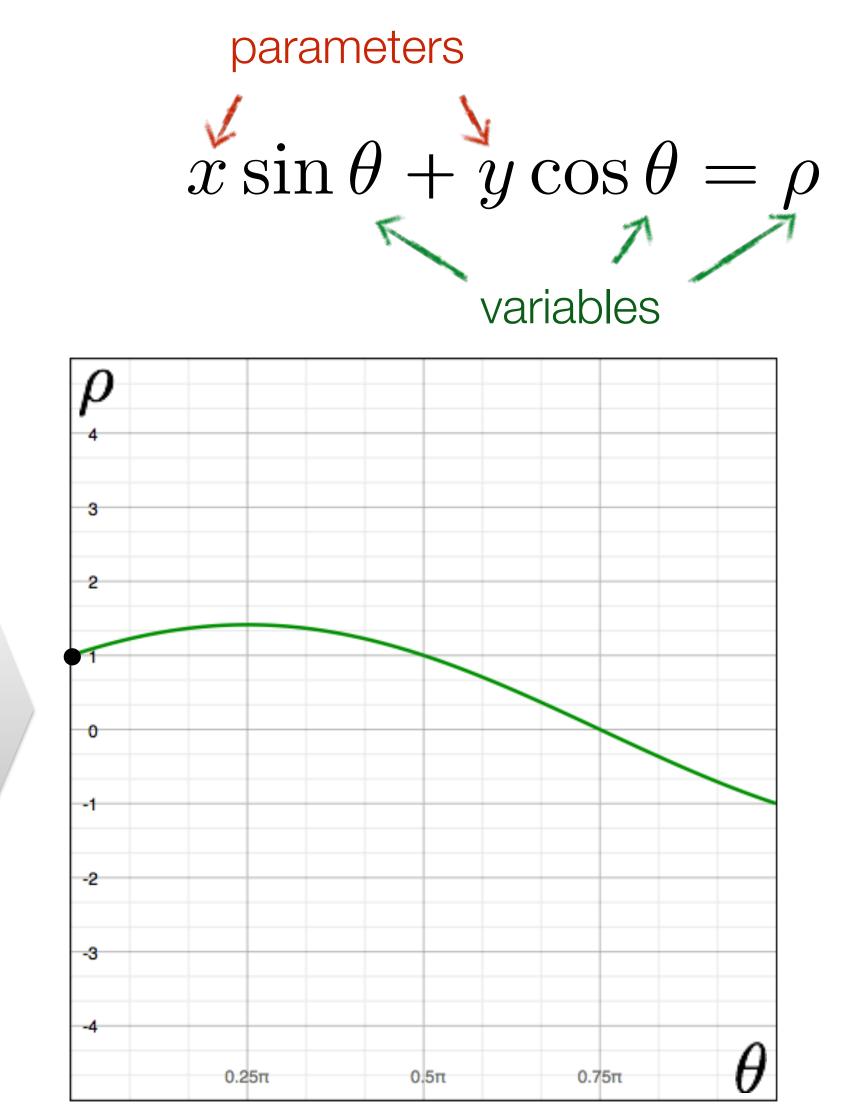


Image space



Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

Hough Transform for Lines (switching to books notation)

- Idea: Each point votes for the lines that pass through it
- A line is the set of points, (x, y), such that $x\sin\theta + y\cos\theta + r = 0$
- Different choices of θ, r give different lines

Hough Transform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

- A line is the set of points, (x, y), such that $x\sin\theta + y\cos\theta + r = 0$
- Different choices of θ, r give different lines
- For any (x, y) there is a one parameter family of lines through this point. Just let (x, y) be constants and for each value of θ the value of r will be determined
- Each point enters votes for each line in the family
- If there is a line that has lots of votes, that will be the line passing near the points that voted for it

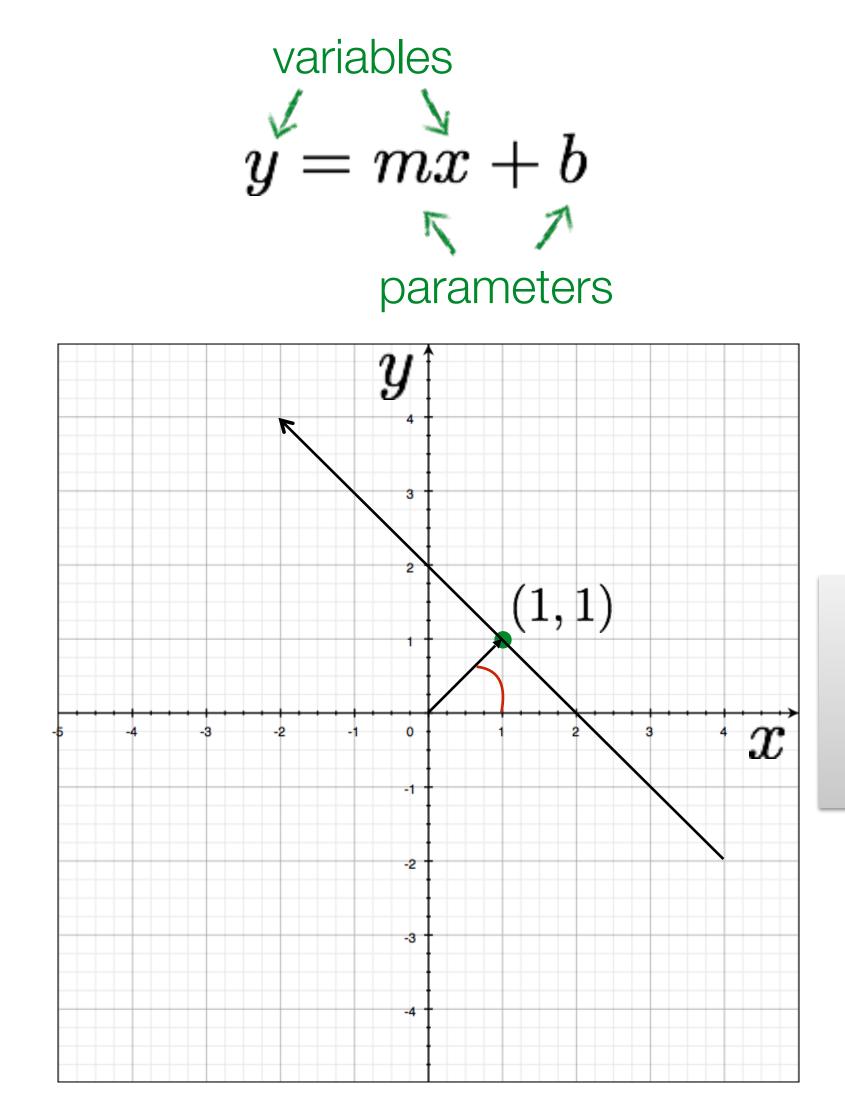
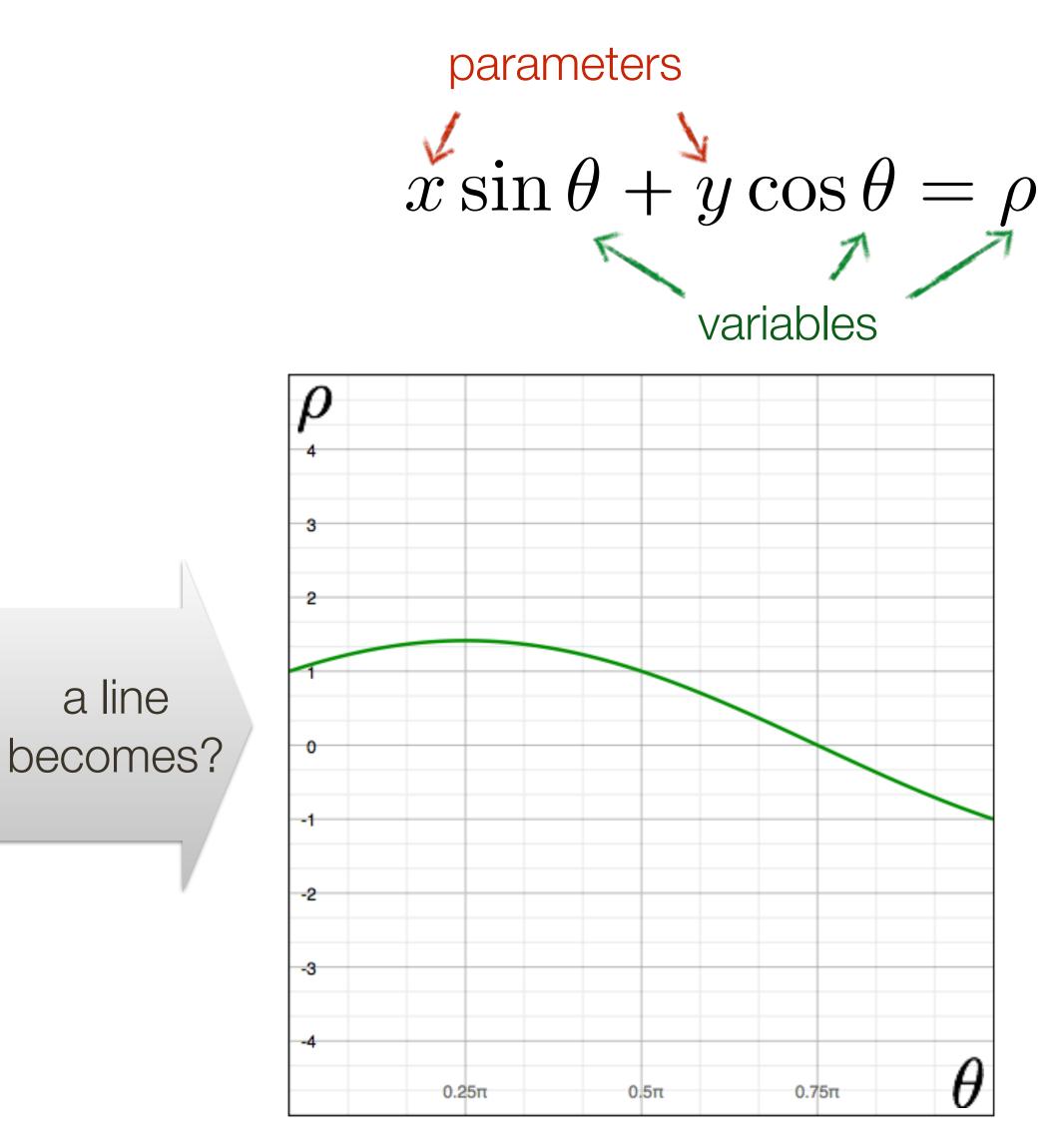


Image space



Parameter space

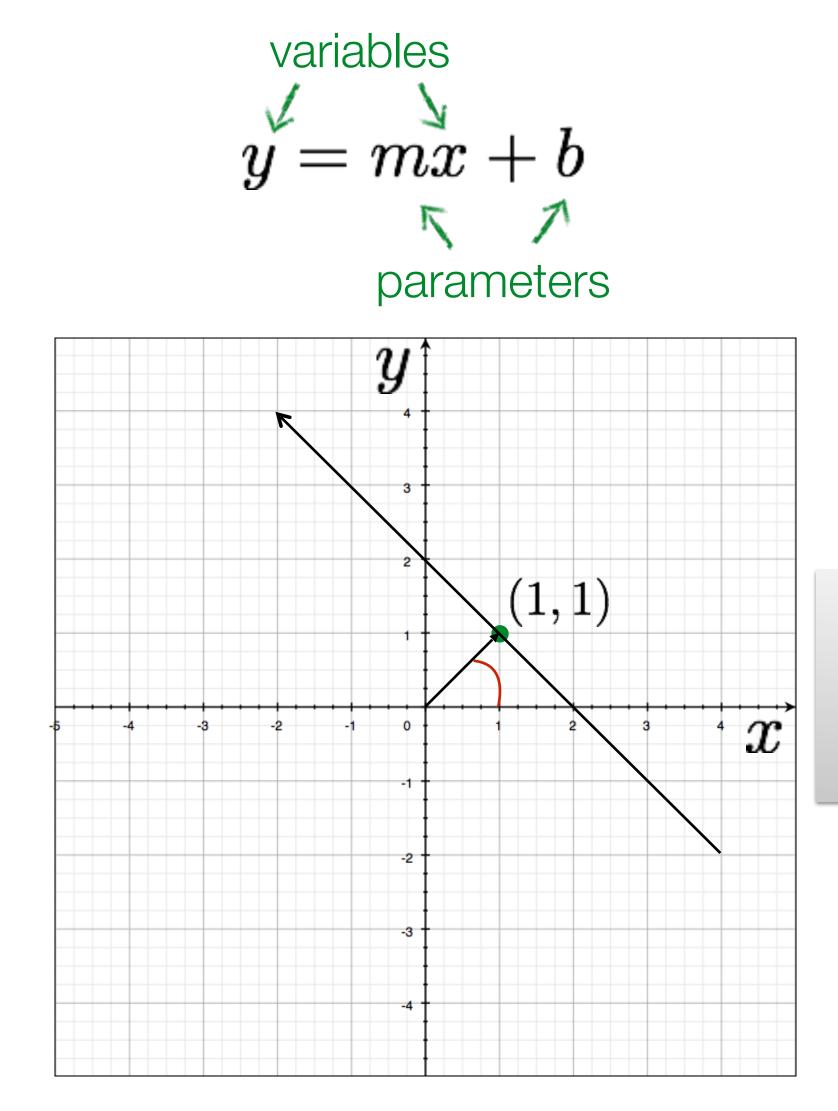
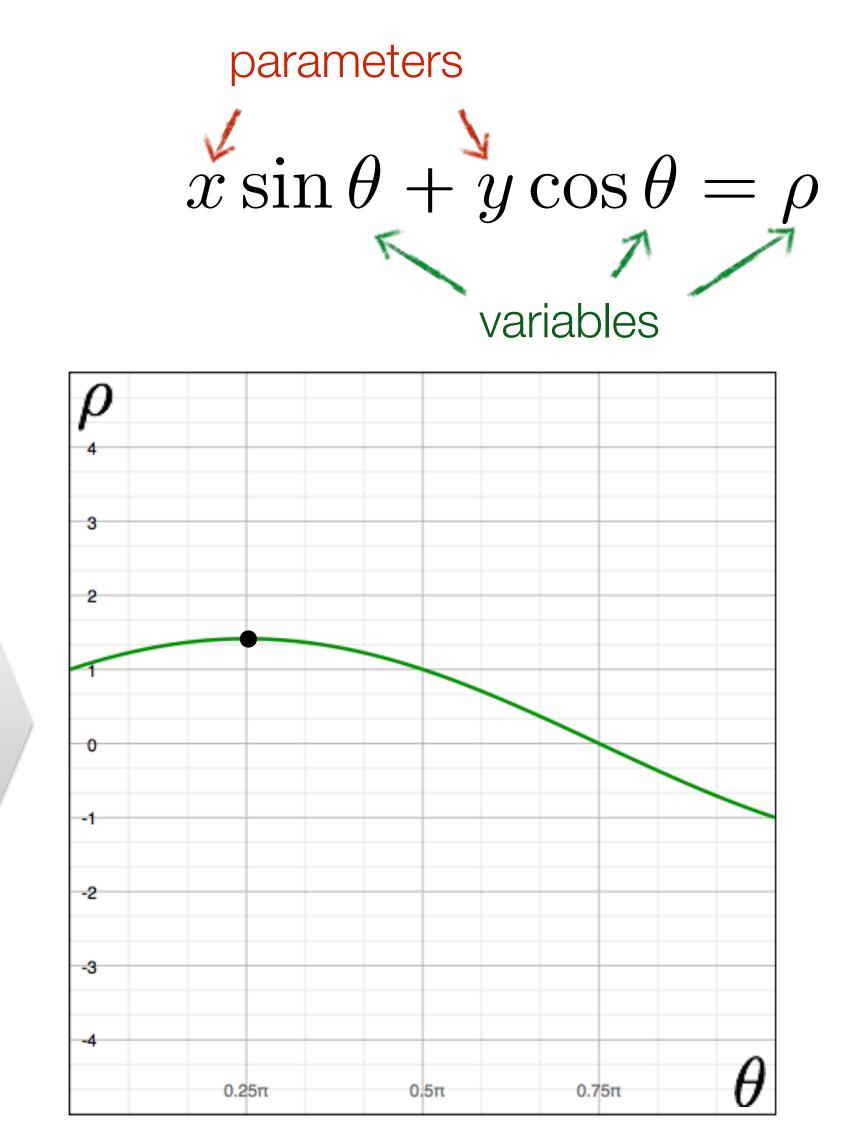


Image space



Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

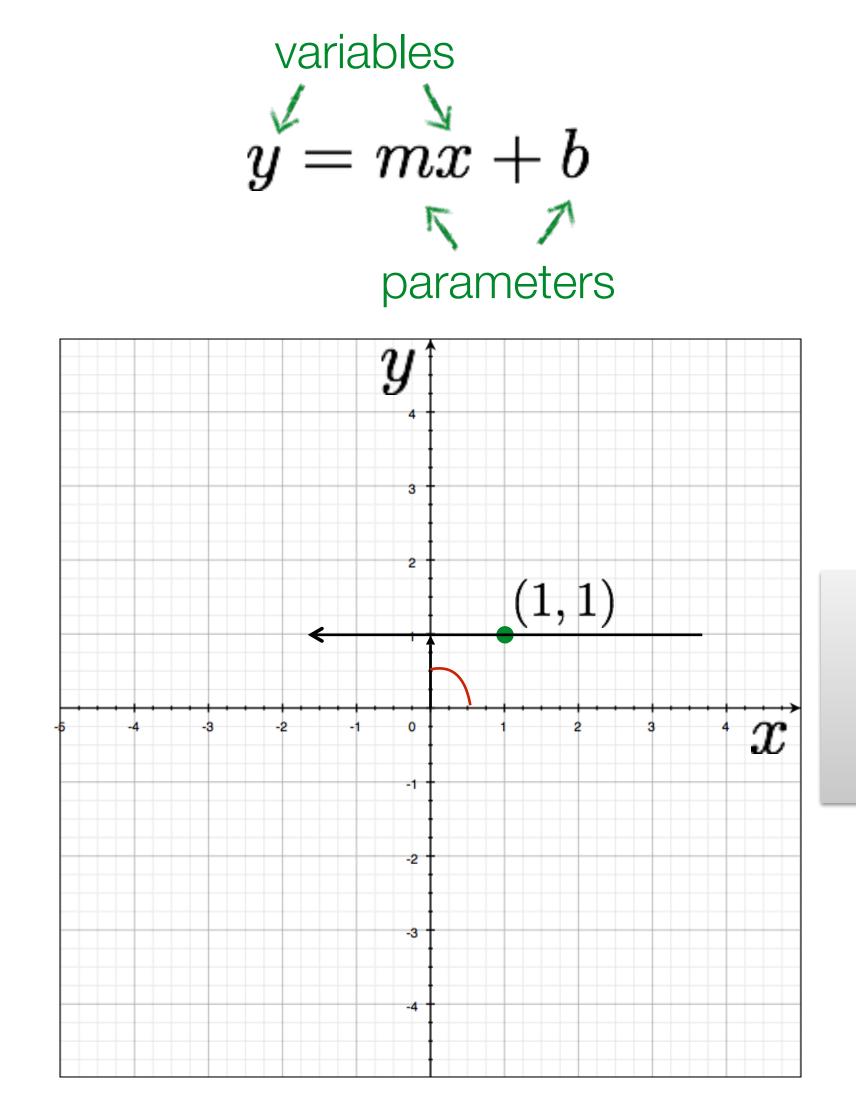
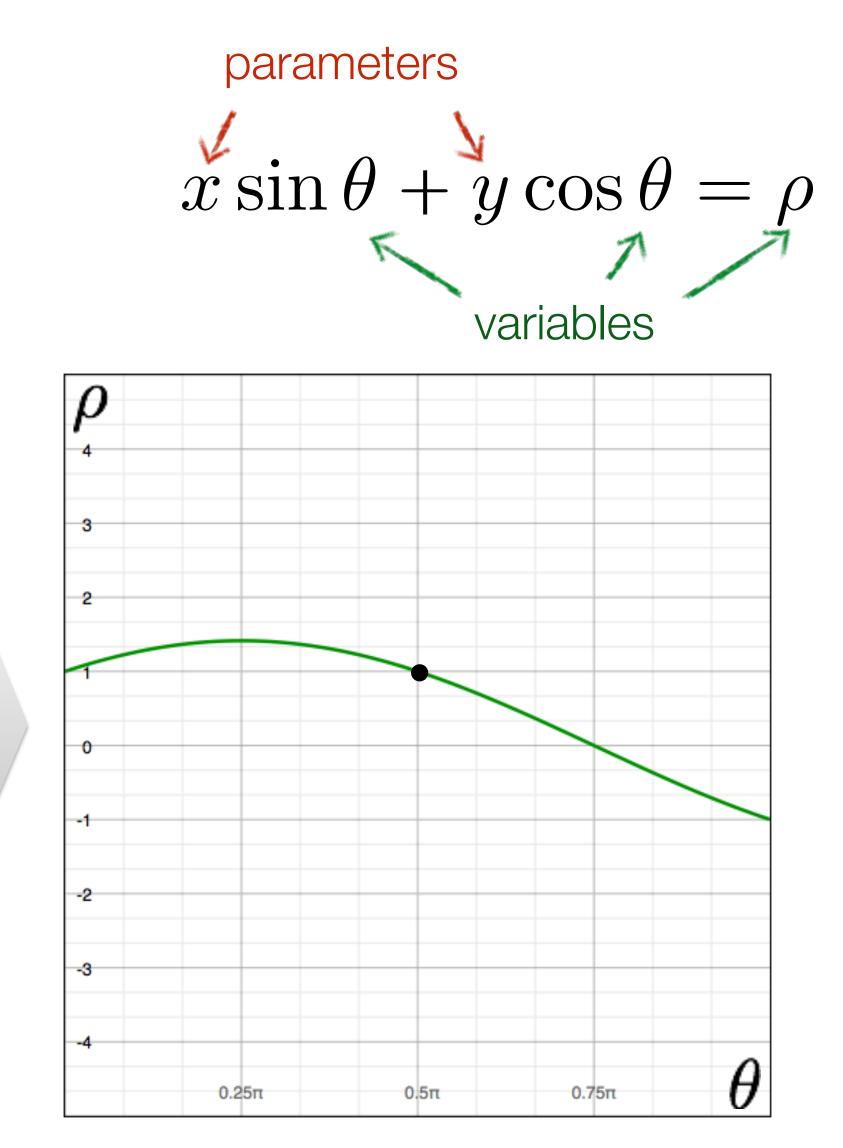


Image space



Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

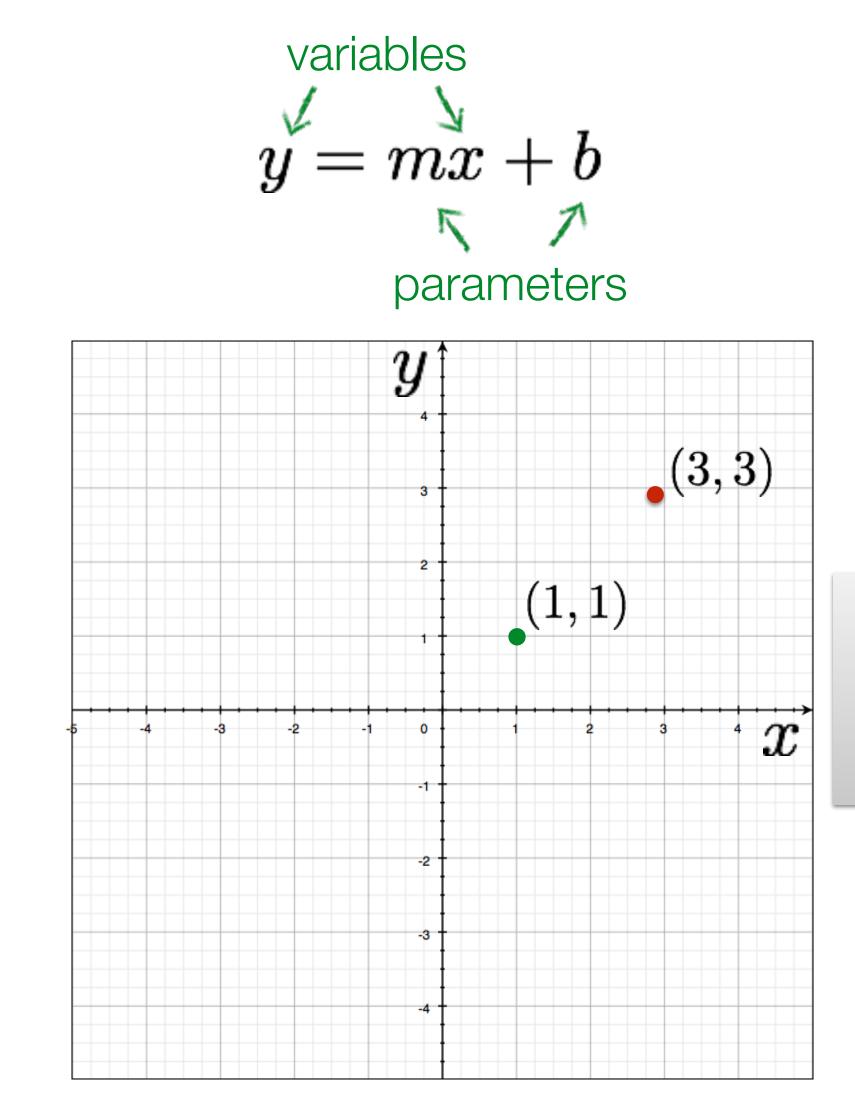
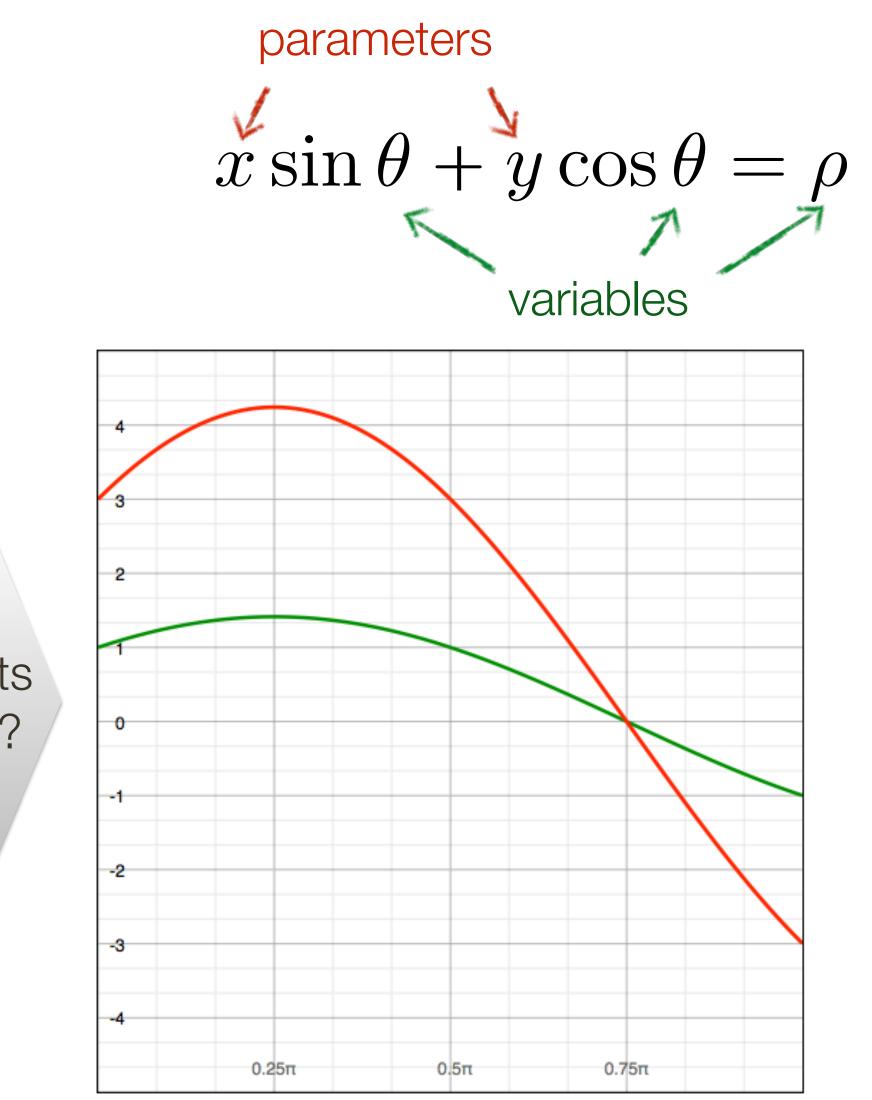


Image space



Parameter space **Slide Credit**: Ioannis (Yannis) Gkioulekas (CMU)

two points become?

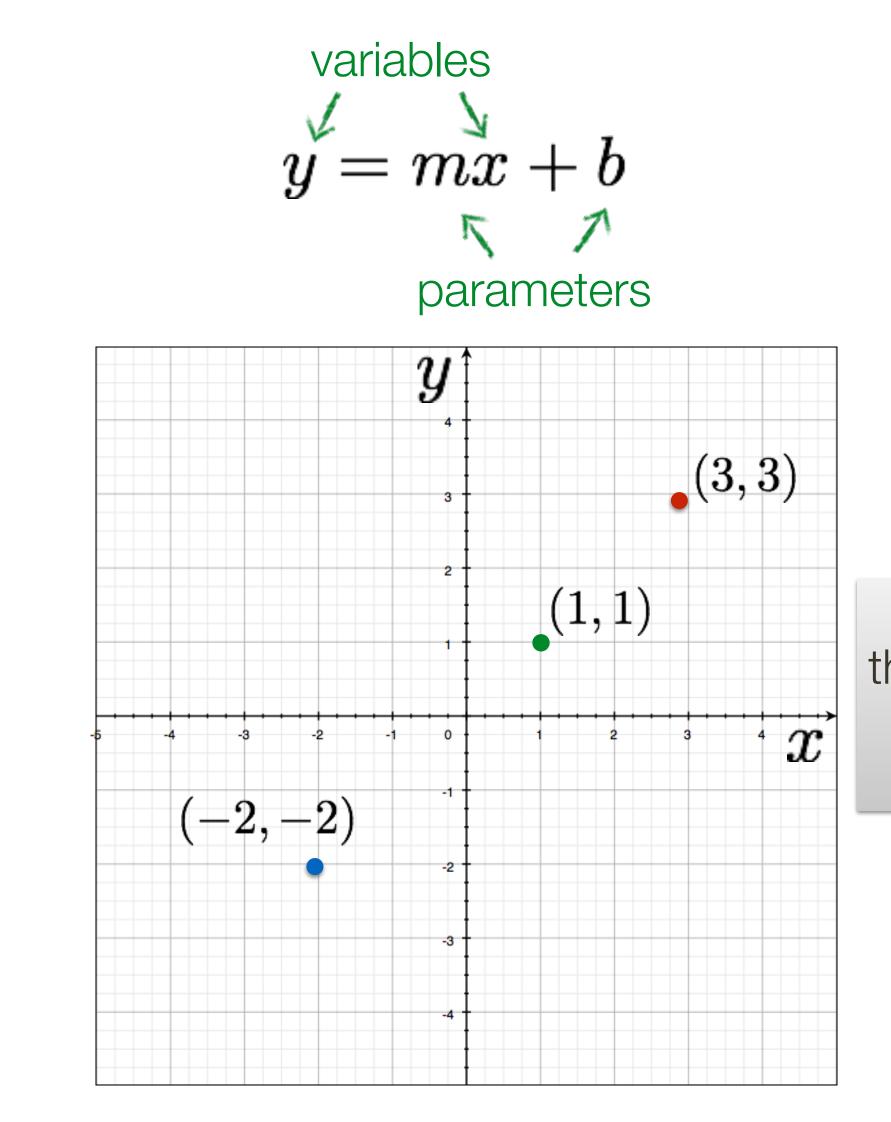
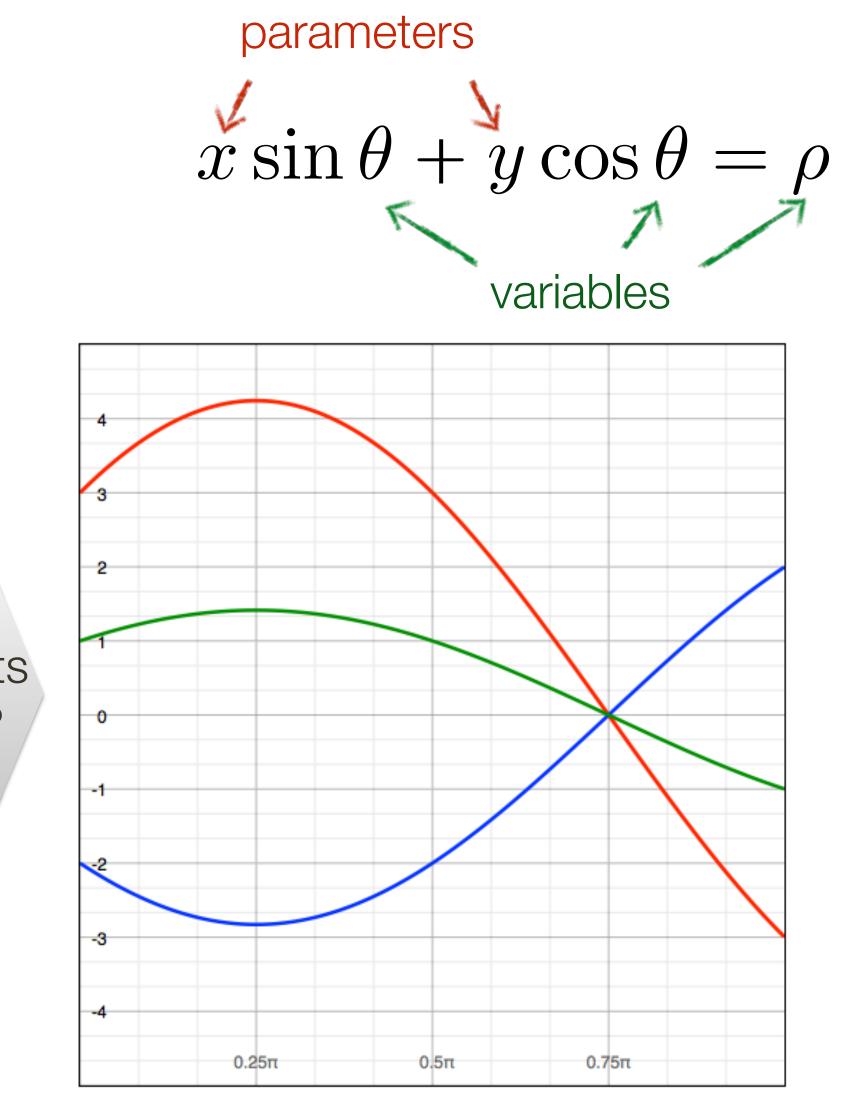


Image space



Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

three points become?

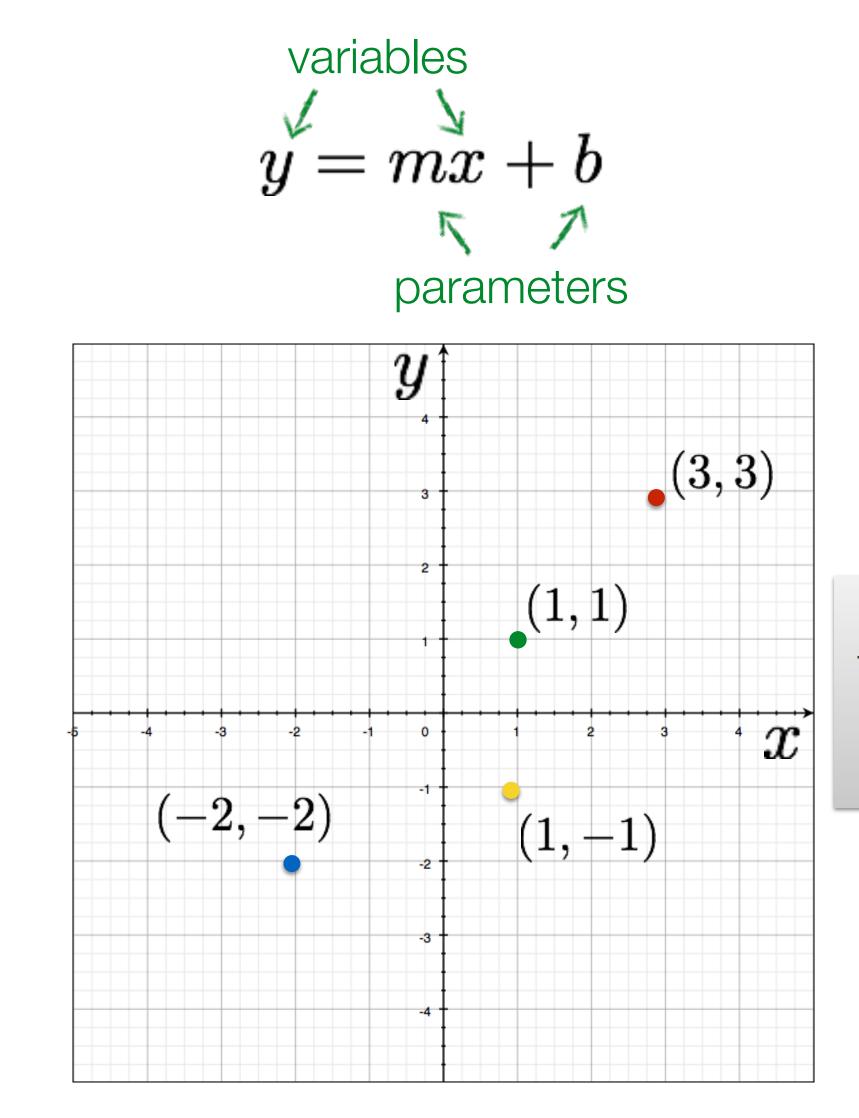
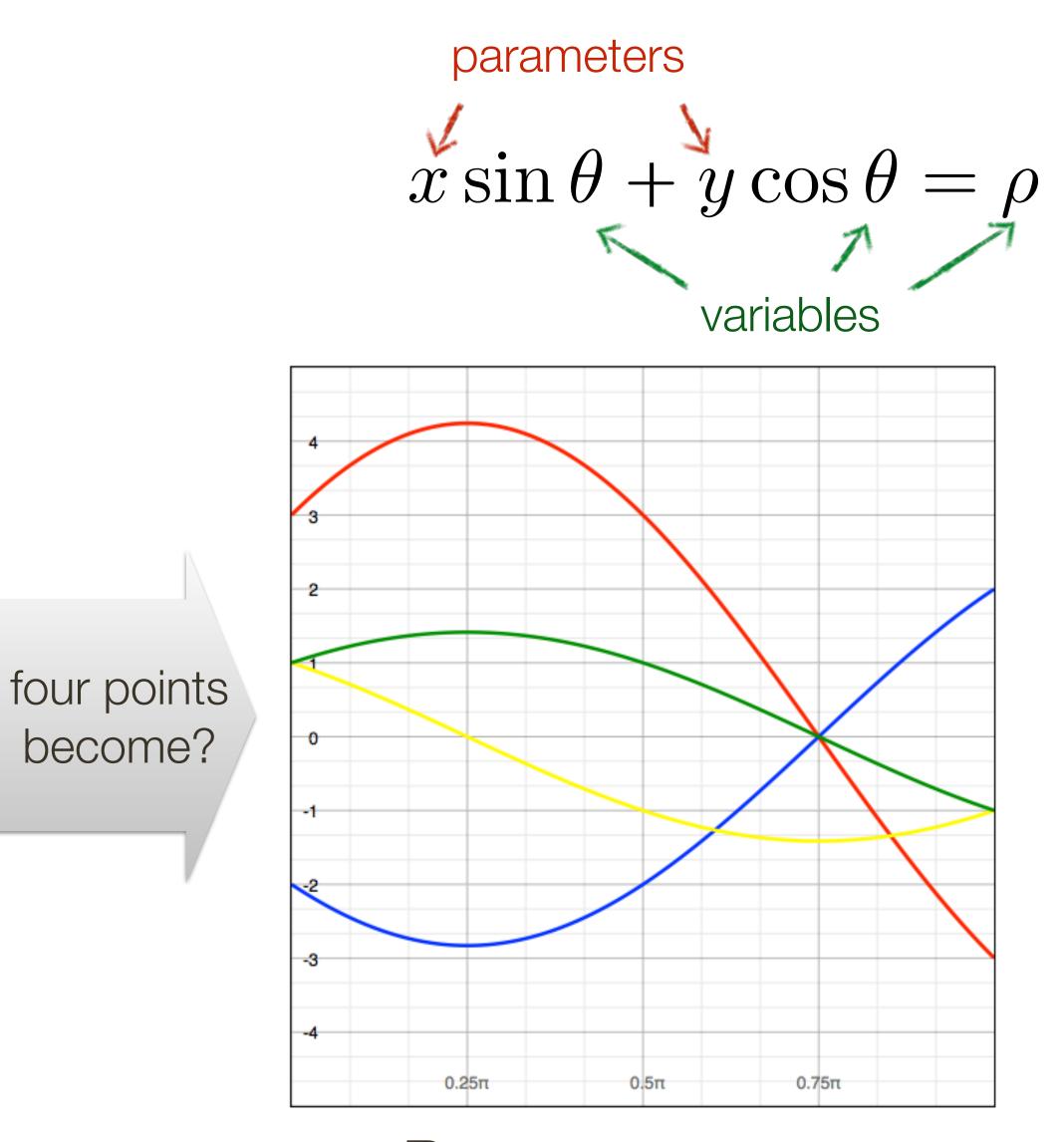
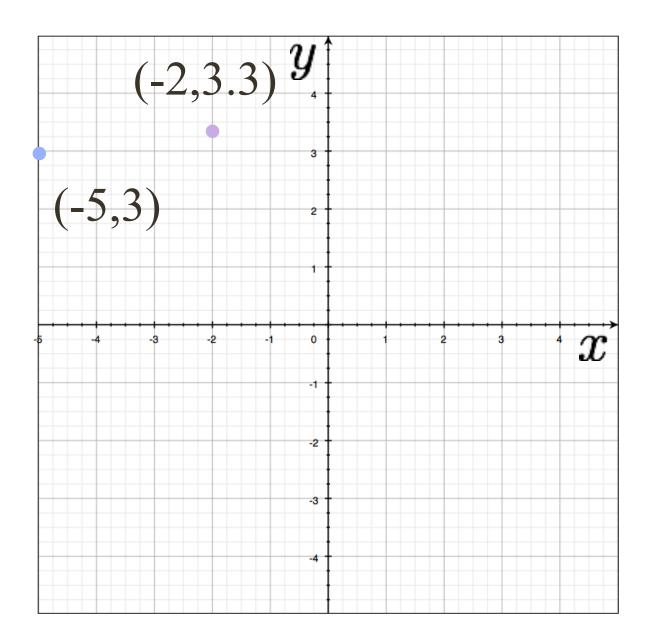
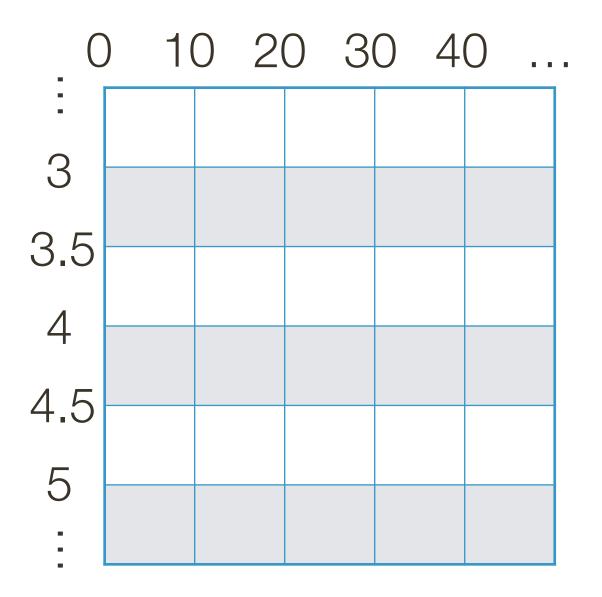
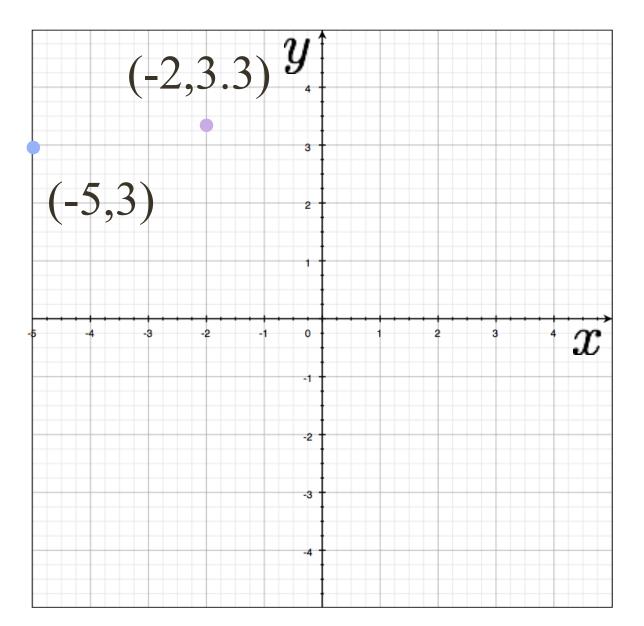


Image space

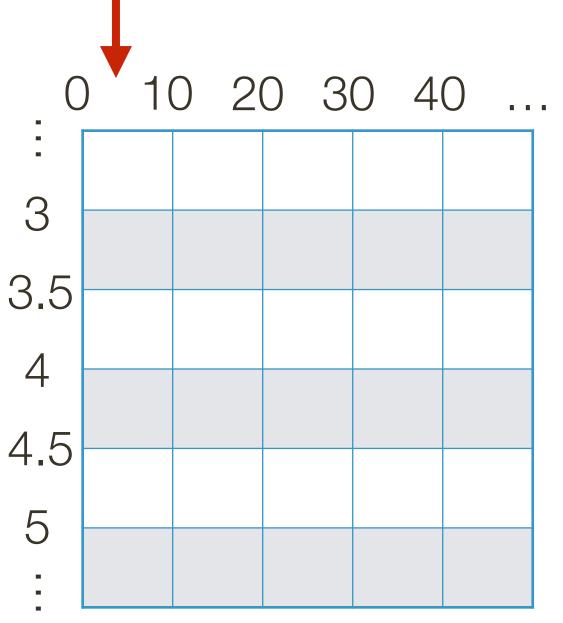


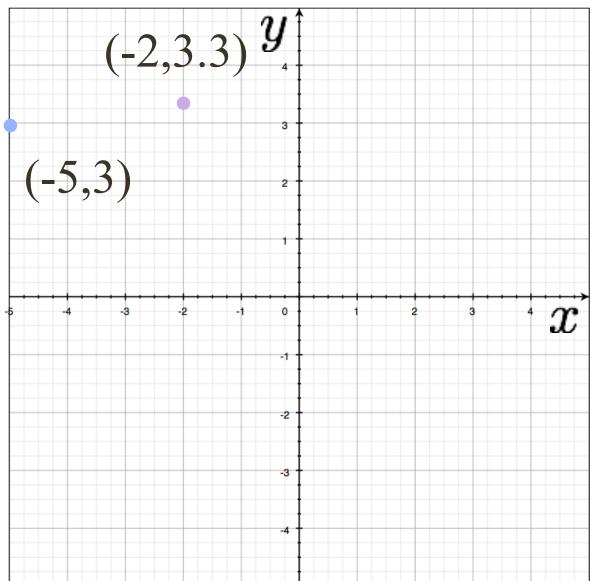




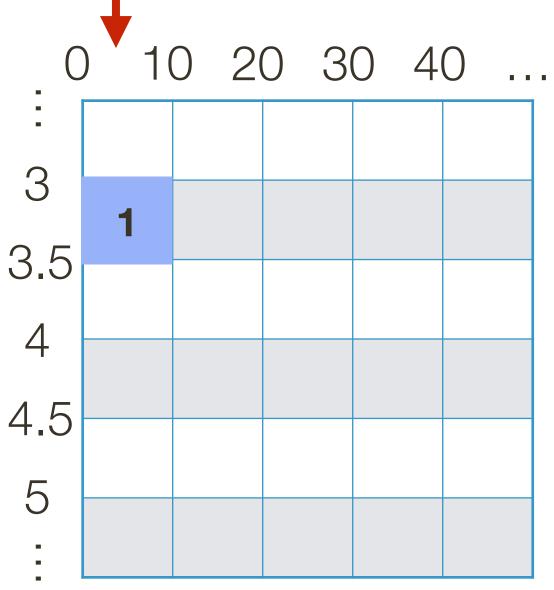


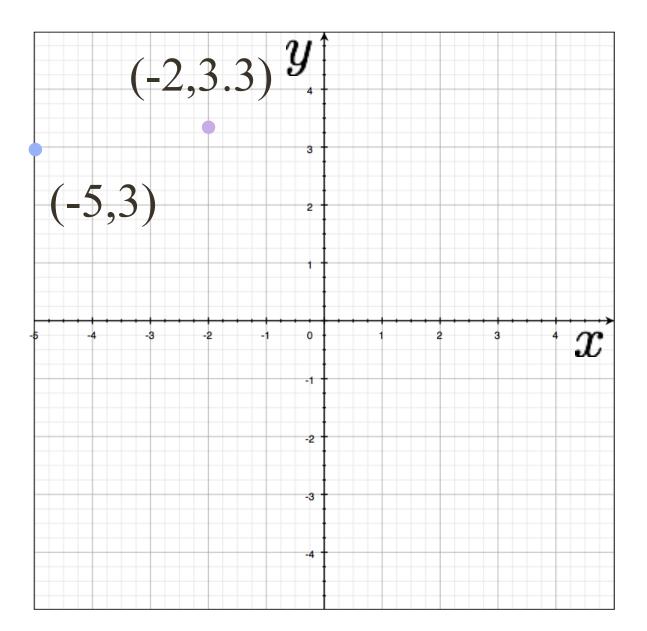
$-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$



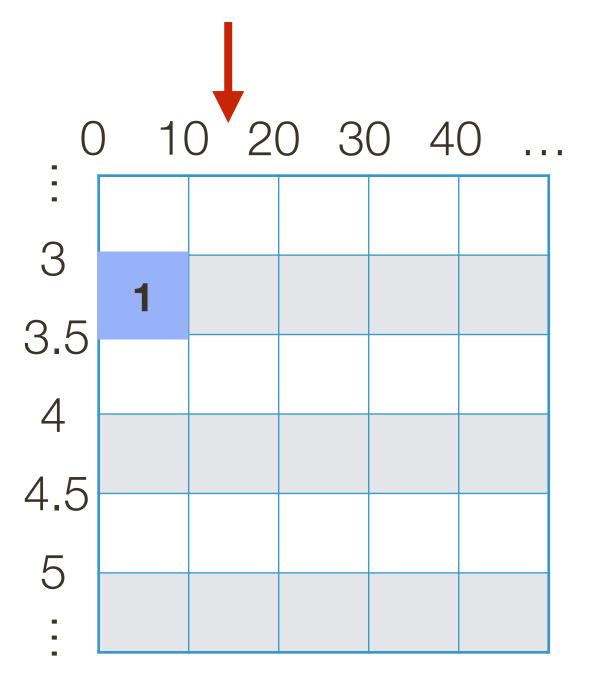


$-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$



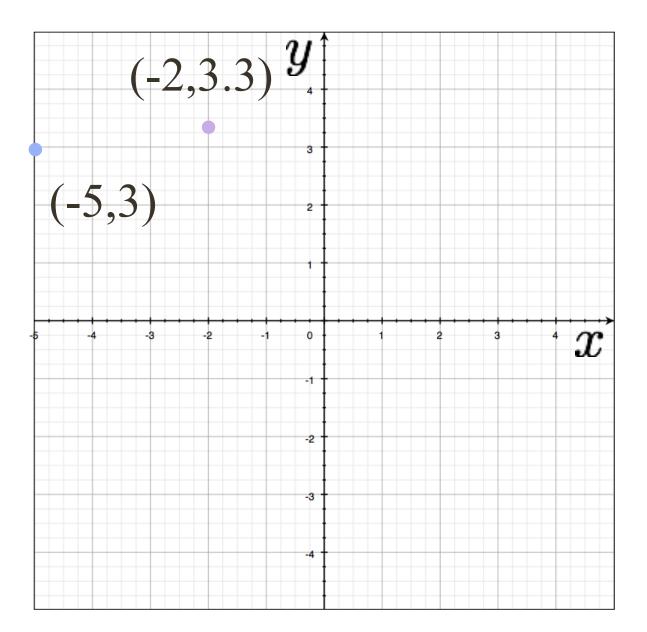


 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = -5\sin(15^{\circ}) - 3\cos(15^{\circ}) + r = 0 => r$

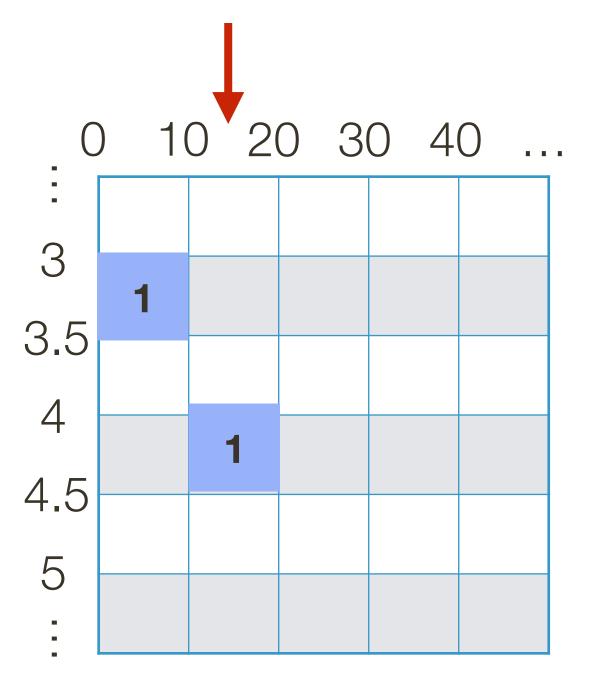


$$= 3.42$$

 $= 4.18$

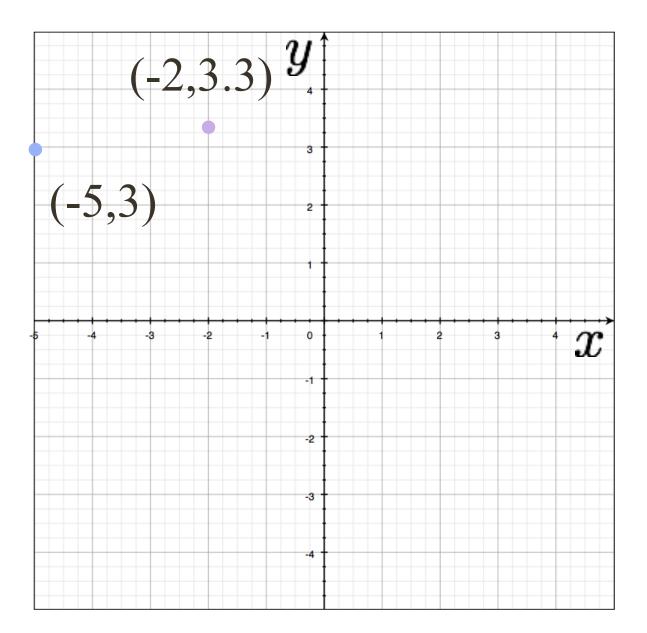


 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = -5\sin(15^{\circ}) - 3\cos(15^{\circ}) + r = 0 => r$

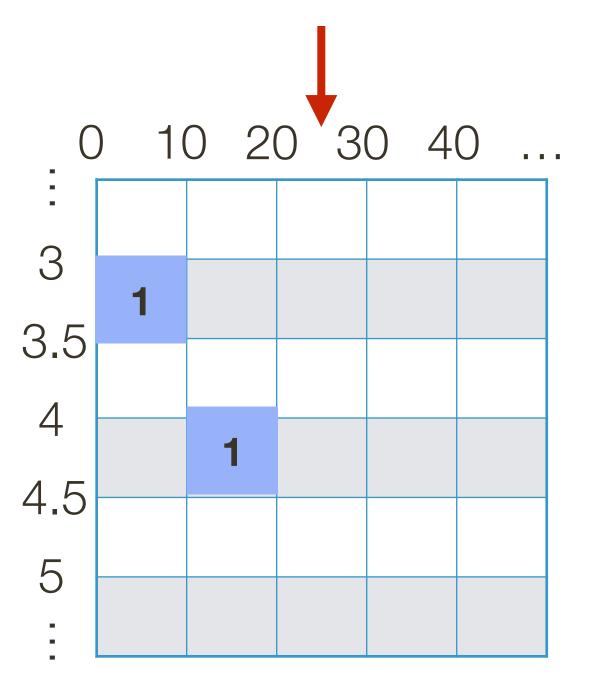


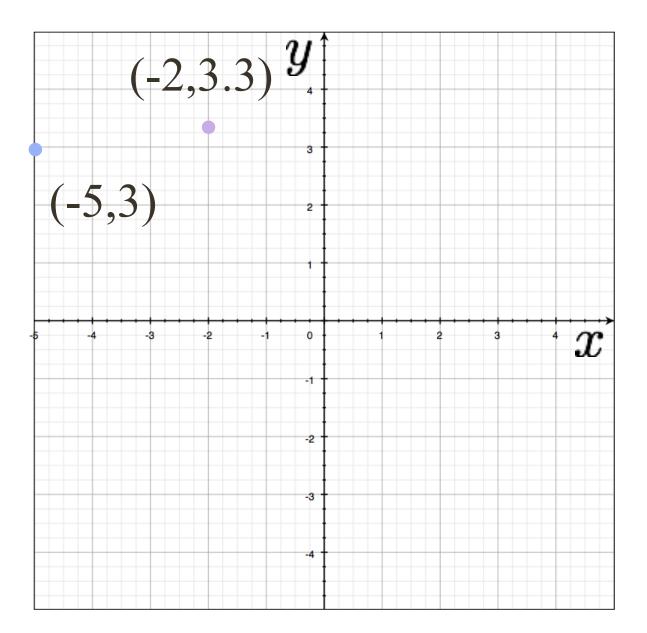
$$= 3.42$$

 $= 4.18$

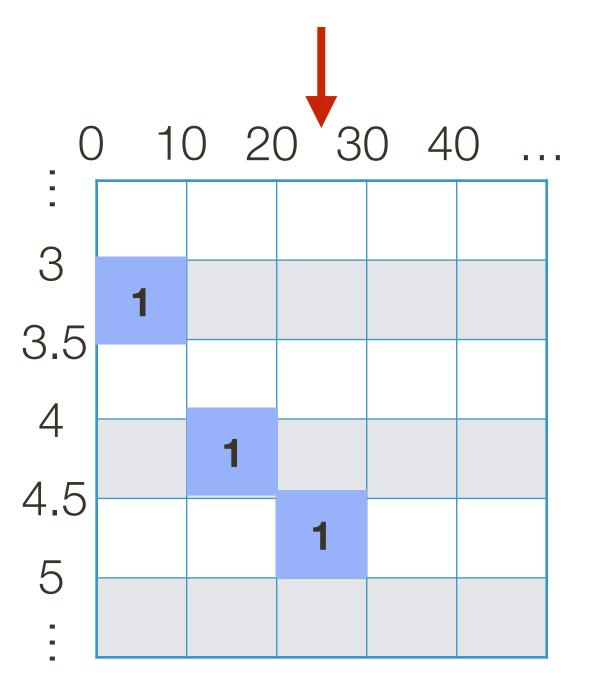


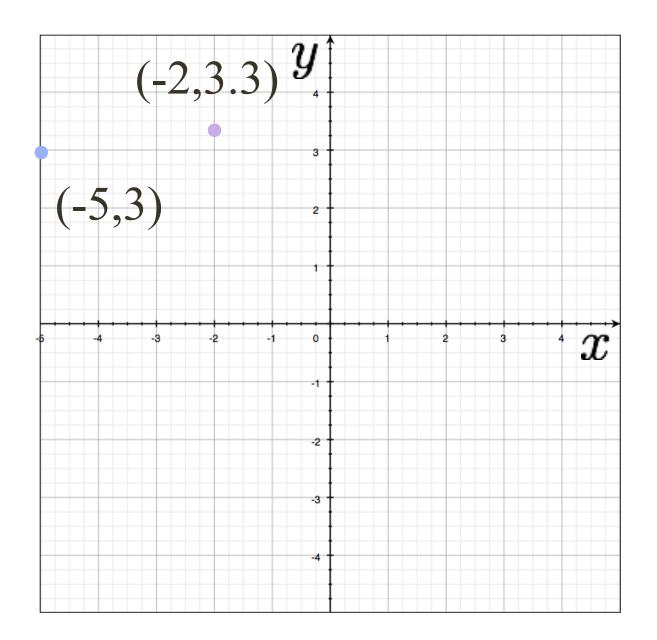
 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^{\circ}) - 3\cos(15^{\circ}) + r = 0 \Longrightarrow r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$





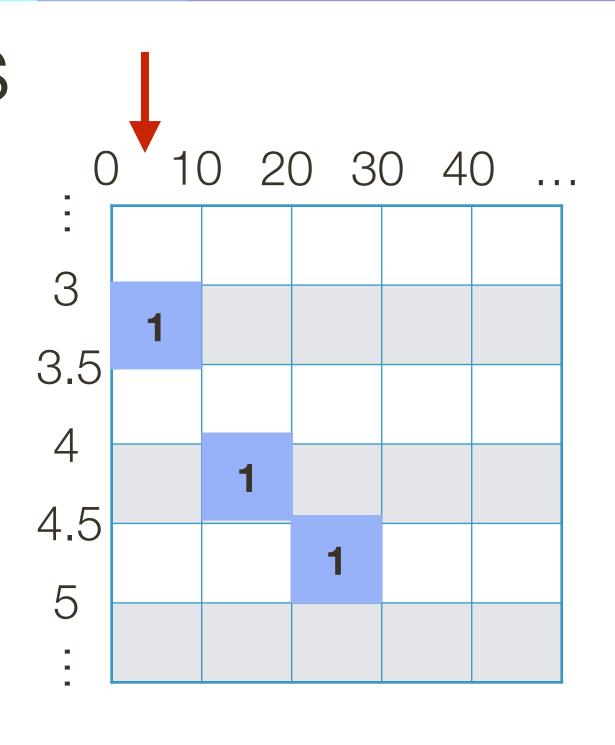
 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^{\circ}) - 3\cos(15^{\circ}) + r = 0 \Longrightarrow r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

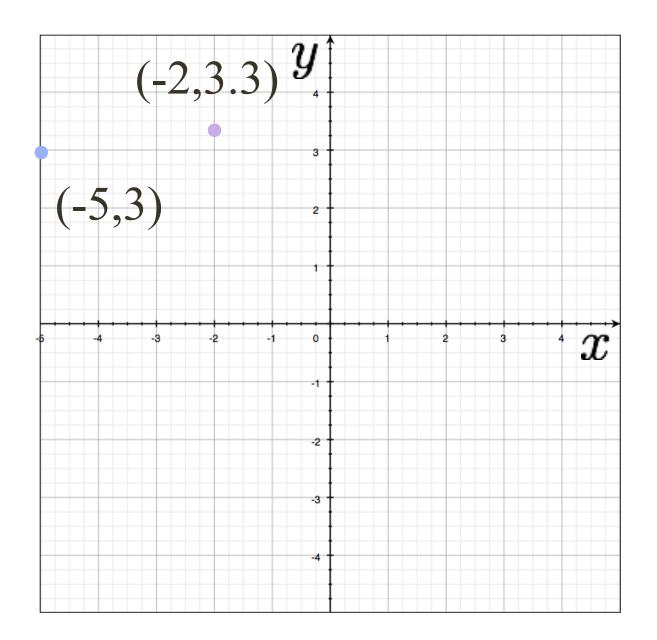




 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^\circ) - 3\cos(15^\circ) + r = 0 => r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

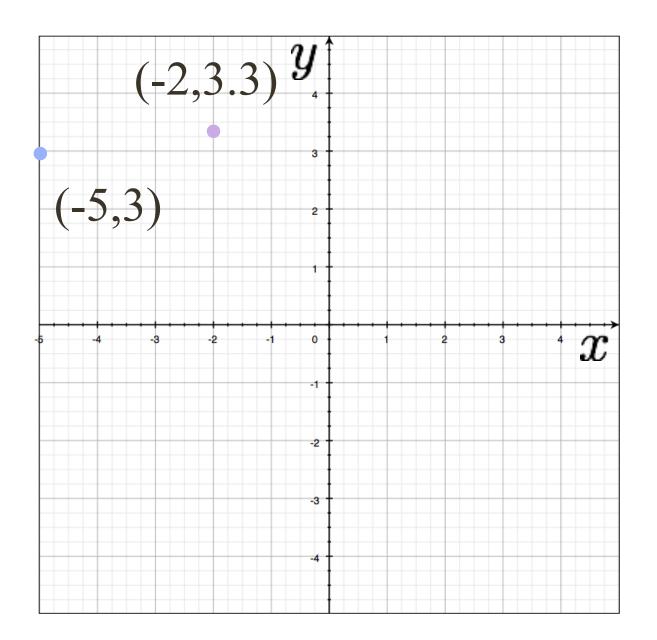
$-2\sin(5^\circ) - 3.3\cos(5^\circ) + r = 0 => r = 3.46$





 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^\circ) - 3\cos(15^\circ) + r = 0 => r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

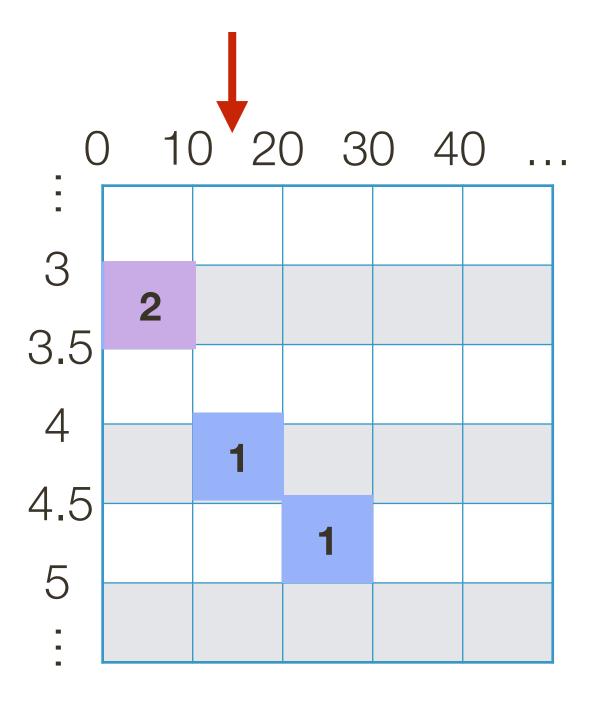
$-2\sin(5^\circ) - 3.3\cos(5^\circ) + r = 0 => r = 3.46$

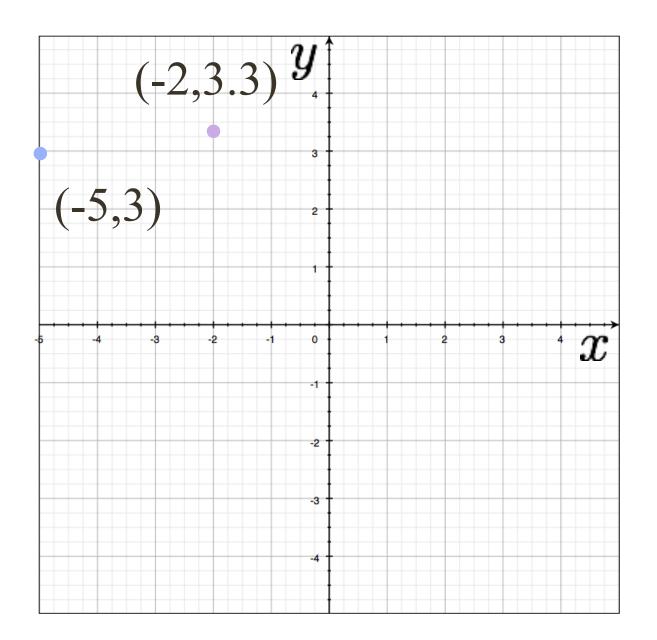


 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r$ $-5\sin(15^{\circ}) - 3\cos(15^{\circ}) + r = 0 \Longrightarrow r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

 $-2\sin(5^\circ) - 3.3\cos(5^\circ) + r = 0 => r = 3.46$ $-2\sin(15^\circ) - 3.3\cos(15^\circ) + r = 0 => r = 3.71$

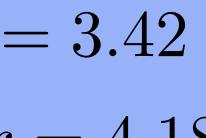
$$= 3.42$$

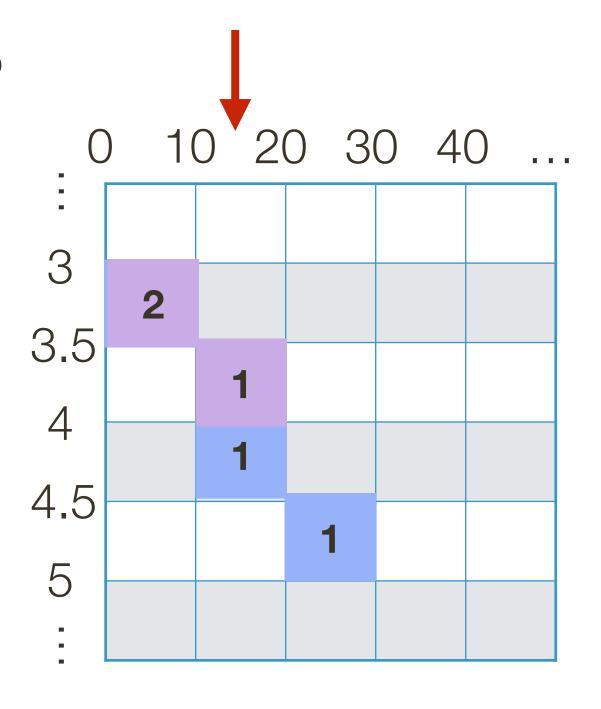


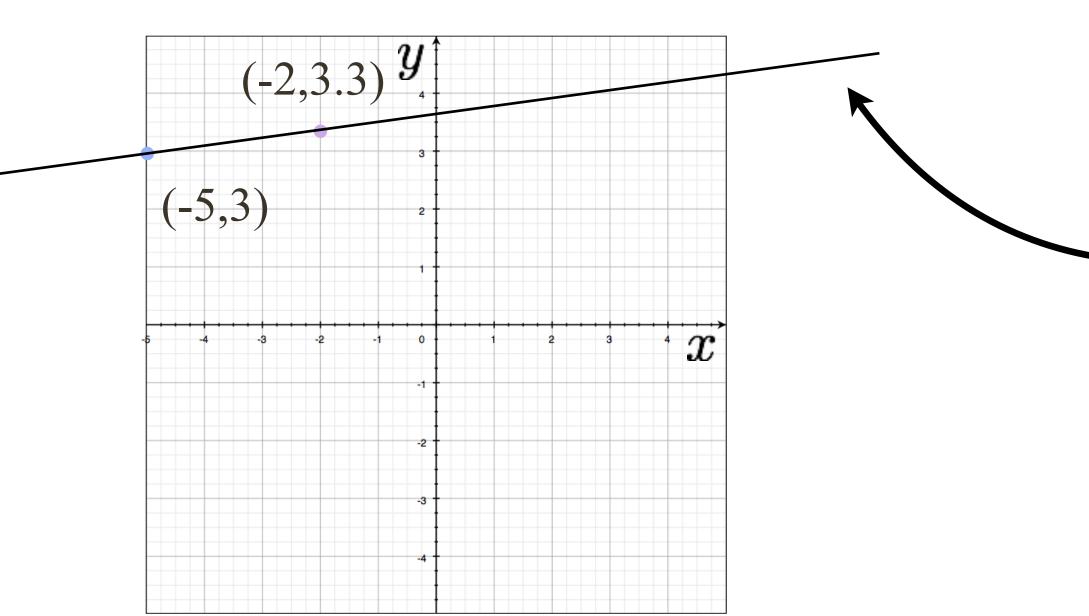


 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^\circ) - 3\cos(15^\circ) + r = 0 => r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

 $-2\sin(5^\circ) - 3.3\cos(5^\circ) + r = 0 => r = 3.46$ $-2\sin(15^\circ) - 3.3\cos(15^\circ) + r = 0 => r = 3.71$

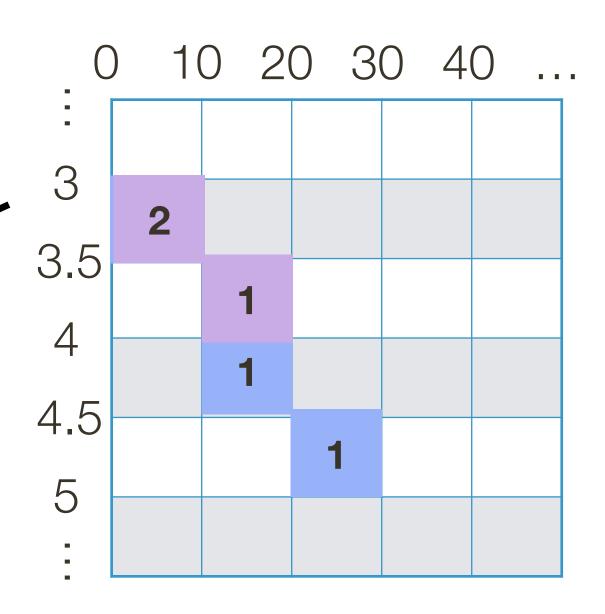




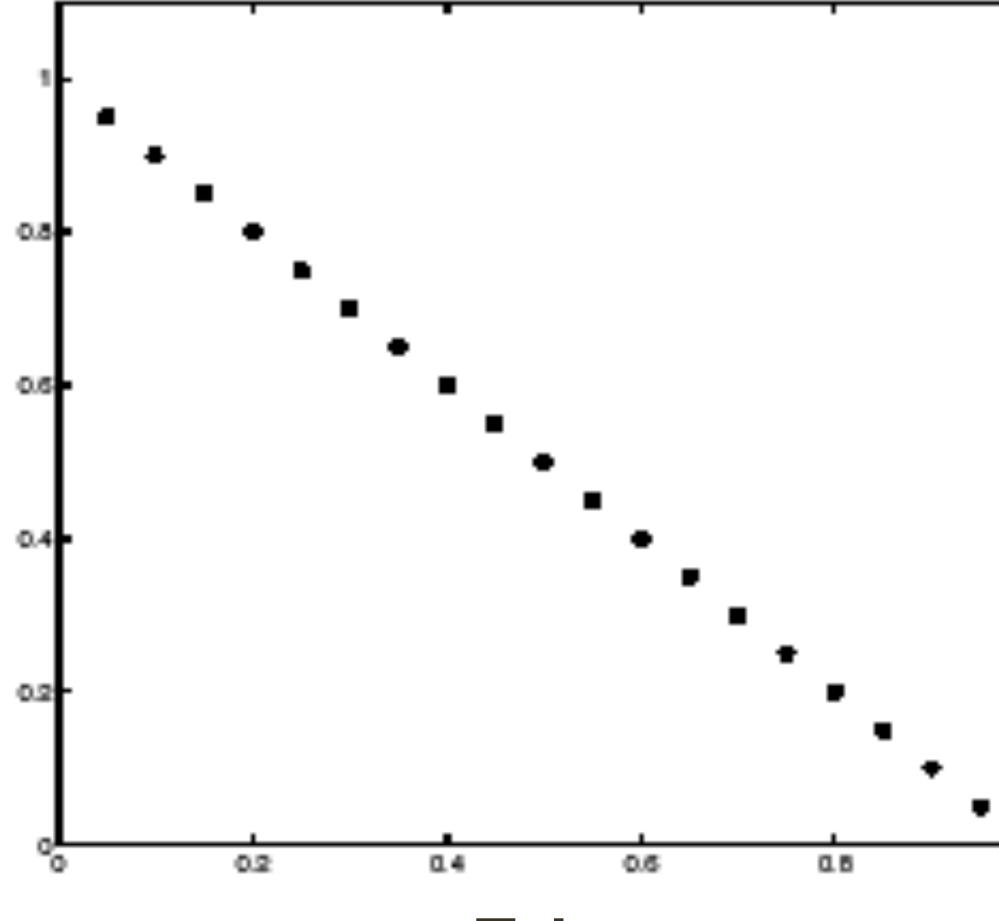


 $-5\sin(5^{\circ}) - 3\cos(5^{\circ}) + r = 0 => r = 3.42$ $-5\sin(15^\circ) - 3\cos(15^\circ) + r = 0 => r = 4.18$ $-5\sin(25^\circ) - 3\cos(25^\circ) + r = 0 => r = 4.83$

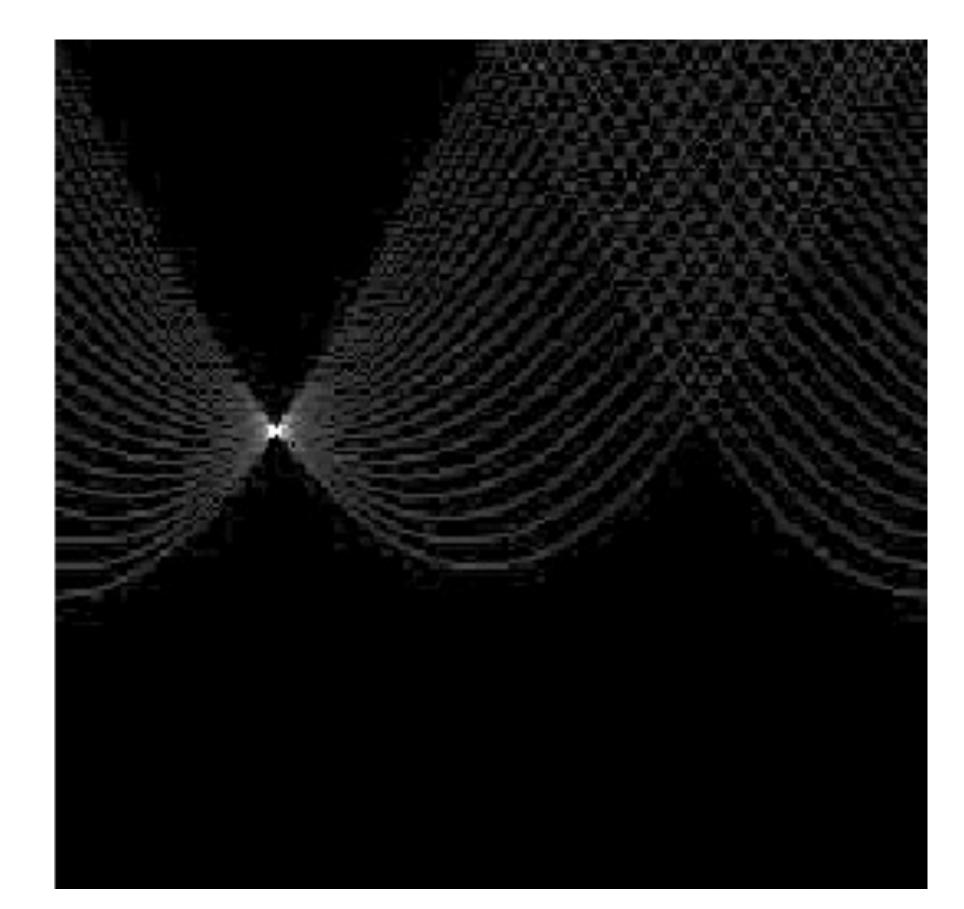
 $-2\sin(5^\circ) - 3.3\cos(5^\circ) + r = 0 => r = 3.46$ $-2\sin(15^\circ) - 3.3\cos(15^\circ) + r = 0 => r = 3.71$



Example: Clean Data

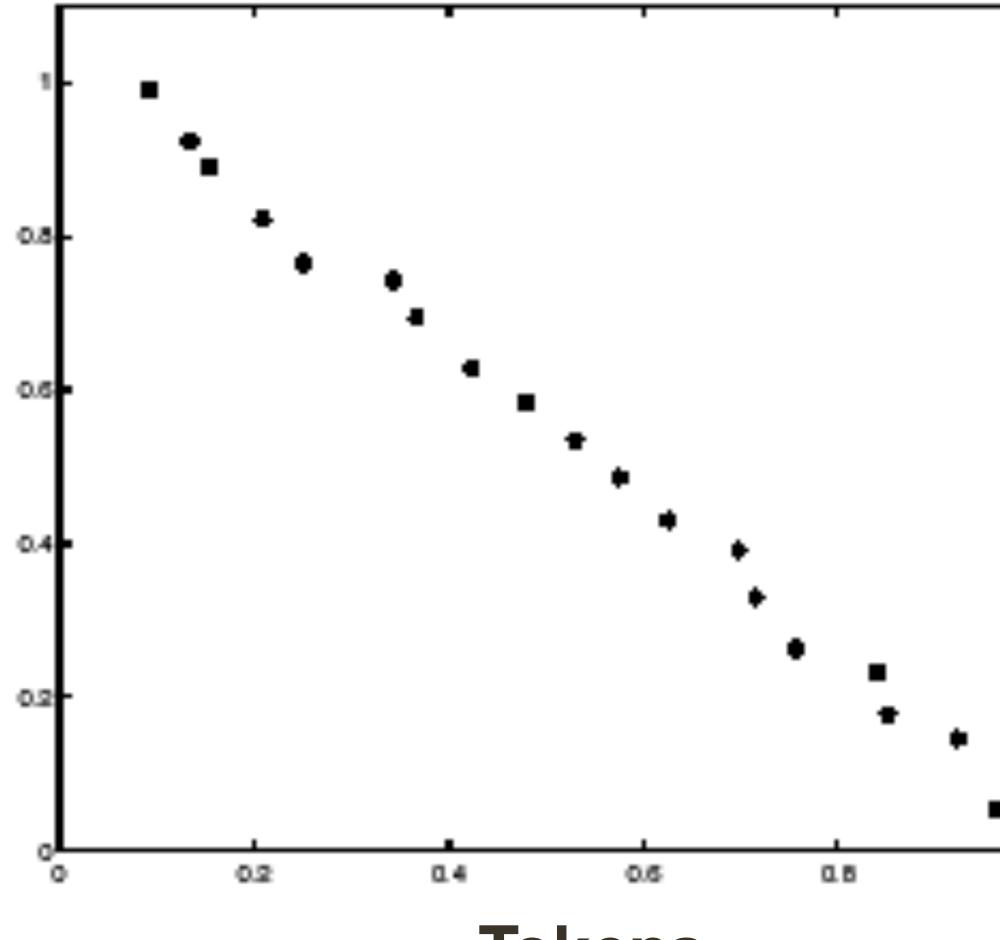


Tokens

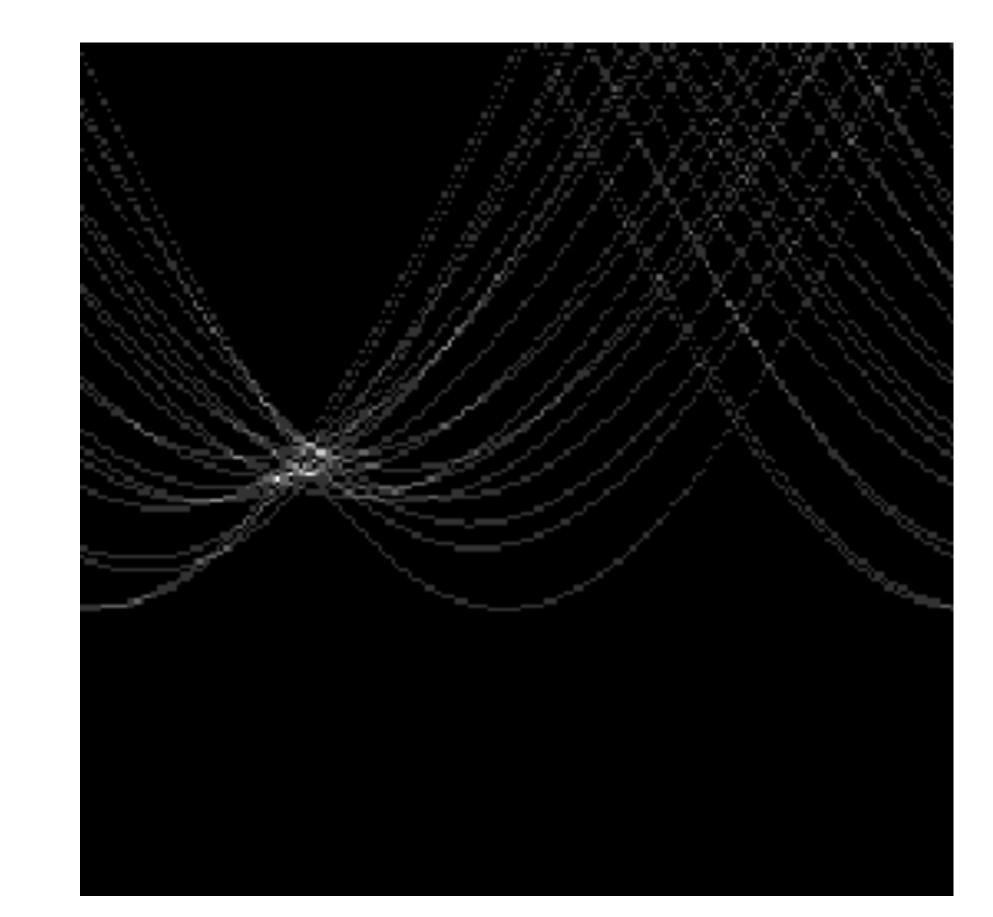


Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)

Example: Some Noise

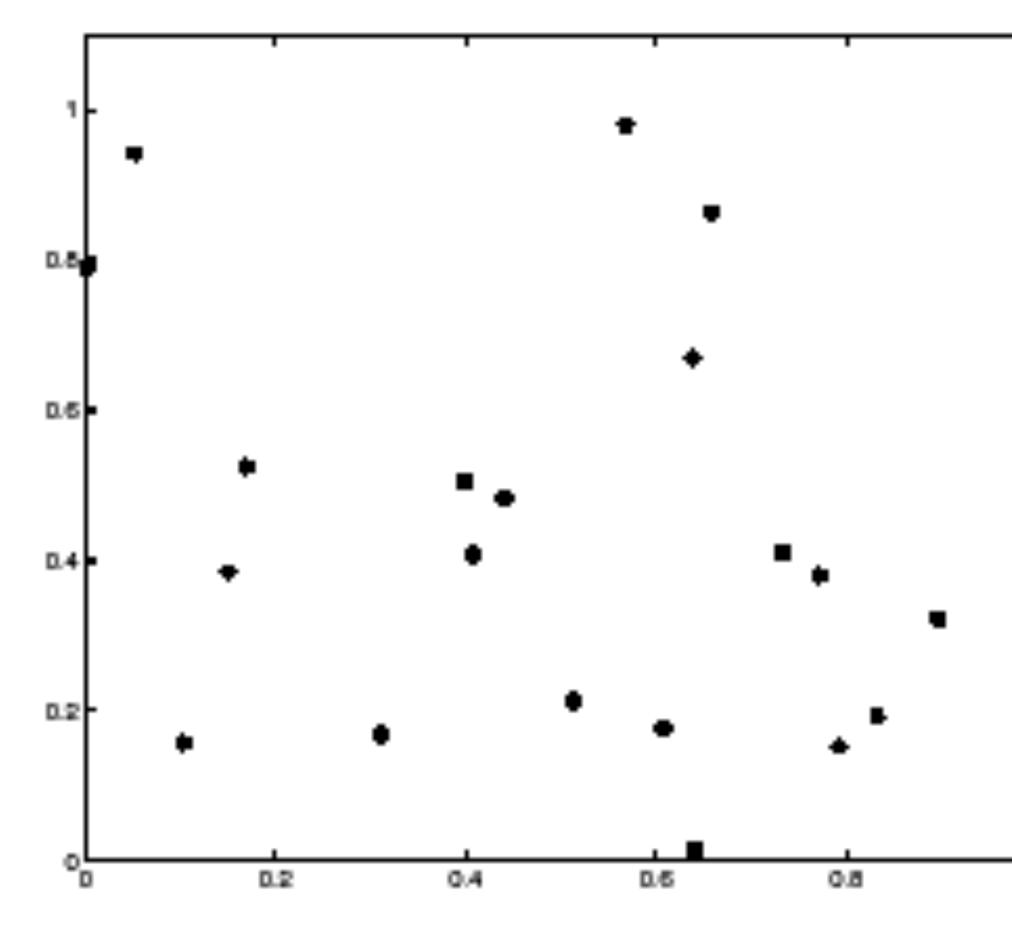


Tokens

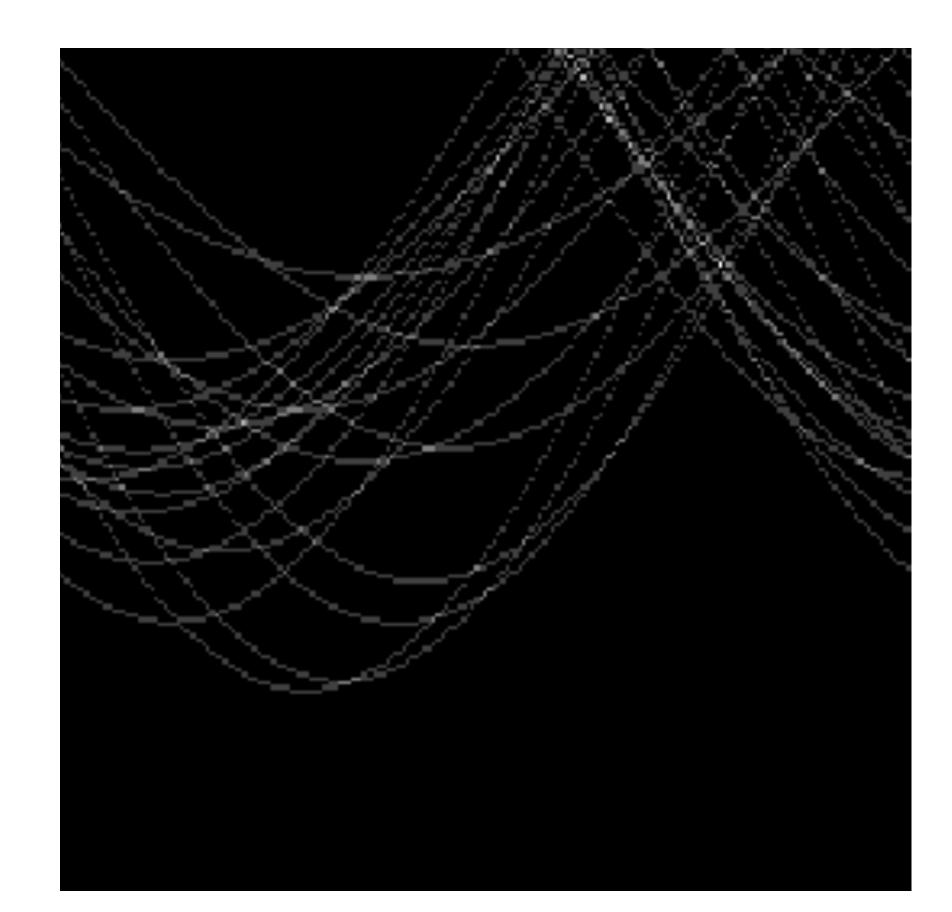


ч. Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)

Example: Too Much Noise

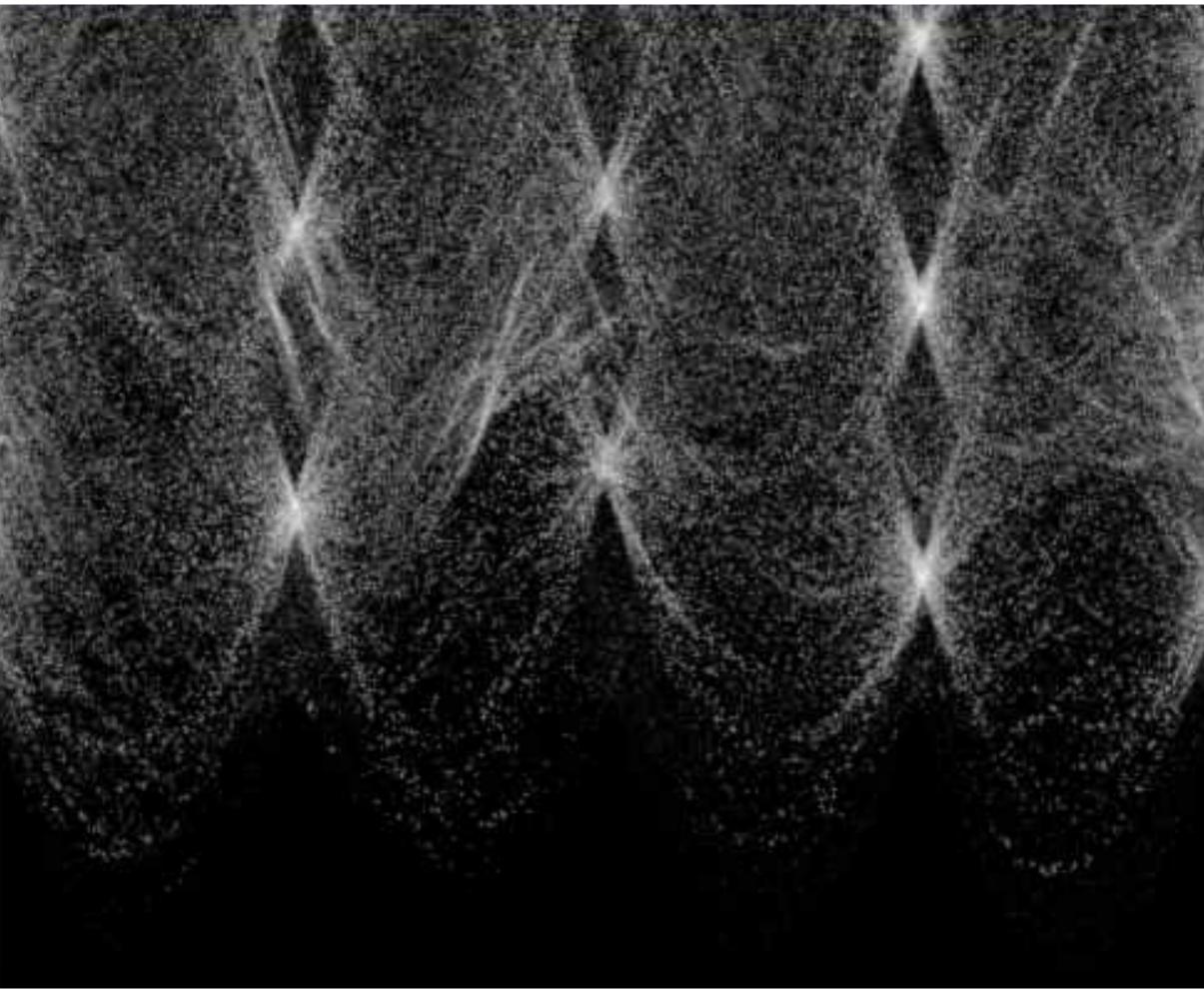


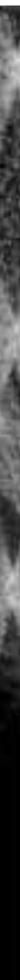
Tokens



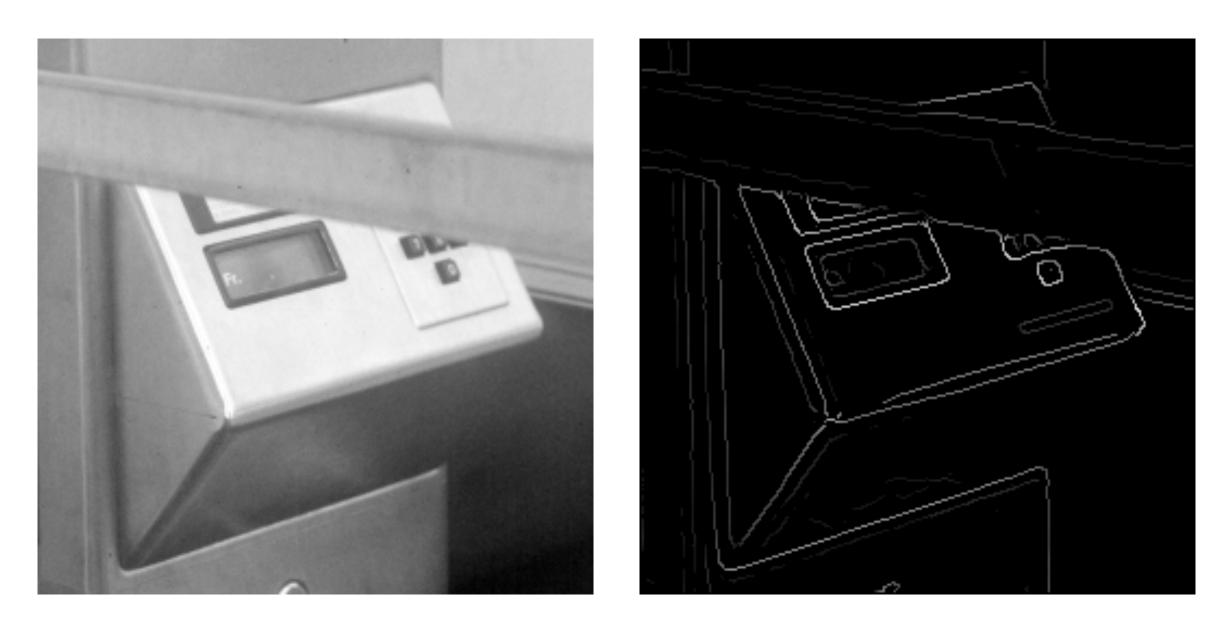
Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.2

Real World Example



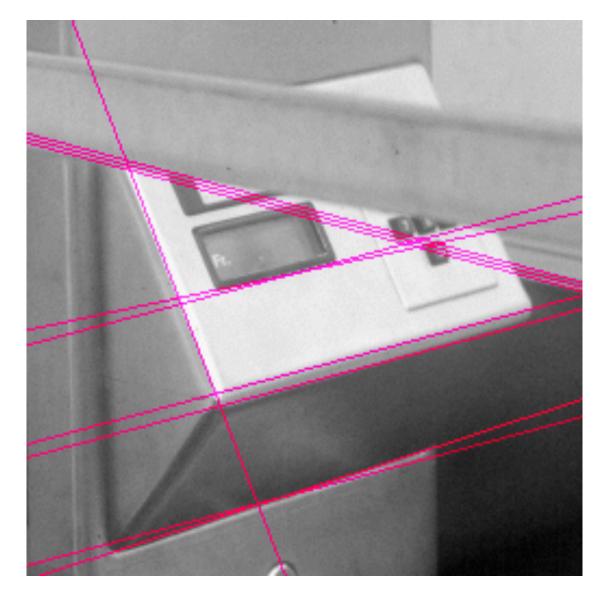


Real World **Example**



Original

Edges



Parameter space

Hough Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Mechanics of Hough Transform

- **1**. Construct a quantized array to represent θ and r **2.** For each point, render curve (θ , r) into this array adding one vote at each cell

Difficulties:

small, and noise causes lines to be missed)

How many lines?

- Count the peaks in the Hough array
- Treat adjacent peaks as a single peak

- How big should the cells be? (too big, and we merge quite different lines; too

Some Practical Details of Hough Transform

It is best to **vote** for the two closest bins in each dimension, as the locations of the bin boundaries are arbitrary

- This means that peaks are "blurred" and noise will not cause similar votes to fall into separate bins

Can use a hash table rather than an array to store the votes - This means that no effort is wasted on initializing and checking empty bins - It avoids the need to predict the maximum size of the array, which can be

non-rectangular

Hough Transform: Transformation Space Voting

4 parameters of a **similarity transform** (x,y,s,theta)

parameter space of the transformation

This can be effective in preventing noise in the distribution, e.g., edge pass through a point.

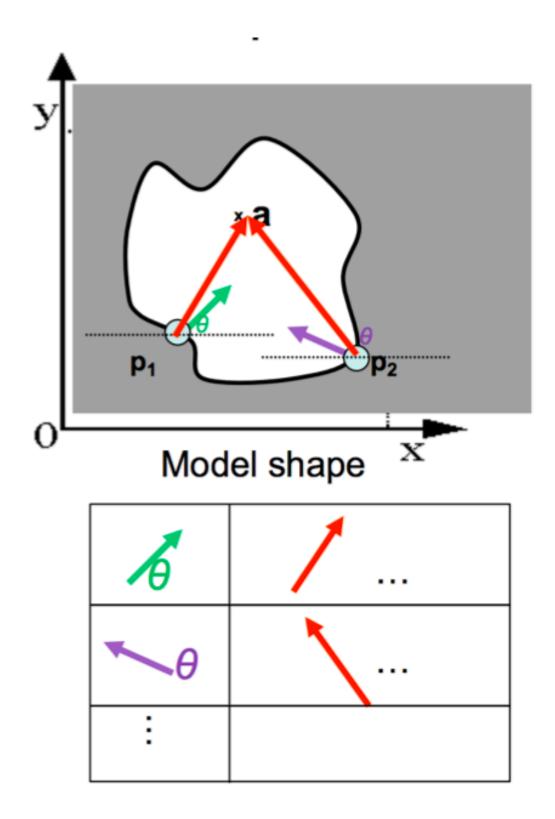
- Sometimes a single point / measurement can vote on the entire transformation
- e.g., SIFT keypoint matches with location, scale and orientation vote on the
- In this case, the votes of each sample can be seen as a **distribution in the**
- detections with orientation can vote on single lines rather than all lines that

Generalized Hough Transform

What if we want to detect an **arbitrary** geometric shape?

Generalized Hough Transform

What if we want to detect an **arbitrary** geometric shape?



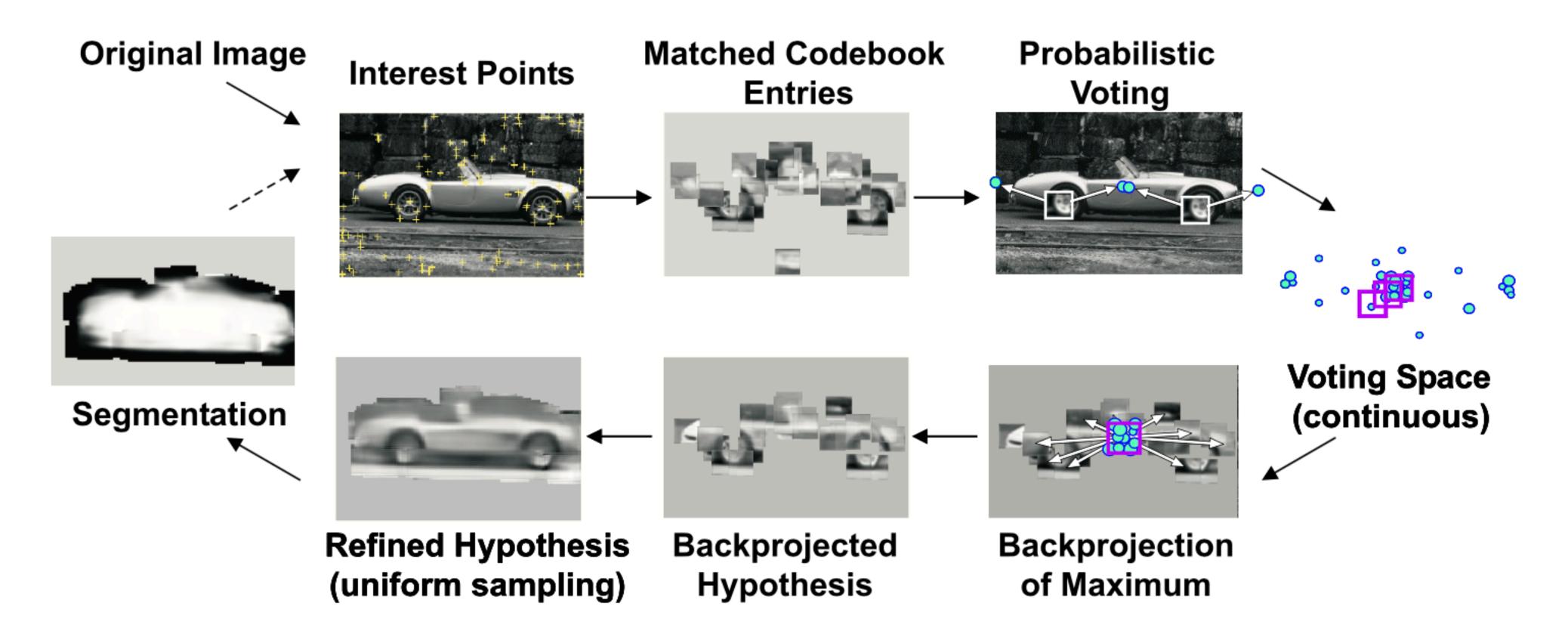
Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980

Offline procedure:

At each boundary point, compute displacement vector: $\mathbf{r} = \mathbf{a} - \mathbf{p}_i$.

Store these vectors in a table indexed by gradient orientation θ .

Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.

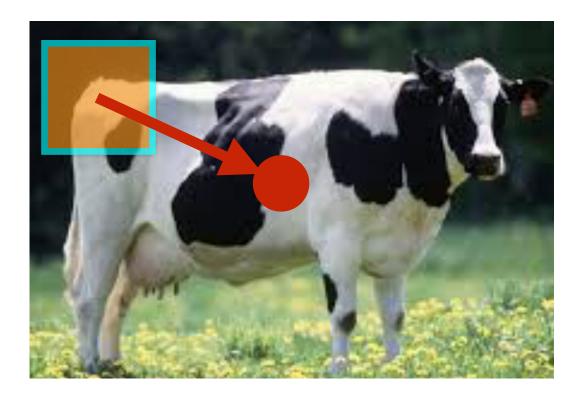


B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Basic Idea:

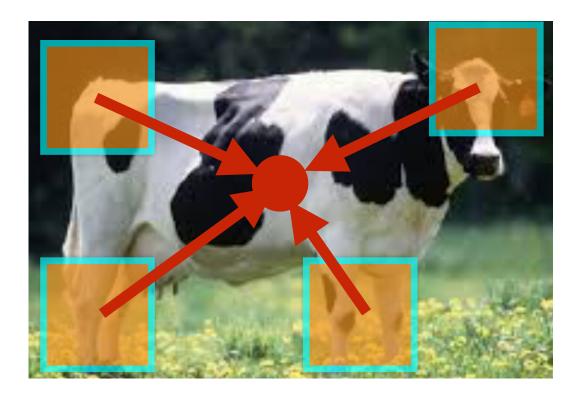
- Find interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)
- Match patch around each interest point to a training patch (e.g., SIFT Descriptor)
- Vote for object center given that training instances
- Find the patches that voted for the peaks (back-project)

"Training" images of cows



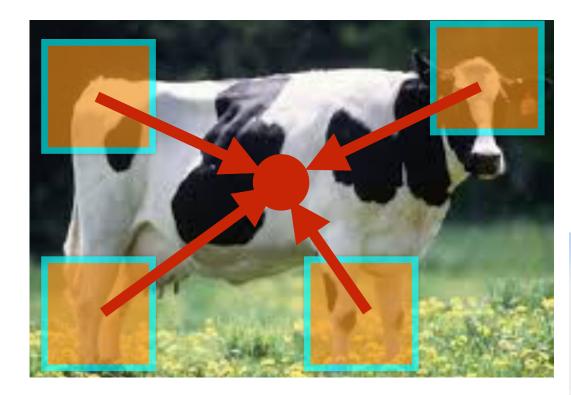
lmage Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid
Image 1	1	[x, y, s, Theta]	[]	[x,y]

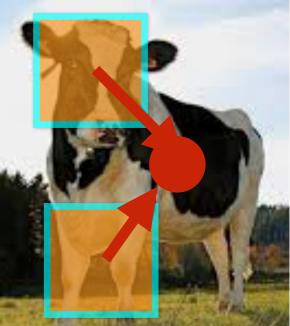
"Training" images of cows



lmage Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid
lmage 1 Image 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 1	265	 [x, y, s, Theta]	 []	[X,Y]

"Training" images of cows





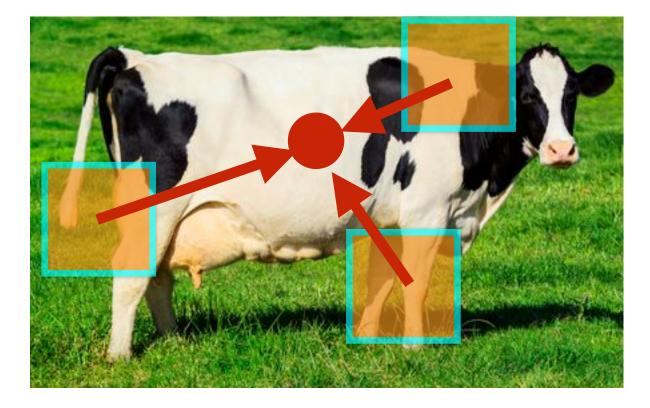


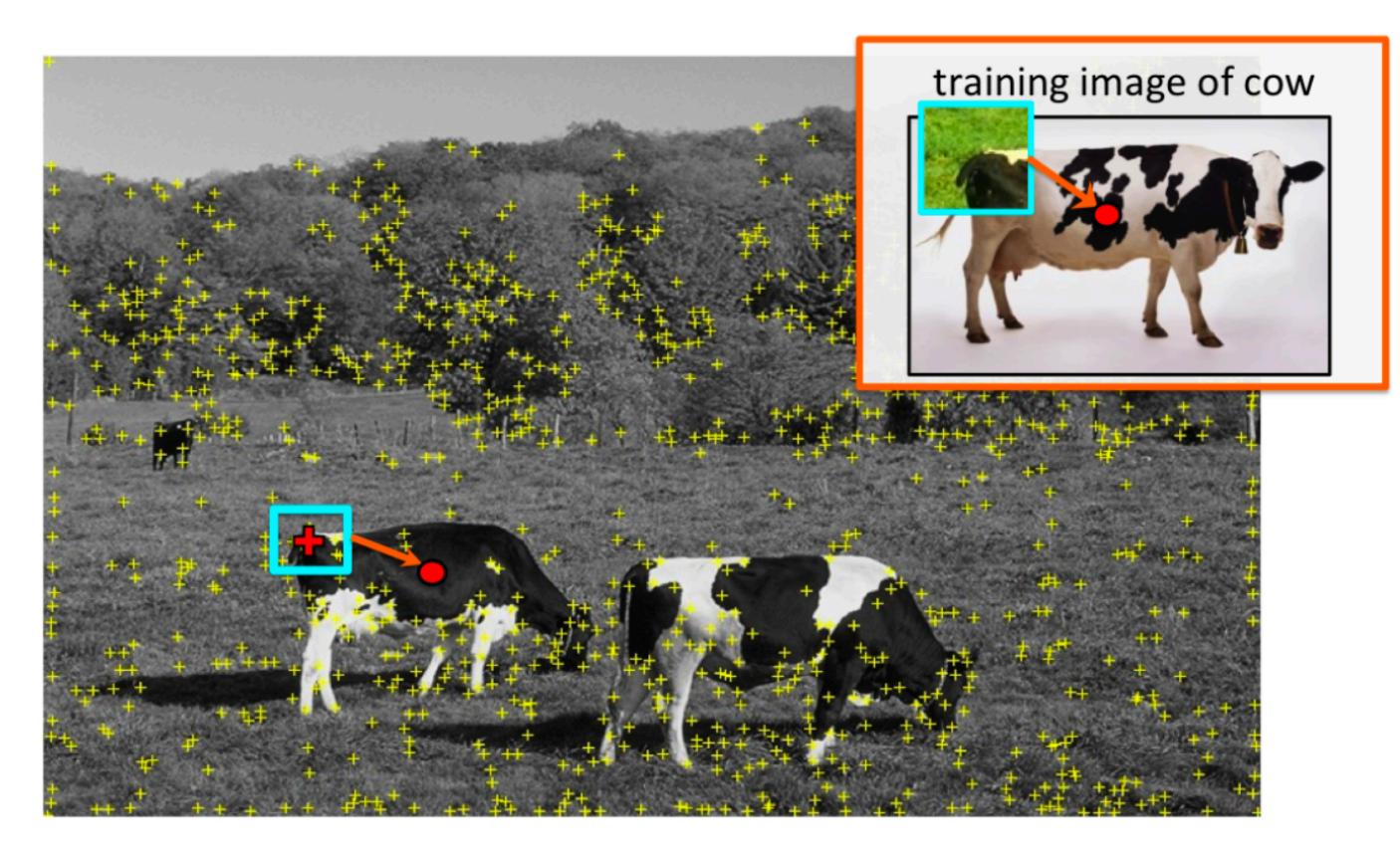
Image Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid
lmage 1 Image 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 1	265	 [x, y, s, Theta]	 []	[x,y]
lmage 2 Image 2	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 2	645	 [x, y, s, Theta]	 []	 [x,y]
lmage K Image K	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image K	134	 [x, y, s, Theta]	 []	[x,y]

"Training" images of cows

"Testing" image

"Training" images of cows

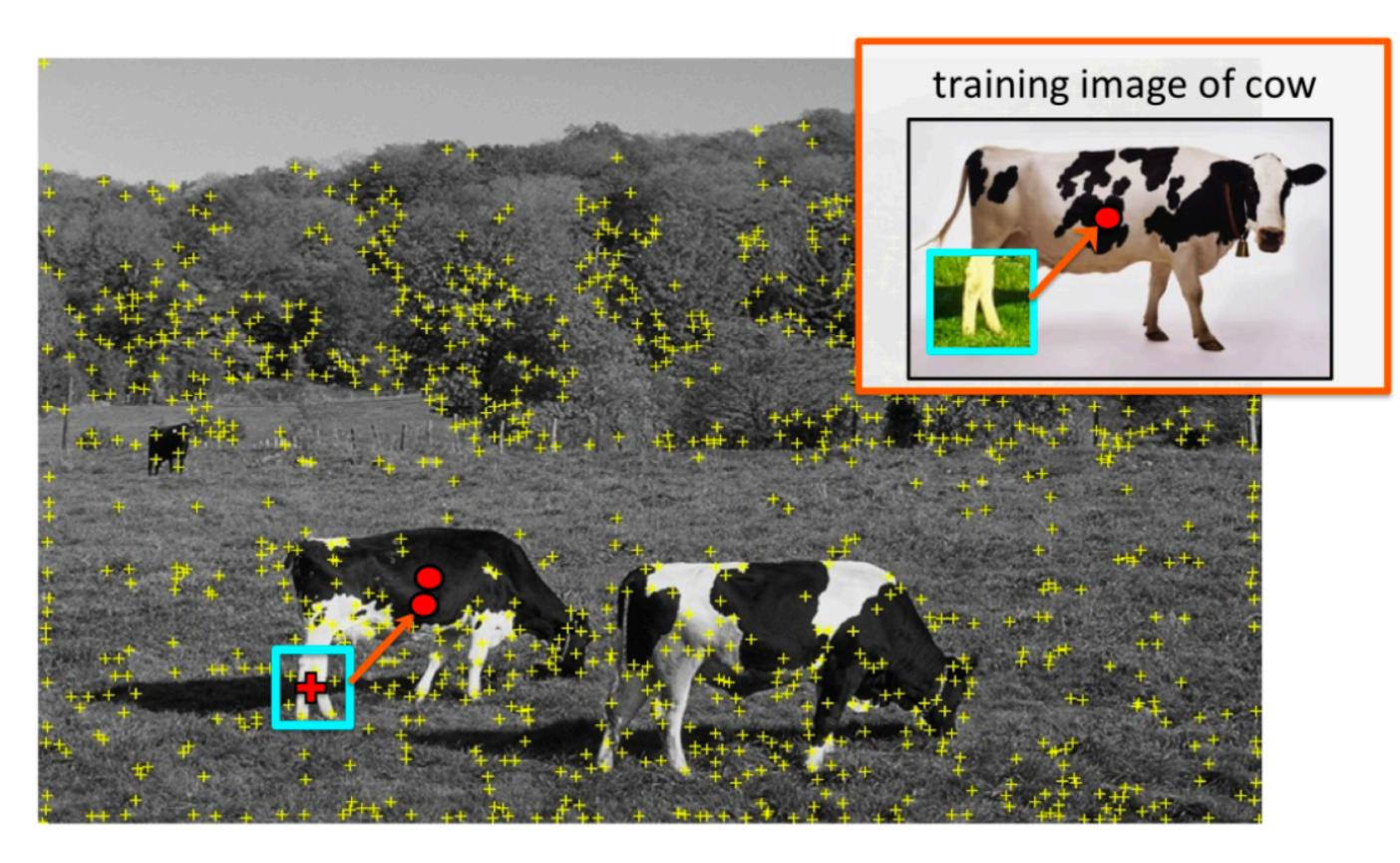
"Testing" image



Vote for center of object

"Training" images of cows

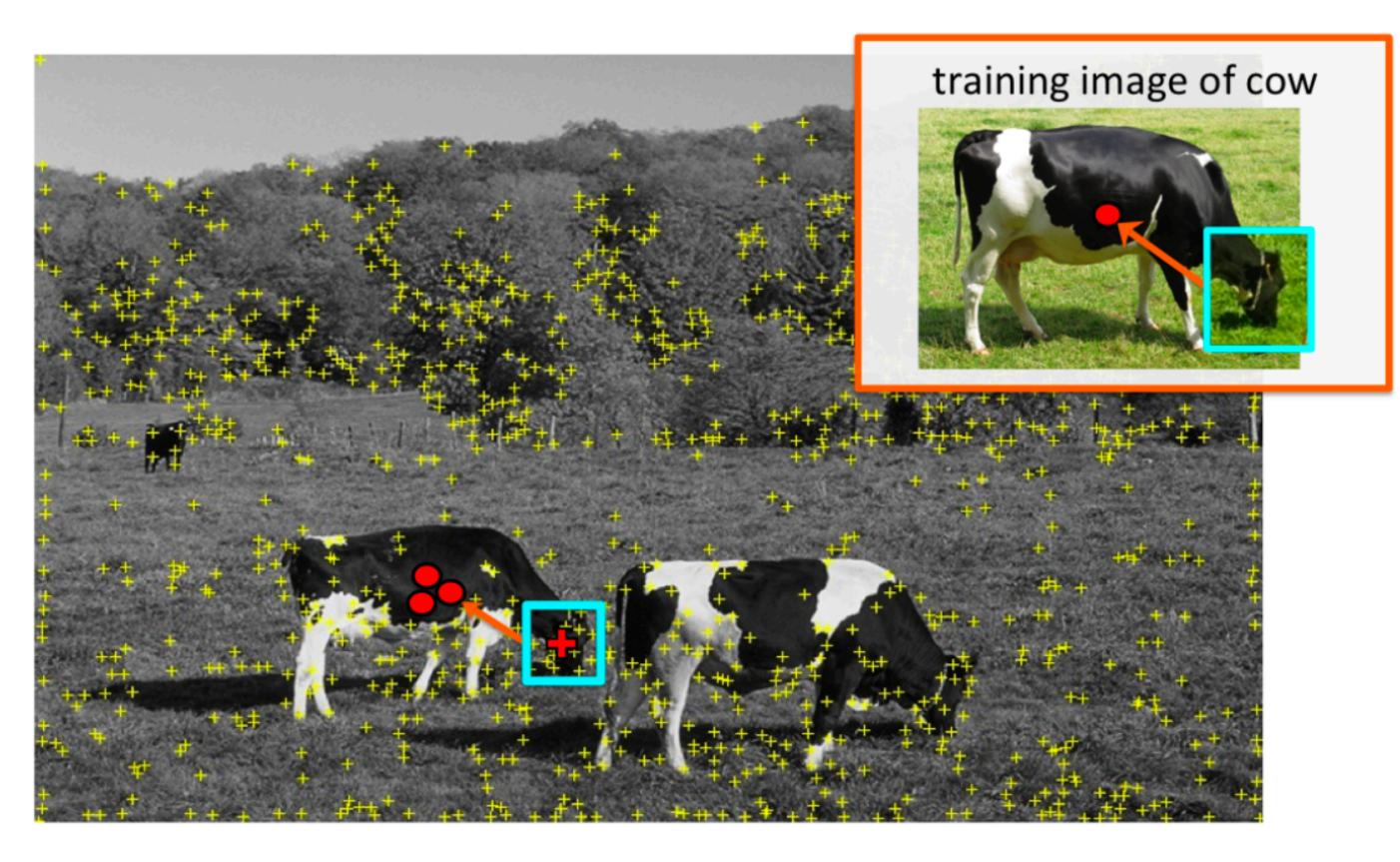
"Testing" image



Vote for center of object

"Training" images of cows

"Testing" image



Vote for center of object

"Training" images of cows

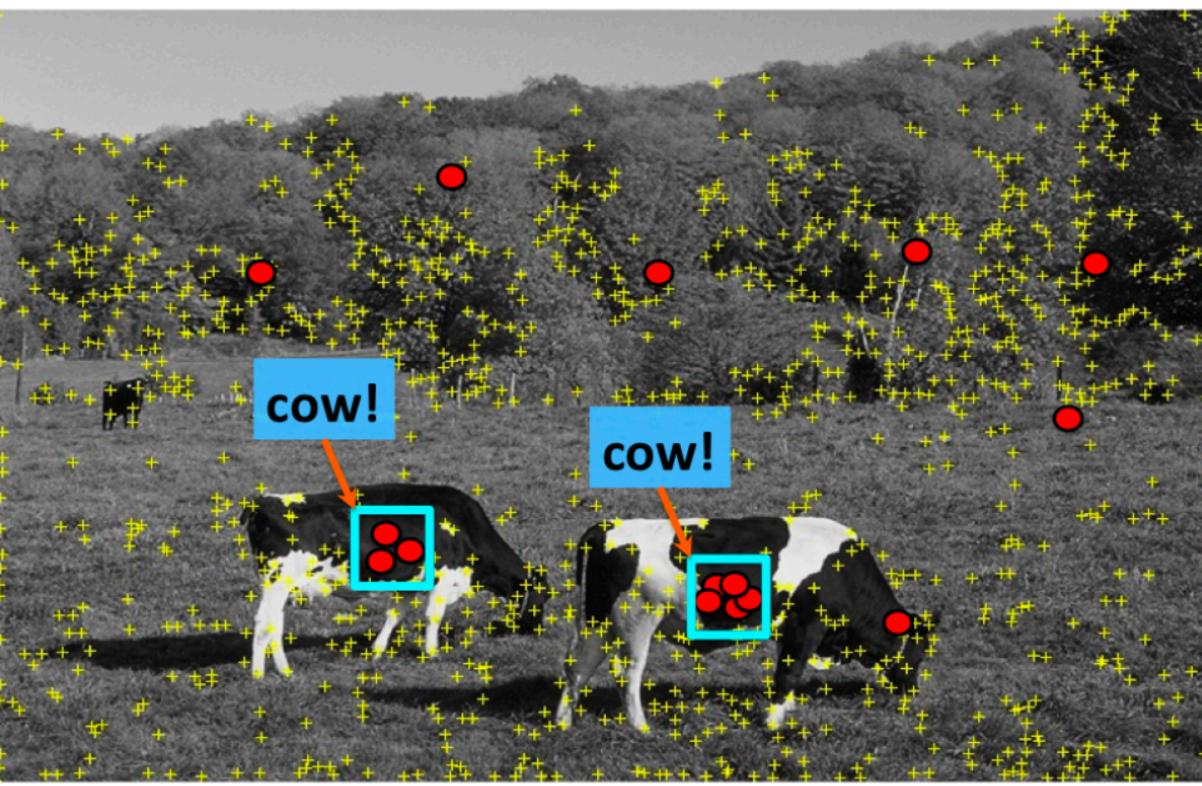
of course sometimes wrong votes are bound to happen

"Testing" image

"Training" images of cows

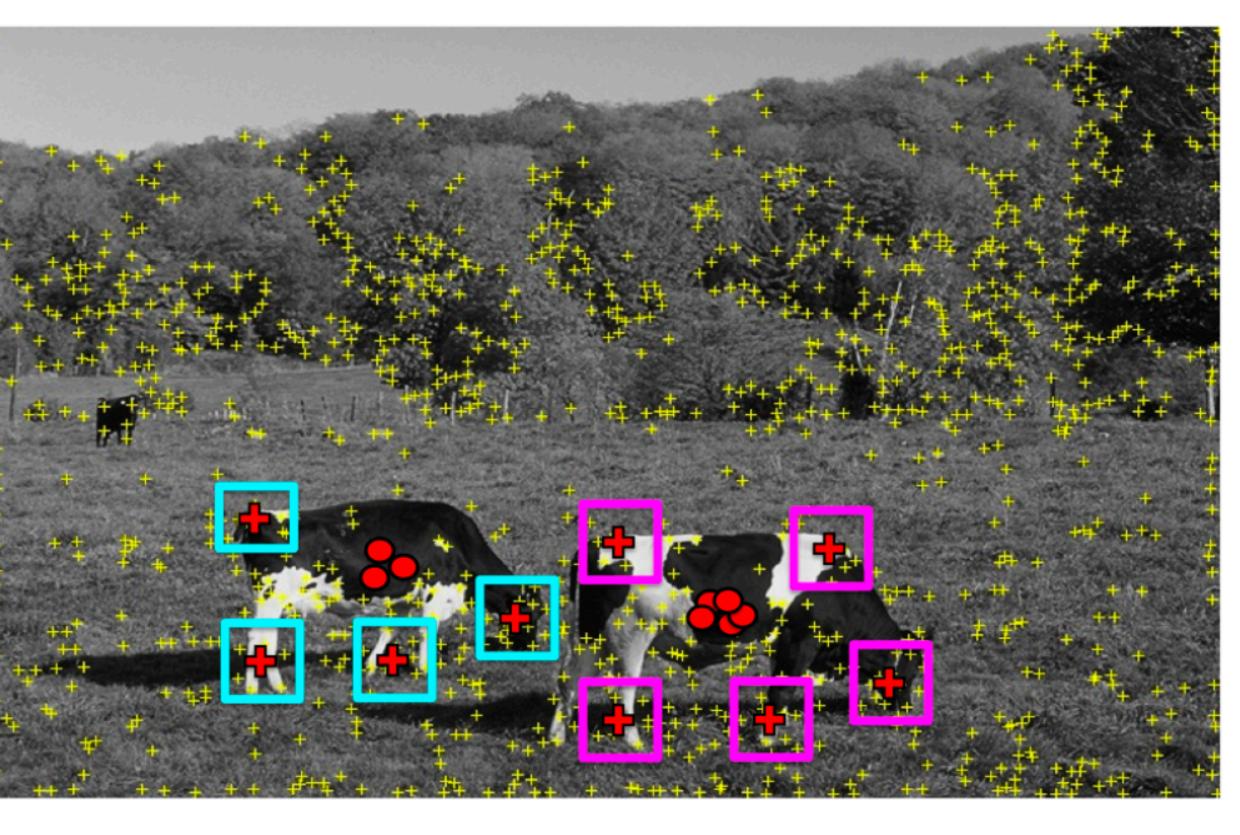
That's ok. We want only peaks in voting space.

"Testing" image



"Training" images of cows

"Testing" image

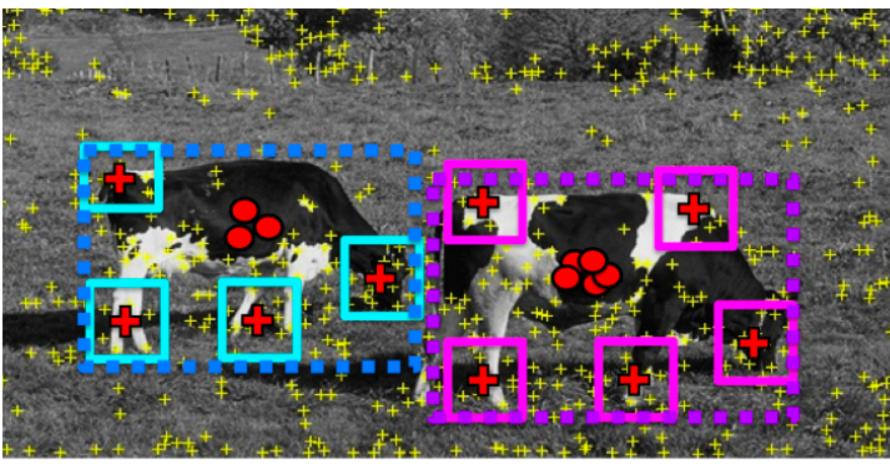


Find patches that voted for the peaks (back-project)

Image Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Of Cer
lmage 1 Image 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[> [>
Image 1	265	 [x, y, s, Theta]	 []	[>
lmage 2 Image 2	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[> [>
Image 2	645	 [x, y, s, Theta]	 []	[>
Image K Image K	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[> [>
Image K	134	 [x, y, s, Theta]	 []	[>

Offset to entroid

- [X,Y] [x,y]
- . . .
- [X,Y]
- [x,y] [x,y]
- . . . [X,Y]
- [x,y] [x,y]
- . . .
- [x,y]



lmage Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Of Cer
Image 1	1	[x, y, s, Theta]	[]	[>
Image 1	2	[x, y, s, Theta]	[]	[>
Image 1	265	 [x, y, s, Theta]	 []	[>
Image 2	1	[x, y, s, Theta]	[]	[>
Image 2	2	[x, y, s, Theta]	[]	[>
Image 2	645	[x, y, s, Theta]	[]	
Image K	1	[x, y, s, Theta]	[]	[>
Image K	2	[x, y, s, Theta]	[]	[>
Image K	134	[x, y, s, Theta]	[]	[>

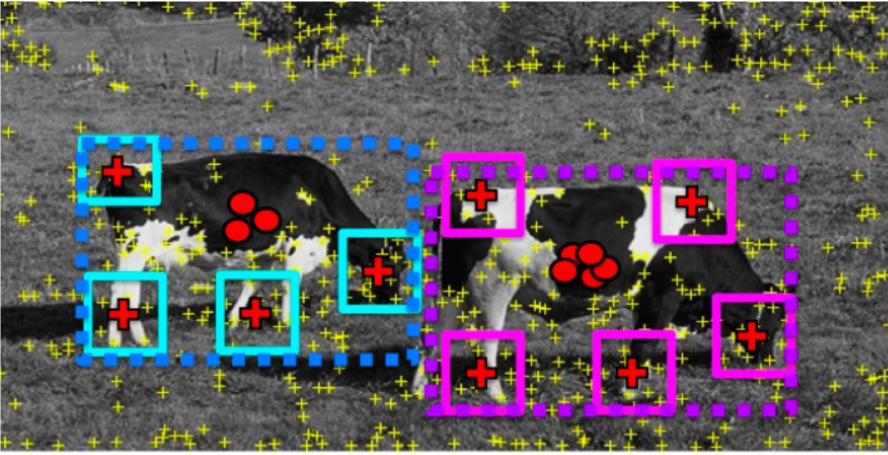
. . . [X,Y]

[x,y] [<mark>X,y]</mark>

• • • [X,Y]

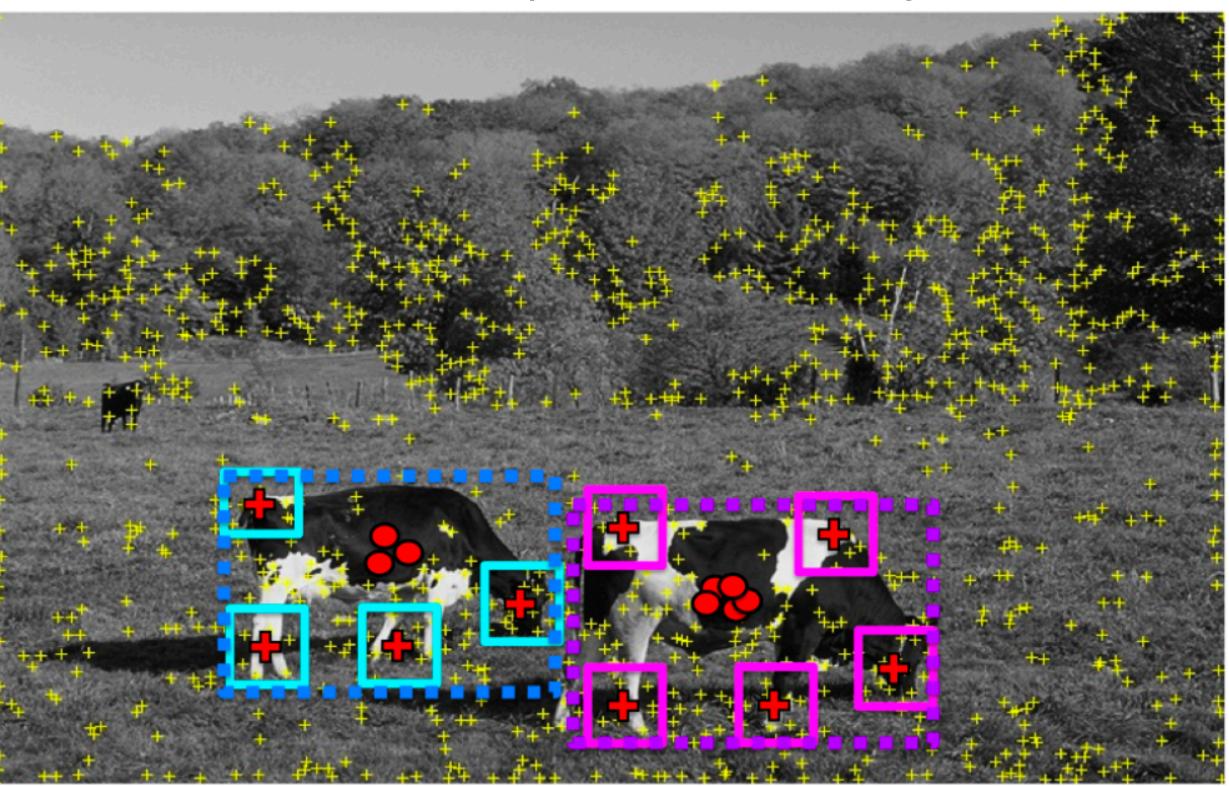
<mark>[x,y]</mark> [x,y]

... [x,y]



"Training" images of cows

"Testing" image box around patches = object



Find objects based on the back projected patches

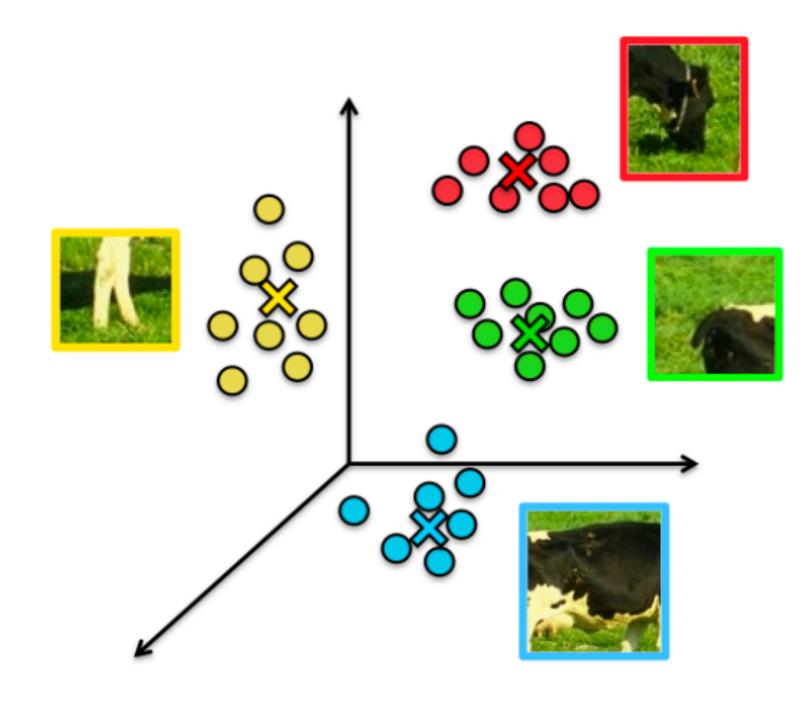
"Training" images of cows

We need to match a patch around each yellow keypoint to all patches in all training images (**slow**)

"Testing" image

Visual Words

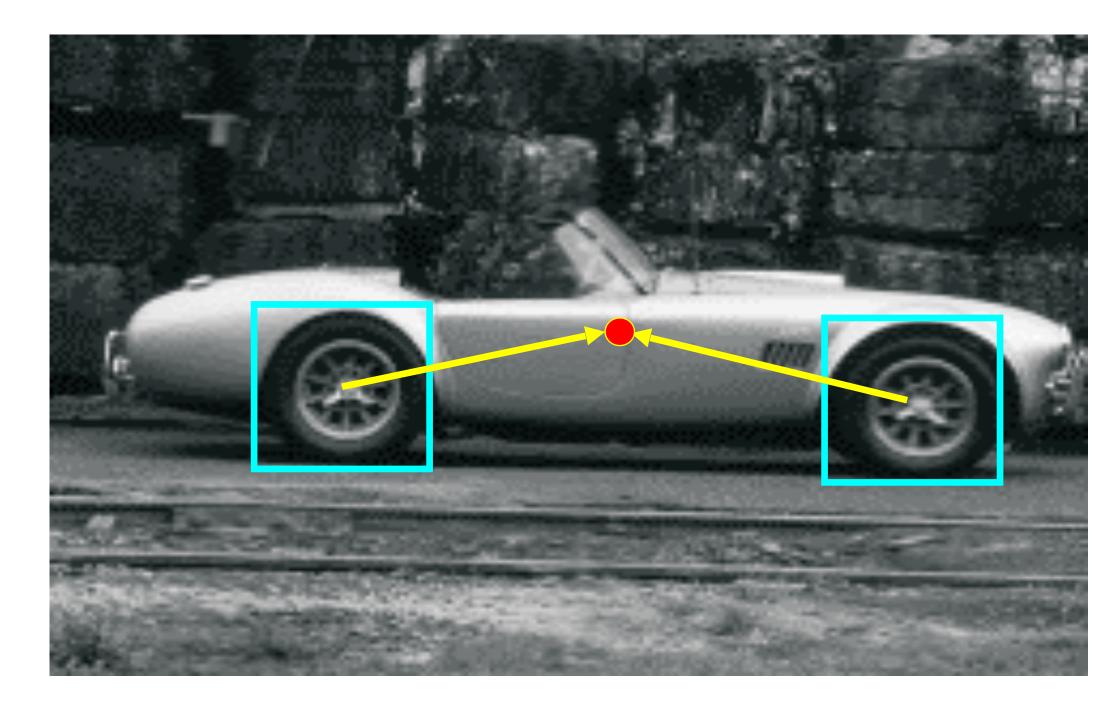
- Visual vocabulary (we saw this for retrieval)



• Compare each patch to a small set of visual words (clusters)

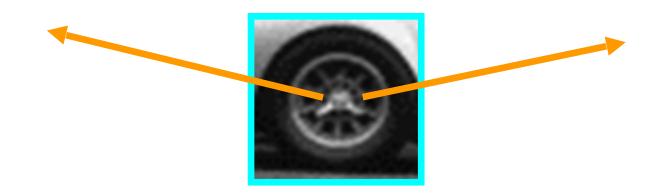
Visual words (visual codebook)!

Index displacements by "visual codeword"



training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

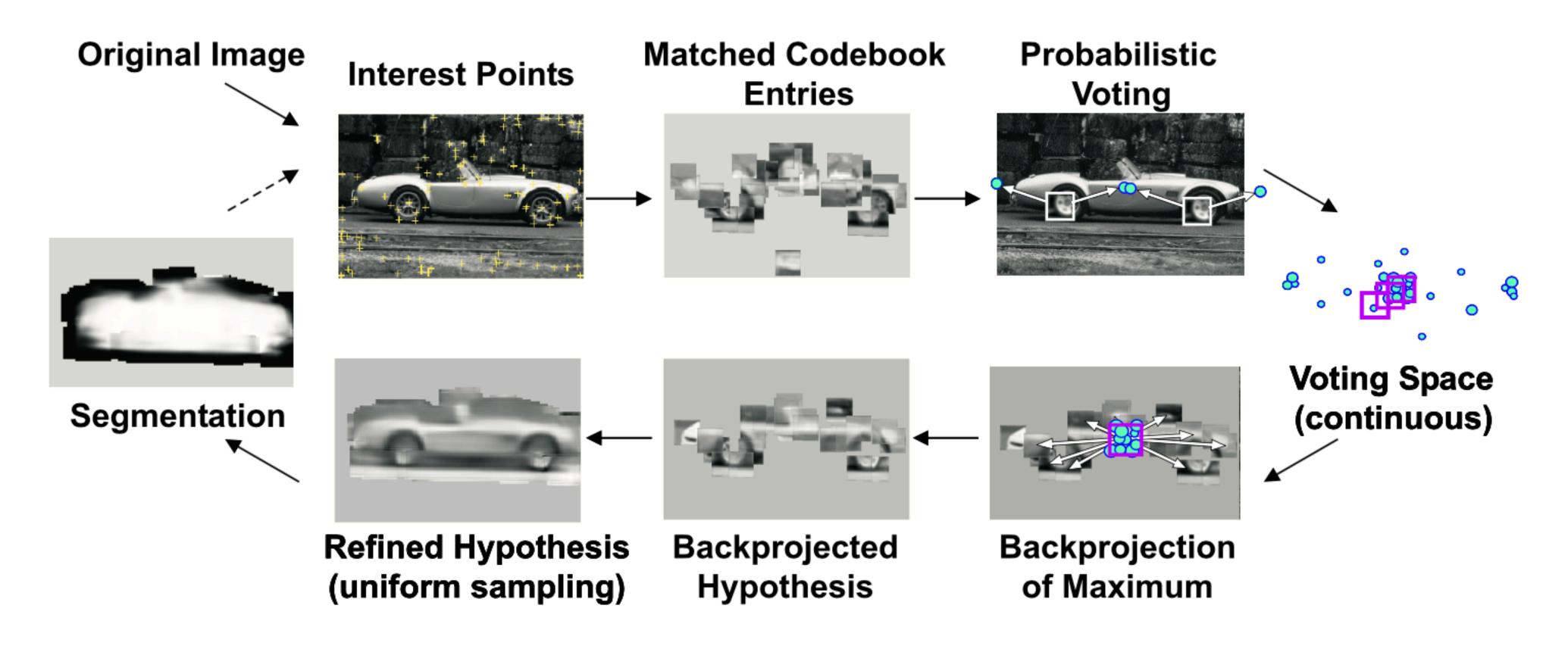


visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

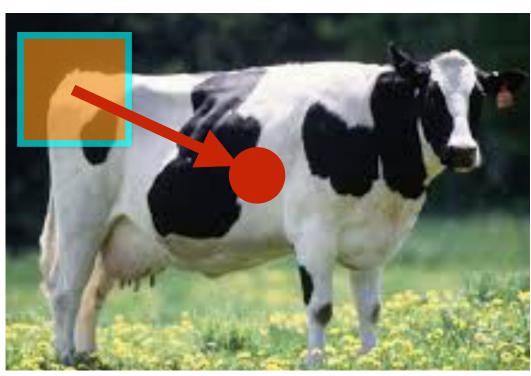
Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

"Training" images of cows



Imag Imag

. . Imag

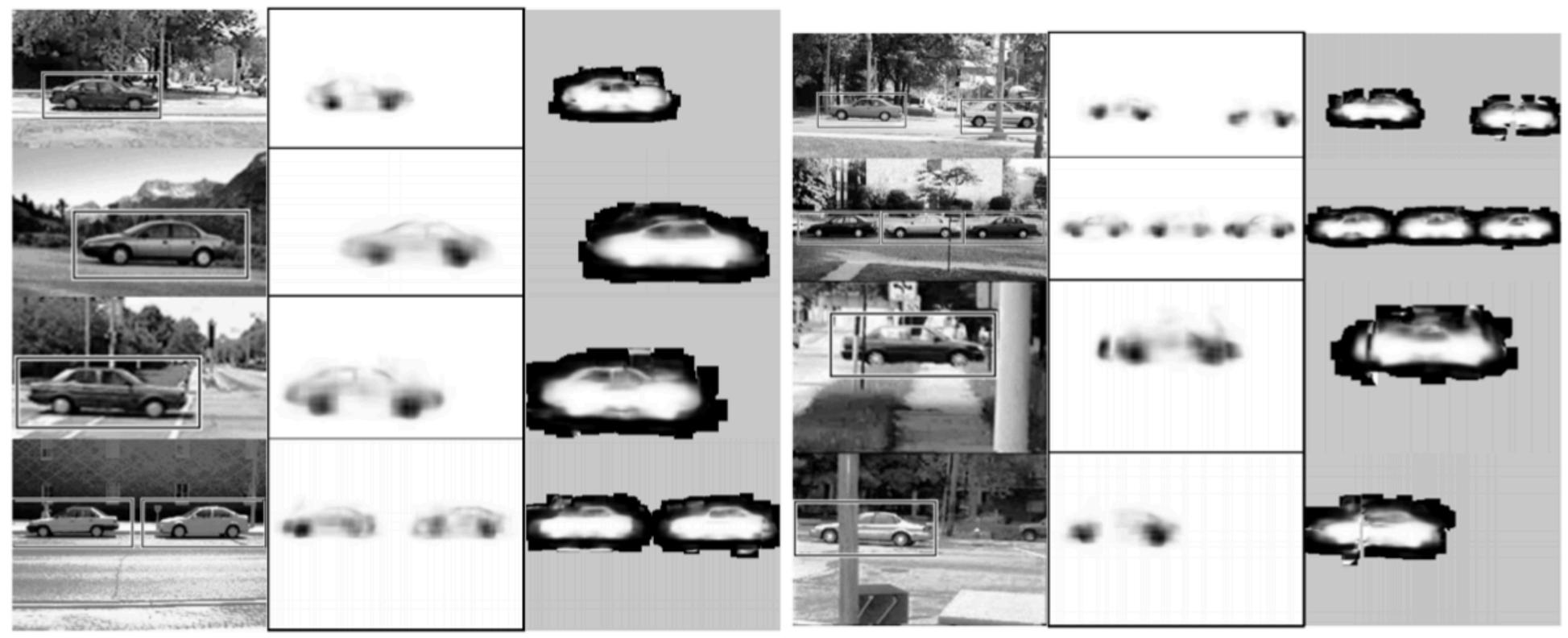
Imag Imag Imag

Imac Imac

Imag

ige lex	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid	Seg
age 1 age 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]	
age 1	265	 [x, y, s, Theta]	 []	[x,y]	
age 2 age 2	1 2	[x, y, s, Theta] [x, y, s, Theta]		[x,y] [x,y]	
age 2	645	 [x, y, s, Theta]	 []	 [x,y]	
ige K ige K	1 2	[x, y, s, Theta] [x, y, s, Theta]		[x,y] [x,y]	
ige K	134	 [x, y, s, Theta]	 []	[x,y]	

Inferring Other Information: Segmentation Idea: When back-projecting, back-project labeled segmentations per training patch



(a) detections

(b) p(figure)

(c) segmentation

[Source: B. Leibe]

- -

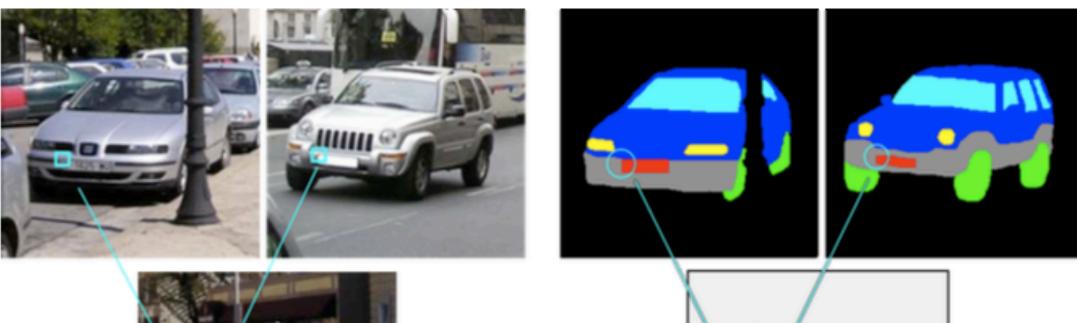
- (a) detections
- (b) p(figure)
- (c) segmentation

Inferring Other Information: Segmentation

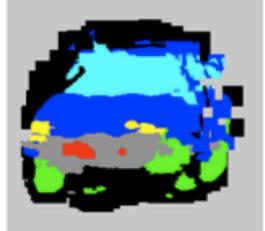
[Source: B. Leibe]

Inferring Other Information: Part Labels

Training



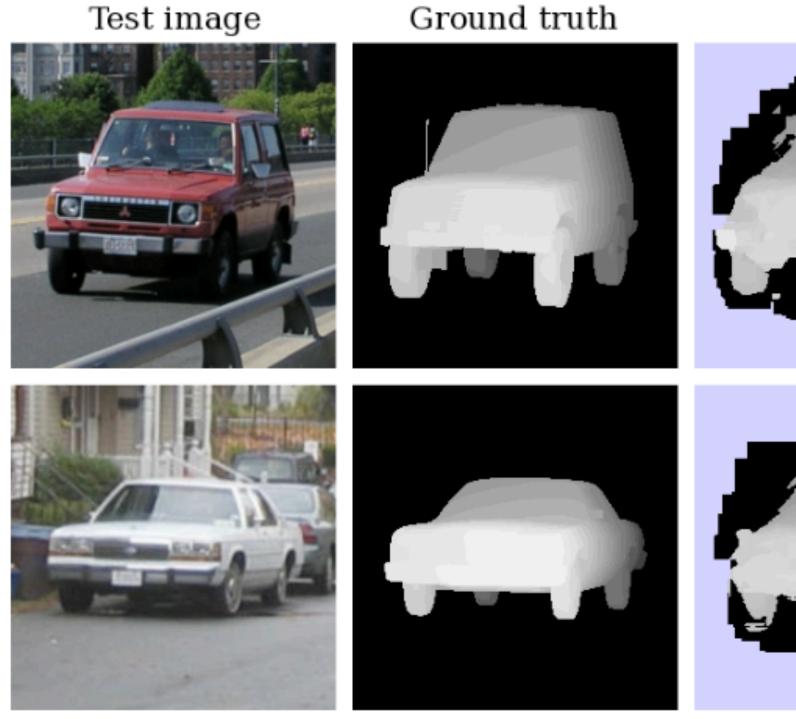
Test



Output

Inferring Other Information: **Depth**

Test image

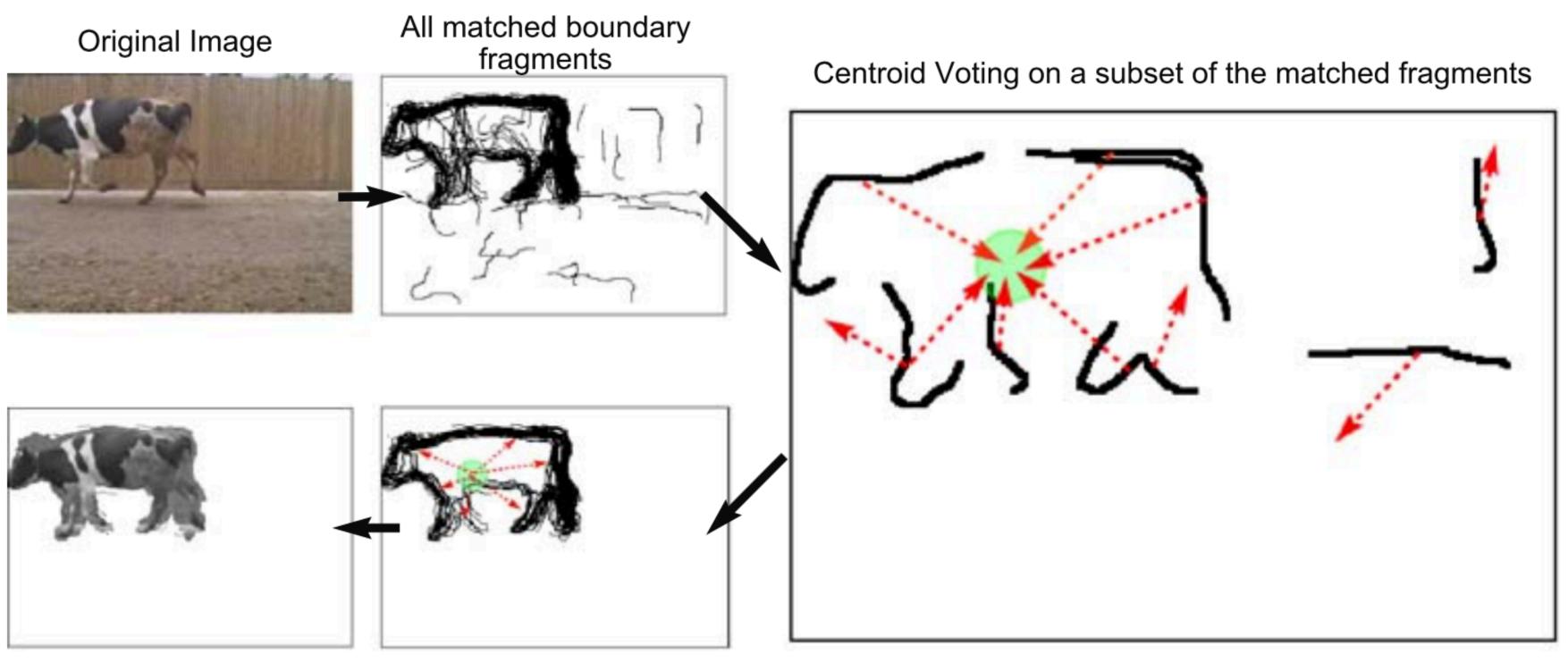


"Depth from a single image"

Result

Example 2: Object Recognition — Boundary Fragments

an estimate of the object's contour.



Segmentation / Detection Backprojected Maximum

Boundary fragments cast weighted votes for the object centroid. Also obtains

Image credit: Opelt et al., 2006

Example 2: Object Recognition — Boundary Fragments Boundary fragments cast weighted votes for the object centroid. Also obtains

an estimate of the object's contour.

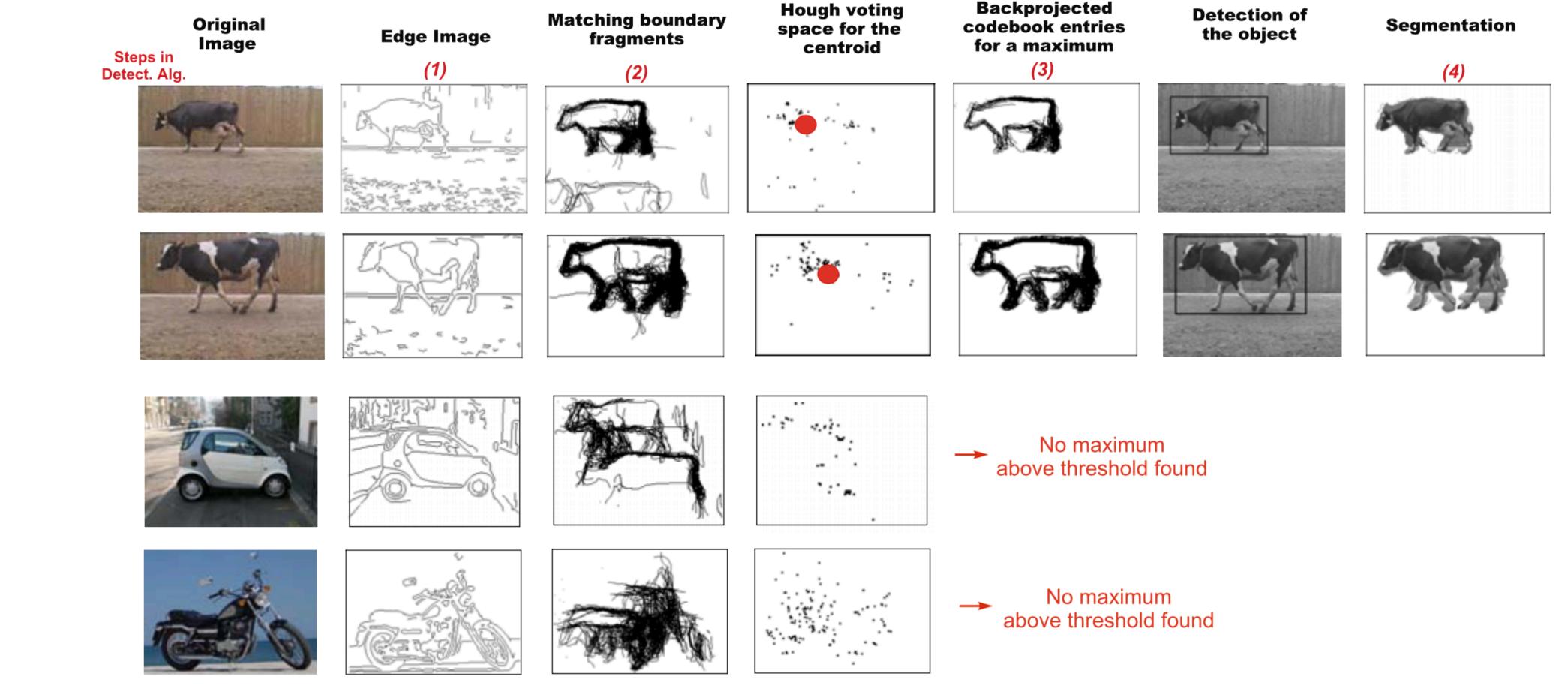


Image credit: Opelt et al., 2006

Example 3: Deep Hough Voting

Voting from input point cloud 3D detection output

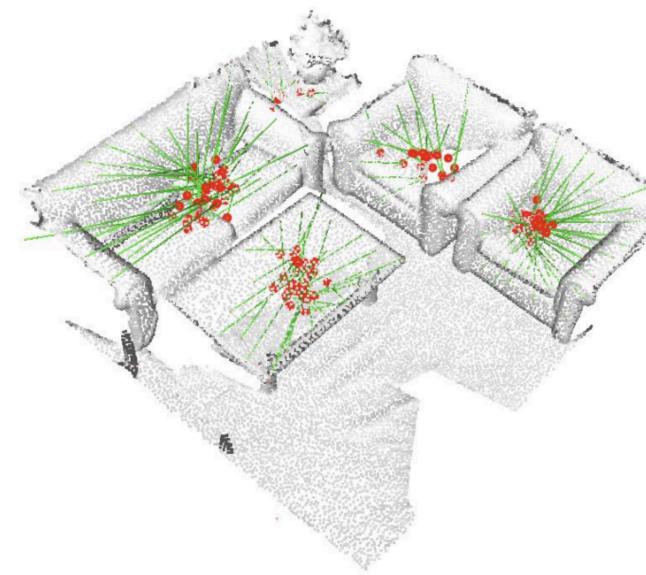


Figure 1. 3D object detection in point clouds with a deep Hough voting model. Given a point cloud of a 3D scene, our VoteNet votes to object centers and then groups and aggregates the votes to predict 3D bounding boxes and semantic classes of objects.

[Qi et al., 2019, ICCV]

Example 3: Deep Hough Voting

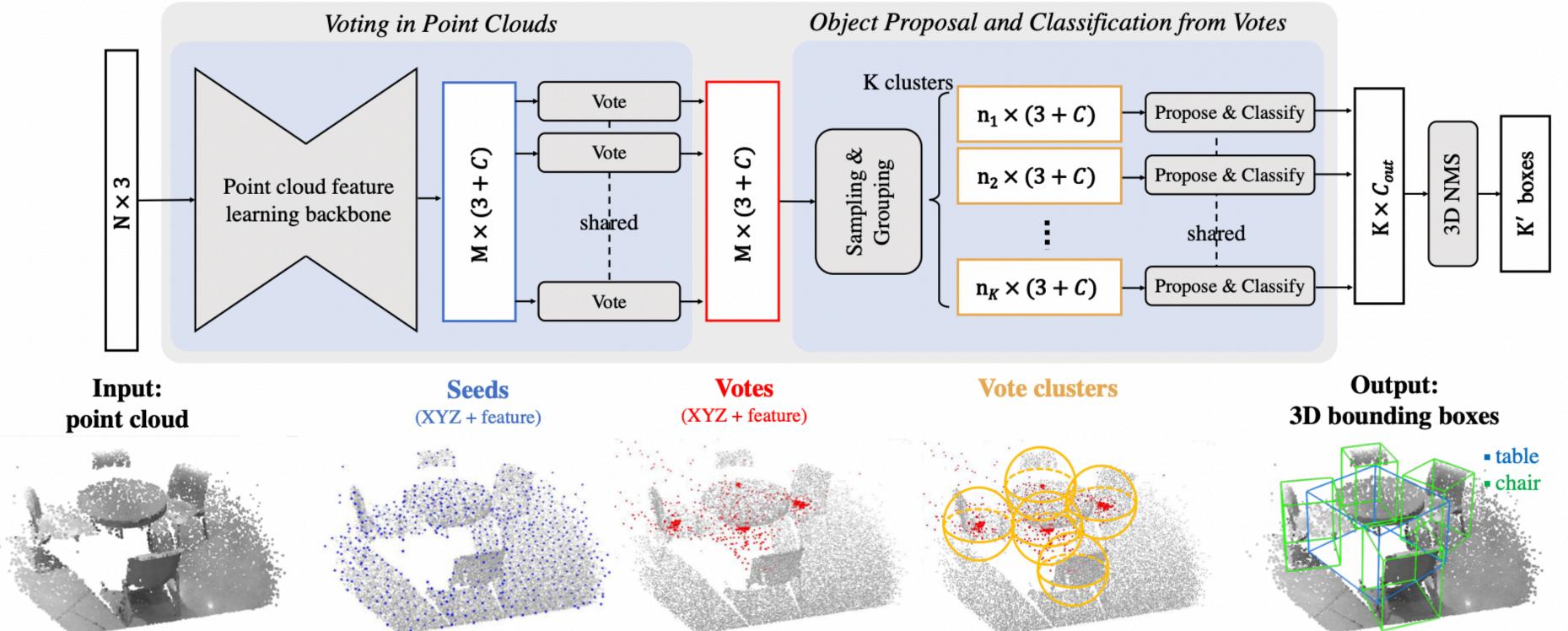


Figure 2. Illustration of the VoteNet architecture for 3D object detection in point clouds. Given an input point cloud of N points with final proposals. The classified and NMSed proposals become the final 3D bounding boxes output. Image best viewed in color.

XYZ coordinates, a backbone network (implemented with PointNet++ [36] layers) subsamples and learns deep features on the points and outputs a subset of M points but extended by C-dim features. This subset of points are considered as seed points. Each seed independently generates a vote through a voting module. Then the votes are grouped into clusters and processed by the proposal module to generate the

[Qi et al., 2019, ICCV]

Summary of Hough Transform

Idea of **Hough transform**:

 For each token vote for all models to which the token could belong Return models that get many votes e.g., For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Advantages:

- Can handle high percentage of outliers: each point votes separately Can detect multiple instances of a model in a single pass

Disadvantages:

- Search time increases exponentially with the number of model parameters Can be tricky to pick a good bin size